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Ordinal Ridge Regression with Categorical Predictors

Faisal Magbool Zahid**

“Ludwig-Maximilians-University Munich, Ludwigstrasse 33, D-80539 Munich, Germany.

Abstract

In multi-category response models categories are often ordered. In case of ordinal response models, the usual like-
lihood approach becomes unstable with ill-conditioned predictor space or when the number of parameters to be es-
timated is large relative to the sample size. The likelihood estimates do not exist when the number of observations
is less than the number of parameters. The same problem arises if constraint on the order of intercept values is not
met during the iterative procedure. Proportional odds models are most commonly used for ordinal responses. In this
paper penalized likelihood with quadratic penalty is used to address these issues with a special focus on proportional
odds models. To avoid large differences between two parameter values corresponding to the consecutive categories
of an ordinal predictor, the differences between the parameters of two adjacent categories should be penalized. The
considered penalized likelihood function penalizes the parameter estimates or differences between the parameters esti-
mates according to the type of predictors. Mean squared error for parameter estimates, deviance of fitted probabilities
and prediction error for ridge regression are compared with usual likelihood estimates in a simulation study and an
application.

Key words: Likelihood estimation, Logistic regression, Non-proportional odds model, Partial proportional odds

model, Penalization, Proportional odds model, Ridge regression.

1. Introduction

In regression analysis, maximum likelihood estimation is a common approach to compute the parameter estimates in
categorical response models. But this approach fails if we have to estimate the parameters which are large in number
relative to the sample size. In other words for a small ratio of sample size to the number of parameters (also for p > n
case) usual likelihood approach does not lead to a unique solution. The analyst faces the same problem for the data
set with high correlation among the covariates and/or if there is a complete separation among the categories of the

response variable. An alternative to the usual likelihood approach is to use penalized likelihood function. Penalization
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techniques combine log-likelihood function with a penalty term which measures the smoothness of the fit. In recent
years several penalization techniques with different types of penalties have been proposed. The main objective of using
penalized log-likelihood is to obtain unique estimates of the parameters, better prediction with a good compromise
between bias and variance, and/or to have a sparse model for clear and easy interpretation of the parameter estimates.
Ridge regression is the most familiar penalization approach in the literature. In the context of linear models much
literature is available for ridge regression. Schaefer et al. (1984) and Schaefer (1986) discussed the ridge penalty for
logistic regression with binary response. An extension of ridge regression for GLM type models is considered by
Nyquist (1991). LeCessie and Houwelingen (1992) discussed different ways to select the ridge penalty and also for
computing prediction error in case of logistic ridge regression. In the literature univariate GLM’s are more focused
than the multivariate GLM. Zhu and Hastie (2004) used penalized logistic regression with quadratic penalty as an
alternative to the support vector machine (SVM) for microarray cancer diagnostic problems. Zahid and Tutz (2009)
used ridge penalty to get penalized estimates for logistic regression with multi-category (unordered) responses, which
are independent of choice of the reference category. Ridge regression shrinks the parameter estimates to zero but
none of them is exactly zero. As a result we do not have a parsimonious model but a model with all predictors.
Another penalization approach called Lasso was proposed by Tibshirani (1996). Lasso technique not only shrinks
the parameter estimates to zero but also serves as subset selection by setting some of the estimates exactly to zero.
The lasso approach for multinomial logit models was considered by Friedman et al. (2010). In many applications
multi-category responses are ordered. According to our knowledge penalization has not been addressed for ordered
category response models. For ordinal responses there were several models discussed in the literature (see McCullagh
(1980), Ananth and Kleinbaum (1997) and Agresti (1999)). However the proportional odds model (also known as
cumulative logit models) is the most most popular among all other models for ordered category responses. Unlike
multinomial logit models the proportional odds model (POM) has simple form in the sense that it has so-called global
parameter estimates which are not category specific. But still in the case of large number of covariates maximum
likelihood estimates may not exist. To resolve this problem we are using penalized log-likelihood with quadratic

penalty to compute the estimates in proportional odds models. If the response variable Y has k ordered categories as

1,...,k, the general form of the cumulative logit model is given by
P(Y < rix) T
—_— = r— rs =1,..., =k_1 l
=) =70 =X q ()
The vector ¥ = (yi,,...,y,) represents the category specific parameters. The simple form of proportional odds

models with identical parameters for each category is given by

P(Y < rlx) T
—— =9y, - X1, =1,...,g=k-1. 2
[P(Y > rlx)] Yor =X, T q @)
Here the so-called global parameters vector y’ = (y1,...,7,) does not depend on the category. The ordered response

Y can be viewed as a categorized version of an unobservable latent variable Zas Y =r & vy, < Z <y, forr =

1,...,k, where —c0 = Y90 < yo1 < ... < yor = oo define the category boundaries on the unobservable latent
2



continuum. The simple form of proportional odds model in (2) can be viewed as a univariate regression model for the
latent variable with simple interpretation of parameters. The intercepts {yo,} are different for each cummulative logit
and must satisfy the stochastic ordering yo; < ... < 7y, to have positive probabilities. Also the negative sign in (1)
and (2) ensures that the probability is increasing for large values of x”y with increasing r.

In the following text penalized estimates are computed using the penalized log-likelihood based on quadratic penalty
for the simple form of the proportional odds models given in (2). In Section 2 penalized likelihood is discussed with
some computational issues. The penalization with non-proportional odds models (NPOM) and partial proportional
odds models (PPOM) is also described in this section. Empirical results of ordinal ridge regression are compared with
usual ML estimates in Section 3. The ordinal ridge regression is fitted and compared with MLE using a real data
in Section 4. The need of using penalized likelihood is also indicated in this section by drawing two small random
samples of size n = 30 and n = 50 from the considered real data where usual MLE is not existing. Some final and

concluding remarks are given in Section 5.

2. Penalization and Computational Issues

For the proportional odds model given in (2), let ¢;,(x) denote the cumulative probability for the occurrence of response

levels up to and including rth level with a given covariate vector X; given as
¢ir(x) =P(Y; <rix)=FQ(p) r=1,....,q=k-1,
where F is a strictly monotone distribution function. The model with homogeneous effects has the predictor
Mir = Yor + X 7. 3)
In the context of multivariate generalized linear models, the simple proportional odds model can be given as

= hXB) or gr)=Xp,

where 7tiT = (7, ..., my) with components 7;, = P(Y; = r|x;) and g = (g1, ..., g-1) is a logit link type function given
by
Gir Gir-1
() = log|1 (—)—1 (—)] 4
8r(m;) = log|log{ -— on) 8T g “

For p* = p+ ¢, X; = [Ig, 1«1 ® X' is a ¢ X p* matrix and B7 = (¥, ¥") = (yor.. ... Y0g: ¥15- ., ¥p) isa p* x 1
vector. The complete design matrix of order ng x p* is given as X’ = [X,,. .., X,]. For further details see McCullagh
and Nelder (1989) and Fahrmeir and Tutz (2001).

The predictor space may contain some categorical predictors with more than one parameters associated with it. Let

we have K; parameters associated with predictor x;. So for a binary or continuous covariate we have K; = 1 and



if covariate is categorical then K; > 1 depending upon the number of categories of the predictor x;. The penalized

log-likelihood with quadratic penalty is given as

A
LB = B~ 5 6). 5)

where [(B) is the usual log-likelihood function given by

n k
1B =) > vilog(m), ©)

i=1 r=1

and A is a tuning parameter. The penalty term J(B) can be given as

JB) =p"PB. (7)

The definition of penalty matrix P depends on how we perform penalization with different types of predictors. If we
have some ordinal predictors in the predictor space, penalization should be applied in such a way that ordinal covari-
ates can be distinguished from the other covariates by considering the order of the categories. In penalization, it is
common practice to penalize the parameter estimates but with ordinal predictors rather than estimates, difference be-
tween the parameters estimates of adjacent categories should be penalized (see Gertheiss and Tutz (2009)). Penalizing
such differences will cause a smoothed version of the parameter estimates by avoiding the large difference among the
estimates associated with the dummies of the ordinal predictors. Let the predictor X; is ordinal with K; + 1 categories
and first category is treated as reference category. If y; denotes the parameter vector for K; parameters/dummies
associated with ordinal predictor x;, the penalty term for penalizing the differences between parameters of adjacent

categories takes the form as
K+1

Jop =Y i=vi0’ =v] v,
=2

with Q; = UTU;, for a K; x K; matrix U; given by

If the predictor is not ordinal then the penalty term for predictor x; is given by

K+1

Jop=Y vh=7 L,
=2

where I; is a K; X K; identity matrix. For the predictor space with all types of predictors (i.e., binary/continuous,

nominal and ordinal predictors), the penalty matrix P given in (7) is given by

P = diag(0yx,. Py.....P)). 8)
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Here 0,4, is a zero matrix with zeros for the category specific intercept terms which are not penalized. If the jth
predictor is ordinal then (K; X K;)—submatrix P; assumes the value Q; otherwise P; = I;.

The penalized log-likelihood function given in (5) can be written as
n 1 P
L) = Z LB -5 ZﬂJT'P.Bj
i=1 =1

Score function s,(B) for the penalized log-likelihood is given by

n

D XIDBZ Bly: - han)] - APB

i=1

XD B)ly - h(m)] - APB ©)

Sp(ﬂ)

where D;(B) = % is derivative of h(n) evaluated at ; = X;8, Z;(B) = cov(y;) is the covariance matrix of ith
observation of y given parameter vector 8 and W;(8) = D;(8)X; 'D! (B). y and h(n) are given by y” = (y’,...,y!) and
ha" = (k). ..., h@,)"). The matrices have block diagonal form £(B) = diag(Z;'(8)), D(B) = diag(D;(8)) and

W(B) = diag(W;(B)). By equating the score function to zero we obtain the estimation equations as
X"D@)=" B)ly ~ hap)] - APB =0,

where B is p* X 1 parameter vector for p* = g+ Z;’z  Kjand P is a p* X p* matrix given in (8). Fisher scoring iteration
yields
A A®) -l

gl = B +(XTW([S(k))X+/lP) s,BY).

It ,B are penalized estimates for the true parameter 8, the covariance matrix can be approximated by
-1 -1
covB) = (XT W@ X + /lP) (XT W@) x)(xT WE) X + AP)
Generalized cross-validation (GCV) criterion is used to find the optimal value of ridge penalty A. In the generalized
linear models (GLM) environment we are using likelihood-based criterion deviance for GCV instead of squared
distances of y; and xr; . Deviance based generalized cross-validation is given by

GCV = —2. 2L (@) — Li(y)
(1 = w(H()/n)*

5 (10)
where the the hat matrix H is given as
-1
H-= WT/ZX(XT WEB) X + /lP) XTW'/2,

In this text we are using penalization to address the problems with likelihood estimation for proportional odds models
which are commonly used with ordered response categories. But some problems may become more critical when
we are dealing with non-proportional odds models (NPOM) given in (1) with category specific parameters or partial
proportional odds model (PPOM) given by

Mir = Yor + Xig¥G + Xy ¥ r=1,....4, (11)
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where some of the parameters have global effect s and others have local/category specific effect y;,. In both of these
types of models we have to estimate more parameters than in the corresponding proportional odds model. In case
of non-proportional or partial proportional odds models, penalization can be implemented in the same way as for
POM. The only difference is that the structure of design matrix will be changed according to the model. In case of
proportional odds model the design matrix for ith observation is a ¢ X p* matrix X; = [Ixg, 14x1 ®xl.T] with p* = p+gq,
as discussed above. For non-proportional odds model the design matrix assumes the same structure as for multinomial
logit models and for the ith observation is given as X; = [Ixq, Ipxq ® X! |. For partial proportional odds models the
design matrix can be written as X; = [Ijxg, 1gx1 ® xgi,quq ® XL] where x(T;i is a vector associated with predictors
having global effect and x{i is a vector of observations for those predictors having local i.e., category specific effect.
The parameter vector associated with POM, NPOM and PPOM are given by B = (¥{,¥") = (o1, .-, Y0g: Y15+ - - Vp)s
B = yl.....yD)andB" = v{.v5.v1,s - ,y{q) respectively. In case of NPOM and PPOM, the penalty matrix P
has a higher dimension than the proportional odds models and can be formulated according to the structure of design

matrix based on the desired model to fit.

3. Simulation Study

The effectiveness of ridge regression is discussed in this section using simulated data. For a sample of size n predictor
space contains continuous covariates (denoted by C), binary covariates (denoted by B), nominal covariates (denoted
by Nk.1) and/or ordinal covariates (denoted by Ok, ;) with K + 1 categories. The continuous covariates are drawn
from a p-dimensional centered multivariate normal distribution with covariance between two covariates X; and Xy
being p~¥. Four values of p = 0.0,0.3,0.7 and 0.9 are used. To study the problems with existence of usual MLE, we
consider proportional odds models with k = 3 and k = 5 response categories for each setting of predictor space given
in Table 1. The true values used for the intercept terms are (—0.3,0.8) and (-0.8,-0.3,0.3,0.8) fork =3 and k = 5
respectively. The true values for global parameters are obtained as (—1)/exp(=2(j — 1)/20) for j =1,..., Zle K;. A

multiplicative factor cgp,, for ﬂT = (yg ,7) is chosen so that the signal-to-noise ratio is 1.
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TaBLE 2: Comparison of Bias in ridge estimates and maximum likelihood estimates. Results of simulation study for setting
1 (C =10), and setting2 (C=B =5, N3=Ns=0;3 =04 =1).

k = 3 response categories k = 5 response categories

Predictors P n Bias (MLE) Bias (Ridge) Bias (MLE) Bias (Ridge)
Setting 1 00 30 6.1013 2.4959 7.9885 2.9878
0.3 30 10.7727 2.8926 16.8054 3.5454

0.7 30 9.7730 3.2490 24.5497 3.7247

0.9 30 13.3824 3.8163 16.3382 3.9171

00 50 3.1968 2.0083 2.8157 1.9978

03 50 3.0562 1.9167 3.2015 2.2838

07 50 3.8132 2.3512 4.2058 2.8365

09 50 5.9668 3.2345 5.5624 3.3067

0.0 100 1.7180 1.4164 1.8226 1.4481

03 100 1.5501 1.3569 1.9473 1.6707

0.7 100 2.4421 1.9737 2.0823 1.7594

09 100 4.4083 3.1984 3.8908 2.6397

Setting2 0.0 30 - 6.4481 - 9.4966
0.3 30 - 7.9981 - 7.5097

0.7 30 - 8.9882 - 9.1005

09 30 - 8.7376 - 7.0519

00 50 28.9515 47621 10.8452 4.7540

03 50 16.5924 5.6959 12.2986 5.7770

07 50 9.2153 4.7695 8.7403 5.4500

09 50 13.9843 5.6826 20.4349 6.2991

0.0 100 6.5044 4.4605 6.6477 4.4492

03 100 5.8020 4.2456 5.6645 4.2098

0.7 100 6.2549 3.9546 5.9056 4.2600

0.9 100 6.1046 4.0720 7.9145 5.7814

For each setting mentioned in Table 1 with different number and type of covariates, S = 50 samples of size n are used
in the study. To compare the results of ridge estimates with likelihood estimates we consider only those samples for
which ML estimates exist. In order to obtain § = 50 samples, S’ samples are ignored because ML estimates with their
standard errors are not existing for these samples using polr function of library MASS in statistical language R 2.10.0.
In Table 1, the columns with title S’ showing the number of samples for which ML estimates did not exist, highlights
the need of a penalization technique. The results of Table 1 show that value of S’ is increasing with increasing
number of predictors drawn from different distributions. This problem becomes even more severe with k = 5 response
categories. For sample size n = 30, we cannot generate 50 samples for which MLE is existing in setting 2 and in
setting 1 although estimates are presented but they have quite large standard errors (not shown here). Although ML
estimates become more stable for independent predictors or in case of moderate correlation among predictors with
increasing sample size, however they are deteriorated in case of high multicollinearity. The ridge regression may be
the best choice to obtain stable estimates of parameters for all predictors in the model when usual MLE is not existing
or deteriorated because of ill-conditioned predictor space. In Table 1, ML estimates are computed using polr function

of statistical environment/language R 2.10.0. Ridge estimates are compared with likelihood estimates in terms of
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FiGure 1: Illustration of simulation study for ten predictors drawn from multivariate normal distribution for k = 5 response
categories: Box plots for comparing ridge estimates with ML estimates in terms of log(MSE(ﬁ)) (top panel) and log values
of Mean Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean of the
observations for which box plots are drawn.

mean squared error (MSE) of B, deviance of the fitted probabilities and mean prediction error (MPE). In all settings
we use samples of size n for the training data and then a sample of size n,y; = 1000 is generated for comparing
the prediction performance of ridge estimates with likelihood estimates. The results of Table 1 show that ridge is
performing better than MLE as is expected. In case of ten normally distributed covariates, ML estimates have very
large standard errors for n = 30. In the simulation setting 2 considered with categorical predictors there are twenty
parameters to be estimated (other than intercept terms). Here the situation goes more worse with MLE and we have
to leave a large number of samples (especially with k = 5 response categories) because of problems with existence
of estimates. Even we could not get enough samples with n = 30 for which likelihood estimates with their standard
errors exist. So for setting 2 with n = 30 only the results of ridge regression are given in Table 1. The ridge estimates
do exist in all considered situations even when the likelihood estimates do not exist. For comparing ridge estimates

~method ~method
— ™) and the formula used

with ML estimates, mean squared error is computed as Sl > By - BT (B,

to compute deviance of fit i.e., Dev(#) is given by D = 2. }}% 21;:1 yijlog(%) with y,-jlog(:%) = 0 for y;; = 0. Mean

prediction error based on 1000 test observations is computed as MPE = é D5 = sl P 2.[ " ];': . nt_esllog( i )]

ijs frfjsf
In addition to MSE(B) it is also important to observe the amount of bias in the parameter estimates. The mean length
L . . . ~method
of vectors of bias in § = 50 samples is computed for ridge and ML estimates as sl >l ﬂ;net g B™¢||. The mean
values for lengths of bias vectors for MLE and ridge estimates is given in Table 2 for each setting of simulation study.

The graphical representation of the results for more interesting cases with small samples for k = 5 response categories
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Ficure 2: Illustration of simulation study for k = 5 response categories and C = B = 5and N3 = Ny, = O3 = 04 = 1
predictors in the predictor space: Box plots for comparing ridge regression estimates with MLE in terms of log(MSE(ﬁ))
(top panel) and Mean Prediction Error i.e., log(MPE) (bottom panel). The solid circles within the boxes represent the mean
of the observations for which box plots are drawn.

is given in Figure 1 and 2 with the help of box plots. The solid circles in each box represents the mean of the values

for which box plot is drawn.

4. Application

In this section for computing and comparing the ridge estimates with ML estimates, we are considering the housing
data set from UCI repository (http://archive.ics.uci.edu/ml/datasets/Housing). The response variable
(MEDV) is about the median values of the owner-occupied houses in suburbs of Boston. For the analysis purpose,
response variable which is measured in $1000’s is divided into four price categories as lower , lower middle, upper
middle and high price category using the thresholds as MEDV< 10, 10 < MEDV < 25, 25 < MEDV < 40 and
MEDV > 40. The predictors used to predict the price range of a house are: per capita crime rate by town (CRIM);
proportion of residential land zoned for lots over 25,000 sq.ft. (ZN); proportion of non-retail business acres per town
(INDUS); Charles River dummy variable (CHAS= 1 if tract bounds river; CHAS= 0 otherwise); nitric oxides con-
centration (NOX)(parts per 10 million); average number of rooms per dwelling (RM); proportion of owner-occupied
units built prior to 1940 (AGE); weighted distances to five Boston employment centres (DIS); index of accessibility
to radial highways (RAD); full-value property-tax rate per $10,000 (TAX); pupil-teacher ratio by town (PTRATIO);

1000(Bk —0.63)? where Bk is the proportion of blacks by town (B) and % lower status of the population (LSTAT).
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Although the polr function of R provides the likelihood estimates of parameters but fails to produce standard errors of
these estimates. So the usual ML estimates and corresponding standard errors are not computed with polr as in simu-
lation study but ML estimates are computed for A = 0. For computing the ridge estimates, ridge penalty is decided on
the basis of deviance based generalized cross-validation (GCV). The parameter estimates with their standard errors
are given in Table 3 for the complete data set. The results of ridge regression are based on the optimal value of ridge
penalty 4 = 0.1. In order to check the existence of MLE in case of small samples, different random samples of size
n = 30 are drawn from the complete data set and likelihood estimates are not existing for any of the these samples.
Similarly ML estimates are not existing for most of the random samples of size n = 50 drawn from total sample of
size n = 506. However ridge estimates are existing for all such small samples. Two such small samples with n = 30
and n = 50 are considered for which MLE is not existing but ridge estimates do exist. Both of these data sets can be
accessed at www.stat.uni-muenchen.de/~zahid/samples_ordinalRidge.txt. The parameter estimates and
their standard errors for ridge regression with these two samples are given in Table 3. The ridge estimates in both of

these small samples are computed with optimal value of ridge penalty 4 = 0.1.

TasLE 3: MLE and ridge estimates with corresponding standard errors for complete housing data set (n = 506) and ridge
estimates with their standard errors for random samples of size n = 30 and n = 50 drawn from the complete data set.

MLE (n = 506) Ridge (n = 506) Ridge (n = 30) Ridge (n = 50)

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E.
CRIM 0.0816  0.0210 0.0804  0.0209 0.6898  0.9303 —0.4804  0.4044
ZN —0.0090  0.0075 —-0.0093  0.0075 —-1.4414 09211 -0.0717  0.0498
INDUS —0.0344  0.0393 —0.0253  0.0384 0.6731  0.8954 —0.7055  0.2939
CHAS -0.7756  0.5078 -0.7710  0.4909 -9.6E-10  0.0001 —2.2409 1.5557
NOX 5.6532  2.6104 33769  1.5477 0.0113  0.0497 1.9551 0.8191
RM -1.4677 02715 -1.4615 0.2678 -0.4699  0.2782 -3.5199 1.3463
AGE -0.0028  0.0077 -0.0010  0.0075 -0.5734  0.4378 —-0.0387 0.0379
DIS 0.4321  0.1243 0.3970  0.1186 -1.1194  1.1935 -0.6395  0.5703
RAD -0.2029  0.0475 —0.1952  0.0465 -0.3114  0.5659 -0.5855  0.2925
TAX 0.0077  0.0025 0.0077  0.0025 0.0394  0.0752 0.0386  0.0172
PTRATIO 0.3756  0.0844 0.3501  0.0804 1.9405 1.2744 1.1177  0.4431
B -0.0077  0.0022 -0.0077  0.0022 -0.2529  0.5010 0.0092  0.0102
LSTAT 0.3082  0.0432 0.3119  0.0430 0.1750  0.8308 0.9086  0.3917

5. Concluding Remarks

Ridge regression provides stable estimates in logistic regression when maximum likelihood estimates are deteriorated
because of ill-conditioned predictor space. Multicollinearity among the predictors causes an increase in the average

length of likelihood estimates of parameter vector and inflates the standard errors of these estimates. Also when
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sample size is small relative to the number of parameters, existing softwares for fitting proportional odds models may
face the problems in computing the estimates and especially with computing standard errors of the estimates (e.g.,
polr function of MASS package in R that we used in this text may provide the parameter estimates for some data sets
but fails to produce the corresponding standard errors). If p* > n the maximum likelihood estimates will not exist at
all. If stochastic ordering of estimates for the intercepts is disturbed during iterative process, it will lead to illogical
values of the fitted probabilities. To address all of these issues, ridge regression is used in this paper for ordinal
response models with a focus on proportional odds models. However for non-proportional odds models or partial
proportional odds models the ridge regression can be used easily in the same way. The only difference is that we have
to penalize more parameter estimates depending upon the model/design space under consideration as discussed in the
end of Section 2. Since ridge penalty shrinks the parameters estimates to zero but does not perform variable selection,
it is useful in case of limited number of predictors where the analysts are interested in fitting a model by keeping
all the predictors in the model. With penalization, parameter estimates corresponding to the categorical predictors
are penalized by considering whether it is a nominal or ordinal predictor. For ordinal predictors differences between
the parameters estimates of successive categories should be small. In this paper, these differences are kept small by
penalizing the differences between successive parameters estimates of ordinal predictors instead of penalizing the

estimates themselves.
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