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1 INTRODUCTION

1. Introduction
Datasets produced in the field of phonetics have often a complex structure.
Many of the variables are functional and therefore classic statistical approaches
such as linear models or generalized linear models do not fulfill the arising de-
mands.
In this thesis exploration techniques for functional data and functional linear
models will be used to analyze phonetic data. Ramsay and Silverman have de-
rived a bundle of methods for the analysis of functional data ([1], [2], [3]). This
methods will be extended and adapted especially for the needs of phonetic
data structures. Gubian et al. [4] and Gubian [5] used the available methods
for analyzing phonetic data e. g. on a dataset where speakers pronounced the
french word c’était. They used mainly functional principle component anal-
ysis. Applications of functional linear models with a functional response and
non-functional covariates were further topics of discussion. This approach will
be extended and modeling of functional response with functional covariates
will be introduced as a standard technique in the analysis of phonetic data.
The derived methods and implemented functions will be used to analyze an
actual phonetic dataset provided by the Institute of Phonetics and Speech
Processing, University of Munich (Prof. Jonathan Harrington). The voice fre-
quency and physiological movements of sensors placed in the mouth area of
test speakers were recorded during the pronunciation of german sentences.
Arising questions such as the influence of the tongue movements on the voice
frequency are topics discussed in this thesis.
Moreover implemented functions are discussed in detail. The structure of the
functions allows the analysis of further phonetic datasets without great rear-
rangements considering the software. Reducing computational time by sparse
programming allows the application of functional models as an analysis tech-
nique on a regular basis.
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2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS

2. Theoretical background of functional data
analysis

This chapter provides an overview on functional data analysis. The theoretical
background is required in order to improve understanding of the functions and
models used in the later sections. Most of the theoretical structures in this
chapter are introduced by Ramsay et al. [1, 2]. Some excerpts of the phonetic
dataset (chapter 3) will be used to visualize the methods of this section.

2.1. Aspects of functional data

The term functional data describes a specific type of data in which each repli-
cation represents a part of a curve. This differs from most cases in which solely
an ordinary data point is presented. Usually a curve is measured in equal or
unequal (time) intervals and it is never possible to measure the exact curve.
Of course the accuracy can be sharpened if e.g. the time intervals in which a
new point of the curve is measured are reduced. However it is still impossible
to examine the exact curve due to the difficulty of observing and storing an
uncountable number of values for describing even the shortest interval of a real
curve.
Figure 1 shows one observation from the phonetic dataset. The voice frequency
of a test person pronouncing the vowel “A” was recorded in equal intervals of
0.005 seconds. The recorded points shown in Figure 1 are interpolated which
might not be the correct displaying method of the real curve because the exact
movement of the curve between two observation points could be much more
complicated than a straight line.
The interpolation technique in this example shows just one possibility of dis-
playing and approximating the curve in the unobserved region. More variable
approximation properties can be achieved by using e.g. basis functions to rep-
resent the data.
Another feature of functional data is two “neighbor” data points having a
higher correlation than two data points of the same curve that are further
apart.
Moreover it is important to note that one observation or one replication rep-
resents a group of data points that all belong to the same curve. For example

2



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions
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Figure 1: Sample voice frequency while pronouncing the vowel “A” in the word
“gepape”

if we speak of 100 observations, the data matrix itself could contain 2000 lines
if each curve is measured at 20 spots. This fast enlarging of functional data
concerns the computational aspects of dealing with such huge samples so that
sparse programming is an important keyword in this context.

2.2. From functional data to smooth functions

Turning raw discrete data into smooth functions is a complex task which can
be solved by using linear combinations of basis functions. Many types of basis
functions exist, each with different parameters that have to be adjusted. For
instance one has to choose which order of polynomial is best for the given data
by using polynomial bases. By choosing another alternative - the B-spline basis
- one has to look for the best combination of order, knot placement and knot
count in order to create the best approximation for the data. However the
concept of approximating curves with basis functions remains the same. In

3



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions

functional context the observed data vector y = (y1, . . . , yn) of a curve can be
expressed as follows:

yj = x(tj) + εj (2.1)

with x as a latent function or the data generating process that has to be
approximated, t = (t1, . . . , tn) as the times at which a snapshot of x is taken
and ε = (ε1, . . . , εn) as a noise, error or some other disturbance on the real
latent function.
Using vector notation for the same expression as in (2.1) leads to a much
cleaner notation without using indices:

y = x(t) + ε (2.2)

In this equation y, t and ε are all column vectors of the same length.
A basis function system is a set of known functions φk that are mathematically
independent of each other. In general it is possible to approximate any function
exactly just by taking a weighted sum from a sufficiently large number K
basis functions. Of course exact representation of the curve is not desired in
most cases, due to the large number of basis functions leading to a rise of the
computational time and also to overfitting the model. The latent function x

from (2.2) can be represented by basis functions.

x(t) =
K∑
k=1

ckφk(t) = c′φ (2.3)

As mentioned before, K describes the number of basis functions used and φk is
a single basis function. The new parameter ck is the k-th coefficient belonging
to the k-th basis function. Instead of coefficient one can also use the term
weight to express it. Figure 2 shows three different types of basis functions, all
scaled on the interval [0, 1]. Panel A displays the B-spline basis functions of
order p = 4. A property of the B-spline functions is the recursive definition of

4



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions
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Figure 2: Seven basis functions scaled equally on the interval [0, 1]. A: B-spline,
B: Fourier, C: Polynomial.

the different order of splines. The recursion formula from de Boor [6] can be
used to compute the exact functions.

φk,1(t) =

1 if tk ≤ t < tk+1

0 otherwise

φk,p(t) = t− tk
tk+p−1 − tk

φk,p−1(t) + tk+p − t
tk+p − tk+1

φk+1,p−1(t) (2.4)

Panel B displays a sequence of periodic Fourier basis functions (with parameter
ω which determines the period 2π

ω
):

φk =

cos(k−1
2 ωt) if k odd

sin(k2ωt) otherwise
(2.5)

Panel C respresents a set of polynomial or also called monomial basis functions:

φk(t) = tk−1 (2.6)
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2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions

All equations above use an index k with k = 1, . . . , K.
Various different types of basis function systems exist, such as constant bases,
wavelets, exponential bases etc. Each one has different advantages, e. g. the
Fourier basis will have a better effect on periodic data, whereas the constant
basis extremely simplifies the model. The most commonly used type of basis
functions in literature is the B-spline basis. In this thesis the main focus con-
cerns primarily the B-splines, however some usage of Fourier, polynomial and
constant bases will be presented as well.
After considering the different possible basis functions, equations (2.2) and
(2.3) can be combined as follows:

y =
K∑
k=1

ckφk(t) + ε

= c′φ+ ε (2.7)

It is interesting to point out the fact that the observed data y and the basis
functions φ in (2.7) are known and ε can be assumed to have zero mean, as in
other statistical analyses. Thus the unknown parameters are in the coefficient
vector c. In order to find the best set of coefficients c a use of the ordinary
least squares criterion should be carried out.

LS(y | c) =
n∑
j=1

[
yj −

K∑
k=1

ckφk(tj)
]2

(2.8)

After defining the (n × K)-matrix Φ, which contains the values of φk(tj),
equation (2.8) can be expressed with matrix notation.

LS(y | c) = (y− x(t))′(y− x(t))

= (y−Φc)′(y−Φc) (2.9)

Simple algebraic operations such as taking the derivative of equation (2.9) and
setting the resulting term to zero, lead to the set of coefficients that minimize
the least squares criterion.

∂LS(y | c)
∂c

= 2Φ′Φc− 2Φ′y != 0

⇔ ĉ = (Φ′Φ)−1Φ′y (2.10)

6



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions

As mentioned earlier, this approach is based on the assumption that the resid-
uals εj have a zero mean and are independent and identically distributed.
Especially for functional data this assumption is often unrealistic due to the
fact that two points that are close to each other are higher correlated than two
points further apart. In order to deal with this kind of problem one can extend
equation (2.9) by the matrix W.

WLS(y | c) = (y− x(t))′W(y− x(t))

= (y−Φc)′W(y−Φc) (2.11)

W is used to weight unequal squares and products of residuals. It should be
taken into account that by using W = I the weighted and unweighted least
squares criterions are also equal. Using similar algebraic operations like the
ones used in (2.10), the new estimated minimizer of (2.11) can be derived.

ĉ = (Φ′WΦ)−1Φ′Wy (2.12)

The next question arising is how to estimate W. In the case of a known
variance-covariance matrix Σε of the residuals W is simply set to Σ−1

ε . In
the more general case of an unknown variance-covariance matrix, Σε should be
estimated from the data. Usually this involves an estimation of n(n−1)

2 different
parameters which require a large number of observations, that are not given
in most cases.

Techniques such as kernel smoothing and local polynomial fitting are other
alternatives for the smoothing with basis functions. However a detailed de-
scription would go beyond the scope of this thesis.

After choosing an appropriate system of basis functions, a question considering
the smoothness of the fitted curves arises. Two methods can be used in order
to control the degree of smoothness for the fitted curves. On the one hand, the
number of basis functions could be varied. Theoretically a sufficiently large
number of basis functions lead to a perfect fit of every point sequence. This,
however, is not desired in most cases since the error of the individual point
would be disregarded. By choosing a moderate number of basis functions, a

7



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions

good and smooth representation of the data can be achieved. Choosing a very
small number of basis functions would yield almost constant lines which go
through the mean value of the point sequence. On the other hand it is possible
to use a roughness penalty approach in order to achieve smoothness. Usu-
ally the squared second derivative of the approximated curve is penalized, so
large differences in the curvature of the fitted curve would lead to a higher
least squares criterion. This automatically leads to smoother curves since the
smoother a curve the smaller the (squared) second derivative. Smoothing with
a roughness penalty is more effective and easier to handle than smoothing
through increasing the number of basis functions. The roughness penalty ap-
proach can be controlled by just one parameter λ whereas the ideal number of
basis functions depend on more parameters (knot placement, order of splines
etc.).
In order to establish the roughness penalty approach to equation (2.12) the
new penalization term should be added.

PENWLSλ(x | y) = (y− x(t))′W (y− x(t)) + λ
∫

[D2x(s)]2ds︸ ︷︷ ︸
PEN(x)

(2.13)

In this equation λ stands for the smoothing parameter andD2(·) = D2· denotes
the second derivative of a function (·). The estimate of the function is obtained
by finding the best x̂ that minimizes PENWLSλ(x) over the space of functions
x for which PEN(x) is defined. The smoothing parameter λ plays a key role
in finding the estimate. If λ → ∞, then the estimated function x will be a
straight line that has no curvature at all and so PEN(x) = 0. If λ → 0 the
new minimizer is a curve that fits the data points perfectly. However, even in
this case the interpolating curve is not arbitrarily variable, because it is the
smoothest twice differentiable curve that fits the data exactly.
Equation (2.13) has some unpleasant parts like the integral and taking the

8



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.2 From functional data to smooth functions

derivative of a function. That is why some further attention should be attracted
to PEN(x) before trying to derive the minimizer of (2.13).

PEN(x) =
∫

[D2x(s)]2ds

=
∫

[D2c′φ(s)]2ds

=
∫

(D2c′φ(s))(D2c′φ(s))′ds

=
∫
D2c′φ(s)D2φ(s)′cds

= c′
∫
D2φ(s)D2φ(s)′dsc

= c′Rc (2.14)

The usefull aspect of rephrasing the equation as in (2.14) is mainly because
of the possibility of taking the derivative of PEN(x) without considering the
complex structure of the new matrix R, called the roghness penalty matrix.

PENWLSλ(x | y) = (y− x(t))′W (y− x(t)) + λPEN(x)

= (y−Φc)′W(y−Φc) + λc′Rc

∂PENWLSλ(x | y)
∂c

= −2Φ′Wy + 2Φ′WΦc + 2λRc != 0

⇔ (Φ′WΦ + λR)c != Φ′Wy

⇔ ĉ = (Φ′WΦ + λR)−1Φ′Wy (2.15)

Please note, that with λ = 0 and W = I equation (2.15) equals the very first
approach (2.10).
The roughness penalty matrix R has two difficult tasks that have to be con-
sidered before obtaining ĉ. First of all the basis functions φ(t) have to be
differentiated with respect to t. This goal is usually rather easy to accomplish
if the system of basis functions represents the Fourier system (2.5), the poly-
nomial system (2.6) or a number of other systems which are not mentioned in
this thesis. In the case of a B-spline basis system differentiating is not trivial,
however it can be derived by using the de Boor equations [6]. Having man-
aged the differentiation problem, an integration difficulty appears immediately.
Once again most of the systems of basis functions can handle integration very
well. The integration of a B-spline function can not be written down, because

9



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.3 Explorative techniques for functional data

of an infinite number of basis functions would be needed [7]. More details on
the numerical computation of the roughness penalty matrix are described by
Ramsey et al. [1].

2.3. Explorative techniques for functional data

2.3.1. Mean, Variance and Correlation functions

After the accomplishments on how to represent discrete data by smooth func-
tions, some explorative techniques will be presented in this chapter. Such tech-
niques are important instruments which offer a possibility for the user to ex-
plore the data prior to more complicated analysis. Among the first things which
a user does while analyzing new data is computing the mean and variance. The
mean function is the average of the functions point-wise across replications.

x̄(t) = 1
n

n∑
i=1

xi(t) (2.16)

By using the mean function, the variance function is easily computed,

varx(t) = 1
n− 1

n∑
i=1

(xi(t)− x̄(t))2 (2.17)

and the standard deviation function is the square root of the variance function.

sdx(t) =
√

varx(t) (2.18)

Figure 3 shows the tongue tip movement while pronouncing the vowel “O”
in context of the constructed word “gekoke” (phonetic data). Seven speakers
pronounced the word in different sentences several times. Single observations
are marked in gray color, whereas the mean function as well the mean function
with added standard deviation are presented in red. By starting to speak out
the “O”, the tongue tip is in a certain position (mean function at ca. −3 cm−1).
Subsequently it goes down reaching the minimum at approximately 60% of the
recording time. Afterwards the tongue goes up again in order to pronounce
the following consonant “K”. The mean function is a very useful summarizing
method in this case. It smooths e.g. some time shifts on the individual level of
the speakers by returning a clearly visible “U”-structure.

10



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.3 Explorative techniques for functional data

Going one step further in explorative analysis of functional data, it might be
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Figure 3: Several observations of the vertical tongue tip movement while pro-
nouncing “O” in the constructed word “gekoke”. Gray: single ob-
servations, red: mean function (solid line) and mean function with
added standard deviation functions (dashed line)

interesting to inspect the covariances and correlations between two different
time points contained in the data.

covx(t1, t2) = 1
n− 1

n∑
i=1

(xi(t1)− x̄(t1))(xi(t2)− x̄(t2)) (2.19)

corx(t1, t2) = covx(t1, t2)√
varx(t1)varx(t2)

(2.20)

2.3.2. Cross-variance and cross-correlation functions

Equations (2.19) and (2.20) are similar to their analogues from the multivariate
data analysis which simplifies their usage. Thinking ahead to chapter 2.4 where
functional linear models are being introduced, relations between different time
points of one functional variable become intriguing alongside with relations
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between two different functional variables. Ramsay et al. [1] refer to this type
of dependency as cross-correlation or cross-covariance.

covx,y(t1, t2) = 1
n− 1

n∑
i=1

(xi(t1)− x̄(t1))(yi(t2)− ȳ(t2)) (2.21)

corx,y(t1, t2) = covx,y(t1, t2)√
varx(t1)vary(t2)

(2.22)

Equations (2.19) to (2.22) all try to demonstrate some relations between differ-
ent time points either for one ore two variables. Figure 4 presents the different
types of correlation on two variables from the phonetic data. Panels A and D
show correlation plots of the second formant (response variable) and the hor-
izontal movement of the lower lip. Panels B and C show the cross-correlation
functions which seem to be very similar. A more precise look at equation (2.22)
suggests a notable conclusion.

corx,y(t1, t2) = covx,y(t1, t2)√
varx(t1)vary(t2)

= 1
n− 1

n∑
i=1

(xi(t1)− x̄(t1))(yi(t2)− ȳ(t2)) 1√
varx(t1)vary(t2)

= 1
n− 1

n∑
i=1

(yi(t2)− ȳ(t2))(xi(t1)− x̄(t1)) 1√
vary(t2)varx(t1)

= covy,x(t2, t1)√
vary(t2)varx(t1)

= cory,x(t2, t1)

This yields that both panels are transposes of one another at the diagonal
t1 = t2. It also explains the similarity of both plots. The correlation plots first
attract attention due to the second formant having a lower correlation between
the beginning and the end of the time scale. The lowest correlation averages at
about 0.8, and suggests that knowing the beginning of the curve, it’s possible
to make a good prediction on the curve position at the end of the measured
time. The tongue movement has a considerably higher correlation at the edges.
It barely decreases below 0.95. This demonstrates a lower variability of this
functional variable. The cross correlation plots show a negative correlation

12



2 THEORETICAL BACKGROUND OF FUNCTIONAL DATA ANALYSIS
2.3 Explorative techniques for functional data

higher than −0.5 throughout the whole time scale. The strongest correlation
is achieved at about 30% of the time scale and has a value of −0.65.
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Figure 4: Correlations and cross-correlations of second formant and horizon-
tal tongue back sensor. The second formant seems to have a higher
variability than the tongue sensor. Both variables have a negative
correlation near −0.6 throughout the time. The highest correlation
is at about 30% of the time and is about −0.65
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2.3.3. Principal Component Analysis for functional data

Another useful exploration technique in multivariate analysis is provided by
principal component analysis (PCA). It can help discover some sources of
variation which can not be recognised through analysis of variance-covariance
structures. PCA of multivariate data consists of two major steps.

1. Finding the weight vector ξ1 for which

fi1 = ξ1
′xi

has the largest mean square 1
n

∑
i f

2
i1 with respect to the constraint

|| ξ1 ||2= 1

2. Finding the new weight vector ξm, (m = 2, . . . ,M) for which

fim = ξm
′xi

has the largest mean square 1
n

∑
i f

2
im with respect to the constraint

|| ξm ||2= 1

and the m− 1 additional constraints

ξkξm = 0, k < m

By maximizing the mean square in step 1 the strongest source of variation is
being identified and the constraint condition is needed to confirm that the re-
sulting weight vector is well defined. In step 2 the strongest source of variation
is examined once again. This time the new constraints asure that a different
weight vector is identified because an orthogonal solution to all previous is
required.
The values of the linear combinations fim are called principal component scores
and are often very useful in describing what these components of variation im-
ply.
As mentioned earlier, the mean is an important aspect of data. Nevertheless
an easy technique for its identification already exists. A subtraction of the
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mean from each variable before applying PCA is recommended. Subsequently,
maximizing the mean square of the principal component scores corresponds to
maximizing their sample variance.
In order to use PCA for functional data, some mild modifications of the multi-
variate case need to be done. The term ξm

′xi uses xi with discrete data points.
Since this has to be adjusted for curves the term is being modified to

fim =
∫
ξm(s)xi(s)ds.

The notation || · ||p denotes the norm in multivariate analysis. In functional
context this also has to be computed with an integral so the new constraint
becomes

|| ξm ||2=
∫
ξm(s)2ds = 1.

Finally the orthogonality conditions become
∫
ξk(s)ξm(s)ds = 0, k < m.

Figure 5 illustrates PCA on simulated data. The functions g1(x) = −(x −
1.5)2 + 1, g2(x) = (x− 1.5)2 and g3(x) = 0 were evaluated at 20 equally placed
points on the interval [0, 3]. At each point a random normal distributed error
with zero mean and standard deviation of 0.5 was added. g2(x) and g3(x) were
evaluated 40 times, whereas g1(x) was evaluated 20 times. Consequently the
sampled points were smoothed by a B-spline basis with 10 knots and an order
of 4. The original functions g1, g2, g3 are plotted with thick lines in the top left
panel in different colors. The sampled curves form each function are displayed
in the same color with thinner lines. The top right and bottom left panels show
the first two principal components. The first component identifies the highest
source of variability and is very similar to g2(x). Since g3(x) was constructed
to have a very small variability and only 20 curves were sampled from g1(x),
this was the expected principal component. The second principal component
identifies a curve similar to g1(x). Due to the fact that the new solution has
to be orthogonal to the previous one, it is obvious that the second strong
source of variation originates from g1(x). Both principal components describe
approximately 86% of the total variation, so further principal components
are suppressed in this figure. The bottom right panel displays the principal
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component scores fi1 and fi2. As expected the green points corresponding to
g2(x) have a high score on the first principal component and a value of nearly
0 for the second component. The red points which represent curves sampled
from g1(x) have a high positive score on the second component and a high
negative score on the first. This result is not surprising since a negative second

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2
3

Simulated data

A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

Percentage of variability 71.3 %

B

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

Percentage of variability 14.8 %

C
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

● ●

● ●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●●

●

●

●

●
●

●

●

−1.5 −0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0

Principal component scores

fi1

f i2

D

Figure 5: PCA on some simulated data. A: simulated functions, colors denote
the three different sampling functions which consider errors; B: first
principal component; C: second principal component; D: principal
component scores.

principal component is very similar to the first principal component. The blue
points corresponding to the constant function have scores near zero for both
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principal components which indicates the accuracy of the presented method.

In conclusion instruments such as the mean function, the variance function
and functional principal component analysis proved to be useful for the task
of displaying and exploring functional data. They offer excellent possibilities
for becoming acquainted with the data before making more complex analysis
such as functional linear models. Moreover they can also be of great help in
analyzing e. g. functional residuals produced in functional linear models. The
next subsection provides an overview on the theory considering such models
using many of the instruments described in the present subsection.

2.4. Functional linear models

2.4.1. Modeling functional variables

The inconstancy of a functional variable was explored without analyzing how
much of its variation is explainable by other variables in the first part of this
chapter. Consequently one should consider the use of covariates. In classical
statistics, linear models serve this purpose so extending the notion of a linear
model to the functional context is a highly recommended feature while ana-
lyzing functional data.
Ramsay et al. [1] provide an excellent overview on functional linear models.
They distinguish three different cases in which an ordinary linear model is not
sufficient.

1. Non-functional response and functional independent variables

2. Functional response and non-functional independent variables

3. Functional response and functional independent variables

Since the phonetic dataset has a functional response (second formant) and
functional independent variables (tongue movements), the third and most com-
plex case should be applied. The model can be expressed as follows:

y(t) = x1(t)β1(t) + . . .+ xp1(t)βp1(t) + ε(t) +

β0 + xp1+1βp1+1 + . . .+ xp1+p2βp1+p2 (2.23)
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Equation (2.23) is split into two lines. The upper line contains functional vari-
ables which are multiplied by functional coefficients and a functional error.
The lower line contains the non-functional independent variables which can
be of a numeric, categorical or constant type. They are multiplied by scalar
coefficients. The notation in the equation above separates the independent
covariates into functional and non-functional. A great simplification for the
further equations is the fact that the scalar coefficients alongside with the
non-functional covariates can be expressed as functional by using a system of
constant basis functions.

xjβj = xijβj = xijβj · 1(t) (2.24)

1(t) represents a constant function that equals 1 for each t. After fitting the
model, scalar coefficients can be extracted easily from equation (2.24). Equa-
tion (2.23) can be formulated as follows (the intercept term is suppressed for
reasons of simplicity):

y(t) = x1(t)β1(t) + . . .+ xp(t)βp(t) + ε(t)

=
p∑
j=1

xj(t)βj(t) + ε(t)

= X(t)β(t) + ε(t) (2.25)

Since the coefficients are functions that depend on t, a basis function expansion
has to be estimated for each βj. This involves choosing a type of basis func-
tion and a roughness penalty as well. Since some of the coefficient functions
could have a different degree of smoothness than others a penalty term λj cor-
responding to each βj has to be adjusted. Consequently a roughness penalty
definition evolves for each basis function separately.

PENj = λj

∫ [
D2βj(t)

]2
dt (2.26)

for each basis function separately. Therefore the functional fitting criterion
becomes

LMSSE(β) =
∫

r(t)′r(t)dt+
p∑
j=1

PENj (2.27)
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with
r(t) = y(t)−X(t)β(t) (2.28)

It is possible to choose different types of basis systems for each coefficient
function βj. The number of basis functions associated with each βj can vary
as well. For instance one may choose a high number of basis functions for an
independent covariate that is assumed to have a high frequency variability.
By choosing a lower number of basis functions only some general effects of
a functional predictor can be described. Assuming that the j-th covariate is
approximated by Kj basis functions, βj(t) can now be expressed as follows:

βj(t) =
Kj∑
j=1

bkjθkj(t) = θj(t)′bj (2.29)

Equations (2.25) and (2.27) can be presented in matrix notation which leads to
cleaner and shorter expressions. Subsequently the construction of some super
matrices is required. First the total number of used basis functions is defined
as follows:

Kβ =
p∑
j=1

Kj

The construction of vector b with length Kβ is achieved by stacking the j
shorter vectors bj verticaly.

b = (b′1,b′2, . . . ,b′p)′ (2.30)

The p × Kβ matrix Θ contains the basis functions and has a block diagonal
form:

Θ =


θ′1 0 . . . 0
0 θ′2 . . . 0
... ... ... ...
0 0 . . . θ′p

 (2.31)

Using the long constructs (2.30) and (2.31) the functional model (2.25) can
now be expressed in matrix notation:

y(t) = X(t)Θ(t)b + ε(t) (2.32)
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Combining the two matrices X(t) and Θ(t) allows a reformulation of the model
to

y(t) = X∗(t)b + ε(t) (2.33)

This last reformulation does not contribute much to the simplification of the
model due to the fact that the design matrix now contains Kβ columns instead
of p which is usually much shorter. The main reason for reformulating the
model as in (2.33) is showing that a functional linear model in fact has Kβ

parameters that have to be adjusted. Since y is also a functional variable the
degrees of freedom of the error ε can be derived. Assuming that each functional
replication yi is approximated by a system of Ky basis functions dfε becomes

dfε = n ·Ky −Kβ (2.34)

The roughness penalties PENj are the last thing to consider before deriving
an estimate for the functional linear model. Once again a super matrix is
constructed. It has a symmetric block diagonal form and dimensions Kβ×Kβ:

R =


R1 0 . . . 0
0 R2 . . . 0
... ... ... ...
0 0 . . . Rp

 (2.35)

with
Rj = λj

∫
D2θj(t)D2θj(t)′dt (2.36)

The bigger version of the matrices and vectors required to estimate the set of
coefficients minimizing the least squares criterion (2.27) can now be used for
deriving b̂. Since the basis functions θj which define the coefficient functions
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βj are known, estimating b̂ would lead immediately to β̂j. Consequently the
new fitting criterion becomes LMSSE(b).

LMSSE(b) =
∫

(y(t)−X(t)Θ(t)b)′(y(t)−X(t)Θ(t)b)dt+ b′Rb

=
∫

y(t)′y(t)− 2b′Θ(t)′X(t)′y(t) +

+b′Θ(t)′X(t)′X(t)Θ(t)bdt+ b′Rb

=
∫

y(t)′y(t)dt− 2b′
∫

Θ(t)′X(t)′y(t)dt+

+b′
∫

Θ(t)′X(t)′X(t)Θ(t)dtb + b′Rb (2.37)

Differentiating equation (2.37) with respect to b and setting the resulting term
to 0 leads to b̂:

∂LMSSE(b)
∂b

=

−2
∫

Θ(t)′X(t)′y(t)dt+ 2
∫

Θ(t)′X(t)′X(t)Θ(t)dtb + Rb != 0

⇔
[∫

Θ(t)′X(t)′X(t)Θ(t)dt+ R
]
b =

∫
Θ(t)′X(t)′y(t)dt

⇔ b̂ =
[∫

Θ(t)′X(t)′X(t)Θ(t)dt+ R
]−1[∫

Θ(t)′X(t)′y(t)dt
]

(2.38)

The amount of numerical integration involved in these expressions is quite
manageable. The most complicated structure is enclosed in the integral∫

Θ(t)′X(t)′X(t)Θ(t)dt. In this expression the inner product of two basis func-
tions θj and θk is weighted by some scalar combination of data points. Comput-
ing these inner products by numerical integration should be almost a routine
procedure.

Equation (2.38) is an important result of functional data analysis. It can be
considered as the most commonly used equation for analyzing functional data
since it contains all aspects that have to be considered in the functional linear
model. It is interesting to point out that equation (2.33) describes a very spe-
cific type of dependency between y(t) and X(t). Since X only influences y(t)
through its value X(t) at time t it is often called a concurrent or point-wise
model. Hastie and Tibshirani refer to a slightly different version of this model
as a varying coefficient model [8]. Further improvements of the model could
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involve bivariate coefficient functions which describe an influence of the inde-
pendent variables on the response over a wide interval of time. Although such
models have a much higher number of coefficient parameters to fit and a much
more complex becoming interpretation they can improve the quality of the
model. The main reason why they are not considered in this thesis is the fact
that phonetic data and especially the response variable (second formant) has
a low variability regarding time. Figure 4 shows the high correlation between
the beginning and the end of the time scale of the response variable. This
suggests another reason for using the advantageous point-wise model (2.33).
Consequently the final estimate becomes:

ŷ(t) = X(t)β̂(t) = X(t)Θb̂ (2.39)

2.4.2. Assessing goodness of fit

In the last subsection a method on how to find an estimate for the coefficient
functions was presented. This estimate is found by minimizing the quadratic
distance (2.37). The next step in data analysis is qualifying this fit. In classical
statistics a commonly used criterion is the coefficient of determination R2

as summarized e. g. by Nagelkerke [9]. Taking this approach into account a
functional type of determination coefficient can be derived. It is possible to
extend the concept of assessing the goodness of fit by R2 in three ways:

1. Computation of n different R2
i for each replication which determines the

quality of fit for the single observation

2. Computation of a function R2(t) which qualifies the fit of the model over
time

3. Computation of a global R2 which qualifies the total fit of the model

The first approach ascertain which observations can be well explained by the
fitted model and which not.

R2
i = 1−

∫
(ŷi(t)− yi(t))2dt∫
(yi(t)− ȳ(t))2dt

(2.40)

A variation from classical statistics is that the single observation can produce
values of R2

i which negative. This means that for those observations the mean
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function ȳ(t) represents a better fit than the predicted values from the model.
The second approach determines the quality of the fit concerning the time
scale. By using R2(t) it is possible to discover areas on the time scale in which
observations are predicted very accurately as well as areas in which the fit is
less reliable.

R2(t) = 1−
∑n
i=1(ŷi(t)− yi(t))2∑n
i=1(yi(t)− ȳ(t))2 (2.41)

Usually areas with high variation of the response function are expected to have
a lower R2 value. Smoother areas of a function which are easier to fit should
have a higher coefficient of determination.
The third approach determines the quality of the model and is defined as the
mean of R2(t) over the time t. It is being computed numerically by evaluating
R2(t) on a sufficiently large number NR of equally placed times. Afterwards
the mean of those values is to be computed.

R2 = 1
NR

NR∑
i=1

R2(ti) (2.42)

Another aspect of functional data analysis is that functional covariates are
associated rather with coefficient functions than with scalar coefficients. In
classical data analysis it is possible to measure the significance of the effects
which covariates imply the response variable. In functional data analysis such
techniques can not be applied. In order to anyhow assess the effects of the
coefficient curves bootstrap techniques can be applied. One of the most basic
bootstrap procedures is deriving percentile intervals. The following algorithm
describes the steps required to derive such intervals.

Bootstrap percentile intervals for coefficient functions

1. Let zi(t) be the combination of the i-th response and covariates
(yi(t), x1i(t), . . . , xpi(t)) and let Z be the whole data matrix containing
all response and covariate functions

2. Draw B bootstrap samples Z1, . . . ,ZB with repetition

3. Compute β̂1
, . . . , β̂

B with the associated data
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4. Evaluate each β̂b at a sufficiently large number Nβ of time points and
store the values in a Nβ × p matrix

5. Sort each column separately and extract the dB · αe-th and the
bB · (1− α)c-th from the sorted sequence of values

6. The two developed vectors describe the lower and upper point-wise
(1− 2α)-confidence limits

The bootstrap procedure described above is new in the field of functional data
analysis, so default values for the hyperparameters Nβ, B and α do not exist.
Generally it is a good idea to choose a moderate number of evaluation points
such as Nβ = 100. This leads to vectors which if plotted, describe a smooth
curve. The number of bootstrap samples B depends on the confidence level
α. If one chooses a confidence level of 0.005, an appropriate choice for the
bootstrap samples would be B ≥ 1000. By choosing an even lower confidence
level such as 0.01, B ≥ 10000 should be considered.

Looking at the residual functions a further way of assessing the goodness of fit
is presented. As obvious from e. g. (2.32) the residuals produced by the model
are functional. This fact complicates the usage of the residuals as goodness of
fit instrument. Nevertheless the usage of the residual functions is still possible
if the original data from which the functional observations were approximated
is still available. In this case a residual sum of squares (RSS) can be computed.
It can be used to compare two different models fitted with the same original
data, due to a lower RSS denoting a better fit to the data.
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3. Phonetic Dataset

3.1. Data collection

The dataset of interest in this thesis is presented by the Institute of Pho-
netics and Speech Processing, University of Munich (Prof. Jonathan Harring-
ton). Seven test speakers were asked to pronounce german sentences. While
pronouncing, the voice frequency and tongue, lip and jaw movements were

Table 1: Frequency of the pronounced words for each speaker. Column names
denote the abbreviations of the different speakers.

bk ck fs hp ht mh ta
gepape 19 20 20 22 20 20 20
gepepe 20 20 21 19 20 20 20
gepipe 20 20 21 21 20 19 20
gepope 20 19 22 22 20 19 20
gepupe 20 22 22 16 20 19 20
gepype 20 20 20 20 20 20 20
getate 20 22 21 21 20 20 20
getete 21 20 20 20 20 20 20
getite 19 21 21 21 20 19 20
getote 19 24 22 20 20 21 20
getute 19 20 20 21 20 20 20
getyte 20 20 20 21 20 20 20
gekake 20 20 20 23 21 22 21
gekeke 20 22 21 22 20 20 19
gekike 19 20 22 21 20 20 20
gekoke 20 21 20 20 20 19 20
gekuke 19 22 21 21 20 21 20
gekyke 20 22 21 20 20 20 20

recorded. The spoken sentences were varied in only one word and were all
of the type “Ich habe geCVCe gesagt.”, which can be translated as “I said
geCVCe.”. The letters written in uppercase in the target word “geCVCe” are
placeholders for consonants (C) and vowels (V). The three different consonants
K, T, P and six different vowels U, I, A, O, Y, (german umlaut “Ü”) and E
were used to construct a total of 18 different artificial words (e. g. gekoke,
getate etc.). The words before and after the target word were used to distract
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the test person in order to reduce the concentration on the target word. Each
speaker repeated one sentence several times, varying e.g. speed and tensity. Ta-
ble 1 summarizes the frequency of the 18 words corresponding to the speaker.
The minimum frequency of the words is for the word “gepupe” pronounced 16
times by speaker “hp”. Most of the words were pronounced roughly about 20
or 21 times. The total number of replications amounts to 2556. The voice fre-
quency provides multiple formants. For the data analysis the second formant
is to be used as the functional response. It was recorded in equal intervals of
0.005 seconds (see e. g. figure 1). Only the recorded frequency of the vowels in
the artificial word “geCVCe” will be used. The pronunciation of a single letter
depends on e. g. the speed of speech or the test person. Since the formant is
recorded in equal intervals, each replication has a different length. For exam-
ple, if the vowel “A” is spoken in 0.1 seconds, a total of 20 discrete data points
would be recorded.
In addition to the voice frequency physical movements of sensors, placed in
the mouth area of the speakers were recorded. For this purpose six sensors

Figure 6: The tongue tip, tongue mid and tongue back sensors glued with
dental cement to the surface of the tongue.

were responsible for physical movement measures. These were glued with den-
tal cement to the tongue tip (TTIP), in the middle of the tongue (TMID),
at the back of the tongue (TBACK), at the tongue dorsum which is further
back than the TBACK sensor (TDORS), at the lower lip (LLIP) and on the
jaw (JAW). All movements were recorded by the so-called “5D” system that
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3.2 Data modifications

has been developed at the IPS Munich ([10], [11]). Figure 6 shows the mouth
area of a speaker with three sensors already attached to the tongue. Each of
these sensors produce one vertical and one horizontal record, except for the
jaw sensor which measures only in the horizontal direction. This means that
a total of 11 functional objects are being generated by pronouncing one sen-
tence. Contrary to the voice frequency these functional objects are recorded
every 0.004 seconds. This means that if a speaker needs 0.1 seconds to speak
out a letter, 25 discrete data points corresponding e.g. to the horizontal tongue
movement will be recorded.
A distinguishment between the time the voiced vowel is spoken and the aspi-
ration phase shortly before the vowel begins is possible as well. In this case
both types of functional data – voice frequency and physical movements –
show great differences. On the one hand, the physical movements are being
recorded very accurately and reliably in both phases. On the other hand the
voice frequency is difficult to measure in the aspiration phase due to lack of
any sound during this period. A marker called “von” is attached to the data,
so the exact time of the beginning of the viced vowel can be computed.

3.2. Data modifications

After receiving the data from IPS Munich, mild modifications were performed
on some of the replications. First of all, 13 observations were discarded due to
a very low amount of discrete data per replication (less than four data points).
These records seemed unrealistic because they would mean the pronunciation
of a vowel in less than 0.02 seconds. After removing them the new sample size
decreased to 2543 observations. The second modification involved the correc-
tion of “zero errors”. Such kind of errors are based on a problem regarding the
recording of the voice frequency. In such cases the frequency drops without
an explainable reason for a short period of time to zero and goes up to the
previous level afterwards. This kind of errors occurred in approximately 10%
of the obtained data. The easiest way of correcting such errors is to manually
interpolate the two non-zero data points which surround the “zero error”. If
the error is at the end or the beginning of the spoken vowel than a straight line
between the nearest non-zero point and the end / the beginning is interpolated.
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4. Results
This chapter gives an insight into a functional linear model with voice fre-
quency as a response as well as different functional and non-functional covari-
ates is fitted according to the data. For functional covariates coefficient curves
are adapted and non-functional covariates are associated with scalar coeffi-
cients. Bootstrapping is used to compute confidence intervals of all covariates.
This procedure helps classifying the importance of a covariate for the response.
In addition the coefficients of the best fitted model are used to predict the voice
frequency in the aspiration phase prior to the voiced vowel. As mentioned in
chapter 3, the voice frequency in the aspiration phase is very unstable and can
not be recorded properly. Contrariwise the covariates are all recorded properly
in the aspiration phase so they can be well used for a prediction.

4.1. Functional linear models with response voice frequency

4.1.1. Data preparation - finding the best set of hyperparameters suited
for the phonetic dataset

Table 2 summarizes the available data for the functional linear models. A to-
tal of 11 functional and 3 non-functional, categorical covariates can be used to
predict the functional response.
The first step towards a functional linear model is choosing a common time
scale on which the data is recorded. The original time scale for the phonetic
data depends on several different circumstances, such as the time at which the
speaker is starting the sentence. To eliminate such differences a time interval
of [0, 1] is chosen for the data. These time values can be interpreted as a per-
centage with 0 representing the beginning of the spoken vowel and 1 as the
end of the time scale.
Furthermore discrete data has to be prepared. In order to represent discrete
data by smooth curves, the proper system of basis functions and smoothing
parameters have to be chosen. In general it is possible to choose a different ba-
sis function and smoothing parameter for each functional variable. This would
involve many different possibilities due to the variety of additional hyperpa-
rameters for each basis function such as knot count, order and so forth. Figure
7 displays the sixth replication of the data as already presented in figure 1.

28



4 RESULTS
4.1 Functional linear models with response voice frequency

Table 2: Phonetic dataset: available covariates and response for the functional
linear model

Name Description Type
FM Voice frequency (second formant) functional
TTIPX Tongue tip sensor in horizontal direction functional
TTIPY Tongue tip sensor in vertical direction functional
TMIDX Middle tongue sensor in horizontal direction functional
TMIDY Middle tongue sensor in vertical direction functional
TBACKX Tongue back sensor in horizontal direction functional
TBACKY Tongue back sensor in vertical direction functional
TDORSX Tongue dorsum sensor in horizontal direction functional
TDORSY Tongue dorsum sensor in vertical direction functional
LLIPX Lower lip sensor in horizontal direction functional
LLIPY Lower lip sensor in vertical direction functional
JAWX Jaw sensor in horizontal direction functional
s.l Speaker non-functional
k.l Consonant non-functional
t.l Tensity non-functional

In figure 7 the time scale is set to [0, 1] and different alternatives for repre-
senting the data with a curve are added. The red curve which is based on a
B-spline basis with 5 interior knots and an order of 4 smooths the data exces-
sively and does not make a good representation of the data especially in the
first half of the time scale. In contrast the green curve (15 interior knots) is
hardly smoothing the data, so almost every single discrete point is being fitted
without any error. The third blue curve is based on a constant basis. It runs
exactly through the mean of the second formant for this replication.
Having chosen the right combination of basis functions with appropriate hy-
perparameters, an improvement can be achieved by using smoothing parame-
ters. Theoretically, each functional variable, regardless whether it is a response
or a covariate, could have a different smoothing parameter. This would lead
to a high number of possible variations. A good way to reduce some source of
variation is to choose only two different smoothing parameters – one for the
functional response and one for the functional covariates.
A further possibility to improve the quality of the model fit is a variation of
the parameters corresponding to the coefficient curves. Since those are also
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Figure 7: Three different types of basis functions used to represent discrete
data by curves.

curves, the same technique with basis functions and smoothing parameter can
be used. In order to create comparable coefficient curves and reduce the varied
parameters, the basis system and smoothing parameter should be specified for
all functional covariates.
This great discrepancy created by the large number of possible variations is
one problem that occurs while modeling the data. Similar functional analysis
lack in the literature especially for phonetic datasets. This is a further rea-
son for choosing default parameters cautiously. One possible way of finding
the best set of parameters that suit the given data is making a simulation
and trying different combinations. Preliminary tests suggested B-spline basis
functions and smoothing parameters in the range of [0, 1]. Table 3 outlines the
varied parameters. The last row of the table summarizes the number of dif-
ferent variations per column. In order to try every single possible combination
16 · 4 · 4 · 16 · 4 = 16384 different functional linear models should be computed.
Each model has 11 different functional covariates and a scalar intercept that
have to be adjusted. In order to qualify the adapted models two different mea-
sures are worth considering. On the one hand the discrete data could be used
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Table 3: Simulation design phonetic dataset: finding the best set of coefficients.

Basis functions data λy λx Basis functions coefficients λcoef

Type Order Knots Type Order Knots
B-spline 2 5 10−1 10−1 B-spline 2 5 10−1

B-spline 2 10 10−3 10−3 B-spline 2 10 10−3

B-spline 2 15 10−5 10−5 B-spline 2 15 10−5

B-spline 3 5 10−7 10−7 B-spline 3 5 10−7

B-spline 3 10 B-spline 3 10
B-spline 3 15 B-spline 3 15
B-spline 4 5 B-spline 4 5
B-spline 4 10 B-spline 4 10
B-spline 4 15 B-spline 4 15
Polynomial 3 - Polynomial 3 -
Polynomial 5 - Polynomial 5 -
Polynomial 7 - Polynomial 7 -
Fourier 3 - Fourier 3 -
Fourier 5 - Fourier 5 -
Fourier 7 - Fourier 7 -
Constant - - Constant - -
Total number of variations:

16 4 4 16 4

to compute a residual sum of squares. This is achieved by using the squared
distance between the discrete data point and the fitted curve evaluated on the
same time scale as the discrete data point. Instead of the squared distance
one can also use the absolute value (RSA). On the other hand an approach
borrowed from classical statistics would be the comparison of R2 values. This
approach fails however for this type of data because systems of constant basis
functions produced the highest coefficients of determination. The structure of
(2.41) and (2.42) suggests that a constant line is much easier to predict than
a possibly high variable curve.
The models were computed on a computer with a 2.00 GHz CPU and 4 GB
RAM. The computation time was 8325 minutes which equals approximately
140 hours. Most of the time was used for turning the discrete data points into
curves. The computation of the functional linear models was much faster and
took about 5% of the computation time.
After examining the results of the simulation, the variation of the parameters
of the coefficient curves proved to play a minor role in decreasing the residual
sum of squares. The combination of the remaining parameters however showed
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Table 4: Simulation 1: Ten parameter combinations with lowest residual sum
of absolute values.

Basis functions data λy λx Basis functions coefficients λcoef RSA
Type Order Knots Type Order Knots
B-spline 3 10 10−7 10−1 B-spline 4 15 10−1 5.1657 · 105

B-spline 3 10 10−5 10−1 B-spline 4 15 10−1 5.1657 · 105

B-spline 3 10 10−3 10−1 B-spline 4 15 10−1 5.1658 · 105

B-spline 3 15 10−3 10−1 B-spline 4 10 10−3 5.1659 · 105

B-spline 3 5 10−3 10−1 B-spline 4 10 10−1 5.1659 · 105

B-spline 3 15 10−5 10−1 B-spline 4 10 10−3 5.1659 · 105

B-spline 3 15 10−7 10−1 B-spline 4 10 10−3 5.1659 · 105

B-spline 3 5 10−5 10−1 B-spline 4 10 10−1 5.1659 · 105

B-spline 3 5 10−7 10−1 B-spline 4 10 10−1 5.1659 · 105

B-spline 3 10 10−1 10−1 B-spline 4 15 10−3 5.1669 · 105

great variation of the residual sum of squares. Table 4 displays 10 combina-
tions of parameters which had the smallest RSA (last column in table). All
ten parameter combinations have B-spline basis functions of order 3 for the
data and B-spline basis functions of order 4 for the coefficient curves. The best
interior knot count is around 10 and the smoothing parameter for the func-
tional response λy is between 10−7 and 10−3. All ten parameter combinations
have a smoothing parameter of the functional covariates λx which equal 10−1.
Since this is at the edge of the grid, further improvement could be achieved
if some higher values of λx are used. Taking this fact into account a second
simulation is started with slightly changed simulation settings. Table 5 shows
further combinations of parameters that were used to obtain more improved
models. As mentioned above the different parameter combinations of the coef-
ficient functions did not take a lot of computational time. That is why almost
all combinations were computed again. In the second simulation run a total
of 2080 functional models were adapted. The computational time of 17 hours
was much shorter than the first simulation run due to a reduced number of
models computed.
Table 6 shows the 10 parameter combinations with the smallest RSA after
combining both simulation runs. Rows originating from the second simulation
run are marked with a green background. Three of the best ten parameter
combinations originate from the second simulation run. The combination of
parameters with the lowest RSA has B-spline basis functions for the data of
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Table 5: Simulation design phonetic dataset: a finer selection grid based on the
first simulation run.

Basis functions data λy λx Basis functions coefficients λcoef

Type Order Knots Type Order Knots
B-spline 3 10 10−3 102 B-spline 2 10 10−1

B-spline 3 15 10−5 101 B-spline 2 15 10−3

B-spline 4 10 100 B-spline 3 10 10−5

B-spline 4 15 10−2 B-spline 3 15 10−7

Constant - - B-spline 4 10
B-spline 4 15
Polynomial 3 -
Polynomial 5 -
Polynomial 7 -
Fourier 3 -
Fourier 5 -
Fourier 7 -
Constant - -

Total number of variations:
5 2 4 13 4

order 4, 15 interior knots, λy = 10−5 and λx = 10−2. The best combination for
the coefficient curves are B-spline basis functions for the data of order 4, 10
interior knots and λcoef = 10−3. Please note that computational time saving
reasons the models were fitted only by using 11 functional covariates and a
scalar intercept. Further improvements can be achieved by using the rest of
the available non-functional covariates.
Those parameters lead to the smallest tested RSA. Nevertheless it would be
rather unlikely that this would be the best combination of hyperparameters
for the phonetic dataset. The obtained combination can be considered as suf-
ficiently accurate given the computational time needed.
Explorative graphics are presented in the appendix. Figures 13 to 24 display
the adapted curves alongside with mean and standard deviations. Figures 25
to 35 display cross correlation plots between the response variable and single
functional covariates. Functional principal component analysis is not described
for the given data. The obtained hyperparameters led to curves with low vari-
ation. Therefore the first principal component explained more than 95% of
the variation regardless the functional variable considered. The first principal
component usually equals the mean function in cases with high percentage of
explained variance.
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Table 6: Simulation 1+2: Ten parameter combinations with lowest residual
sum of absolute values.

Basis functions data λy λx Basis functions coefficients λcoef RSA
Type Order Knots Type Order Knots
B-spline 4 15 10−5 10−2 B-spline 4 10 10−3 5.1656 · 105

B-spline 3 10 10−7 10−1 B-spline 4 15 10−1 5.1657 · 105

B-spline 3 10 10−5 10−1 B-spline 4 15 10−1 5.1657 · 105

B-spline 3 10 10−3 10−1 B-spline 4 15 10−1 5.1658 · 105

B-spline 4 15 10−3 10−2 B-spline 2 10 10−7 5.1658 · 105

B-spline 4 10 10−3 10−2 B-spline 4 10 10−1 5.1658 · 105

B-spline 3 15 10−3 10−1 B-spline 4 10 10−3 5.1659 · 105

B-spline 3 5 10−3 10−1 B-spline 4 10 10−1 5.1659 · 105

B-spline 3 15 10−5 10−1 B-spline 4 10 10−3 5.1659 · 105

B-spline 3 15 10−7 10−1 B-spline 4 10 10−3 5.1659 · 105

The following models in this chapter are based on the simulated parameters
which are also set as default parameters in the R-functions (refer to chapter
5).

4.1.2. Model computation and interpretation

Using the obtained hyperparameters which minimize the residual sum of squares
and residual sum of absolute values one can now compute the functional lin-
ear model. For the first model, only functional covariates will be applied. This
procedure is helpful regarding the discovery of tendencies and behaviors of
coefficient curves throughout different parts of the time scale. Figure 8 shows
the 11 coefficient curves and the value of the scalar intercept. Pointwise 95%
confidence intervals were computed for every covariate. They are based on
2000 bootstrap samples using the percentile method. The functional variables
tbackx, tbacky, ttipy, jawx, llipy, tdorsx and tmidx have a negative effect
on the second formant through the whole time scale. This means e. g. for ttipy
that if the tongue tip moves up in vertical direction than the voice frequency
tends to get lower. Contrariwise the covariates ttipx, llipx and tmidy have a
positive effect on the second formant. The covariate tdorsy has a minor effect
on the response, due to the fact that the zero line is completely between the
confidence limits. An interesting structure of a coefficient curve is presented by
the covariate jawx. During the first 60% of the time it has almost a constant
value of approximately −17. After that the curve is decreasing fast, reaching
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Figure 8: Model 1: Coefficient curves and intercept. Pointwise confidence in-
tervals (95%) based on 2000 bootstrap samples
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a minimum at the end of the time scale at approximately −27. This means
that the negative effect which jawx is having on the second formant is greater
at the end of the time scale. If the speaker is moving the jaw sensor forth in
horizontal direction than the voice frequency is expected to decrease mildly in
the first 60% of the spoken vowel. After that an even greater drop is expected
to occur at the end of the spoken vowel.
A further way of looking at the model coefficients as well as other model in-
formation is presented in table 7. The table is split into three parts. In the
first part non-functional coefficients are presented. Since the intercept is the
only non-functional variable which is used in this model, it is displayed in this
section of the table. The second part of the table shows a summary of the func-
tional coefficients. Mean, median, minimum, maximum and standard deviation
of the coefficient curves is presented. The computation of these values is done
by evaluating the curves at 100 equally placed spots between the two ends
of the time scale. After that, it is a trivial task to compute several statistics.
The last part of the table shows further numbers concerning the functional
model. In this data 2543 observations are used for the computation. The mean
R squared is approximately 0.75. This is achieved by evaluating the R squared
curve at 18 equally placed points and computing the mean of those points
after that. The residual sum of squares produced by the model is 1.5 ·108. The
last value in the table shows that the mean residual is at approximately 203.
The last three values are different ways in assessing goodness of fit. A vari-
ation of some hyperparameters would lead to different numbers which then
can be helpful in comparing the two different models. Generally this kind of
summary provides a good way in comparing the intensity of the effects. While
the interpretation of the non-functional covariates does not differ from classical
statistics, one should be careful in interpreting the values for the functional
covariates. If one considers only the mean and the standard deviation e. g., it is
a common approach to favor covariates with a large absolute value of the mean
and a rather small standard deviation. The problem of this approach is that a
functional variable could have e. g. strong positive effects at one end of the time
scale and strong negative effects at the other. This could theoretically lead to a
zero mean although throughout most of the time scale the curve would not be
near the zero line. If the minimum and maximum of the curve are considered
too, then this problems should not occur. In the given case only the covariates
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Table 7: Model 1: Summarizing the coefficients and further statistics.

Estimated numeric coefficients:
Class Coefficient

Intercept numeric 4264.476
Estimated functional coefficients (summarized):

Class Mean Median Minimum Maximum Std. Dev.
tbackx functional -13.167 -12.906 -16.375 -11.345 1.399
tbacky functional -29.465 -29.549 -31.836 -27.252 1.370
ttipy functional -7.553 -7.592 -15.609 0.931 4.764
ttipx functional 20.098 19.277 13.576 30.262 4.706
jawx functional -18.955 -17.513 -26.668 -17.335 2.584
llipx functional 33.806 33.717 31.171 36.798 1.881
llipy functional -7.563 -7.775 -10.043 -5.445 1.099
tdorsy functional -1.522 -2.682 -4.230 4.982 2.808
tdorsx functional -31.494 -31.738 -32.284 -29.465 0.690
tmidx functional -34.131 -33.710 -37.160 -32.329 1.669
tmidy functional 54.263 54.720 46.734 59.462 3.734
Number of observations: 2543
Mean R squared: 0.752839
Residual sum of squares: 150942505
Mean residual: 203.1990

ttipy and tdorsy are associated with curves which cross the zero line. The
strongest negative effect of the covariate ttipy has a value of −15.6, which
indicates that this covariate explains much of the response at least at one part
of the time scale. The strongest effects are found for the covariates tmidx and
tmidy with −34.1 and 54.3 respectively. Both covariates are associated with a
sensor placed in the middle part of the tongue.
The mean R squared value of 0.75 suggests a good quality of the fit. In order
to extend the idea of the R squared statistics to functional data, it is also
possible to examine a R squared curve. It provides information on fit behavior
during the different parts of the time scale. The curve in figure 9 shows a very
good fit with a R squared value of around 0.8 during the middle part of the
time scale. At both ends it drops to approximately 0.75 (start of time scale)
and 0.65 (end of time scale). This drop at the end of the time scale can be
explained by the adapted curves being more variable at the end of the time
scale.

An even better fit can be expected using more non-functional covariates than
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Figure 9: Model 1: R squared curve. The evaluation of the curve at 18 equally
placed spots lead to a mean R squared value of 0.75.

an intercept. Table 2 suggests that further effects such as the speaker effect,
consonant effect and tensity effect could be applied. For simplification rea-
sons the same hyperparameters as in the previous model will be used. This
approach could be justified if taken into account that those hyperparameters
concern only the functional covariates. At the same time, the new model is
extended by only non-functional covariates. On the other hand the statistic
that is being minimized by the models is the residual sum of squares. Since
there are interactions between the (new) non-functional covariates and the
functional ones, it would be highly unusual that the same hyperparameters
would minimize the RSS in both models. However the simulation for model
1 showed that the differences in the RSS between the best combinations of
hyperparameters are very small. Considering all these facts, the simulated pa-
rameters are absolutely eligible to used once again for the new model.
Table 8 summarizes the fitted coefficients. The non-functional covariates which
are included in this model are displayed in the first part of the table. The in-
tercept effect is slightly higher than in model 1 without making a big difference
in the interpretation. The next six rows denote the speaker effects where s.l
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Table 8: Model 2: Summarizing the coefficients and further statistics.

Estimated numeric coefficients:
Class Coefficient

Intercept numeric 4360.519
s.lck numeric 174.438
s.lfs numeric -54.741
s.lhp numeric -15.126
s.lht numeric -339.377
s.lmh numeric -398.554
s.lta numeric -198.163
k.lP numeric -13.979
k.lT numeric -52.840
t.l+ numeric 13.185
Estimated functional coefficients (summarized):

Class Mean Median Minimum Maximum Std. Dev.
tbackx functional -26.642 -26.464 -29.611 -24.821 1.321
tbacky functional -20.576 -20.367 -22.748 -19.526 0.906
ttipy functional 1.466 1.286 -4.992 8.538 3.690
ttipx functional -0.455 -0.603 -6.184 6.493 3.568
jawx functional -4.470 -3.512 -9.911 -3.277 1.839
llipx functional 40.179 40.308 38.234 41.862 1.306
llipy functional -15.124 -15.125 -18.727 -12.240 1.714
tdorsy functional 19.336 18.195 16.872 27.519 2.868
tdorsx functional -37.851 -37.947 -38.768 -35.765 0.747
tmidx functional 4.818 5.754 0.369 6.941 2.051
tmidy functional 32.389 33.682 24.816 35.386 3.112
Number of observations: 2543
Mean R squared: 0.8122898
Residual sum of squares: 114293396
Mean residual: 178.0303

stands for the speaker covariate and the two letters after that are representing
the speaker abbreviation. The speaker with the abbreviation bk is alphabeti-
cally first and for that reason in the reference category with an effect equaling
zero. The covariates k.lP and k.lT stand for the consonants “P” and “T”
which enclose the observed vowel. The reference category here is the conso-
nant “K”. The last numeric coefficient fitted is the tensity effect. t.l+ denotes
present tensity and t.l- is the reference category.
For some functional covariates there has been a noticeable change after includ-
ing all covariates. There was no complete alternation of the effect in terms of a
negative covariate effect in model 1 becoming positive in model 2 or vice versa.
However the effect intensity has changed for almost all functional covariates.
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Figure 10: Model 2: Coefficient curves and scalar coefficients. Pointwise confi-
dence intervals (95%) based on 2000 bootstrap samples
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tmidy e. g. still has a positive effect but also a greatly decreased mean value
of 32.4 (mean in model 1 was 54.3). The covariates ttipy, ttipx, jawx and
tmidx have all mean values near zero. They do not give much information on
the response.
The number of observations in this model equals the number of observations
in model 1 (2543). The mean R squared value is higher and has a value of 0.81.
The RSS was further lowered by the non-functional covariates and is now ap-
proximately 76% of the RSS from model 1. The mean residual value has also
dropped to 178 which is a decrease of about 12%.
The R squared curve (figure 11) for this model is slightly higher than the cor-
responding curve for model 1. The overall R squared mean has a value of 0.81
which is 0.06 higher. The biggest difference is observed at the very end of the
time scale where the R squared value for model 2 is approximately 0.08 higher.
Figure 10 shows the coefficients of model 2 alongside with confidence bands
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Figure 11: Model 2: R squared curve. The evaluation of the curve at 18 equally
placed spots lead to a mean R squared value of 0.81.

which once again are based on 2000 bootstrap samples. Looking at the co-
efficient curves and scalar coefficients reveals that some covariate effects are
weaker than others. The 95%-confidence bands corresponding to ttipx, jawx
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and tmidx all embrace the zero line. This means that this covariates have a
minor contribution for the explanation of the response variable. ttipy has a
greater effect on the response only during the first 20% of the time scale. The
non-functional covariate t.l representing the tensity has the zero included in
the confidence interval produced with the bootstrap technique. Therefore this
covariate has also a minor effect. The rest of the covariates all have strong
effects and a greater contribution in explaining the functional response.

4.2. Predicting the voice frequency in the aspiration phase
prior to the voiced vowel

In the last subsection the dependency between voice frequency and physiolog-
ical movements of tongue, lips and jaw were described via functional models.
The fit was improved by adding additional non-functional covariates. In the
present part of the thesis the gained information will be used to predict the
voice frequency during the aspiration phase. As mentioned in chapter 3, it is
possible to distinguish very accurately between the aspiration phase and the
voiced vowel pronunciation. The voice frequency can not be recorded properly
in the aspiration phase. In the meantime the covariates are recorded accu-
rately during both phases. The assumption that the voice frequency has a
similar structure during both periods is an important requirement for apply-
ing the functional models from chapter 4.1.2. If this assumption holds true
then a prediction of the voice frequency with the coefficients of the functional
models is possible.
Figure 12 considers the voice frequency during the aspiration phase of 9 ran-
domly chosen replications. The discrete data points are marked with black
points. Red curves are adapted directly to the points. The green curves in-
dicate the prediction for each replication. For this particular figure the coef-
ficients and coefficient curves of model 2 are used. Obviously the red curves
are highly variable due to the recording difficulties mentioned in chapter 3.
The green curves on the other hand have little variation and seem to display a
smooth version of the data. The region in which the data points are expected
is well predicted. For replication 832 the predicted curve lies higher than the
recorded discrete data points. This may be an outlier for which the model is
not well suited. A further explanation for the gap between the green curve and
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the data points lies in the possibly false recording. In this case the green curve
would indicate the right position of the data points. Since there is no method
to test the suitability of the curves this remains a task for future analyses.
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Figure 12: Voice frequency during the aspiration phase of 9 randomly chosen
replications. Black points indicate recorded data points. Smoothing
the data directly produces highly variable curves (red). The pre-
dicted curves using the functional and non-functional covariates of
the aspiration phase and coefficients from model 2 are marked in
green.
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5. R functions and code
The analysis of the phonetic dataset as well as further simulations in this thesis
were all computed with the software R ([12]). One of the features this thesis
offers are all functions and codes written in a general way, so they can be
easily applied to further phonetic data. In this section the key R functions are
presented.
In order to properly use most of them one should install the packages emu ([13],
[14]), fda ([15]) and dummies ([16]). R ([12]) is a free software environment for
statistical computing and graphics. Additional packages can be easily installed
with the help of functions like install.packages(’PACKAGENAME ’).
The most important functions are presented in this section in detail. Further
functions are presented in the appendix. The functions in the appendix are
mostly of generic type and can be used for further analysis using an object
returned by the function flm (refer to section 2.4).

5.1. Function: fda_prep

The function fda_prep is used to convert raw discrete data into smooth curves.
The input parameter vars expects a variable name or a character vector, con-
taining the variable names. The parameter trackdata expects a list with the
functional variables named like in vars. lambdavec is a vector containing the
smoothing parameters – possibly different for every functional variable. bas ex-
pects an object of class basisfd which constructs the system of basis functions
used. The parameter min.len expects an integer and denotes the minimum
amount of discrete points that are used for the preparation of the data. If
one replication has less discrete points than min.len then this replication is
omitted and a warning message is displayed. The parameter trace expects
a logical input whether to display information during the computation time.
ind expects an index vector with logical entries and a length which equals the
observation size. The observations which should be transformed into smooth
curves are marked with TRUE and those who are not wanted as smooth curves
and should be omitted are marked with FALSE. The ... argument is not used
at this stage of the programming.
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1 fda_prep <− function ( vars , trackdata , lambdavec = NULL, bas ,
min . l en = 4 , trace = FALSE, ind = NULL, . . . ) {

3 i f (missing ( bas ) )
bas <− create . b sp l i n e . b a s i s (c (0 , 1) , norder = 4 , breaks = seq

(0 , 1 , 1/10) )
5 i f ( i s . null ( lambdavec ) ) lambdavec <− rep (1 e−2, length ( vars ) )

L <− l i s t ( )
7 j <− 1

i f ( trace ) cat ( " Converting data po in t s to curves : \ n " )
9 for (V in vars ) {

11 i f ( trace ) cat ( " Var iab le " , j , "/ " , length ( vars ) , " \n " )

13 # fdPar o b j e c t con ta in ing b a s i s phi_k and smoothing parameter
lambda

temp_ba s i s <− fdPar ( bas , lambda = lambdavec [match(V, vars ) ] )
15

# load corresponding t rackda ta o b j e c t
17 x <− t rackdata [ [V ] ]

n <− nrow( x )
19

# keep obe r va t i on s wi th a minimum number o f d i s c r e t e po in t s
21 i f ( i s . null ( ind ) ) {

l <− rep (0 , n )
23 for ( i in 1 : n ) l [ i ] <− length ( t rackt imes (x [ i ] ) )

ind <− l >= min . l en
25 i f (sum( ! ind ) > 0 && sum( ! ind ) <= 25)

warning ( " Observat ions " , t oS t r i ng (which( ! ind ) ) , " \n " ,
27 " conta in l e s s than " , min . len ,

" d i s c r e t e data po in t s and w i l l be omitted ! " )
29 else i f (sum( ! ind ) > 25)

warning (sum( ! ind ) , " ob s e rva t i on s conta in l e s s than " , min .
len ,

31 " d i s c r e t e data po in t s and w i l l be omitted ! " )
}

33 x <− x [ ind ]
n <− nrow( x )

35
# F i r s t i t e r a t i o n ( i n i t i a l i z i n g ’ re t ’ )

37 x1 <− seq (0 , 1 , length . out = length ( frames (x [ 1 ] ) ) )
x2 <− frames (x [ 1 ] )
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39 smx <− smooth . ba s i s ( x1 , x2 , temp_ba s i s )

41 r e t <− l i s t ( c o e f s = matrix (NA, ncol = n , nrow = bas$nbas i s ) ,
b a s i s = smx$ fd$bas i s , fdnames = paste ( " rep " , 1 : n ) )

43 r e t$ c o e f s [ , 1 ] <− smx$ fd$ c o e f s
r e t$fdnames <− NULL

45 r e t$fdnames$ reps <− paste ( " rep " , 1 : n , sep = " " )
r e t$fdnames$value <− " va lue "

47 r e t$fdnames$time <− seq (0 , 1 , length . out = nrow(smx$ fd$ c o e f s ) )

49 # 2: n i t e r a t i o n s
for ( i in 2 : n ) {

51 x1 <− seq (0 , 1 , length . out = length ( t rackt imes (x [ i ] ) ) )
x2 <− frames (x [ i ] )

53 smx <− smooth . ba s i s ( x1 , x2 , temp_ba s i s )
r e t$ c o e f s [ , i ] <− smx$ fd$ c o e f s

55 }

57 # c l a s s a t t r i b u t e and sav ing r e t in L
class ( r e t ) <− " fd "

59 L [ [ j ] ] <− r e t
j <− j + 1

61 }

63 # naming L and re tu rn ing L and ind
names(L) <− vars

65 return ( l i s t (L = L , ind = ind ) )
}

In the first five lines of the function code the input parameters are declared
and some default values for basis functions and smoothing parameters are set.
In lines 6 – 8 further variables like the output list L and a counting variable j
is set to the value 1. If the user requests trace information during the compu-
tation, j is used to display which functional variable is being converted at the
moment. Lines 9 – 61 contain the most important commands, wrapped into a
for-loop. During this loop every variable is taken separately and the discrete
data is converted to curves. In lines 21 – 32 it is taken into account that only
observations with a minimum number of discrete data points should be con-
verted to curves. In order to save some computation time these lines are being
computed only one time while converting the first functional variable of the
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data. The vector ind is created and then reused for the following variables. If
ind is supplied as an input parameter then these lines are skipped during the
first iteration too. In the lines 36 – 47 the return argument ret is prepared.
ret is a list with the slots coefs, basis and fdnames. The most important
slot is coefs, a matrix with a column size equaling the replication size and
line numbers equaling the number of basis functions. In the very first itera-
tion only the first column is filled with the weigths “ck” (cf. (2.7)) from the
first replication. The lines 49 – 55 fill the rest of the coefficient matrix. This
part is the most time consuming part of the function. This can be explained
by the function smooth.basis. Since this function has to be called as often
as the observation size it has a considerable high contribution to the overall
computation time. In the lines 57 – 60 the list object ret is classified with the
class “fd” and saved in a slot of L. The counting parameter j is increased by 1.
The last part of the function (lines 65 – 67) consists of naming the list object
L with the associated functional variable names and returning L alongside the
constructed logical vector ind.

5.2. Function: fdareg

The function fdareg is used to compute a regression model. The input param-
eter resp expects a functional variable with associated class “fd” denoting
the response variable. The parameter x expects a list with the functional and
non-functional covariates. Each slot of the list should contain a single vari-
able of class “fd”, “numeric” or “integer”. bas expects an object of class
basisfd which constructs the system of basis functions used. l stands for the
smoothing parameter of the coefficient curves λcoef . ind and emuobj are used
to construct a plot function which plots single fitted curves and the discrete
data of the same replication.

fda reg <− function ( resp , x , bas , l , ind = NULL, emuobj = NULL) {
2

# fdPar cons t ruc t i on f o r c o e f f i c i e n t curves
4 betafdPar <− fdPar ( bas , lambda = l )

b e t a l i s t <− l i s t ( )
6
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# fo r f u n c t i o n a l v a r i a b l e s , c o e f f i c i e n t curves wi th b e t a f dpar
are f i t t e d

8 # fo r cons tant v a r i a b l e s , one s c a l a r c o e f f i c i e n t i s f i t t e d
# other t ype s are not a l l owed

10 for ( i in 1 : length ( x ) ) {
i f ( class ( x [ [ i ] ] ) == " fd " ) b e t a l i s t [ [ i ] ] <− betafdPar

12 else i f ( class ( x [ [ i ] ] ) %in% c ( " i n t e g e r " , " numeric " ) )
b e t a l i s t [ [ i ] ] <− create . constant . b a s i s (c (0 , 1) )

14 else stop (paste ( " Var iab le " , i , " has wrong c l a s s ! " , sep = " " )
)

}
16

# main func t i on f o r r e g r e s s i o n
18 fReg r e s sL i s t <− fRegre s s ( resp , x , b e t a l i s t )

20 # f i t t e d curves
predhat fd <− fR eg r e s sL i s t$yhatfd$ fd

22 # est imated c o e f f i c i e n t s
b e t a e s t l i s t <− fR eg r e s sL i s t$ b e t a e s t l i s t

24
# matrix o f f i t t e d po in t s ( dimension nbas i s x nobs )

26 predhatmat <− eval . fd ( seq (0 , 1 , length . out = nrow( re sp$ c o e f s ) ) ,
predhat fd )

28 # r e s i d u a l matrix
resmat <− predhatmat − re sp$ c o e f s

30
# R2 computation (Ramsay Si lverman : p . 285)

32 # R2 = 1 − ( hat ( y ) − y )^2 / ( y − bar ( y ) )^2
predmeanvec <− as .matrix ( rowMeans ( resp$ c o e f s ) )

34 resmat0 <− re sp$coef − predmeanvec %∗% matrix (1 , 1 , ncol ( re sp$
c o e f s ) )

SSE0 <− apply ( resmat0 ^ 2 , 1 , sum)
36 SSE1 <− apply ( resmat ^ 2 , 1 , sum)

Rsqr <− (SSE0 − SSE1) / SSE0
38

# p l o t f unc t i on f o r p l o t t i n g the f i t t e d curves
40 fdap l o t <− function (n , emuobj = emuobj , ind = ind , . . . ) {

n2 <− which .max(cumsum( ind ) == n)
42 xax i s <− seq (0 , 1 , length . out = length ( t rackt imes ( emuobj [ n2 ] ) )

)
plot ( xaxis , frames ( emuobj [ n2 ] ) ,
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44 ylab = " Frequenz " , xlab = " Ze i t " ,
yl im = c (min(min( predhatmat ) , min( frames ( emuobj ) ) ) ,

46 max(max( predhatmat ) , max( frames ( emuobj ) ) ) ) ,
main = paste (n , " . Beobachtung " , sep = " " ) , pch = 19 ,

. . . )
48 l ines ( xaxis , eval . fd ( resp , xax i s ) [ , n ] , col = 3)

t imes <− seq (0 , 1 , length . out = 100)
50 l ines ( times , eval . fd ( predhat fd [ n ] , t imes ) , col = 2 , l t y = 2)

}
52

# re turn ing a l i s t and g i v i n g an c l a s s a t t r i b u t e
54 r e t <− l i s t ( reg = fReg r e s sL i s t , Rsqr = Rsqr , f dap l o t = fdap lot ,

r e sp = resp )
class ( r e t ) <− ’emu_fd ’

56 return ( r e t )
}

In lines 4 – 15 betalist and betafdPar are constructed using the given input
information. They are used in the regression step and denote what kind of
coefficient curves or scalar coefficients should be fitted. In line 18 the main
regression functions is executed using the response resp, the covariates x and
the properties of the coefficients stored in betalist. This is the computation-
ally most intensive part of the given function. In lines 21 – 37 the computation
of the functional R squared is executed. Lines 40 – 51 contain the construction
of the internal plot function which can be used to plot fitted curves of single
observations alongside with the discrete data points. This could be used to
visually qualify the model fit, e. g. when plotting several random observations.
In lines 54 – 56 the return object is constructed and returned. It is a list with
four slots containing the regression object, the functional R squared values,
the plot function and the response argument.

5.3. Function: flm

The function flm is the main function which is presented to the user. The usage
is similar to functions like lm or glm. The first input parameter formula which
expects a formula argument of the type y ~ 1 + x1 + x2. On the left side of
the tilde the response argument should be inserted. On the right side of the
formula covariates are separated with “+” signs. An intercept usage is being
denoted by 1. The input parameter data is expected as a list with containing
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discrete data points, adapted functional curves and a logical vector denoting
which observations to use for the functional regression model. Normally this
argument will be set to NULL and the data preparation will be done within the
function. If the data argument is presented the computational time is reduced
severely. This is especially useful when some of the control arguments are
replaced and at the same time no data transformation needs to be done. The
input parameter return.prepared.data is logical and it indicates whether the
prepared data should be returned or not. The last input parameter is control
which expects a list as returned by the function flm.control (refer to section
5.4).

1 flm <− function ( formula ,
data = NULL,

3 return . prepared . data = TRUE,
control = flm . control ( )

5 ) {

7
y <− s tr sp l i t (deparse ( formula , width = 500) , " \\~ " ) [ [ 1 ] ] [ 1 ]

9 x <− s tr sp l i t ( s tr sp l i t (deparse ( formula , width = 500) , " \\~ " )
[ [ 1 ] ] [ 2 ] , " \\+ " ) [ [ 1 ] ]

i f ( " 1 " %in% x) {
11 x <− x [ x != " 1 " ]

i n t e r c e p t <− TRUE
13 }

vars <− c (y , x )
15

i f ( i s . null (data ) ) {
17 regdata <− l i s t ( )

data [ [ 1 ] ] <− eval ( as . name(y ) )
19 types <− " t rackdata "

for ( i in 1 : length ( x ) ) {
21 dat <− eval ( as . name(x [ i ] ) )

i f ( class ( dat ) %in% c ( " f a c t o r " , " cha rac t e r " ) ) {
23 dat <− as . data . frame ( as .matrix ( dat ) )

colnames ( dat ) <− vars [ i +1]
25 }

data [ [ i +1] ] <− dat
27 types [ [ i +1] ] <− class (data [ [ i +1 ] ] )
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}
29 names(data ) <− vars

31 num_data <− NULL
for ( i in 1 : length ( vars ) ) {

33 i f ( types [ i ] == " numeric " ) num_data <− cbind (num_data , data [ [
i ] ] )

else i f ( types [ i ] == " data . frame " )
35 num_data <− cbind (num_data , dummy( vars [ i ] , data [ [ i ] ] ) [ ,

−1, drop = FALSE] )
}

37
fun_vars <− vars [ types == " trackdata " ]

39 fun_vars_l o c <− match( fun_vars , vars )
i f ( length ( fun_vars ) > 0) {

41 temp <− fda_prep ( vars = fun_vars , t rackdata = data ,
lambadavec = control$ fd_smooth , bas =

control$ fd_bas i s ,
43 min . l en = control$min . len , trace = control$

trace )
func <− temp$L

45 ind <− temp$ ind
for ( i in 1 : length ( fun_vars ) ) {

47 regdata [ [ i ] ] <− func [ [ i ] ]
names( regdata ) [ [ i ] ] <− fun_vars [ i ]

49 }
}

51 else ind <− rep (TRUE, length (data [ [ 1 ] ] ) )

53 i f ( ! i s . null (num_data ) ) {
for ( i in 1 : ncol (num_data ) ) {

55 regdata [ [ length ( fun_vars ) + i ] ] <− (num_data [ , i ] ) [ ind ]
names( regdata ) [ [ length ( fun_vars ) + i ] ] <− colnames (num_

data ) [ i ]
57 }

}
59

i f ( i n t e r c e p t ) {
61 i n t e r <− rep (1 , sum( ind ) )

for ( i in length ( regdata ) : 2 ) {
63 regdata [ [ i +1] ] <− regdata [ [ i ] ]

names( regdata ) [ [ i +1] ] <− names( regdata ) [ [ i ] ]
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65 }
regdata [ [ 2 ] ] <− i n t e r

67 names( regdata ) [ [ 2 ] ] <− " I n t e r c ep t "
}

69
i f ( return . prepared . data )

71 data <− l i s t ( regdata = regdata , ind = ind , emudata = data )
else

73 data <− l i s t ( ind = ind , emudata = data )

75 }
else {

77 i f ( ! a l l (c ( " regdata " , " ind " , " emudata " ) %in% names(data ) ) )
stop ( "Argument ’ data ’ can ’ t be used ! Please prov ide s l o t s \n "

,
79 " named c ( ’ regdata ’ , ’ ind ’ , ’ i n t e r c ep t ’ , ’ emudata ’ ) " )

regdata <− data$ regdata
81 ind <− data$ ind

i f ( ! return . prepared . data )
83 data <− l i s t ( ind = ind , emudata = data$emudata )

}
85

response <− regdata [ [ match(y , names( regdata ) ) ] ]
87 pred <− regdata [−match(y , names( regdata ) ) ]

model <− fda reg ( response , pred , control$coef_bas i s , control$coef
_smooth ,

89 data$ ind , data$emudata [ [ 1 ] ] )

91 r e t <− l i s t (model = model , data = data , ca l l = formula , control
= control )

class ( r e t ) <− " f lm "
93 return ( r e t )

95
}

Lines 8 – 14 the formula argument is being deparsed. Intercept usage and the
separation of covariates and response are made in this first lines too. Lines
16 – 75 are skipped if a data argument is presented. In the more usual case
of data argument being passed as NULL the discrete data points are being
converted to smooth curves in this lines. The user can use functional, numer-
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ical and categorical predictors. Only a functional response is allowed. In lines
17 – 37 the non-functional covariates are prepared. Since the functions from
the fda package which are used for the regression in the following steps do
not allow categorical covariates, this is being taking care of in this steps. The
function dummy originating from the dummies package is very helpful for trans-
forming a categorical variable into multiple dummy variables. In lines 38 – 51
the functional covariates and the functional response are turned into curves
and the index vector ind denoting which replications to be used for the re-
gression is being constructed. The numerical covariates and the intercept are
attached to the functional variables in lines 53 – 68. If the input parameter
return.prepared.data is TRUE then all prepared data is attached to the list
data in a slot regdata. If return.prepared.data is set to FALSE this step is
skipped (lines 70 – 74). If a data argument is presented it should contain the
slots regdata, ind and emudata. If some of those slots are missing then the
function is stopped and a custom error message is presented to the user asking
to provide the missing slots. If the three slots are provided than in lines 76
– 84 this information is extracted from the data argument. In lines 86 – 89
the prepared data and the information about the type of coefficient curves are
used to compute the model. A list containing model information, data, formula
call and control arguments is returned in the last lines of the function.
Please refer to the appendix for generic functions which can be applied to an
object returned by the function flm. residuals, fitted, coef, summary, print
and plot all provide useful information for the user. The functions bootstd
and plot.bootstd are designed to compute and plot bootstrap based confi-
dence intervals for the coefficient curves.

5.4. Function: flm.control

The function flm.control is used to control hyperparameters while computing
a functional model. coef\_basis expects an object of class basisfd which con-
tains additional information about the type of the coefficient curves like knot
placement, order or time scale of the basis functions. coef\_smooth controls
the smoothing parameter for the coefficient curves. If the parameter trace is
set to TRUE the user is presented with some details on the computation and
is able to make a rough estimate on the computation time. min.len denoted
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the minimum number of discrete data which have t be contained in each repli-
cation. fd\_basis is used to control the functional variables. Type of basis
functions, knot placement, order and time scale are possible variations of the
basis functions. The smoothing parameter of the functional data can be con-
trolled with fd\_smooth which can be a vector or a scalar.

f lm . control <− function (
2 coef_ba s i s <− create . b sp l i n e . b a s i s (c (0 , 1) , norder = 4 ,

breaks = seq (0 , 1 , 1/10) ) ,
4 coef_smooth <− 1e−3,

trace <− TRUE,
6 min . l en <− 4 ,

fd_ba s i s <− create . b sp l i n e . b a s i s (c (0 , 1) , norder = 4 ,
8 breaks = seq (0 , 1 , 1/15) ) ,

fd_smooth <− NULL
10 ) {

12 return ( l i s t ( coef_ba s i s = coef_bas i s , coef_smooth = coef_smooth ,
trace = trace , min . l en = min . len , fd_ba s i s = fd_

bas i s ,
14 fd_smooth = fd_smooth ) )

}

54



6 CONCLUDING REMARKS

6. Concluding remarks
The main topic of this thesis concerned the provision of functional linear mod-
els used for the analysis of phonetic data. Since many measurable variables
in the field of phonetics like voice frequency or tongue movements are indeed
functional, this approach should prove useful for future analyses.
In section 2 of this thesis the theoretical background for analysis of functional
data was presented and some additional equations were derived. Many explo-
rative tools for the description of functional datasets were presented as well
as more complicated methods like functional principal component analysis or
functional linear models. The derivation of bootstrap based confidence bands
for the coefficient curves played a main role in assessing goodness of fit. Fur-
ther useful statistics such as (functional) residual sum of squares or different
variations of the coefficient of determination were also discussed.
In section 4 the presented methods were used to analyze the phonetic dataset
described in 3. Different functional models with voice frequency or more precise
the second formant as a functional response and different functional and non-
functional covariates were discussed. The final model adapted had an overall
mean R squared value of 0.81 which indicated a good description of the com-
plex response. In order to find the best hyperparameters for all functional
variables, computationally intensive simulations were performed.
The information gained through the functional models was used for a pre-
diction of voice frequency during pronunciation periods of not very accurate
recording. The results seem highly rational and can be interpreted well. Nev-
ertheless methods for discovering the correctness of this approach have to be
researched in future.
Section 5 provides implemented functions which can be used to analyze a gen-
eral phonetic dataset. The functions are user friendly and may be used in a
similar way as in the cases of lm() and glm(). Generic functions can also be
used for further exploration of the adapted models. This should guarantee a
troublefree and unproblematic usage of the functions by a large number of R
users.

Room for future research lies in the further development of functional models.
The models used in this thesis can be qualified as concurrent. A functional
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covariate only influences the functional response at a fixed time tj. More com-
plicated models with dependencies modeled throughout the whole time scale
and coefficient curves replaced by coefficient surfaces are possible. At the same
time this approach would increase the need of a larger number of discrete data
points per functional observation.
The bootstrap based confidence bands derived in this thesis can also be ex-
tended in future research. For now only the percentile method can be used.
Further methods like bootstrap-t-intervals, bootstrap-BCα-intervals or even
intervals based on parametric bootstrap seem to be possible alternatives.
Another futuristic idea concerns variable selection techniques for functional
models (partly in [17]) as well as functional mixed models [18]. This would
allow an even deeper exploration of data structures by possibly using less co-
variates and automatically saving computation time. Mixed model approaches
could be used to differ e. g. between different speakers with random intercept
or random slopes.
Future research could also be useful for the implementation of the R functions.
The inclusion of those functions in the emu package could make them easily
accessible for R users. A separate R package is also a further possibility to pro-
mote the functions. While implementing the R code sparse programming was
of great interest. Even faster results could be achieved if some of the functions
with (nested) for loops were implemented in C.

Many of the methods and techniques proved to be very useful for functional
data analysis. Nevertheless a great number of hyperparameters have to be ad-
justed prior to the actual analysis. This requires either a priori knowledge on
the data structure or some criterion that has to be minimized (like the RSS).
Since in most cases this criterion is computed during more complicated analy-
sis, exploration techniques normally applied during the first analysis stage are
neglected.
The long duration of the computational time for finding the best set of coef-
ficients and bootstrapping confidence bands is also problematic. The user is
not able to compute a fast model if only some minor exploration of the data is
aimed. By relying on the default set of parameters delicate dependencies may
not be discovered. This difficulty may be partly remedied if C programming is
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used.
The best functional model discussed in this thesis had a mean residual ab-
solute value of approximately 178. The data could be analyzed with ordinary
linear models. This would be possible if every functional replication is replaced
by one single value, which typically would be the mean or the median of the
discrete data points. This approach was tested and the resulting mean residual
absolute values equaled 206. This corresponds to a reduction of about 14% by
using the functional linear model approach. This reduction does not justify
the greater effort put in the new approach. Nevertheless the computation of
coefficient curves reveals tendencies that an ordinary least squares approach
would never detect. The variation of the effect power of functional covariates
throughout different parts of the time scale is a feature which is presented only
by functional models. Furthermore the small decrease of the absolute residual
values may be a feature which is hidden in the dataset itself. Further research
with simulated data could reveal the real potential of the presented models.

The first steps into introducing functional models as a standard technique in
analyzing phonetic data were made with this thesis. Many different possibilities
of further research exist and are yet to be investigated.
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A. R functions

A.1. Generic functions for class flm

Listing 1: fitted() function for class emu_fd
1 f i tted . emu_fd <− function ( object , type , emuobject = NULL, ind =

NULL, . . . ) {

3 # type emupoints
# fo r every d i s c r e t e po in t recorded a f i t t e d po in t i s be ing

computed
5 i f ( type == " emupoints " ) {

emuobject <− emuobject [ ind ]
7 r e t <− nam <− rep (NA, length ( t rackt imes ( emuobject ) ) )

j = 1
9 for ( i in 1 :nrow( emuobject ) ) {

n <− length ( t rackt imes ( emuobject [ i ] ) )
11 nam[ j : ( j+n−1) ] <− rep ( i , n )

xax i s <− seq (0 , 1 , length . out = length ( t rackt imes ( emuobject [
i ] ) ) )

13 yhat <− eval . fd ( ob j e c t$ reg$yhatfd$ fd , xax i s ) [ , i ]
r e t [ j : ( j+n−1) ] <− yhat

15 j = j + n
}

17 names( r e t ) <− nam
return ( r e t )

19 }

21 # type curves
# the f i t t e d curves are re turned

23 i f ( type == " curves " ) {
return ( ob j e c t$ reg$yhat fdobj$ fd )

25 }

27 }

Listing 2: predict() function for class emu_fd
1 predict . emu_fd <− function ( object , type = ’ curves ’ , newdata = NULL

, . . . ) {

3 # return f i t t e d o b j e c t i f newdata = NULL
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i f ( i s . null ( newdata ) ) return ( f i tted ( object , type ) )
5

# some comaprisons to see i f newdata and o ldda ta are o f same type
7 else {

i f ( length ( ob j e c t$ reg$ x f d l i s t ) != length ( newdata ) )
9 stop ( "New data has not the same length as t e s t data ! " )

for ( i in 1 : length ( ob j e c t$ reg$ x f d l i s t ) ) {
11 i f ( (nrow( ob j e c t$ reg$ x f d l i s t [ [ i ] ] $ c o e f s ) == 1 &&

! ( class ( newdata [ [ i ] ] ) %in% c ( ’ i n t e g e r ’ , ’ numeric ’ ) ) )
13 | |

(nrow( ob j e c t$ reg$ x f d l i s t [ [ i ] ] $ c o e f s ) > 1 &&
15 class ( newdata [ [ i ] ] ) != ’ fd ’ ) ) {

stop (paste ( ’ Var iab le ’ , names( ob j e c t$ reg$ x f d l i s t ) [ i ] ,
17 ’ has a wrong type o f c l a s s in newdata ! ’ , sep = ’ ’ ) )

}
19 }

21 # adding curves and cons tan t s t o g e t h e r
r e t <− const <− 0

23 for ( i in 1 : length ( ob j e c t$ reg$ x f d l i s t ) ) {
i f ( class ( newdata [ [ i ] ] ) == ’ fd ’ )

25 r e t <− r e t + ob j e c t$ reg$ b e t a e s t l i s t [ [ i ] ] $ fd ∗ newdata [ [ i ] ]
else const <− const + coef ( ob j e c t$ reg$ b e t a e s t l i s t [ [ i ] ] ) ∗

newdata [ [ i ] ]
27 }

29 for ( i in 1 :nrow( r e t$ c o e f s ) ) r e t$ c o e f s [ i , ] <− r e t$ c o e f s [ i , ] +
const

31 # unimplemented : re turn a l s o o ther types , not j u s t curves
return ( r e t )

33 }
}

35 \end{ l s t l i s i t n g }

37 \ begin { l s t l i s t i n g } [ capt ion = plot ( ) function for class emu\_fd ]
plot . emu_fd <− function (x , y , . . . ) {

39
# marking the cons tant and f u n c t i o n a l v a r i a b l e s

41 cons <− NULL
fds <− NULL

43 for ( i in 1 : length ( x$ reg$ x f d l i s t ) ) {
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i f (nrow( coef ( x$ reg$ b e t a e s t l i s t [ [ i ] ] $ fd ) ) == 1)
45 cons <− c ( cons , i )

else
47 fd s <− c ( fds , i )

}
49

# d e f i n i n g how many p l o t s to p l o t and how to arrange them
51 nr_p l o t s <− length ( f d s ) + as .numeric ( ! i s . null ( cons ) )

i f ( nr_p l o t s == 1) op <− par (mfrow = c (1 , 1) , mgp = c (1 , . 5 , 0) ,
mar = c (2 , 2 , 2 , 0) )

53 else i f ( nr_p l o t s == 2) op <− par (mfrow = c (1 , 2) , mgp = c (1 ,
. 5 , 0) , mar = c (2 , 2 , 2 , 0) )

else i f ( nr_p l o t s <= 14) op <− par (mfrow = c ( cei l ing ( nr_p l o t s/2)
,2 ) , mgp = c ( 1 , . 5 , 0 ) , mar = c ( 2 , 2 , 2 , 0 ) )

55 else stop ( "Too many va r i a b l e s . P lease p l o t manually ! " )
on . exit (par ( op ) )

57
# at what po in t s to p l o t the curves

59 time <− seq ( x$ reg$yfdPar$ fd$ba s i s$ rangeva l [ 1 ] ,
x$ reg$yfdPar$ fd$ba s i s$ rangeva l [ 2 ] ,

61 length . out = 100)

63 # p l o t f u n c t i o n a l data
for ( i in fd s ) {

65 plot (time , eval . fd (time , x$ reg$ b e t a e s t l i s t [ [ i ] ] $ fd ) , type=" l " ,
lwd = 2 ,
xlab = "Time " , ylab = " " , main = names( x$ reg$ x f d l i s t ) [ i ] )

67 abline (h = 0 , l t y = 2)
}

69
# p l o t cons tant c o e f f i c i e n t s

71 plot ( 0 : 1 , 0 : 1 , type="n" , main = " Constant C o e f f i c i e n t s " , x lab =
" " ,
ylab = " " , xaxt = "n " , yaxt = "n " )

73 yax <− rep ( seq ( . 9 5 , 0 . 05 , length . out = length ( cons )/2) , each =
2)

for ( i in 1 : length ( cons ) ) {
75 i f ( i %% 2 == 1)

text (0 , yax [ i ] , pos = 4 , labels =
77 paste (names( x$ reg$ x f d l i s t ) [ cons [ i ] ] , " : " ,

round( coef ( x$ reg$ b e t a e s t l i s t [ [ cons [ i ] ] ] $ fd ) , 2) , sep = "
" ) )
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79 else
text ( 0 . 5 , yax [ i ] , pos = 4 , labels =

81 paste (names( x$ reg$ x f d l i s t ) [ cons [ i ] ] , " : " ,
round( coef ( x$ reg$ b e t a e s t l i s t [ [ cons [ i ] ] ] $ fd ) , 2) , sep = "

" ) )
83 }

}

Listing 3: residuals() function for class emu_fd
residuals . emu_fd <− function ( object , emuobject , type = curves , ind

, . . . ) {
2

emuobject <− emuobject [ ind ]
4 i f ( type == ’ emupoints ’ ) {

r e t <− nam <− rep (NA, length ( t rackt imes ( emuobject ) ) )
6 j = 1

for ( i in 1 :nrow( emuobject ) ) {
8 n <− length ( t rackt imes ( emuobject [ i ] ) )

nam[ j : ( j+n−1) ] <− rep ( i , n )
10 xax i s <− seq (0 , 1 , length . out = length ( t rackt imes ( emuobject [

i ] ) ) )
y <− frames ( emuobject [ i ] )

12 yhat <− eval . fd ( xaxis , ob j e c t$ reg$yhatfd$ fd ) [ , i ]
r e t [ j : ( j+n−1) ] <− y − yhat

14 j = j + n
}

16 names( r e t ) <− nam
}

18 i f ( type == ’ fd_samples ’ ) {
n <− nrow( emuobject )

20 r e t <− rep (NA, n)
nam <− 1 : n

22 for ( i in 1 : n ) {
xax i s <− seq (0 , 1 , length . out = length ( t rackt imes ( emuobject [

i ] ) ) )
24 y <− frames ( emuobject [ i ] )

yhat <− eval . fd ( xaxis , ob j e c t$ reg$yhatfd$ fd ) [ , i ]
26 r e t [ i ] <− mean(abs ( y − yhat ) )

}
28 names( r e t ) <− nam

}
30 i f ( type == ’ curves ’ ) {
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r e t <− ob j e c t$ re sp − ob j e c t$ reg$yhat fdobj$ fd
32 }

return ( r e t )
34 }

Listing 4: coef() function for class emu_fd
coef . emu_fd <− function ( object , . . . ) {

2 r e t <− l i s t ( )
for ( i in 1 : length ( ob j e c t$ reg$ x f d l i s t ) ) {

4 co <− drop ( coef ( ob j e c t$ reg$ b e t a e s t l i s t [ [ i ] ] ) )
i f ( length (co ) == 1) r e t [ [ i ] ] <− co

6 else r e t [ [ i ] ] <− ob j e c t$ reg$ b e t a e s t l i s t [ [ i ] ] $ fd
}

8 names( r e t ) <− names( ob j e c t$ reg$ x f d l i s t )
r e t

10 }

Listing 5: summary() function for class emu_fd
summary . emu_fd <− function ( object , emuobject , ind , . . . ) {

2 co <− coef ( ob j e c t )
c l a <− sapply (co , class )

4 num <− NULL
means <− NULL

6 medians <− NULL
mins <− NULL

8 maxs <− NULL
sds <− NULL

10 for ( i in 1 : length (co ) ) {
i f ( c l a [ i ] == " numeric " ) num <− c (num, round(co [ [ i ] ] , 3) )

12 else {
fd <− eval . fd ( seq (0 , 1 , length . out = 100) , co [ [ i ] ] )

14 means <− c (means , round(mean( fd ) ,3 ) )
medians <− c (medians , round(median( fd ) ,3 ) )

16 mins <− c (mins , round(min( fd ) ,3 ) )
maxs<− c (maxs , round(max( fd ) ,3 ) )

18 sds <− c ( sds , round( sd ( fd ) ,3 ) )
}

20 }
r e t1 <− as . data . frame (matrix (NA, ncol = 2 , nrow = length (num) ) )

22 r e t1 [ , 1 ] <− rep ( " numeric " , length (num) )
r e t1 [ , 2 ] <− num
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24 rownames( r e t1 ) <− names(co [ c l a == " numeric " ] )
colnames ( r e t1 ) <− c ( " Class " , " C o e f f i c i e n t " )

26 r e t2 <− as . data . frame (matrix (NA, ncol = 6 , nrow = length (means ) )
)

r e t2 [ , 1 ] <− rep ( " f un c t i o na l " , length (means ) )
28 r e t2 [ , 2 ] <− means

r e t2 [ , 3 ] <− medians
30 r e t2 [ , 4 ] <− mins

r e t2 [ , 5 ] <− maxs
32 r e t2 [ , 6 ] <− sds

rownames( r e t2 ) <− names(co [ c l a == " fd " ] )
34 colnames ( r e t2 ) <− c ( " Class " , " Mean" , "

Median " ,
" Minimum" , " Maximum" , " Std .

Deviat ion " )
36

nobs <− ncol ( ob j e c t$ reg$yhat fdobj$ fd$coef )
38 RSS <− sum( residuals ( object , emuobject = emuobject , type=" fd_

samples " , ind = ind ) ^2)
MR <− mean( residuals ( object , emuobject = emuobject , type=" fd_

samples " , ind = ind ) )
40 R <− mean( ob j e c t$R)

42 return ( l i s t (numeric_coef = ret1 , f un c t i o n a l_coef = ret2 , nobs =
nobs ,

RSS = RSS , MR = MR, Rsq = R) )
44

}

Listing 6: fitted() function for class flm
1 f i tted . f lm <− function ( object , type = ’ curves ’ , . . . ) {

f i tted ( ob j e c t$model , type = type , ob j e c t$data$emudata [ [ 1 ] ] ,
ob j e c t$data$ ind , . . . )

3 }

Listing 7: predict() function for class flm
1 predict . f lm <− function ( object , type = ’ curves ’ , newdata = NULL,

. . . ) {
predict ( ob j e c t$model , type = type , newdata = newdata , . . . )

3 }
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Listing 8: plot() function for class flm
1 plot . f lm <− function (x , y , . . . ) {

plot ( x$model)
3 }

Listing 9: residuals() function for class flm
1 residuals . f lm <− function ( object , type = " curves " , . . . ) {

residuals ( ob j e c t$model , ob j e c t$data$emudata [ [ 1 ] ] , type = type ,
ob j e c t$data$ ind , . . . )

3 }

Listing 10: coef() function for class flm
1 coef . f lm <− function ( object , . . . ) {

coef ( ob j e c t$model , . . . )
3 }

Listing 11: summary() function for class flm
1 summary . f lm <− function ( object , . . . ) {

r e t <− summary( ob j e c t$model , emuobject = ob j e c t$data$emudata
[ [ 1 ] ] ,

3 ind = ob j e c t$data$ ind , . . . )
r e t$ ca l l <− ob j e c t$ ca l l

5 class ( r e t ) <− " summary . f lm "
return ( r e t )

7 }

Listing 12: print() function for class summary.flm
1 print .summary . f lm <− function (x , . . . ) {

cat ( " \n " )
3 cat ( " Funct iona l r e g r e s s i o n o f phonet ic data . \ n\n" )

cat ( " Ca l l : " , deparse ( x$ ca l l ) , " \n\n " )
5 cat ( " Estimated numeric c o e f f i c i e n t s : \ n " )

print ( x$numeric_coef )
7 cat ( " \n " )

cat ( " Estimated f un c t i o n a l c o e f f i c i e n t s ( summarized ) : \ n " )
9 print ( x$ f u n c t i o n a l_coef )

cat ( " \n " )
11 cat ( "Number o f ob s e rva t i on s : " , x$nobs , " \n " )

cat ( "Mean R squared : " , x$Rsq , " \n " )
13 cat ( " Res idual sum of squares : " , x$RSS , " \n " )
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cat ( "Mean r e s i d u a l : " , x$MR, " \n " )
15 }

Listing 13: print() function for class flm
1 print . f lm <− function (x , . . . ) {

cat ( " \n " )
3 cat ( " Funct iona l l i n e a r model o f phonet ic data . P lease use

g en e r i c f un c t i on s such as \n\n" )
cat ( " \ t summary ( ) , p l o t ( ) , r e s i d u a l s ( ) , c o e f ( ) , p r ed i c t ( ) or

f i t t e d ( ) \n\n" )
5 cat ( " f o r f u r t h e r data ana l y s i s . \ n\n " )

}

A.2. Computation and display of bootstrap based
confidence intervals

Listing 14: Computation of bootstrap based confidence intervals
bootstd <− function ( object , B = 1000 , alpha = 0 . 05 ) {

2 x <− ob j e c t$model$ reg$ x f d l i s t
y <− ob j e c t$model$ reg$yfdPar$ fd

4 n <− ncol ( ob j e c t$model$ reg$yhat fdobj$ fd$coef )
time <− seq (0 , 1 , length . out = 100)

6 fd_mat <− matrix (NA, ncol = 100 , nrow = B)
num_vec <− rep (NA, B)

8 co <− coef ( ob j e c t )
c l a <− sapply (co , class )

10 beta <− l i s t ( )
for ( i in 1 : length ( x ) ) {

12 i f ( c l a [ i ] == " numeric " ) beta [ [ i ] ] <− num_vec
i f ( c l a [ i ] == " fd " ) beta [ [ i ] ] <− fd_mat

14 }

16 for (b in 1 :B) {
print (b)

18 indb <− sample (n , replace = TRUE)
regdatab <− lapply ( ob j e c t$data$regdata , function (x , ind ) x [ ind

] , ind = indb )
20 indb2 <− ob j e c t$data$ ind [ indb ]

emudatab <− NULL # emudata not needed
here
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22 datab <− l i s t ( regdata = regdatab , ind = indb2 , emudata =
emudatab )

newreg <− f lm ( ob j e c t$cal l , data = datab , control = ob j e c t$
control )

24 cob <− coef ( newreg )
for ( i in 1 : length ( x ) ) {

26 i f ( c l a [ i ] == " numeric " ) beta [ [ i ] ] [ b ] <− cob [ [ i ] ]
else beta [ [ i ] ] [ b , ] <− eval . fd (time , cob [ [ i ] ] )

28 }
}

30 names(beta ) <− names( x )

32 l o <− cei l ing ( alpha/2∗B)
up <− f loor ((1− alpha/2)∗B)

34 perz <− l i s t ( )
for ( i in 1 : length ( x ) ) {

36 i f ( c l a [ i ] == " numeric " ) perz [ [ i ] ] <− sort (beta [ [ i ] ] ) [ c ( lo , up )
]

else {
38 perz [ [ i ] ] <− matrix (NA, ncol = 100 , nrow = 2)

for ( j in 1 : 100 ) perz [ [ i ] ] [ , j ] <− sort (beta [ [ i ] ] [ , j ] ) [ c ( lo ,
up ) ]

40 }
}

42
r e t <− l i s t (beta = beta , perz = perz , f lmob j e c t = ob j e c t )

44 class ( r e t ) <− " f lmboot "
return ( r e t )

46 }

Listing 15: Plotting of bootstrap based confidence intervals
plot . f lmboot <− function (x , y , . . . ) {

2
xsave <− x

4 perz <− x$perz
x <− x$ f lmob j e c t$model

6 # marking the cons tant and f u n c t i o n a l v a r i a b l e s
cons <− NULL

8 fd s <− NULL
for ( i in 1 : length ( x$ reg$ x f d l i s t ) ) {

10 i f (nrow( coef ( x$ reg$ b e t a e s t l i s t [ [ i ] ] $ fd ) ) == 1)
cons <− c ( cons , i )
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12 else
f d s <− c ( fds , i )

14 }

16 # d e f i n i n g how many p l o t s to p l o t and how to arrange them
nr_p l o t s <− length ( f d s ) + as .numeric ( ! i s . null ( cons ) )

18 i f ( nr_p l o t s == 1) op <− par (mfrow = c (1 , 1) , mgp = c (1 , . 5 , 0) ,
mar = c (2 , 2 , 2 , 0 . 3 ) )

else i f ( nr_p l o t s == 2) op <− par (mfrow = c (1 , 2) , mgp = c (1 ,
. 5 , 0) , mar = c (2 , 2 , 2 , 0 . 3 ) )

20 else i f ( nr_p l o t s <= 14) op <− par (mfrow = c ( cei l ing ( nr_p l o t s/2)
,2 ) , mgp = c ( 1 , . 5 , 0 ) , mar = c ( 2 , 2 , 2 , 0 . 3 ) )

else stop ( "Too many va r i a b l e s . P lease p l o t manually ! " )
22 on . exit (par ( op ) )

24 # at what po in t s to p l o t the curves
time <− seq ( x$ reg$yfdPar$ fd$ba s i s$ rangeva l [ 1 ] ,

26 x$ reg$yfdPar$ fd$ba s i s$ rangeva l [ 2 ] ,
length . out = 100)

28
# p l o t f u n c t i o n a l data

30 for ( i in fd s ) {
plot (time , eval . fd (time , x$ reg$ b e t a e s t l i s t [ [ i ] ] $ fd ) , type=" l " ,

lwd = 2 ,
32 xlab = "Time " , ylab = " " , main = names( x$ reg$ x f d l i s t ) [ i ] ,

yl im = range ( perz [ [ i ] ] ) )
34 l ines (time , perz [ [ i ] ] [ 1 , ] , l t y = 2)

l ines (time , perz [ [ i ] ] [ 2 , ] , l t y = 2)
36 abline (h = 0 , l t y = 3)

}
38

# p l o t cons tant c o e f f i c i e n t s
40 plot ( 0 : 1 , 0 : 1 , type="n" , main = " Constant C o e f f i c i e n t s " , x lab =

" " ,
ylab = " " , xaxt = "n " , yaxt = "n " )

42 yax <− rep ( seq ( . 9 5 , 0 . 05 , length . out = length ( cons )/2) , each =
2)

for ( i in 1 : length ( cons ) ) {
44 i f ( i %% 2 == 1)

text (0 , yax [ i ] , pos = 4 , labels =
46 paste (names( x$ reg$ x f d l i s t ) [ cons [ i ] ] , " : " ,

round( coef ( x$ reg$ b e t a e s t l i s t [ [ cons [ i ] ] ] $ fd ) , 2) ,
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48 " [ " , round( perz [ [ cons [ i ] ] ] [ 1 ] , 2) , " , " ,
round( perz [ [ cons [ i ] ] ] [ 2 ] , 2) , " ] " ,

50 sep = " " ) )
else

52 text ( 0 . 5 , yax [ i ] , pos = 4 , labels =
paste (names( x$ reg$ x f d l i s t ) [ cons [ i ] ] , " : " ,

54 round( coef ( x$ reg$ b e t a e s t l i s t [ [ cons [ i ] ] ] $ fd ) , 2) ,
" [ " , round( perz [ [ cons [ i ] ] ] [ 1 ] , 2) , " , " ,

56 round( perz [ [ cons [ i ] ] ] [ 2 ] , 2) , " ] " ,
sep = " " ) )

58 }
}
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B. Graphics

Figure 13: All replications of the voice frequency with mean and standard
deviation

xii



B GRAPHICS

Figure 14: All replications of the horizontal movement of the tongue back with
mean and standard deviation

Figure 15: All replications of the vertical movement of the tongue back with
mean and standard deviation

xiii



B GRAPHICS

Figure 16: All replications of the vertical movement of the tongue tip with
mean and standard deviation

Figure 17: All replications of the horizontal movement of the tongue tip with
mean and standard deviation
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Figure 18: All replications of the horizontal movement of the jaw with mean
and standard deviation

Figure 19: All replications of the horizontal movement of the lower lip with
mean and standard deviation
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Figure 20: All replications of the vertical movement of the lower lip with mean
and standard deviation

Figure 21: All replications of the vertical movement of the tongue dorsum with
mean and standard deviation
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Figure 22: All replications of the horizontal movement of the tongue dorsum
with mean and standard deviation

Figure 23: All replications of the horizontal movement of the tongue mid with
mean and standard deviation
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Figure 24: All replications of the vertical movement of the tongue mid with
mean and standard deviation
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Figure 25: Cross correlation plot of voice frequency and horizontal movement
of tongue back
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Figure 26: Cross correlation plot of voice frequency and vertical movement of
tongue back
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Figure 27: Cross correlation plot of voice frequency and vertical movement of
tongue tip
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Figure 28: Cross correlation plot of voice frequency and horizontal movement
of tongue tip
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Figure 29: Cross correlation plot of voice frequency and horizontal movement
of jaw
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Figure 30: Cross correlation plot of voice frequency and horizontal movement
of lower lip
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Figure 31: Cross correlation plot of voice frequency and vertical movement of
lower lip
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Figure 32: Cross correlation plot of voice frequency and vertical movement of
tongue dorsum
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Figure 33: Cross correlation plot of voice frequency and horizontal movement
of tongue dorsum
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Figure 34: Cross correlation plot of voice frequency and horizontal movement
of tongue mid
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Figure 35: Cross correlation plot of voice frequency and vertical movement of
tongue mid
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