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Ordinal Ridge Regression with Categorical Predictors

Faisal Maqbool Zahida,∗

aLudwig-Maximilians-University Munich, Ludwigstrasse 33, D-80539 Munich, Germany.

Abstract

In multi-category response models categories are often ordered. In case of ordinal response models, the usual like-

lihood approach becomes unstable with ill-conditioned predictor space or when the number of parameters to be es-

timated is large relative to the sample size. The likelihood estimates do not exist when the number of observations

is less than the number of parameters. The same problem arises if constraint on the order of intercept values is not

met during the iterative procedure. Proportional odds models are most commonly used for ordinal responses. In this

paper penalized likelihood with quadratic penalty is used to address these issues with a special focus on proportional

odds models. To avoid large differences between two parameter values corresponding to the consecutive categories

of an ordinal predictor, the differences between the parameters of two adjacent categories should be penalized. The

considered penalized likelihood function penalizes the parameter estimates or differences between the parameters esti-

mates according to the type of predictors. Mean squared error for parameter estimates, deviance of fitted probabilities

and prediction error for ridge regression are compared with usual likelihood estimates in a simulation study and an

application.

Key words: Likelihood estimation, Logistic regression, Non-proportional odds model, Partial proportional odds

model, Penalization, Proportional odds model, Ridge regression.

1. Introduction

In regression analysis, maximum likelihood estimation is a common approach to compute the parameter estimates in

categorical response models. But this approach fails if we have to estimate the parameters which are large in number

relative to the sample size. In other words for a small ratio of sample size to the number of parameters (also for p > n

case) usual likelihood approach does not lead to a unique solution. The analyst faces the same problem for the data

set with high correlation among the covariates and/or if there is a complete separation among the categories of the

response variable. An alternative to the usual likelihood approach is to use penalized likelihood function. Penalization
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techniques combine log-likelihood function with a penalty term which measures the smoothness of the fit. In recent

years several penalization techniques with different types of penalties have been proposed. The main objective of using

penalized log-likelihood is to obtain unique estimates of the parameters, better prediction with a good compromise

between bias and variance, and/or to have a sparse model for clear and easy interpretation of the parameter estimates.

Ridge regression is the most familiar penalization approach in the literature. In the context of linear models much

literature is available for ridge regression. Schaefer et al. (1984) and Schaefer (1986) discussed the ridge penalty for

logistic regression with binary response. An extension of ridge regression for GLM type models is considered by

Nyquist (1991). LeCessie and Houwelingen (1992) discussed different ways to select the ridge penalty and also for

computing prediction error in case of logistic ridge regression. In the literature univariate GLM’s are more focused

than the multivariate GLM. Zhu and Hastie (2004) used penalized logistic regression with quadratic penalty as an

alternative to the support vector machine (SVM) for microarray cancer diagnostic problems. Zahid and Tutz (2009)

used ridge penalty to get penalized estimates for logistic regression with multi-category (unordered) responses, which

are independent of choice of the reference category. Ridge regression shrinks the parameter estimates to zero but

none of them is exactly zero. As a result we do not have a parsimonious model but a model with all predictors.

Another penalization approach called Lasso was proposed by Tibshirani (1996). Lasso technique not only shrinks

the parameter estimates to zero but also serves as subset selection by setting some of the estimates exactly to zero.

The lasso approach for multinomial logit models was considered by Friedman et al. (2010). In many applications

multi-category responses are ordered. According to our knowledge penalization has not been addressed for ordered

category response models. For ordinal responses there were several models discussed in the literature (see McCullagh

(1980), Ananth and Kleinbaum (1997) and Agresti (1999)). However the proportional odds model (also known as

cumulative logit models) is the most most popular among all other models for ordered category responses. Unlike

multinomial logit models the proportional odds model (POM) has simple form in the sense that it has so-called global

parameter estimates which are not category specific. But still in the case of large number of covariates maximum

likelihood estimates may not exist. To resolve this problem we are using penalized log-likelihood with quadratic

penalty to compute the estimates in proportional odds models. If the response variable Y has k ordered categories as

1, . . . , k, the general form of the cumulative logit model is given by

log
[P(Y ≤ r|x)
P(Y > r|x)

]
= γ0r − xTγγγr, r = 1, . . . , q = k − 1. (1)

The vector γγγT
r = (γ1r, . . . , γpr) represents the category specific parameters. The simple form of proportional odds

models with identical parameters for each category is given by

log
[P(Y ≤ r|x)
P(Y > r|x)

]
= γ0r − xTγγγ, r = 1, . . . , q = k − 1. (2)

Here the so-called global parameters vector γγγT = (γ1, . . . , γp) does not depend on the category. The ordered response

Y can be viewed as a categorized version of an unobservable latent variable Z as Y = r ⇔ γ0,r−1 < Z ≤ γ0r for r =

1, . . . , k, where −∞ = γ00 < γ01 < . . . < γ0k = ∞ define the category boundaries on the unobservable latent
2



continuum. The simple form of proportional odds model in (2) can be viewed as a univariate regression model for the

latent variable with simple interpretation of parameters. The intercepts {γ0r} are different for each cummulative logit

and must satisfy the stochastic ordering γ01 < . . . < γ0q to have positive probabilities. Also the negative sign in (1)

and (2) ensures that the probability is increasing for large values of xTγγγ with increasing r.

In the following text penalized estimates are computed using the penalized log-likelihood based on quadratic penalty

for the simple form of the proportional odds models given in (2). In Section 2 penalized likelihood is discussed with

some computational issues. The penalization with non-proportional odds models (NPOM) and partial proportional

odds models (PPOM) is also described in this section. Empirical results of ordinal ridge regression are compared with

usual ML estimates in Section 3. The ordinal ridge regression is fitted and compared with MLE using a real data

in Section 4. The need of using penalized likelihood is also indicated in this section by drawing two small random

samples of size n = 30 and n = 50 from the considered real data where usual MLE is not existing. Some final and

concluding remarks are given in Section 5.

2. Penalization and Computational Issues

For the proportional odds model given in (2), let φir(x) denote the cumulative probability for the occurrence of response

levels up to and including rth level with a given covariate vector xi given as

φir(x) = P(Yi ≤ r|xi) = F(ηir) r = 1, . . . , q = k − 1,

where F is a strictly monotone distribution function. The model with homogeneous effects has the predictor

ηir = γ0r + xT
i γγγ. (3)

In the context of multivariate generalized linear models, the simple proportional odds model can be given as

πππi = h(Xiβββ) or g(πππi) = Xiβββ,

where πππT
i = (πi1, . . . , πiq) with components πir = P(Yi = r|xi) and g = (g1, . . . , gk−1) is a logit link type function given

by

gr(πππi) = log
[
log

(
φir

1 − φir

)
− log

( φi,r−1

1 − φi,r−1

)]
. (4)

For p∗ = p + q, Xi = [Iq×q, 1q×1 ⊗ xT
i ] is a q × p∗ matrix and βββT = (γγγT

0 , γγγ
T ) = (γ01, . . . , γ0q, γ1, . . . , γp) is a p∗ × 1

vector. The complete design matrix of order nq× p∗ is given as XT = [X1, . . . ,Xn]. For further details see McCullagh

and Nelder (1989) and Fahrmeir and Tutz (2001).

The predictor space may contain some categorical predictors with more than one parameters associated with it. Let

we have K j parameters associated with predictor x j. So for a binary or continuous covariate we have K j = 1 and

3



if covariate is categorical then K j > 1 depending upon the number of categories of the predictor x j. The penalized

log-likelihood with quadratic penalty is given as

lp(βββ) = l(βββ) − λ
2

J(βββ), (5)

where l(βββ) is the usual log-likelihood function given by

l(βββ) =

n∑

i=1

k∑

r=1

yirlog(πir), (6)

and λ is a tuning parameter. The penalty term J(βββ) can be given as

J(βββ) = βββT P βββ. (7)

The definition of penalty matrix P depends on how we perform penalization with different types of predictors. If we

have some ordinal predictors in the predictor space, penalization should be applied in such a way that ordinal covari-

ates can be distinguished from the other covariates by considering the order of the categories. In penalization, it is

common practice to penalize the parameter estimates but with ordinal predictors rather than estimates, difference be-

tween the parameters estimates of adjacent categories should be penalized (see Gertheiss and Tutz (2009)). Penalizing

such differences will cause a smoothed version of the parameter estimates by avoiding the large difference among the

estimates associated with the dummies of the ordinal predictors. Let the predictor x j is ordinal with K j + 1 categories

and first category is treated as reference category. If γγγ j denotes the parameter vector for K j parameters/dummies

associated with ordinal predictor x j, the penalty term for penalizing the differences between parameters of adjacent

categories takes the form as

J(γγγ j) =

K+1∑

l=2

(γ jl − γ j−1,l)2 = γγγT
j ΩΩΩ j γγγ j,

with ΩΩΩ j = UT
j U j, for a K j × K j matrix U j given by

U j =



1 0 · · · · · · 0

−1 1
. . .

...

0 −1 1
. . .

...

...
. . .

. . .
. . . 0

0 · · · 0 −1 1



.

If the predictor is not ordinal then the penalty term for predictor x j is given by

J(γγγ j) =

K+1∑

l=2

γ2
jl = γγγT

j I j γγγ j,

where I j is a K j × K j identity matrix. For the predictor space with all types of predictors (i.e., binary/continuous,

nominal and ordinal predictors), the penalty matrix P given in (7) is given by

P = diag(0q×q,P1, . . . ,Pp). (8)
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Here 0q×q is a zero matrix with zeros for the category specific intercept terms which are not penalized. If the jth

predictor is ordinal then (K j × K j)−submatrix P j assumes the value ΩΩΩ j otherwise P j = I j.

The penalized log-likelihood function given in (5) can be written as

lp(βββ) =

n∑

i=1

li(βββ) − λ
2

p∑

j=1

βββT
j P βββ j

Score function sp(βββ) for the penalized log-likelihood is given by

sp(βββ) =

n∑

i=1

XT
i Di(βββ)ΣΣΣ−1

i (βββ)[yi − h(ηηηi)] − λPβββ

= XT D(βββ)ΣΣΣ−1(βββ)[y − h(ηηη)] − λPβββ (9)

where Di(βββ) =
∂h(ηηηi)
∂ηηη

is derivative of h(ηηη) evaluated at ηηηi = Xiβββ, ΣΣΣi(βββ) = cov(yi) is the covariance matrix of ith

observation of y given parameter vector βββ and Wi(βββ) = Di(βββ)ΣΣΣ−1
i DT

i (βββ). y and h(ηηη) are given by yT = (yT
1 , . . . , y

T
n ) and

h(ηηη)T = (h(ηηη1)T , . . . , h(ηηηn)T ). The matrices have block diagonal form ΣΣΣ(βββ) = diag(ΣΣΣ−1
i (βββ)), D(βββ) = diag(Di(βββ)) and

W(βββ) = diag(Wi(βββ)). By equating the score function to zero we obtain the estimation equations as

XT D(βββ)ΣΣΣ−1(βββ)[y − h(ηηη)] − λPβββ = 0,

where βββ is p∗ × 1 parameter vector for p∗ = q +
∑p

j=1 K j and P is a p∗ × p∗ matrix given in (8). Fisher scoring iteration

yields

β̂ββ
(k+1)

= β̂ββ
(k)

+

(
XT W

(
β̂ββ

(k)) X + λP
)−1

sp
(
β̂ββ

(k))
.

If β̂ββ are penalized estimates for the true parameter βββ, the covariance matrix can be approximated by

cov(β̂ββ) =

(
XT W

(
β̂ββ
)

X + λP
)−1(

XT W
(
β̂ββ
)

X
)(

XT W
(
β̂ββ
)

X + λP
)−1
.

Generalized cross-validation (GCV) criterion is used to find the optimal value of ridge penalty λ. In the generalized

linear models (GLM) environment we are using likelihood-based criterion deviance for GCV instead of squared

distances of yi. and πi.. Deviance based generalized cross-validation is given by

GCV =
−2.

∑n
i=1(lλ(π̂ππi) − li(yi))

(1 − tr(H(λ))/n)2 , (10)

where the the hat matrix H is given as

H = WT/2X
(
XT W

(
β̂ββ
)

X + λP
)−1

XT W1/2.

In this text we are using penalization to address the problems with likelihood estimation for proportional odds models

which are commonly used with ordered response categories. But some problems may become more critical when

we are dealing with non-proportional odds models (NPOM) given in (1) with category specific parameters or partial

proportional odds model (PPOM) given by

ηir = γ0r + xT
iGγγγG + xT

iLγγγLr r = 1, . . . , q, (11)
5



where some of the parameters have global effect γγγG and others have local/category specific effect γγγLr. In both of these

types of models we have to estimate more parameters than in the corresponding proportional odds model. In case

of non-proportional or partial proportional odds models, penalization can be implemented in the same way as for

POM. The only difference is that the structure of design matrix will be changed according to the model. In case of

proportional odds model the design matrix for ith observation is a q× p∗ matrix Xi = [Iq×q, 1q×1 ⊗xT
i ] with p∗ = p + q,

as discussed above. For non-proportional odds model the design matrix assumes the same structure as for multinomial

logit models and for the ith observation is given as Xi = [Iq×q, Iq×q ⊗ xT
i ]. For partial proportional odds models the

design matrix can be written as Xi = [Iq×q, 1q×1 ⊗ xT
Gi, Iq×q ⊗ xT

Li] where xT
Gi is a vector associated with predictors

having global effect and xT
Li is a vector of observations for those predictors having local i.e., category specific effect.

The parameter vector associated with POM, NPOM and PPOM are given by βββT = (γγγT
0 , γγγ

T ) = (γ01, . . . , γ0q, γ1, . . . , γp),

βββT = (γγγT
0 , γγγ

T
1 , . . . , γγγ

T
q ) and βββT = (γγγT

0 , γγγ
T
G, γγγ

T
L1, . . . , γγγ

T
Lq) respectively. In case of NPOM and PPOM, the penalty matrix P

has a higher dimension than the proportional odds models and can be formulated according to the structure of design

matrix based on the desired model to fit.

3. Simulation Study

The effectiveness of ridge regression is discussed in this section using simulated data. For a sample of size n predictor

space contains continuous covariates (denoted by C), binary covariates (denoted by B), nominal covariates (denoted

by NK+1) and/or ordinal covariates (denoted by OK+1) with K + 1 categories. The continuous covariates are drawn

from a p-dimensional centered multivariate normal distribution with covariance between two covariates x j and xk

being ρ| j−k|. Four values of ρ = 0.0, 0.3, 0.7 and 0.9 are used. To study the problems with existence of usual MLE, we

consider proportional odds models with k = 3 and k = 5 response categories for each setting of predictor space given

in Table 1. The true values used for the intercept terms are (−0.3, 0.8) and (−0.8,−0.3, 0.3, 0.8) for k = 3 and k = 5

respectively. The true values for global parameters are obtained as (−1) jexp(−2( j − 1)/20) for j = 1, . . . ,
∑p

j=1 K j. A

multiplicative factor csnr for βββT = (γγγT
0 , γγγ) is chosen so that the signal-to-noise ratio is 1.

6
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Table 2: Comparison of Bias in ridge estimates and maximum likelihood estimates. Results of simulation study for setting
1 (C = 10), and setting 2 (C = B = 5, N3 = N4 = O3 = O4 = 1).

k = 3 response categories k = 5 response categories

Predictors ρ n Bias (MLE) Bias (Ridge) Bias (MLE) Bias (Ridge)

Setting 1 0.0 30 6.1013 2.4959 7.9885 2.9878

0.3 30 10.7727 2.8926 16.8054 3.5454

0.7 30 9.7730 3.2490 24.5497 3.7247

0.9 30 13.3824 3.8163 16.3382 3.9171

0.0 50 3.1968 2.0083 2.8157 1.9978

0.3 50 3.0562 1.9167 3.2015 2.2838

0.7 50 3.8132 2.3512 4.2058 2.8365

0.9 50 5.9668 3.2345 5.5624 3.3067

0.0 100 1.7180 1.4164 1.8226 1.4481

0.3 100 1.5501 1.3569 1.9473 1.6707

0.7 100 2.4421 1.9737 2.0823 1.7594

0.9 100 4.4083 3.1984 3.8908 2.6397

Setting 2 0.0 30 − 6.4481 − 9.4966

0.3 30 − 7.9981 − 7.5097

0.7 30 − 8.9882 − 9.1005

0.9 30 − 8.7376 − 7.0519

0.0 50 28.9515 4.7621 10.8452 4.7540

0.3 50 16.5924 5.6959 12.2986 5.7770

0.7 50 9.2153 4.7695 8.7403 5.4500

0.9 50 13.9843 5.6826 20.4349 6.2991

0.0 100 6.5044 4.4605 6.6477 4.4492

0.3 100 5.8020 4.2456 5.6645 4.2098

0.7 100 6.2549 3.9546 5.9056 4.2600

0.9 100 6.1046 4.0720 7.9145 5.7814

For each setting mentioned in Table 1 with different number and type of covariates, S = 50 samples of size n are used

in the study. To compare the results of ridge estimates with likelihood estimates we consider only those samples for

which ML estimates exist. In order to obtain S = 50 samples, S ′ samples are ignored because ML estimates with their

standard errors are not existing for these samples using polr function of library MASS in statistical language R 2.10.0.

In Table 1, the columns with title S ′ showing the number of samples for which ML estimates did not exist, highlights

the need of a penalization technique. The results of Table 1 show that value of S ′ is increasing with increasing

number of predictors drawn from different distributions. This problem becomes even more severe with k = 5 response

categories. For sample size n = 30, we cannot generate 50 samples for which MLE is existing in setting 2 and in

setting 1 although estimates are presented but they have quite large standard errors (not shown here). Although ML

estimates become more stable for independent predictors or in case of moderate correlation among predictors with

increasing sample size, however they are deteriorated in case of high multicollinearity. The ridge regression may be

the best choice to obtain stable estimates of parameters for all predictors in the model when usual MLE is not existing

or deteriorated because of ill-conditioned predictor space. In Table 1, ML estimates are computed using polr function

of statistical environment/language R 2.10.0. Ridge estimates are compared with likelihood estimates in terms of
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Figure 1: Illustration of simulation study for ten predictors drawn from multivariate normal distribution for k = 5 response
categories: Box plots for comparing ridge estimates with ML estimates in terms of log(MSE(β̂ββ)) (top panel) and log values
of Mean Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean of the
observations for which box plots are drawn.

mean squared error (MSE) of β̂ββ, deviance of the fitted probabilities and mean prediction error (MPE). In all settings

we use samples of size n for the training data and then a sample of size ntest = 1000 is generated for comparing

the prediction performance of ridge estimates with likelihood estimates. The results of Table 1 show that ridge is

performing better than MLE as is expected. In case of ten normally distributed covariates, ML estimates have very

large standard errors for n = 30. In the simulation setting 2 considered with categorical predictors there are twenty

parameters to be estimated (other than intercept terms). Here the situation goes more worse with MLE and we have

to leave a large number of samples (especially with k = 5 response categories) because of problems with existence

of estimates. Even we could not get enough samples with n = 30 for which likelihood estimates with their standard

errors exist. So for setting 2 with n = 30 only the results of ridge regression are given in Table 1. The ridge estimates

do exist in all considered situations even when the likelihood estimates do not exist. For comparing ridge estimates

with ML estimates, mean squared error is computed as 1
S
∑

s (β̂ββ
method
s − βββtrue)T (β̂ββ

method
s − βββtrue) and the formula used

to compute deviance of fit i.e., Dev(π̂ππ) is given by D = 2.
∑n

i=1
∑k

j=1 yi jlog
(

yi j

π̂i j

)
with yi jlog

(
yi j

π̂i j

)
= 0 for yi j = 0. Mean

prediction error based on 1000 test observations is computed as MPE = 1
S
∑

s Ds = 1
S
∑

s 2.
[∑n

i=1
∑k

j=1 π
test
i js log

(
πtest

i js

π̂test
i js

)]
.

In addition to MSE(β̂̂β̂β) it is also important to observe the amount of bias in the parameter estimates. The mean length

of vectors of bias in S = 50 samples is computed for ridge and ML estimates as 1
S
∑

s || β̂ββmethod
s − βββtrue||. The mean

values for lengths of bias vectors for MLE and ridge estimates is given in Table 2 for each setting of simulation study.

The graphical representation of the results for more interesting cases with small samples for k = 5 response categories
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Figure 2: Illustration of simulation study for k = 5 response categories and C = B = 5 and N3 = N4 = O3 = O4 = 1
predictors in the predictor space: Box plots for comparing ridge regression estimates with MLE in terms of log(MSE(β̂ββ))
(top panel) and Mean Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean
of the observations for which box plots are drawn.

is given in Figure 1 and 2 with the help of box plots. The solid circles in each box represents the mean of the values

for which box plot is drawn.

4. Application

In this section for computing and comparing the ridge estimates with ML estimates, we are considering the housing

data set from UCI repository (http://archive.ics.uci.edu/ml/datasets/Housing). The response variable

(MEDV) is about the median values of the owner-occupied houses in suburbs of Boston. For the analysis purpose,

response variable which is measured in $1000’s is divided into four price categories as lower , lower middle, upper

middle and high price category using the thresholds as MEDV< 10, 10 ≤ MEDV < 25, 25 ≤ MEDV < 40 and

MEDV ≥ 40. The predictors used to predict the price range of a house are: per capita crime rate by town (CRIM);

proportion of residential land zoned for lots over 25,000 sq.ft. (ZN); proportion of non-retail business acres per town

(INDUS); Charles River dummy variable (CHAS= 1 if tract bounds river; CHAS= 0 otherwise); nitric oxides con-

centration (NOX)(parts per 10 million); average number of rooms per dwelling (RM); proportion of owner-occupied

units built prior to 1940 (AGE); weighted distances to five Boston employment centres (DIS); index of accessibility

to radial highways (RAD); full-value property-tax rate per $10, 000 (TAX); pupil-teacher ratio by town (PTRATIO);

1000(Bk −0.63)2 where Bk is the proportion of blacks by town (B) and % lower status of the population (LSTAT).
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Although the polr function of R provides the likelihood estimates of parameters but fails to produce standard errors of

these estimates. So the usual ML estimates and corresponding standard errors are not computed with polr as in simu-

lation study but ML estimates are computed for λ = 0. For computing the ridge estimates, ridge penalty is decided on

the basis of deviance based generalized cross-validation (GCV). The parameter estimates with their standard errors

are given in Table 3 for the complete data set. The results of ridge regression are based on the optimal value of ridge

penalty λ = 0.1. In order to check the existence of MLE in case of small samples, different random samples of size

n = 30 are drawn from the complete data set and likelihood estimates are not existing for any of the these samples.

Similarly ML estimates are not existing for most of the random samples of size n = 50 drawn from total sample of

size n = 506. However ridge estimates are existing for all such small samples. Two such small samples with n = 30

and n = 50 are considered for which MLE is not existing but ridge estimates do exist. Both of these data sets can be

accessed at www.stat.uni-muenchen.de/∼zahid/samples ordinalRidge.txt. The parameter estimates and

their standard errors for ridge regression with these two samples are given in Table 3. The ridge estimates in both of

these small samples are computed with optimal value of ridge penalty λ = 0.1.

Table 3: MLE and ridge estimates with corresponding standard errors for complete housing data set (n = 506) and ridge
estimates with their standard errors for random samples of size n = 30 and n = 50 drawn from the complete data set.

MLE (n = 506) Ridge (n = 506) Ridge (n = 30) Ridge (n = 50)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.

CRIM 0.0816 0.0210 0.0804 0.0209 0.6898 0.9303 −0.4804 0.4044

ZN −0.0090 0.0075 −0.0093 0.0075 −1.4414 0.9211 −0.0717 0.0498

INDUS −0.0344 0.0393 −0.0253 0.0384 0.6731 0.8954 −0.7055 0.2939

CHAS −0.7756 0.5078 −0.7710 0.4909 −9.6E − 10 0.0001 −2.2409 1.5557

NOX 5.6532 2.6104 3.3769 1.5477 0.0113 0.0497 1.9551 0.8191

RM −1.4677 0.2715 −1.4615 0.2678 −0.4699 0.2782 −3.5199 1.3463

AGE −0.0028 0.0077 −0.0010 0.0075 −0.5734 0.4378 −0.0387 0.0379

DIS 0.4321 0.1243 0.3970 0.1186 −1.1194 1.1935 −0.6395 0.5703

RAD −0.2029 0.0475 −0.1952 0.0465 −0.3114 0.5659 −0.5855 0.2925

TAX 0.0077 0.0025 0.0077 0.0025 0.0394 0.0752 0.0386 0.0172

PTRATIO 0.3756 0.0844 0.3501 0.0804 1.9405 1.2744 1.1177 0.4431

B −0.0077 0.0022 −0.0077 0.0022 −0.2529 0.5010 0.0092 0.0102

LSTAT 0.3082 0.0432 0.3119 0.0430 0.1750 0.8308 0.9086 0.3917

5. Concluding Remarks

Ridge regression provides stable estimates in logistic regression when maximum likelihood estimates are deteriorated

because of ill-conditioned predictor space. Multicollinearity among the predictors causes an increase in the average

length of likelihood estimates of parameter vector and inflates the standard errors of these estimates. Also when
11



sample size is small relative to the number of parameters, existing softwares for fitting proportional odds models may

face the problems in computing the estimates and especially with computing standard errors of the estimates (e.g.,

polr function of MASS package in R that we used in this text may provide the parameter estimates for some data sets

but fails to produce the corresponding standard errors). If p∗ > n the maximum likelihood estimates will not exist at

all. If stochastic ordering of estimates for the intercepts is disturbed during iterative process, it will lead to illogical

values of the fitted probabilities. To address all of these issues, ridge regression is used in this paper for ordinal

response models with a focus on proportional odds models. However for non-proportional odds models or partial

proportional odds models the ridge regression can be used easily in the same way. The only difference is that we have

to penalize more parameter estimates depending upon the model/design space under consideration as discussed in the

end of Section 2. Since ridge penalty shrinks the parameters estimates to zero but does not perform variable selection,

it is useful in case of limited number of predictors where the analysts are interested in fitting a model by keeping

all the predictors in the model. With penalization, parameter estimates corresponding to the categorical predictors

are penalized by considering whether it is a nominal or ordinal predictor. For ordinal predictors differences between

the parameters estimates of successive categories should be small. In this paper, these differences are kept small by

penalizing the differences between successive parameters estimates of ordinal predictors instead of penalizing the

estimates themselves.
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