Zitteliana

An International Journal of Palaeontology and Geobiology

Series B/Reihe B
Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Geologie

28

David W. E. Hone \& Eric Buffetaut (Guest Editors)
Flugsaurier: pterosaur papers in honour of Peter Wellnhofer

Zitteliana

An International Journal of Palaeontology and Geobiology Series B/Reihe B
 Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Geologie
 B28
 David W. E. Hone \& Eric Buffetaut (Eds)
 Flugsaurier: pterosaur papers in honour of Peter Wellnhofer

CONTENTS/INHALT

Dedication 3
Peter Wellnhofer
A short history of pterosaur research 7
Kevin Padian
Were pterosaur ancestors bipedal or quadrupedal?:
Morphometric, functional, and phylogenetic considerations 21
David W. E. Hone \& Michael J. Benton
Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35
Paul M. Barrett, Richard J. Butler, Nicholas P. Edwards \& Andrew R. Milner Pterosaur distribution in time and space: an atlas 61
LORNA STEEL
The palaeohistology of pterosaur bone: an overview 109
S. Christopher Bennett
Morphological evolution of the wing of pterosaurs: myology and function 127
Mark P. Witton
A new approach to determining pterosaur body mass and its implications for pterosaur flight 143
Michael B. Habib
Comparative evidence for quadrupedal launch in pterosaurs 159
Ross A. Elgin, Carlos A. Grau, Colin Palmer, David W. E. Hone, Douglas Greenwell \& Michael J. Benton Aerodynamic characters of the cranial crest in Pteranodon 167
David M. Martill \& Mark P. Witton
Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175
Martin Lockley, Jerald D. Harris \& Laura Mitchell
A global overview of pterosaur ichnology: tracksite distribution in space and time 185
David M. Unwin \& D. Charles Deeming
Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199
David M. Martill, Mark P. Witton \& Andrew Gale
Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209
Taissa Rodrigues \& Alexander W. A. Kellner
Review of the pterodactyloid pterosaur Coloborhynchus 219
Junchang Lü, Li Xu \& Qiang Ji
Restudy of Liaoxipterus (Istiodactylidea: Pterosauria), with comments on the Chinese istiodactylid pterosaurs 229
David M. Martill
First pterosaur remains from the Exu Formation (Cretaceous) of the Araripe Basin, Brazil 243Eric BuffetautLate Cretaceous pterosaurs from France: a review249

Zitteliana	B 28	255 Seiten	München, 31.12.2008	ISSN 1612-4138

Editors-in-Chief/Herausgeber: Michael Krings, Gert Wörheide
 Production and Layout/Bildbearbeitung und Layout: Martine Focke
 Bayerische Staatssammlung für Paläontologie und Geologie

Editorial Board

A. Altenbach, München
B.J. Axsmith, Mobile, AL
F.T. Fürsich, Erlangen
K. Heißig, München
H. Kerp, Münster
J. Kriwet, Stuttgart
J.H. Lipps, Berkeley, CA
T. Litt, Bonn
A. Nützel, München
O.W.M. Rauhut, München
B. Reichenbacher, München
J.W. Schopf, Los Angeles, CA
G. Schweigert, Stuttgart
F. Steininger, Eggenburg

Richard-Wagner-Str. 10, D-80333 München, Deutschland http://www.palmuc.de/zitteliana
 email: zitteliana@lrz.uni-muenchen.de

Für den Inhalt der Arbeiten sind die Autoren allein verantwortlich.
Authors are solely responsible for the contents of their articles.

Copyright © 2008 Bayerische Staassammlung für Paläontologie und Geologie, München

Die in der Zitteliana veröffentlichten Arbeiten sind urheberrechtlich geschützt.
Nachdruck, Vervielfältigungen auf photomechanischem, elektronischem oder anderem Wege sowie die Anfertigung von Übersetzungen oder die Nutzung in Vorträgen, für Funk und Fernsehen oder im Internet bleiben - auch auszugsweise - vorbehalten und bedürfen der schriftlichen Genehmigung
durch die Bayerische Staatssammlung für Paläontologie und Geologie, München.

ISSN 1612-4138
Druck: Gebr. Geiselberger GmbH, Altötting

Cover Illustration: Modell eines Rhamphorhynchus aus dem Oberjura von Eichstätt. Entwurf: P. Wellnhofer, Modell: R. Liebreich, Foto und Collage: M. Schellenberger, L. Geißler, BSPG München.

Umschlagbild: Reconstitution of a Rhamphorhynchus from the Upper Jurassic of Eichstätt, Bavaria. Concept: P. Wellnhofer; design: R. Liebreich; photograph and collage: M. Schellenberger, L. Geißler, BSPG Munich.

Contrasting supertree and total-evidence methods: the origin of the pterosaurs

By
David W. E. Hone ${ }^{1,2^{* *}} \&$ Michael J. Benton ${ }^{2}$
${ }^{1}$ Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany
${ }^{2}$ Department of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1RJ, UK Correspondence to: Institute of Vertebrate Palaeontology and Palaeoanthropology, Xizhimenwai Dajie 142, Beijing 100044, P. R. China

Manuscript received October 5, 2007; revised manuscript accepted December 29, 2007.

Abstract

The two most commonly used approaches for combining data from cladistic analyses are "total evidence methods" (combining available data sets) and "supertree methods" (combining trees produced by those data sets). Here we present a study of the phylogenetics of basal diapsid reptiles using multiple palaeontological data sets, complete with multiple overlapping characters and taxa, in which we performed both total evidence ("supermatrix") and supertree analyses. The results of the total evidence approach were well resolved, with robust nodes. Two supertrees were also created using Matrix Representation with Parsimony (MRP) methods from the original data and these gave results that conflict with the source trees. However MRP produced unsupported novel clades that are rejected, suggesting that the method may be less reliable than previously thought.

The origin of the pterosaurs within the diapsids has long been debated in the palaeontological literature. Recently it was suggested that the origin of the pterosaurs lay close to the prolacertiforms, as opposed to their more usual position among the higher archosaurs. The phylogeny produced here using a total evidence method places the pterosaurs among derived archosaurs. Contrary to some reports, the total evidence method performs significantly better than either MRP supertree method for this study. Although analysis times were similar, the difference in timescale for assembling the different datasets is massive: the total evidence data set took 800 hours to produce, the supertree data set took 1 hour.

Key words: Prolacertiformes, Archosauria, supertree, supermatrix, total evidence.

Zusammenfassung

Die beiden am häufigsten benutzten Ansätze für die Kom-
bination von Daten von kladistischen Analysen sind „Total-Evidence-Methoden" (Kombination verfügbarer Datensätze) und „Supertree-Methoden" (Kombination von Stammbäumen, die durch jene Datensätze produziert wurden). Hier stellen wir einer Studie der Phylogenie von basalen diapsiden Reptilien unter Verwendung vielfältiger paläontologischer Datensätze inklusive mehrfach überlappender Merkmale und Taxa vor, in welcher wir sowohl Total-Evidence-Analysen („supermatrix") als auch Supertree-Analysen durchführten. Die Resultate des Total-Evidence-Ansatzes waren gut aufgelöst mit robusten Gabelpunkten. Durch Anwendung von Methoden der Matrix-Darstellung mittels Parsimonie-Analyse (MRP - maximal sparsames Kladogramm) wurden von den ursprünglichen Datensätzen auch zwei Supertrees geschaffen, und diese lieferten Ergebnisse, die mit den Ausgangsstammbäumen in Widerspruch stehen. Jedoch produzierte MRP nicht gestützte, neuartige Kladen, die verworfen werden, da anzunehmen ist, dass diese Methode wohl weniger verlässlich ist, als früher gedacht wurde.

Der Ursprung der Flugsaurier innerhalb der Diapsida wurde lange in der paläontologischen Literatur diskutiert. Kürzlich wurde vorgeschlagen, dass der Ursprung der Flugsaurier nahe bei den Prolacertiformes lag, im Widerspruch zu ihrer üblicheren Position unter den höheren Archosauria. Die hier mittels der Total-Evidence-Methode entwickelte Phylogenie stellt die Flugsaurier zu den abgeleiteten Archosauria. Im Gegensatz zu einigen Berichten arbeitete die Total-Evidence-Methode für diese Studie bedeutend besser als jede der beiden MRP-Super-tree-Methoden. Obwohl die Analysen-Zeiten ähnlich waren, ist der Unterschied im zeitlichen Rahmen für das Eingeben der verschiedenen Datensätze gewaltig: Die Erstellung des Total-Evidence-Datensatzes nahm 800 Stunden in Anspruch, der Supertree-Datensatz erforderte eine Stunde.

Schlüsselwörter: Prolacertiformes, Archosauria, Supertree, Supermatrix, Total-Evidence

[^0]
1. Introduction

1.1 Supermatrices vs. Supertrees

Total evidence was proposed as a philosophy of systematics by Kluge (1989) as a way of minimising the effects of homoplasy, and maximising the explanatory power of large or multiple datasets (Kluge 2004). Huelsenbeck et al. (1996) distinguished three approaches available to systematists with multiple datasets - always to combine data (total evidence approach), never to combine data (taxonomic congruence) or 'conditional combination' (combining data only if the levels of data heterogeneity were high). Alternative methods for summarising and combining phylogenetic data have also been sought, the most important of these being the supertree, which stands as a philosophical and practical opposite to the total evidence method (Bininda-EmONDs 2004a, 2004b). Supertrees are assembled by combining trees, not by combining the source data that generate those trees.

The obvious advantage of using a total evidence approach is that, with a consistent method, more data should improve the chances of discovering the one true phylogenetic tree. Moreover, "the relationship between numbers of characters and probability of correctly estimating phylogeny corresponds to our intuition about how phylogenetic methods should work" (Huelsenbeck et al. 1996 - their italics). By contrast, supertrees have attracted much criticism both with regard to their philosophical justification and their outcomes. It has been argued that there is a loss of information since combining trees, and not data, leaves the method one step removed from the primary data (Gatesy \& Springer in Bininda-Emonds 2004). This manifests itself as three separate problems: differences in signal strength and subsignals between trees (Barrett et al. 1991; PISANI \& WILKINSON 2002), pseudoreplication of data (Bininda-Emonds 2004a), and the validity of supertrees as phylogenetic hypotheses (Bininda-Emonds 2004a, b).

Weighted supertree methods (Ronquist 1996; BinindaEmonds \& Sanderson 2001) have been suggested to deal with the problems of signal strength by weighting the supertree matrix characters according to the bootstrap values of the source trees. Consequently, poorly resolved or badly supported trees receive correspondingly lower weighted characters in the supertree matrix and thus have less influence on the resolution of the output supertree.

Recent efforts in cladistics have focused on increasingly large phylogenies in an attempt to reconstruct the "Tree of Life" (e.g. Bininda-Emonds et al. 1999; Kennedy \& Page 2003; Pisani et al. 2002; Purvis 1995; Wilkinson et al. in Littlewood \& Bray 2001). This work is patchy, however, with some groups being well-studied but showing conflicts (e.g. mammals) and others being under-represented. The emphasis has been on producing rapid estimates of the phylogeny of large groups of organisms in an attempt to cover as much of the tree as possible.

The most common supertree method is Matrix Representation with Parsimony (MRP), and thus is also the most discussed. MRP was developed independently by BAUM (1992) and Ragan (1992), and although many methods are available (Bin-inda-Emonds 2004a; Wilkinson et al. 2005), MRP has become the most commonly used because it is easily implemented in
readily accessible phylogenetic software (see Bininda-Emonds [2004a] and Wilkinson et al. [2005] for more comprehensive coverage of this and other supertree methods).

Many recent large-scale phylogenies have been produced using MRP supertree methods. They have a huge advantage over the total evidence method in their speed of assembly and operation. Phylogenies can be combined into supertree matrices in a matter of minutes whereas even a small character data set can take hours to enter into a cladistics program. Total evidence methods are not often used for analysing morphological data sets, though it is increasingly common for molecular data (Salamin et al. 2002). However, it has been shown that some supertree methods generate spurious novel clades, invalidating the new phylogeny (Pisani \& Wilkinson 2002; Wilkinson et al. 2005). Indeed, a recent study suggests that these problems are common for published supertrees (Wilkinson et al. 2005 - contra Bininda-Emonds 2003).

The question remains therefore - what is the best method for resolving conflicts in differing phylogenies, and how can this be done efficiently, quickly and accurately? Much work has concentrated on evaluating the different methods in general, but here they are compared directly in an example where there are conflicting phylogenies. In this case the subject is the interrelationships of the archosauromorph reptiles. Five data sets were combined to form a total evidence "supermatrix" (with 324 characters and 45 taxa) and their individual resultant trees combined into a supertree. Here a supermatrix is defined as a matrix composed of data derived from the works of other authors, and no new data is added by the analyst.

1.2 The prolacertiforms, pterosaurs, and early diapsids

The diapsids, a major division of amniotes that includes birds, crocodilians, lizards, and snakes, diverged into two major clades in the Permian - the archosauromorphs and lepidosauromorphs, some 280 million years ago. Most of the positions of the fundamental branches in the tree are generally agreed upon, but the positions of prolacertiforms and pterosaurs have proved controversial (Bennett 1996; Benton \& Allen 1997; Dilkes 1998; Evans 1988; Hone \& Benton 2007; Jalil 1997).

The pterosaurs, are a difficult clade to place because of their sudden appearance in the fossil record as complete flying animals, and the unique mixture of derived characters they possess. At various times they have been allied with many basal and derived archosaurian clades, though few characters can be found to unite them with any particular clade (BENNETT 1996; Unwin 2005; Hone 2005) (see Fig. 1). Their complex flight-adapted anatomy, and the fact that the first pterosaurs, from the Late Triassic, some 220 million years ago, already have all those characters, gives few opportunities to compare structures to those of other basal archosaurs or diapsids. The majority of authors (e.g. GaUthier 1986; Benton 1990, 1999; Sereno 1991; Benton \& Allen 1997) have concluded that they belong within Ornithodira and are often depicted as the sister group to Dinosauromorpha or Scleromochlus (Benton 1999). Recently, Bennett (1996) and others (see Hone \& Benton 2007 for a review) have argued that pterosaurs occupy a more basal position within the diapsids, and nest among, or are closely allied to, prolacertiforms.

Figure 1: Possible phylogenetic positions of the pterosaurs based on Bennett (1996). The Pterosauria are shown in three possible positions: (a) as ornithodirans, close to the dinosaurs (b) as basal archosauromorphs, second analysis, or (c) as sister taxa to, or within, the prolacertiforms. Modified from Hone \& Benton (2007).

Phylogenetic relationships and their resolution vary among recent works on the prolacertiforms. Evans (in Benton 1988), Jalil (1997), Benton \& Allen (1997), and Bennett (1996) all regard them as a monophyletic group, though the resultant trees are generally poorly resolved and are composed of differing sets of taxa. Dilkes (1998) concluded that the prolacertiforms were paraphyletic, notably with Prolacerta being excluded from the clade. Modesto \& Sues (2004) arrived at a similar conclusion using a modified version of Dilkes' dataset. The results produced by Bennett (1996) and Dilkes (1998) have shown that an emerging consensus on the phylogenetic positions of pterosaurs and prolacertiforms as being only distantly related, is not uniformly accepted. These conflicts make the origins of the pterosaurs an interesting case study for comparing supertree and total evidence methods

The aims of this paper are therefore to (a) compare supertree (weighted and unweighted MRP) and supermatrix methods for a single phylogenetic problem, and (b) assess recent contrasting phylogenetic conclusions concerning prolacertiforms and pterosaurs.

2. Materials and methods

The data sets used here (Appendix A) are an amalgam of five source data sets: Evans (in Benton 1988), Bennett (1996), Benton \& Allen (1997), Jalil (1997), and Dilkes (1998). These five publications were chosen as recent studies of the groups in question, and contain a large number of taxa and characters. In
order to produce a balanced account of all the available data, a majority-rule matrix was constructed (Appendix B) - i.e. for each cell where two or more authors had coded a character the majority opinion was entered. A "?" indicates either a blank in an original data set or a conflict of coding (i.e. where both 1's and 2's were equally represented by different authors thus leaving no consensus as to the coding of the cell), whereas cells left blank indicate that there were no data available from any source matrix (i.e. a "?" in a matrix was transposed, but blanks indicate that that cell was never examined although for analysis these were replaced with a "?"). Polymorphic coding was not considered as this would have actively removed data from the matrix - numerous conflicts over character coding by different authors would have rendered 'stable' character codings as uncertain and left the analysis with less data, not more in the final analysis.

In the case of Evans (in Benton 1988) there were approximately 20 "repeat" characters, that is, characters that were listed twice in the matrix (these can be identified in the list by the code "E" followed by two separate numbers). The majority of these repeat characters were identical, but some had a number of differences and these were coded as "?". It should be noted that this summarising effort is extremely time consuming: all the characters have to be cross-referenced to ensure that they overlap correctly and each cell must be cross-referenced from each data set (a total of over 17000 cells here), though many could be copied directly or were blank (for a character coded by only one author covering a few taxa). The checking was especially time-consuming as no two authors list their taxa in the same sequence or have their characters in any kind of
anatomical order (i.e. starting with the anterior skull and ending with the distal termini of the hindlimbs).

The source publications were chosen as they give a broad overlap of taxa, and a suitable coverage of diapsid and archosaur taxa. This includes basal diapsids, rhynchosaurs, prolacertiforms, advanced diapsids, and saurian outgroups (a number of basal taxa were removed as they were outside the areas of interest for this study, see Appendix A). Minor marginal adjustments were required to avoid replicating taxa or losing data (if a taxon was deleted). Sphenodon and Sphenodontia were treated as identical (i.e. merged), as were Proterosuchus and Proterosuchidae, and Rbynchosaurus and Rhynchosauridae. (See Appendix A for the full list of changes). In the case of Benton \& Allen (1997), there were codings for four different Tanystropheus species and two Malerisaurus species. These
were combined before comparison, (e.g. codings of 1, 1, 0 and ? would be treated as a 1 by the majority rule assumption with the '?' not contributing to the calculation).

In assessing characters for the matrix, the aim was to retain as many characters, and therefore as much data, as possible. Characters were initially compared among the five source publications to find those that overlapped and whose coding could be combined. In addition, there were a number that could be considered redundant relative to one another.

As an example, author A might use the character "long and narrow ribs at a shallow angle to the vertebrae" and author B "extended thin ribs". Obviously the described character states of the ribs are similar, but the addition of the angle to the first definition means that they cannot be combined directly as described above. However, both characters cannot be used,

Figure 2: Fifty percent Majority-Rule Consensus Supertree (ST)
The relevant percentage retention values for the MRC are listed in at the relevant nodes.
as much of the information would be replicated. In these situations, the selected character was the one that contained the most information (i.e. had the most number of taxa scored for that character). Some characters were also rescored in order to make the most use of the data. In the above example, if there were three states 0,1 and 2, with 2 being long, narrow and at a shallow angle, the 2 's could be re-scored as 1 s and compared to the other character (" 0 " being long, and " 1 " narrow) with no conflict. Some character choices simply could not be justified either way, being very similar to other characters (or combinations of others) in which case they were excluded. Where these situations occur, they are explained in the character list. In order to render this large data set easier to compare with the source matrices, taxa are listed in alphabetical order, and the characters in anatomical order (i.e. reading from the tip of the snout to the back of the skull, then from front to back down the vertebral column, then forelimbs, and finally hindlimbs, ending at the tips of the toes).

Before the analysis, safe taxonomic deletion (Wilkinson \& Benton 1995) was attempted, but no taxa could be safely deleted. The trees were then constructed in PAUP* Version 4.06b (Swofford 1998) using a heuristic search (the dataset was too large to use an exact method) with stepwise addition and tree-bisection-reconnection (TBR). All characters were used and were unordered, similar to the approach in MRP, and so representing a balanced approach to comparing the methods. Based on previous studies, Petrolacosaurus and Lepidosauromorpha were selected as outgroups as these represent very basal taxa with the context of the study (cf. Evans in Benton 1988). The resultant MPT's were then combined into consensus trees. Both the strict and semi-strict trees were relatively well resolved, however a Majority Rule Consensus tree was retained in order to maximize the amount of phylogenetic resolution available for comment.

The source trees for MRP analysis were constructed in PAUP* using branch-and bound searches (or heuristic searches where the data sets were too large) using the original data provided by the authors. The same source works were used and all the taxa relevant to the study were included. In the case of Evans (in Benton 1988), all the discarded taxa were deleted before the data set was run and the consensus tree calculated (rather than keeping the original tree and deleting the taxa from that, which would not necessarily generate the same tree). In the case of the data from Benton \& Allen (1997), the additional species of Malerisaurus and Tanystropheus were deleted so as to avoid overlap (Malerisaurus langstoni and Tanystropheus longobardicus were retained as the respective type species). Although not available for safe deletion, Rhombopholis was also removed as it was coded for very little data and created many extra MPTs (this was also done in the original study - Benton \& Allen 1997).

The supertree matrix was constructed using the matrix representation method available in RadCon (ver 1.1.6) (Thorley \& Page 2000), which was then run in PAUP* in order to generate the trees (with a heuristic search due to the large numbers of taxa). MRP is an effective and rapid method of constructing a supertree from the available source trees. Strict consensus trees of the source matrices were used in the construction of this matrix (though all were the same as the semi-strict consensus trees available). The supertree analysis
gave many MPT's, so consensus trees were constructed: strict, semi-strict, and Majority Rule Consensus (MRC). The first two contained very little information as the nodes largely or completely collapsed. However, the MRC tree was much better resolved, and produced broadly similar supertrees. These trees should therefore be considered Consensus Supertrees.

The source trees for the weighted MRP supertree (BinindaEmonds \& Sanderson 2001) were constructed in PAUP*. The most parsimonious trees saved and used for the supertree (see above for details) were bootstrapped (10000 replicates, without replacement, 1000 Max trees were retained) and the support values saved. These were then formatted as TRE files for analysis (with kind assistance from O. Bininda-Emonds) so that the bootstrap values weighted the characters accordingly (from 0.01 to 1.0). Thus a measure of support is included in the supertree and poorly supported branches receive less weighting than those which are well supported. SuperMRP.pl (Bininda-Emonds 2005) was then used to produce a 'rooted' MRP matrix (i.e. with an artificial all "0" outgroup added) which was then run in PAUP* to produce the final weighted MRP supertree.

As with the basic supertree, because of the high numbers of taxa, a heuristic search was used. With the exception of the Rhynchosauria, both the strict and semi-strict trees collapsed into unresolved polytomies, so again an MRC tree was produced.

3. Results and discussion

3.1 Supertree and supermatrix methods

The supertree analysis produced a large number of MPTs (33 937). The strict and semi-strict consensuses were limited in their resolution (largely collapsed), but the majority-rule consensus supertree (ST) is well resolved (see Fig. 2). Many branches are retained above the 90% level, and half of the remainder show values of 75% or more (i.e. are present in percentage of the MPTs).

The weighted supertree analysis did not reach a single most parsimonious tree and was stopped after 60000 trees were retained (the limit of the computer's memory). This computing limitation did not necessarily affect the outcome of the analysis - it has been identified as both a problem of supertrees (Sanderson et al. 1998) and also for any analysis with large numbers of taxa and high levels of missing data. Similar 'unfinished' analyses include Davies et al. (2004) and Ruta et al. (2003). As with the ST, the weighted MRP supertree had very poor resolution of the strict and semi-strict consensus trees, so again an MRC tree is retained (hereby referred to as the WST). This is also well resolved, with few polytomies (see Fig. 3), although the retention levels of the branches are slightly lower than in the ST (mostly between 75% and 95%).

The supermatrix analysis produced just 121 MPTs of 822 steps (character state changes) each. Both the strict and semistrict consensuses are far more resolved than those of the supertree analyses, and the majority-rule consensus tree (MRC) is similarly well resolved (see Fig. 4), and more than two thirds of the branches of the MRC tree are retained at 100%. This indicates that, despite the large amount of missing data, the clades are well supported.

Figure 3: Fifty percent Majority-Rule Consensus Weighted Supertree (WST).
The relevant percentage retention values for the MRC are listed in at the relevant nodes.

In all three trees, some clades are particularly well supported with a high retention or bootstrap values. The ST and SM trees as a whole exhibit a more or less expected pattern of relationships, i.e. they closely match the results of existing studies, including the source trees. The prolacertiforms are relatively well resolved, well supported, and monophyletic. However, in the WST, there are a number of novel rearrangements (i.e. relationships that do not appear in any of the source trees) and disruptions to this pattern, for example a 'clade' consisting of Prolacertoides, Kadimakara, Trachelosaurus and Thalattosauria. The squamates do not appear in a less derived position than
the choristoderes in any of the source trees, as they do in the ST and WST. This is therefore a novel configuration and thus must be considered as unreliable (Pisani \& Wilkinson 2002). Similarly, the Rhynchosauria are not separated from the Archosauria by the Prolacertiformes in any of the source trees as they are here, and this must equally be rejected. Consequently, when compared to the source trees the two primary revisions of the ST and the WST produced by a supertree method, are immediately rejected. In contrast, the topology of the SM tree are predictably similar to the source trees and suffers no such problems.

It has been shown that supertrees perform significantly better with increasing numbers of input trees (Bininda-Emonds \& Sanderson 2001) and thus the ST and WST may be hindered by a lack of data compared to previous supertree analyses. However, increasing the number of input trees would merely increase bias towards a total evidence approach, which operates equally with any number of input matrices (although clearly larger numbers of matrices would take longer to combine, and low numbers of characters combined with high numbers of taxa would also limit effectiveness).

There is a potential problem with supermatrix analyses in that the results may have less resolution (fewer resolved nodes; lower bootstrap values for some nodes) than the source trees. However, this can occur with any normal cladistic analysis (especially one with large amounts of missing data) and they do still hold the potential to resolve conflicts in the competing source trees and present new hypotheses of relationships. Moreover, a supermatrix may be the only way to resolve a monophyletic / paraphyletic argument between two results produced from data sets of equal size - the only other alternative is a third independent data set. Similarly, any strongly supported, but conflicting, trees are best resolved with a total evidence method (DE Queiroz et al. 1995). However, as noted by Sanderson et al. (1998), the total-evidence method is time consuming, and if the characters and taxa do not overlap significantly, it is easy to be left with a matrix consisting mostly of question marks. Consequently, the results will be poorly constrained at best, and many MPTs may be produced.

With such a high number of characters, character atomization is a potential problem for supermatrix analyses. Character atomization occurs when characters are broken down to such a degree that they are no longer independent of one another. For example, the shape of the acetabulum and head of the femur could be coded separately, whereas their shapes are, in many ways, mutually determining. As a result, some branches receive heightened support simply because one character has been divided into several, all with identical codings. In molecular studies, this may occur where codings for genes and gene products overlap and so reinforce each other, as one is conditional on the other. Character atomization may also occur in morphological analyses or as a result of coding for functional morphology, as the morphological features have been modified to fulfill a single function (Smith 1994: p. 38).

Hidden redundancy in character lists is always a risk. For example, the characters 'frontal is longer than nasal' and 'nasal is shorter than frontal' are identical, and yet although an unskilled anatomist should spot that both are identical, it is unlikely that they would observe that both are also probably redundant with 'orbit is longer than high' (where the anteroposterior dimension of the orbit is associated with the same dimension of the frontal bone). Here, the redundancy could be missed unless specialist anatomical knowledge is brought into play, since the two forms of the characters might well have been presented by different authors, and they sound rather different. However, such cases are rare, at least in the present analysis - based on a careful query of all characters.

The results of this study show that, as may be expected, MRP methods are capable of producing spurious results (PISANI \& Wilkinson 2002, Wilkinson et al. 2005). The two primary novelties (the basal position of the choristoderes relative to
the squamates, and the displacement of the Rhynchosauria from Archosauria) found by MRP on the ST and WST trees have both been demonstrated to be spurious and unreliable in this analysis. Here, they do not reflect the source trees and so must be rejected (Pisani \& Wilkinson, 2002). In contrast, the SM method produces a well-structured tree with some strong branches (high bootstrap values) and well-defined clades. This would suggest that the prolacertiforms are indeed monophyletic and that the rhynchosaurs are the sister group to the crown-group archosaurs.

3.2 The relationships of the prolacertiforms and pterosaurs

The relationships of the prolacertiforms as a whole are well resolved in both the ST and SM trees, though less so in the WST (taxa such as Drepanosaurs and Prolacertoides are missing form the clade labelled in Fig. 3 indicating that it is polyphyletic according to the taxa traditionally make up the clade). However, their paraphyly in the ST tree aside, they exhibit very different topologies between the trees. The SM MRC tree has one large polytomy, (polytomies are common in previous analyses of the prolacertiforms), and the majority of taxa show similar relationships to those seen in the source trees. However, in the ST tree, the topology corresponds more closely to a Hennigian comb. Taxa roughly match the positions of their counterparts in the source trees, but they differ from the arrangement in the SM tree. Given the large variation in the source trees, neither of these results can be treated as preferable to the other. Even the supposed paraphyly of the prolacertiforms evident in the ST tree cannot be discounted, as this configuration was recovered by Dilkes (1998). In the WST tree, Prolacerta in not included in the prolacertiforms (as found by Dilkes 1998), but of greater importance is the separation of Megalancosaurus and Drepanosaurus - a well established sister-taxon relationship (both are drepanosaurids known from numerous near-complete fossils). The former forms part of a polytomy basal to the prolacertiforms and in a polytomy with the archosaurs. Drepanosaurus however, has a new position significantly further down the tree and joins the squamates - a highly suspect relationship not found in any source tree.

Aside from the most basal taxa, all three trees differ in the topology and relationships of important clades (Figs 2-4). In addition to the details reported for the prolacertiforms, most of the major diapsid clades show marked variation in their relationships among the three trees. The SM tree reflects results reported by the majority of previous authors, although the Rhynchosauria might be expected to lie basal to the Prolacertiformes (Jalil 1997). The ST and WST trees in contrast, the Choristodera are basal to the Squamata. In both trees the prolacertiforms are paraphyletic, reflecting Dilkes (1998), wherein Prolacerta is separate and more derived than the prolacertiforms. However, here in the ST the prolacertiforms are dispersed within the tree and in the WST Prolacerta is basal to this clade, and not derived with respect to it.

The Pterosauria lie as sister group to the Dinosauromorpha or Scleromochlus + Dinosauromorpha (as ornithodirans) in both the ST and WST trees. This result matches the primary analysis of Bennett (1996) and is clearly the source of their
position as this was the only source tree that included them. However, they remain among the more basal archosaurs in the SM tree, although they are well separated from the prolacertiforms. This is similar to the secondary analysis recovered by Bennett (1996) and so is hardly unexpected, but clearly the addition of further characters and taxa to this analysis has not resulted in pterosaurs taking a more basal position (i.e. close to or among the basal diapsids).

Bennett (1996) asserted that certain hindlimb characters of pterosaurs are non-homologous to, but convergent with, those of the higher archosaurs (See Hone \& Benton 2007). Nonetheless, as a simple test of Bennett's (1996) suggestion, the supermatrix analysis was repeated with the successive removal of the appendicular characteristics (both forelimb, hindlimb, pectoral and pelvic girdles, and then just hindlimb and pelvic girdle). In both cases the

Figure 4: Fifty percent Majority-Rule Consensus Supermatrix Tree (SM).
Bold numbers refer to nodes and branches (lying on top of the branch before the node in question, (e.g. 1 refers to the node for DINOSAURIA / Lagosuchus), in some cases the branch to an individual taxon is referred to and here the number is placed after the taxon on the right-hand side. The defining characters associated with each node are listed in appendix 2B. Bootstrap figures (as a percentage, 10000 replicates with replacement) are also given where relevant after the MRC figure, e.g. 99/65 is a node with 99% appearance on the MRC tree with a 65% retention when bootstrapped.

Pterosauria remained in the same location as in the original supermatrix analysis, basal to the Erythrosuchidae, and did not pair with more basal taxa, just as BENNETT (1996) showed. However, without character deletion, the only valid standpoint
in our view, reanalysis of BENNETT's (1996) data matrix results in pterosaurs appearing as a sister group of dinosauromorphs, the 'normal' result. Since these variations mirror the topologies seen in the SM tree, it appears that limb characters are not a key
part of the evidence for the phylogenetic relationships of the pterosaurs. Therefore, hindlimb characters may be considered homologous between the pterosaurs and dinosauromorphs: supporting the traditional view. This is in spite of their more basal position than might be expected which can be attributed to the very high levels of missing data in the supermatrix. The pterosaurs are recovered in a more basal position in the SM tree than might be expected, but still more derived that the possibilities recovered by BENNETT (1996) and others.

According to Bininda-Emonds (2004a) the WST tree should prove more reliable than a simple MRP tree. However, as with the ST, the WST can be rejected because of the appearance of novel arrangements of taxa, including some combinations of taxa present in the WST that do not even appear in the ST. Although the weighting of input trees should significantly reduce the problems of over-weighting large trees and / or poorly supported trees, it also appears to mar the clarity of the results. In this study, the problem of a novel rearrangement of clades not seen in any source tree (e.g. the choristoderes appearing both more basal to, and more derived than, the Squamata) rules out the ST tree for empirical reasons. However, this does not necessarily invalidate the method, even if it poses a serious question over reliability (as also shown by Pisani \& Wilkinson [2002], and Wilkinson et al. [2005]) it merely allows us to reject a single tree produced by that method. The WST tree generates both novel rearrangements of clades and a large number of what must be spurious clades.

The archosaurs and rhynchosaurs are well defined as they appear in only one source tree. However, all the other clades have produced novel and / or spurious relationships whose origins are harder to determine. This appears to be a function of how well represented each taxon is in the MRP matrix (i.e. the number of occurances in source trees). Experimentation in which basal taxa were selected as outgroups rather than an all ' 0 ' MRP outgroup produce similar results (i.e. many novel clades and pairings) and often resulted in inversions of wellsupported relationships (e.g. archosaurs basal all other clades). The generation of novel clades by MRP and weighted MRP methods is a complex problem associated with weighting, missing data and MRP algorithms that require further investigation. As noted by O. Bininda-Emonds (pers. comm.), this is a problem for MRP trees as consensus methods alone, and not if they are considered as simply a way of producing a best fit' of the input trees.

3.3 Analysis times

Reconstructing large palaeontological cladograms is evidently problematic. While the total evidence approach here produces strong results, it is extremely time-consuming. In particular when multiple overlapping data sets are concerned, the time necessary to compare all taxa and characters is very great and thoroughly testing for redundant characters is an extremely time-consuming operation. Even aligning non-overlapping data sets can take inordinate amounts of time and then, as ever, with a high number of taxa, analysis is limited to heuristic searches by cladistic programs that do not guarantee to find all, or indeed any of the MPTs. Given the levels of missing data in an 'average' paleontological data set it is not surprising that many MPTs are often generated.

In short, while they may be reliable, supermatrix methods are time-consuming and they have the potential to find large numbers of sub-optimal trees.

In contrast, MRP methods have sharply contrasting characteristics. They provide a rapid result - source trees can be fed directly into RadCon and the supertree matrix can be generated in minutes, although analysis time for both methods depends on the specifics of the matrix. However, the results of this study suggest that the reliability of the MRP technique is poor and, as discussed above, not enough is yet known about how MRP manipulates some branches and can produce spurious results (Pisani \& Wilkinson 2002; Wilkinson et al. 2005) and by extension how MRP optimises matrix conflicts. As with the above approach, large numbers of sub-optimal trees may be generated with high numbers of taxa.

This leads to the conclusion that neither method provides a good balance between speed and accuracy. If source trees agree, then supertrees are quick and reliable, but if not, they are unlikely to discover the one 'true' phylogeny as represented by the underlying data (Wilkinson et al. 2005). Therefore, if speed is to remain the primary factor in choosing a method of assembling multiple datasets, a much greater level of investment is required in understanding and improving MRP as a supertree method, or moving on to other methods, though their effects must be explored. As the situation stands, MRP is unsuitable for resolving conflicting source trees and total evidence methods require too much time to be efficient for large morphological analyses.

4. Conclusions

The results of these studies suggest that, as proposed by Dilkes (1998) and Modesto \& Sues (2004), Prolacerta is not a member of the Prolacertiformes. However, the remaining taxa that make up the Prolacertiformes can be considered a monophyletic sister group to the Archosauria. The clade should be renamed and redefined accordingly (see also Hone \& Benton 2007). The results of this study do not support a close relationship between the Pterosauria and the Prolacertiformes but instead confirms the results of previous studies that they are derived archosaurs, and are probably form the clade Ornithodira, with the dinosauromorphs.

This result is recovered using a very large dataset comprising of hundreds of characters and using multiple techniques. No analysis this large has previously been published concerning the origins of pterosaurs and despite the supermatix not being a 'traditional' cladistic datamatrix, a number of characters are still recovered supporting this derived position of pterosaurs. Far more work is still required on this subject however, as much data is missing from the supermatrix which could be filled based on specimen work as its lack is due to non-overlapping datasets and not inapplicable coding or missing parts of fossil specimens.

In comparing supertree and supermatrix methods, it can be concluded that problems inherent in supertree construction are highly significant. The trees were relatively well resolved, but previously well supported branches (in the original source trees) were lost, and robustly supported hierarchies reversed. In contrast, the total-evidence approach produced a well-resol-
ved tree with relatively strong branch support. However, the considerable amount of time that had to be committed to the supermatrix approach (estimated at about 800 hours to create the data set, versus just one hour for the supertree and only three hours for the weighted supertree - the supermatrix data also took significantly longer to analyse) seriously weakens the applicability of the technique. However, the time issue is unlikely to be so severe with molecular data.

In coming years, as demand grows for ever-larger segments of the tree of life, and especially for complete trees consisting of perhaps hundreds or thousands of species, supertree methods seem at the present time to be the only approach that can produce results. Improvements to the MRP technique or its replacement by another method, are probably a more fruitful strategy than further emphasis on total evidence methods. Even though total evidence methods at present are methodologically superior to supertree methods, the time-consuming elements are those that involve specialist human input - namely the careful combination of separate matrices, and checking for redundancy of taxa and characters, and especially the latter. Those processes can never be automated.

Acknowledgements

We thank Tim Cross, Mary McLaughlin and Cathryn Yeagers for help in assembling the supermatrix. We also thank Dave Unwin, Brian Andres, Chris Bennett, Olaf BinindaEmonds and Mark Wilkinson for extremely helpful comments on earlier versions of the manuscript. Olaf Bininda-Emonds and Stewart Morgan are also thanked for their assistance in assembling the weighted trees for construction of the WST. Thanks to Corwin Sullivan for help with the figures and to Helmut Tischlinger and to Günter Viohl for translating the abstract into German. This work formed a substantial part of a PhD thesis and completed at the University of Bristol, Department of Earth Sciences.

6. References

Barratt, M., Donoghue M. J. \& Sober, E. (1991): Against consensus. - Systematic Zoology, 40: 486-493.

BAUM, B. R. (1992): Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. - Taxon, 41: 3-10.
Bennett, S. C. (1996): The phylogenetic position of the Pterosauria within the Archosauromorpha. - Zoological Journal of the Linnean Society, 118: 261-308.
Benton, M. J. 1990. The species of Rhynchosaurus, a rhynchosaur (Reptilia, Diapsida) from the Middle Triassic of England. - Philosophical Transactions of the Royal Society of London B, 328: 213-306.
Benton, M. J. (1999): Scleromochlus taylori and the origin of dinosaurs and pterosaurs. -Philosophical Transactions of the Royal Society of London B, 354: 1-25.
Benton, M. J. (2004): Origin and relationships of Dinosauria. - In: D. B. Weishampel, P. Dodson \& H. Osmolska (Eds), The Dinosauria; Berkeley (University of California Press), 7-24.
Benton, M. J. \& Allen, J. L. (1997): Boreopricea from the Lower Triassic of Russia, and the relationships of the prolacertiform reptiles. - Palaeontology, 40: 931-953.
Bininda-Emonds, O. R. P. (2003): Novel versus unsupported clades: assessing the qualitative support for clades in MRP supertrees.

- Systematic Biology, 52: 839-848.

Bininda-Emonds, O. R. P. (2004a): The evolution of supertrees. - Trends in Ecology and Evolution, 19: 315-322.

Bininda-Emonds, O. R. P. (2004b): Trees versus characters and the supertree/ supermatrix "paradox". - Systematic Biology, 53: 356-359.
Bininda-Emonds, O. R. P., Gittleman, J. L. \& Purvis, A. (1999): Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). - Biology Review, 50: 565-579.
Bininda-Emonds, O. R. P. \& Sanderson, M. J. (2001): Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. - Systematic Biology, 50: 565-579.
Davies, T. J., Barraclough, T. G., Chase, M. W., Soltis, P. S., Soltis, D. E. \& Savolainen, V. (2004): Darwin's abominable mystery: Insights from a supertree of the angiosperms. - Proceeding of the National Academy of Science, 101: 1904-1909.
De Quieroz, A., Donoghue, M. J. \& Kim, J. (1995): Separate versus combined analysis of phylogenetic evidence. - Annual Review of Ecology and Systematics, 26: 657-681.
Dilkes, D.W. (1998): The Early Triassic rhynchosaur Mesosuchus browni and the interrelationships of basal archosauromorph reptiles. - Philosophical Transactions of the Royal Society of London B, 353: 501-541.
Evans, S. E. (1988): The early history and relationships of the Diapsida. - In: M. J. Benton (Ed.), The Phylogeny and Classification of the Tetrapoda. 1. Amphibians, Reptiles, Birds. Systematics Symposium Association Special Volume; Oxford (Clarendon Press), 221-260.
Gatesey, J. \& Springer, M. (2004): A critique of matrix representation with parsimony supertrees. - In: O. R. P. BININDA-EMONDS (Ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life; Dordrecht (Kluwer Academic Press), 369-388.
Gauthier, J. (1986): Saurischian monophyly and the origin of birds. - Memoirs of the California Academy of Science, 8: 1-56.

Hone, D. W. E. (2005): The phylogenetics and macroevolution of the Archosauromorpha. - PhD thesis, University of Bristol, UK, 195pp.
Hone, D. W. E. \& Benton, M. J. (2007): An evaluation of the phylogenetic relationships of the pterosaurs among archosauromorph reptiles. - Journal of Systematic Palaeontology, 5: 464-469.
Huelsenbeck, J. P., Bull, J. J. \& Cunningham, C. W. (1996): Combining data in phylogenetic analysis. - Trends in Ecology and Evolution, 11: 152-158.
Jalil, N. E. (1997): A new prolacertiform diapsid from the Triassic of North Africa and the interrelationships of the Prolacertiformes. - Journal of Vertebrate Paleontology, 17: 506-525.

Kennedy, M. \& Page, R. D. M. (2002): Seabird supertrees: Combining partial estimates of prolacertiform phylogeny. - Auk, 119: 88-108
Kluge, A. G. (1989): A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). - Systematic Zoology, 38: 7-25.

Kluge, A. G. (2004): On total evidence: for the record. - Cladistics, 20: 205-207.
Modesto, S. P. \& Sues, H-D. (2004): The skull of the Early Triassic archosauromorph reptile Prolacerta broomi and its phylogenetic significance. - Zoological Journal of the Linnean Society, 140: 335-351.
Pisani, D. \&, Wilkinson, M. (2002): Matrix representation with parsimony, taxonomic congruence, and total evidence. - Systematic Biology, 51: 151-155.
Pisani, D., Yates, A. M., Langer, M. C. \& Benton, M. J. (2002): A genus-level supertree of the Dinosauria. - Proceedings of the Royal Society of London, Series B, 269: 915-921.
Purvis, A. (1995): A composite estimate of primate phylogeny. - Philosophical Transactions of the Royal Society of London, Series B, 348: 405-421.
Ragan, M. A. (1992): Phylogenetic inference based on matrix representation of trees. -Molecular Phylogenetic Evolution, 1: 53-58.
RonQuist, F. (1996). Matrix representation of trees, redundancy and weighting. - Systematic Biology, 45: 247-253.

Ruta, M., Jeffery, J. E. \& Coates, M. I. (2003): A supertree of early tetrapods. - Proceedings of the Royal Society of London, Series B, 270: 2507-2516.
Sanderson, M. J., Purvis, A. \& Heinze, C. (1998): Phylogenetic supertrees: Assembling the trees of life. - Trends in Ecology and Evolution, 13: 105-109.
Sereno, P. C. (1991): Basal archosaurs: phylogenetic relationships and functional implications. - Society of Vertebrate Palaeontology Memoirs 2: Journal of Vertebrate Paleontology, 11: 1-53.
Smith, A. B. (1994): Systematics and the Fossil Record; Oxford (Blackwell Science), 223 pp.
Swofford, D. L. (1998): PAUP* Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer, Massachusetts.
Thorley, J. L. \& Page, R. D. M. (2000): RadCon: phylogenetic tree comparison and consensus. - Bioinformatics, 16: 486-487.

Unwin, D. M. (2005): The Pterosaurs: from deep time; New York, USA (Pi Press), 347 pp .
Wilkinson, M. \& Benton, M. J. (1995): Sphenodontid phylogeny and the problem of multiple trees. - Philosophical Transactions of the Royal Society of London, Series B, 351: 1-16.
Wilkinson, M., Cotton, J. A., Creevey, C., Eulenstein, O., Harris, S. R., Lapointe, F-J., Levasseur, C., McInerney, J. O., Pisani, D. \& Thorley, J. L. (2005): The shape of supertrees to come: tree shape related properties of fourteen supertree methods. - Systematic Biology, 54: 419-431.

Wilkinson, M., Thorley, J. L., Littlewood, D. T. J. \& Bray, R. A. (2001): Towards a phylogenetic supertree for the Platyhelminthes? - In: D. T. J. Littlewood \& R. A. Bray (Eds), Interrelationships of the Platyhelminthes; London (Chapman-Hall), 292-301.

Appendices:

A

Characters used in phylogenetic analysis

All the characters from the source matrices are listed below. All that were removed from the analysis have been marked as such and are given no number. All are in anatomical sequence. The descriptions for each are taken in unmodified form from the publications hence the variation in whether or not they are listed with character states. Where these are given they are placed in brackets with slashes denoting the different states (with 0 always first).

```
Abbreviations:
    A = Absent
    L = Long
    \(\mathrm{R}=\) Reduced
    \(\mathrm{P}=\) Present
    S = Short
    \(\mathrm{N}=\mathrm{No}\)
    \(\mathrm{Y}=\mathrm{Yes}\)
```

Therefore, 'Femur (L/R/S) D23' would denote that a long femur was coded as 0 , a reduced one as 1 and a short one as 2 . The character was used by Dilkes and was number 23 in his data set.
The original authors of characters have been coded as follows for simplicity:
Bennett (B), Benton \& Allen (BA), Dilkes (D), Evans (E - Evans listed her characters in sections A1-4, B1-8 etc. Here we retain the more conventional system of numbering them consecutively, but a conversion is given below for ease of comparison), and Jalil (J).

Representation of taxa in the source matrices is as follows:

TAXA	Evans	Jalil	Bennett	Benton \& Allen	Dilkes
Boreopricea	,	\#		\#	
Champsosaurus					\#
Choristodera	\#	\#			
Cosesaurus	\#	\#		\#	
Cteniogenys					\#
Dinosauria			\#		
Drepanosaurus	\#				\#
Erythrosuchidae			\#		
Euparkeria			\#		
Gephyrosaurus	\#				\#
Howesia	\#				\#
Hyperodapedon					\#
Iguana		\#			
Jesairosaurus		\#			
Kadimakara	\#	\#		\#	
Lagosuchus			\#		
Langobardisaurus				\#	
Lazarussucbus					\#
Lepidosauromorpha			\#		
Macrocnemus	\#	\#			
Malerisaurus	\#	\#		\#	
Malutinisuchus		\#			
Megalancosaurus	\#			\#	\#
Mesosuchus	\#				\#
Ornithosuchidae			\#		
Parasuchia			\#		
Petrolacosaurus					\#
Prolacerta	\#	\#		\#	\#
Prolacertiformes			\#		
Prolacertoides	\#	\#			
Proterochampsidae			\#		
Proterosuchidae			\#		
Proterosuchus	\#	\#			\#
Protorosaurus	\#	\#		\#	\#
Pterosauria			\#		
Rhombopholis				\#	
Rhynchosaurus		\#			\#
Rhynchosauria			\#		
Rhynchosauridae	\#				
Scaphonyx					\#
Scleromochlus			\#		
Sphenodontia		\#			
Squamata	\#				
Stenaulorbynchus					\#
Suchia			\#		
Tanystropheus	\#	\#		\#	\#
Tanytrachelos	\#	\#		\#	
Thalattosauria	\#				
Trachelosaurus	\#	\#			
Trilophosaurus	\#	\#		\#	\#
Youngina	\#	\#			\#

The following taxa were deleted from the Evans dataset:
Araeoscelis, Aphelosaurus, Mesenosaurus, Coelurosauravus, Claudiosaurus, Heleosaurus, Galesphyrus, Blomosaurus, Noteosuchus, Palaeagama, Heleosuchus, Hovasaurus, Acerosodontosaurus, Thadeosaurus, Kenyasaurus, Tangasaurus, Saurosternon, Kuehneosauridae, Diphydontosaurus, Planocephalosaurus, Clevosaurus, Homeosaurus, Malutinisuchus, Kallimodon, Pleurosauridae, Paliguana, Kudnu, Colubrifer, Iguana, Aenigmatosaurus, Lacertulus.

Evans conversion:

A	$1-$	4
B	$5-$	12
C	$13-$	26
D	$27-$	33
E	$34-24$	
F	$65-29$	
G	$70-$	90
H	$91-97$	
I	$98-119$	
J	$120-145$	
K	$146-174$	
L	$175-194$	
M	$195-200$	
N	$201-205$	
O	$206-216$	
P	$217-226$	

Cranial Characters:

1. Symphysis (P/A) D127
2. Skull (midline > than max. width / less) D1

- Metakinetic Skull B9
ALL 1s

3. Skull height (less than $1 / 3$ length $/=$ or $+1 / 3$ length) B31

- Skull shape (rounded in cross-section / subtrapezoidal) B32
AUTAPOMORPHY Lepidosauromorpha

4. Skull low and narrow with short and narrow postorbital region (N/Y) J38
5. Elongation of temporal and antorbital regions E164
6. Length of snout ($<50 \%$ of total length / >) D2, E91, J64

- Long gavial-like snout E224
AUTAPOMORPHY Choristodera
- Premaxilla size (S/L) B1
AUTAPOMORPHY Lepidosauromorpha7. Chisel-like premaxillary regionE156

8. Dorsomedial process of premaxilla (extends beyond narial openings / reduced) BA1, E519. Premaxilla (horizontal ventral margin / down-turned ventral margin)D6
9. Shape of maxillary ramus of premaxilla (extends as posterodorsal processto form caudal border of naris Y / N)D8, E70, J25
10. Premaxilla extends anterolaterally to form slender rostrum E201
11. Enlarged posterolateral process on premaxilla E212
12. Prominent subnarial process of premaxilla (A/P) B2
13. Premaxilla and prefrontal (no contact / contact) D7

- Premaxilla contacts frontals, separates nares in midline E203
AUTAPOMORPHY Choristodera

15. External nares confluent, no median dorsal process on premaxilla E206
16. Confluent nares E217
17. External nares location (marginal / midline) D11
18. External nares (separate / single, medial naris) D10
19. External nares shape (rounded / elongate) D12

- External nares are placed posteriorly E202
AUTAPOMORPHY Thalattosauria
- Slender nasals, fused in midlineE218
AUTAPOMORPHY Choristodera

20. External naris elongated anteroposteriorly and close to midline (N/Y)
21. Single median narisE218 / 86, J26
22. Form of suture b / w premaxilla and maxilla above dentigerous margin(simple vertical or diagonal contact / notch present in maxilla)E6623. Maxilla (horizontal ventral margin / convex ventral margin)D1724. Tall maxillaD16
23. Number of grooves on maxilla (none / one / two) D62
24. Septomaxilla (P/A) D14

- Septomaxilla elaborated to protect vomeronasal organ E177
AUTAPOMORPHY Squamata

27. Contact between vomer and maxilla (A / P) D38
28. Contact between ectopyerygoid and maxilla (A/P) D40
29. Nasals taper anteromediallyE50, J49

- Vomers (long and broad / reduced)B39
AUTAPOMORPHY Lepidosauromorpha

30. Shape of cranial margin of nasal at midline
(strongly convex with little anterior process / transverse with little convexity)
31. Nasals longer than the frontals (N/Y)
32. Lacrimal (L/S or A)
33. Lacrimal fails to meet nasa- Lacrimal contact with nasal (P/A)
CANNOT JUSTIFY

- Lacrimal fails to reach external nares E14
D13
BA2, D18, E94, J61J15
D15, E35, J50BA5CANNOT JUSTIFY

34. Lacrimal (contacts nasal and reaches external naris / does not contact or reach) D15
35. Lacrimal extent (element runs forward from the orbit / restrictedto the orbital rim in lateral view)BA6
36. Prefrontal-nasal structure: orientated antereoposteriorly to internasal suture or anterolaterally directed J1

- Long pre-frontals meet in midline, separate nasals from frontals E219
AUTAPOMORPHY Choristodera- Frontoparietal suture (interdigitating / straight)BA3
AUTAPOMORPHY Boreopricea

37. Ratio of frontals and parietal ($>1.0 /<1.0$)D19
38. Shape of dorsal surface of frontal next to sutures with postfrontal and parietal (flat to slightly concave / depressed with deep pits) D20
39. Fused postorbitofrontal E225
40. Postfrontal (L/S/A) B33
41. Shape of dorsal surface of postfrontal (flat to slightly concave / depressed with deep pits) D21
42. Postfrontal dimensions (substantial tripartite element / short lacking clear process) BA7, E30
43. Postfrontal enters upper temporal fenestra, loss of postorbital / parietal contact44. Narrow parietalD24, E19545. Fused parietalsE162 / 174E175
44. Pused parals
45. Parietal foramen lost or at frontoparietal suture E207
46. Transverse frontoparietal suture E176
47. Median contact of parietals (suture present / parietals fused with loss of suture) D25
48. Parietal table (broad / constricted without sagittal crest / sagittal crest present) D26
49. Parietals (do not send caudal process onto occiput / do) B34

- Shape of median border of parietal (level with skull table /drawn downwards to form ventolateral flange)D28, E20
AUTAPOMORPHY Petrolacosaurus

51. Postparietals (P/A)B35, D29, E123 / 29, J14
52. Postparietals (paired / fused) B35
53. Postparietaels (L/S) J3
54. Postorbital and parietal contact (P/A)D22
55. Posterior process of postorbital (does not extend beyond back of lower temporal fenestra / extends back beyond the posterior margin of the lower temporal fenestra) BA8
56. Postorbital with posterior process extending back beyond end of upper temporal fenestra E99
57. Ratio of lengths of anteroventral and posterodorsal processes of postorbital ($>1.0 /<1.0$)
58. Reduction of ventral ramus of squamosal: cotyle for quadrate head
59. Loss of ventral ramus of squamosal

- Frequently ventral peg of squamosal fits into quadrate notch

AUTAPOMORPHY Squamata
60. Anteroventral process of squamosal (broad ventrally with distal width that is approx. equal to dorsoventral height / narrow ventrally with distal width less than dorsoventral height / absent)
61. Otic notch

- Slender stapes

AUTAPOMORPHY Petrolacosaurus
62. Stapes lacks foramen
63. Posterior process of jugal extending posteriorly nearly to back of skull (N/Y)
64. Lateral surface of jugal above maxilla (continuous / lateral shelf present)
65. Subtemporal process of jugal (robust / slender)
66. Postorbital ramus of jugal (extends to middle of lower temporal fenestra /
extends well posterior to the centre of lower temporal fenestra)
67. Posterior process of jugal (P/A)
68. Reduced rod-like quadratojugal under lower temporal fenestra contacts jugal
69. Posterior process of jugal extends beyond midpoint of lower temporal fenestra
70. Contact b / w ectopterygoid and jugal (restricted with area of contact approx. equal to or less than contact b / w ectopterygoid and pterygoids / ectopterygoid expanded caudally)

- Ectopterygoid (broadly contacts the maxilla and narrowly contacts the jugal in ventral view / more or less broadly contacts the jugal behind the posterior limit of the maxilla)
CANNOT JUSTIFY

71. Shape of ectopterygoid along suture with pterygoids (transversely broad /
posteroventrally elongate and does not reach lateral corner of transverse flange /
posteroventrally elongate and reaches corner of transverse flange) D42
72.Entepicondylar foramen (P/A)

- Ventral extent of quadrate (abductor chamber S/L)

E192, J32

AUTAPOMORPHY Lepidosauromorpha
73. Quadratojugal shape; an indicator of whether there is a complete lower temporal bar
(low and with anterior process / tall with reduced anterior process)
74. Quadratojugal L-shaped and or situated behind upper temporal fenestra (N/Y)
75. Tall quadratojugal with reduced anterior process
76. Loss of quadratojugal and quadratojugal foramen
77. Quadratojugal (P/R/A)
78. Quadrate (covered laterally / exposed laterally)

- Greatly reduced quadrate / pterygoid overlap

CANNOT JUSTIFY
79. Quadrate emargination (A/P)

- Reduction in quadrate / quadratojugal conch

CANNOT JUSTIFY
80. Quadrate tall, more than half height of lower temporal fenestra
81. Upper temporal fenestra

- Upper temporal fenestra slit-like or obliterated

AUTAPOMORPHY Thalattosauria
82. Post-temporal fenestra

- Suborbital fenestra

ALL 1's

- Lower temporal fenestra E3, D4

ALL 1's
83. Posterior border of lower temporal fenestra bowed
84. Antorbital fenestra (A/P)
85. Elements contributing to lateral border of suborbital fenestra
(ectopterygoid, palatine and maxilla / or ectopterygoid and palatine contact to exclude maxilla)

- Antorbital fenestra position (separate from naris / close to naris)

AUTAPOMORPHY Lepidosauromorpha
86. Prominent antorbital fossa surrounding antorbital fenestra (A/P)

B43
87. Lower temporal arcade (A / P)
88. Parasphenoid-basisphenoid in the side wall of braincase (N/Y)

D23
BA9, B5, E54
E178 / 209, J54
E183

D37, J5, E26
E168

E85

E1, D3, B44
E204

D53, B15, J65
E2

B45, E31
B45, D18, E27

- Preorbital region consisting of maxillae, pterygoids, palatines and nasals (elongate/not elongate)B3
AUTAPOMORPHY Lepidosauromorpha

89. Posterior margin of skull table deeply emarginated, lies well forward relative to quadrate E205
90. Paraoccipital foramen J7

- Paraoccipital process touches suspensorium E74 / 125
AUTAPOMORPHY Petrolacosaurus
- Loss of postsplenialE15
AUTAPOMORPHY Petrolacosaurus

91. Pineal foramen (present or large / reduced or absent)B14, BA4, E71
92. Parapineal foramen (P/A)93. Development of retroarticular process- Reduction in retroarticular processD27E24, J8
AUTAPOMORPHY Sphenodon
93. Tabulars (P/A)
94. Cleithrum (P/A)E169
95. Coronoid (P/A)97. Stapedial (P/A)

- Epipterygoid reduced to slender columnB6, D30, J2B23, D93, J9
B48J6
AUTAPOMORPHY Squamata- Paroccipital process, supratemporal and parietal closely associated and providingsupport for head of the quadrateE182
AUTAPOMORPHY Squamata- Paraoccipital process (ends freely / reaches suspensorium)D52
AUTAPOMORPHY Petrolacosaurus

98. Paroccipital process distally expanded E184

- Metotic fissure divided to give separate opening for cranial nerve 9 and perilymphatic duct E185
AUTAPOMORPHY Squamata
- Complete vidian canalE186
AUTAPOMORPHY Squamata

99. Orientation of basipterygoid processes (anterolateral / lateral) D43

- Loss of supraglenoid buttress E16
AUTAPOMORPHY Petrolacosaurus100. No ectepicondylar groove or foramenE33, J21

101. Absence of supratemporal
102. Supratemporal (when present) lies deepB36, BA13, D31, E208 / 220
103. Ossified lateraosphenoid
104. Pila antotica
105. Complete abducens canal and dorsum sellaeE188
B40, D50
J69
106. Foramen for entrance of internal carotid arteries (lateral wall of braincase /E133
ventral surface of parasphenoid)107. Club
D45107. Club-shaped ventral ramus of opisthotic (A/P)

- Paroccipital process of the opisthotic (do not contact suspensorials /
contact suspensorial with tapered distal ends / contact with vertically expanded distal ends)B12, D46
CANNOT JUSTIFYB12

108. Lateral surface of prootica (continuous and slightly convex/crista prootica present) D47, J70
109. Anterior inferior process of prootica (A/P) D48
110. Coracoid process
111. Abducens foramina D94 D49
112. Position of occipital condyle D51
113. Supraoccipital D54
114. Pyriform recess C11
115. Exoccipital and opisthotic (separate / fused) B37
116. Depth of lower jaw measured at max. height of adductor fossa relative to length of jaw from tip to articular ($<25 \% />25 \%$) D70
117. Jaw symphysis D71
118. Jaw occlusion D65

- Propalinal jaw action E71
AUTAPOMORPHY Sphenodon

119. Occipital condyle anterior to craniomandibular joint (N/Y) J66
120. Divergence of dentaries cranial to symphysis (A/P) D72
121. Dentary-coronoid-surangular profile (horizontal to convex / concave caudal to coronoid) D73
122. Number of tooth rows on dentary (one / two / more) D64
123. Dentary-splenial mandibular symphysis length (distally positioned /
present along $1 / 3$ of lower jaw) B47
124. Posterior process of dentary extends beyond coronoid E147
125. Pterygoids (join cranially / remain separate) D126
126. Angular reduced to less than $1 / 3^{\mathrm{rd}}$ lateral height of jaw E136
127. Retroarticular process entirely formed by articular (N/Y) D74, J18
128. Upturned retroarticular process (A / P) D75
129. External mandibular fenestra130. Premaxilla with acrodont teeth
B49, D76
130. Maxillary tooth plate (A/P)
D9, E65
131. Location of maxillary teeth (only on occlusal surface / on occlusal and lingual surfaces)D60
132. Palatal elements covered by a shagreen of teethD63134. Teeth on palatine ramus of pterygoids (present in two fields / present in one field /B54, E222
present in three fields / absent)- Enlarged palatine tooth row, roughly parallel to maxillaD68, E170
CANNOT JUSTIFY
133. Teeth on transverse flange of pterygoids (single row / multiple / absent)
134. Location of maxillary teeth (only on occlusal surface / on occ. and lingual surfaces)E146
135. Number of tooth rows on maxilla (single / multiple)B53, D69, E124D63
136. Posterior dental teeth lie anterior to posterior maxillary teethD61
137. Tooth implantation
138. Thecodont teeth
B18, BA14, E95, J62B2, D55, E132

- Alternating acrodont teeth E149AUTAPOMORPHY Sphenodon
- All thecodont teeth in adultE223

141. Pterygoid flange teeth BA16
AUTAPOMORPHY SphenodonE154
142. Reduction in pterygoid teeth E25

- Posteromedial flanges on maxillary teethAUTAPOMORPHY Sphenodon
- Anterolabial flanges on dentary teeth E151
AUTAPOMORPHY Sphenodon
- Teeth mediolaterally expanded E172
AUTAPOMORPHY Trilophosaurus

143. Teeth circular or square in cross-section E173
144. Teeth oval or compressed D59, B17
145. Marginal teeth laterally compressed and serrated
B50, D57, E28
146. Recurved teeth

- Postereolateral flanges on some palatine teethB16, D58, E96, J63- Prominently flanged and striated teeth on posterior region of the maxillaE157
E158
- No caniniform teethE17, D56
- No parasphenoid teeth E22

147. Vomerine teeth (P/A) D66, E187
148. Palatine teeth (P / A) D67
149. Crown of marginal teeth (single point / tricuspid)D136
150. Enlarged anterior dentary teeth project upward between upper tooth rows in more or lessprominent diastema, often accompanied by more or less prominent notch betweenpremaxilla and maxilla (A / P)B51

- Three or fewer premaxillary teeth on each side E155
EXCESS OF TOOTH CHARACTERS
- Four or fewer premaxillary teeth on each side E153
EXCESS OF TOOTH CHARACTERS

151. Seven or fewer premaxillary teeth on each sideBA15, E150
Axial Characters:
152. Atlantal intercentrum (normal / enlarged) B99
153. Odontoid prominence on atlas pluerocentrum (A/P) D133
154. Division of presacaral vertebral column into cervical, cervicodorsal and dorsal regions (A/P) B102

long and low with height < width)	BA20, D82, E34, J40
156. Number of cervical vertebrae (7 or fewer / more than 7)	BA17, E98
157. Number of cervical vertebrae (fewer than 10 / 10 or more)	BA18, J56
158. Postaxial cervical intercentra (P/A)	D79
159. Relative length of mid and posterior cervical and dorsal vertebral centra (cervical centra subequal in length to dorsals / cervical centra longer than dorsals)	BA19
160. Distal ends of cervical neural spines (no expansion / expansion present in form of flat table)	D143
161. Length of centra of cervical vertebrae 3-5 (shorter than those of mid-dorsal v/ subequal / greater)	B100
162. Centra of cervical vertebrae 3-6 (no more than moderately inclined / steeply inclined)	B101
163. Cranial margin of cervical neural arch (straight / notched to form overhang)	D134
164. Cervical vertebrae longer than dorsals	E4
165. Twelve cervical vertebrae	E59, J56
166. Longest cervical vertebra lies at end of series	E61
167. Cervical centra shorter than mid-dorsals	D81, E67 / 196
- Cervical intercentra form hypapophyses	E189
AUTAPOMORPHY Squamata	
- Mammillary processes on neural spines of posterior cervical and anterior dorsal vertebrae	E7
AUTAPOMORPHY Petrolacosaurus	
168. Loss of trunk intercentra	BA24, D80, E32, J67
169. Neural arches of mid-dorsals (shallowly excavated / deeply excavated)	D84
170. Dorsal neural spine height (tall / low with height < length)	BA23, D85, E101
171. Ovoid spine-table on top of neural spine (A/P)	BA21
172. Transverse processes of trunk vertebrae well developed (N/Y)	B21 E88 / 214, J31
173. Number of sacral vertebrae (0-2 / 3+)	B56
- Fifth metatarsal at least double length of second sacral centrum	E113
ALL "0"s	
174. Intercentra of postaxial presacral vertebrae (P/A)	B55
175. First caudal (separate from sacrum / incorporated into sacrum)	D128
176. Caudal zygapophysis (inclined / nearly or fully vertical)	D129
177. Distal ends of caudal neural spines (not expanded / expanded)	D139
178. Tall neural spines in dorsal and anterior caudal region	D88, E119
179. Caudal autotomy	E134
- Loss of caudal anatomy	E165
ALL "0"s	
- Caudal zygapophyseal facets (disposed no more than 45-60 degrees from horizontal / nearly vertical)	B103
AUTAPOMORPHY Dinosauria	
180. Postcloacal bones (A/P)	B129, BA48, E62, J60
181. Diapophysis and parapophysis (parapophysis in anterior dorsal vertebrae	
transfers from centrum to neural arch)	B58
- Swollen neural arches with deep lateral excavations	E5
AUTAPOMORPHY Petrolacosaurus	
- Strong ventral keels on cervical and anterior dorsal vertebrae	E6
AUTAPOMORPHY Petrolacosaurus	
182. Haemal spines large and plate like	B127, D91, E118
183. Curvature of haemal spines (no curvature / cranial curvature present)	D141
184. Platycoelous vertebrae	E213
185. Spine tables (A/P)	B57
- Neural spines with specialised intervertebral facets	E105
AUTAPOMORPHY Youngina	
186. Neurocentral surfaces (closed in adult / open in adult)	D131
187. Intervertebral articulation formed by zygosphene-zygantrum (N/Y)	E135, J20
188. Ossified epiphyses with discrete centres	E138
- Elongation of vertebral column by addition of pre-sacrals	E166
AUTAPOMORPHY Thalattosauria	
189. Vertebrae non-notochordal in adult (N/Y)	B20, D83, E76, J29
190. Coracoid (large plate / small with sub-circular profile)	B105
191. Ratio of lengths of caudal transverse processes and centra ($<1.0 />1.0$)	D89, J36

- Slender and tapering cervical ribs at low angle to vertebrae (A/P)

192. Ribs run back parallel to the cervical vertebral column E92
193. Cervical rib accessory process (A/P)
194. Tapering cervical ribs
195. Long slender cervical ribs

- 19-28 pairs of caudal ribs

ALL "0"s
196. One or more cervical ribs are single headed E197, J30

- Elongate one-piece ribs

E215
ALL "0"s
197. Last few dorsals with fused ribs
198. Posterior dorsal vertebrae with fused ribs (N/Y)
199. Dorsal ribs holocephalous (N/Y)

BA25, E60
J57
D86, J19
200. Second sacral rib (not bifurcate / bifurcate with caudal process pointed bluntly /
bifurcate with caudal process truncated sharply)
D87
201. Proximal caudal ribs (recurved / project laterally)

D90
202. Sacral and caudal ribs (fused to centra / free) D132
203. Gastralia (A/P)

D92, E190
204. Lumbar region (not differentiated / ribs of last few presacrals project laterally and are not expanded / ribs of last presacrals fused or lost, project laterally and are not expanded distally) D137
205. Anterior caudal ribs expanded distally E106
206. Dorsal body osteoderms (A/P) B60
207. 1-1 alignment between dorsal body osteoderms and vertebrae (A/P) B61
-19-28 pairs of caudal ribs
ALL "0""s
208. 9-10 pairs of caudal ribs E117
209. Ribs attach laterally to sternum E198
210. Sternum arises as two plates E199
211. Interclavicle T-shaped or cruciform E200/226

Appendicular Characters:

212. Low scapula

D99, E39
213. Scapula low in lateral view, mostly ventral

E115, J45
214. Scapula subequal to coracoid
215. Short scapula, reduced coracoid
216. Anteroposterior width of scapula (broad / narrow)

BA26, E116
217. Clavicle (P/A)

E160

An Cle Blo4

- Anterior border of scapulocoracoid with 2 emarginations E191

AUTAPOMORPHY Squamata

- Enlarged coracoid process for triceps E8

AUTAPOMORPHY Petrolacosaurus
218. Single coracoid

B105, E13
219. Glenoid fossa of scapulocoracoid (faces laterally / faces posteroventrally) B106
220. Coracoid tubercle (not displaced dorsally / lies close to glenoid fossa and coracoid foramen) B63
221. Forelimb length (greater than or equal to half of hindlimb / less than half) B107

- Limbs reduced with respect to presacral vertebral column E163

ALL "0"s
222. Archosaur humerus (A/P) B64
223. No entepicondylar foramen on humerus BA27, D 68 / 107, E78
224. Humerus with strong entepicondyle

E102

- Humerus greater than or equal to length of femur

D106, E107
AUTAPOMORPHY Hyperodapedon
$\begin{array}{ll}\text { 225. Medial margin or proximal humerus (weakly arched / strongly arched) } & \text { B65 }\end{array}$
226. Deltopectoral crest (extends less than $1 \frac{1}{4}$ down humerus / extends more) \quad B66
$\begin{array}{lll}- \text { Distal end of humerus (wider than proximal end / narrower) } & \text { B67 }\end{array}$
ALL "0"s
227. Ectepicondylar foramen or groove of humerus (P/A) B68
229. Deltopectoral crest shape (crescentic / subrectangular) B108
$\begin{array}{lll}- \text { Apex of deltopectoral crest (less distally placed on humerus / more) } & \text { B109 }\end{array}$
AUTAPOMORPHY Lepidosauromorpha

- Radius equal or subequal to length of humerus E10AUTAPOMORPHY Petrolacosaurus
- Twisted radius E103
AUTAPOMORPHY Lagosuchus230. Radius longer than ulna (split into 3 states - Longer / Equal / Shorter)BA28, E104
- Ulna lacks olecranon and sigmoid notch E21
AUTAPOMORPHY Cosesaurus231. First distal carpal lost or fusedBA31, E40, J46

232. Loss of intermedium in carpus
233. Medial centrale meets fourth distal carpal in adult E109
234. Medial centrale double lateral centrale E110

- Proximodistal expansion of ulnare and intermedium E12AUTAPOMORPHY Petrolacosaurus
- No foramen between intermedium and ulnare E79
AUTAPOMORPHY Petrolacosauru235. Centralia in the manus (P / A)BA30, E48, J51236. Lateral centrale of manus (P/Small or A)J10

237. Lateral manus centrale meets second distal carpal E193
238. Relative lengths of metacarpals 3 and 4 (3 shorter than 4 / 3 equal in length to or longer than 4) BA32, E137, J55
239. Relative lengths of metacarpals 1 and 5 (shorter than 2 and 4 / similar to 2 and 4)240. Medial centrale in carpus (P / ABA33, E136241. Fourth metacarpal shorter than thirdJ33
240. Distal condyles of metacarpal I (perpendicular to long axis / offset / offset so ungal is enlarged) B72
241. Manus length (> or = to half of tarsus and pes / less) B70
242. Manual asymmetry (digit IV stoutest and longest and other diminishing / I and II stouter) B71
243. Ilium with reduced contribution to acetabulum246. Ilium short in relation to ischium247. Ilium with strong pubic flange
244. Dorsal margin of ilium
245. Iliac spine (A/P)
246. Preacetabular buttress on ilium (A or insignificant / well developed)D102, E42, J48
BA34, E63
D110, E139
D102
B73, E159
BA35
E161, BA37251. Narrow, elongated, waisted pubis
D104
247. Anterior apron of pubis (A/P)
248. Pubis and ischium (puboisichadic plate and broad contact b/w pubis and ischium /plate absent and bones shot and broad / plate absent, bones elongate)
249. Pubis length (shorter than ischium / longer) B76B74, D144

- Enlarged lateral and distal pubic tubercles E9AUTAPOMORPHY Petrolacosauru

255. Pubic acetabular margin recess (A/P) 55. Thic ad form (A/P) B77
256. Thyroid foramen in pelvis (A/P) BA36, D100, E52 / 129, J22

- Acetabulum (elongate / circular)D101
AUTAPOMORPHY Petrolacosaurus

257. Acetabulum (imperforate / perforate) B111
258. Length of ischium relative to width of acetabulum (short / posteroventrally elongate) B75259. Relative contributions of pubic elements to acetabulum (primarily the ilium /approx. equal contributions from each element)
D105
259. Hindlimb posture (sprawling / semi-erect or erect)B78
260. Relative proportions of femur (distal width/total length <0.3 / >0.3) D111
261. Bird-like distal end of femur (A/P) B112
262. Femoral shaft curvature (not markedly sigmoid / sigmoid / bowed anteriorly) B79, BA38, E18
263. Lesser trochanter of femur (A/P)B80
264. Fourth trochanter of femur (absent / mound-like / sharp flange) B81- Distal articular surface of femur levelD110, E19
AUTAPOMORPHY Petrolacosaurus
265. Prominent cnemial crest on tibia (A/P) B82
266. Fibular anterior trochanter (crest-shaped and lowed / knob-shaped and robust) B83
267. Fibular distal end width (less than proximal end / greater) B84
268. Fibula tin and strongly tapered distally (A/P) B114
269. Tibia equal or subequal to length of femur

271. Ectepicondylar foramen (P/A)	D108
272. Medial centrale of carpus (P/A)	D109
273. Perforating foramen (between astragalus and calcaneum / between distal ends	
of tibial and fibula)	BA40, D115, E44 / 145, J59
274. Hemicylindrical calcaneal condyle (A/P)	B91
275. Astragalus-calcaneum articulation (concave-convex absent / present)	B88, D113, E90 J34
276. Lepidosaurian ankle joint (A/P)	D114, J24
277. Lateral tuber of calcaneum (A/P)	B120, BA41, D116, J35
278. Astragalocalcaneal canal	B90
279. Centrale (P and does not connect to tibia / P and contacts tibia)	D117
280. Centrale (P and contacts distal tarsal 4 / P and does not contact)	D118
281. Pedal centrale (P/A)	B94, BA42, E53, J53
282. Astragular tibial facet (concave / saddle shaped)	B85
283. Ascending process of astraglus fitting between fibula and tibia (A/P)	B117
284. Astagalar posterior groove (P/A)	B119
Astraglus (not transversely widened / widened)	B116
285. Astragalar tibial and fibular facets (separated / adjacent)	B86
286. Dorsal and ventral astragalocalcaneal facets (subequal in size / ventral facet much larger than dorsal)	B89
287. Astragalus and calcaneum unfused or fused	J23
288. Lateral pes centrale fused to astragalus	E141
289. Shape of astragalus (L-shaped with broad base / elongate)	B116 / 118, D135
290. Astragalus and calcaneum fuse in juvenile	E140
291. Crocodyloid tarsus (A/P)	B87
292. Advanced mesotarsal ankle (A/P)	B115
293. Calcaneal facets for fibula and distal tarsal (separated / contiguous)	B92
294. Calcaneal tubercle orientation (orientated less than 45 degrees, shaft taller than broad/ orientated $>$ than 45 , shaft broader than tall)	B93
295. Pedal stance (plantigrade / digitigrade)	B122
296. Pes centrale displaced laterally	E82
297. Pes (functionally pentadactyl or tetradactyl / functionally tridactyl)	B123
298. Reduction in length of foot	E56
299. Maximum of five ossified tarsals	E49, J52
300. Only four ossified tarsals	E64
301. Three proximal tarsals with centrale integrated into proximal row	E69
302. Loss of fifth distal tarsal (P/A or reduced)	D121, E81, J11
- Fifth distal tarsal lost or fused	B98 / 126, E112 / 143
CANNOT JUSTIFY	
303. Fourth distal tarsal has dorsal process meeting recess in astragalocalcaneum	E120
304. Distal tarsal IV transverse width (broader than III / subequal to III)	E121
305. Loss of second distal tarsal	BA44, D120, E194
306. Loss of first distal tarsal; first metatarsal meets astragalocalcaneum	E142
307. Loss of first distal tarsal	BA43, D119, E45, J58
308. First distal tarsal enlarged	E111
309. Reduction in length of metatarsals	E167
310. Metatarsal 5 shape (L-shaped / symmetrical and very short)	BA46
311. Fifth metatarsal hooked in one plane	D122, E89, J12
312. Fifth metatarsal hooked in two planes	E144
313. Fifth metatarsal very short and geometrical	E57
314. Fourth metatarsal is at least 3X length of fifth metatarsal	BA45, E46
315. Fourth metatarsal elongated, forms at least 40% of digit 4	E83
316. Metatarsal III length (less than $1 / 2$ tibial length / more than $1 / 2$)	B125
317. Ratio of lengths of metatarsals I and IV (>0.4 / <0.4 and >0.3 / <0.3)	D123
Metatarsals II, III, and IV (unequal in length with IV longest / subequal with III longest)	B95
318. Metetarsus configuration (spreading / compact)	B124
319. Long ground phalanx on digit	E58
320. Phalanges short in relation to metapodials	E68
321. Pedal digit III (shorter than IV / longer)	B96
322. Ratio of lengths of digits 3 and 4 ($<0.8 />0.8$ and $<0.9 />0.9$)	D124
323. Relative length of second phalanx on digit 5 of foot (short / long)	BA47

324. First phalanx of the fifth toe elongated (as long as the metacarpals of digits I-IV) (N/Y)

- Phalanges of pedal digit V (four / fewer)

AUTAPOMORPHY Boreopricea

B

Data Matrix

Boreopricea
??? 111 ???101??00???11??1????0?011?0???0??000001???1???00?1???0?0?110??1101111111?10??1?0?1?1?1????0???????????????? ??1??????0?0?0??0?1??101?10?0?0???????11?1????10?01???0???????00???0??001????1???00????????????11000??1????00???????? 0?1??10?1???10????????????????1??????0??1??01???0?????01?0???????1100101111?0010001???00??10

Champsosaurus

$10 ? ? ? 1$??01???0??110??00?0011?01?11??00??1?1????01?1??0??1?0???11????00?????000?10?00??????1?11?????1?0??00000020??0 00 ?000??000?0000?0100?0????0?0000???1?0?1?0??0???0100?????1100???00??1??1?10?1?????101110??????????????????1???????? ???????????????11???10??0??0?0?????????000?101???????????0????????????1????????1?????0??????0

Choristodera
???01100?101??11???00??0????0?11??????1??101010???1?1??0?0???1?0?001??1?11000001?00??0?101?01???0?0?0?01??????????? ??0????0?0?0?0??1?0??001?00?0?0???1???00??????00011?1?00?????000???0??001???01000000?????1??000?00001?1????10?????? 0011110 ?101????00???0????0?????????????0??0?000???1?????01?0?????? ???0010011110?10001????????0

Cosesaurus

???1000??101???01?????????????1?1??????????0?????????????1???????0????11???01??1??0?????1??1?1?????1??????????????????? ?????????0???????1????0?00????????11?0????10001????0?????0?0?0?????01??11111?00??????0??1??01?10???????10???????11?1? ?10?1???10????0????1??????1??????0??1???0???1??????0?0?????1?11001???1110110111???10??10

Cteniogenys

10???1??00???0???10??00?0?11??1?11??10??0?0????00????0??1?0???11????00?????0?0?1??00??????1??????0???0??0?00?0????00 0?0?0??0????000?1?00?0????0?0?00???1?0?1????????0100??????10????????1??1?0???????????1????????????????????1??????????? ?????????????0???0??????????????????0???

Dinosauria

??1?????????1??????1???????????????????2?????????111???????11?1?1???????1??????1111?1????1??111????1?1???1??????21???? ???0?????1???1?1??11????111???1?1?2?????21?????????1?11??????1???1????1????????????????0?????????11111111????111????? ??????212????1????00?11?1?1?1210011???0??11??0011??????011?1?1??????????????????1?1??1???

Drepanosaurus

 ????????????????????????????????10???????000??0?0???011100??1??0?01?0????0?1?101?00????00??000??1????10011?????0????? 0?1???00?3???30??1????0????????00?0?011?000????????1?????0?0?0000?0?0?1?0?000?0?00?2?0

Erythrosuchidae

 ??????10????1?????0?00?0?00?100000???0??00??1?000?????00?00?0????????????????????0??0???

Euparkeria

$0011 ? 1 ? ? 01 ? ? 10 ? ? 1001 ? ? 0 ? 011 ? ? 01 ? 10 ? ? 00 ? 1 ? ? 0 ? ? ? ? 000 ? 0 ? 0 ? ? 0 ? 011 ? 111 ? ? ? 11 ? ? 1 ? ? 011 ? ? 11101 ? ? ? ? 11 ? 111 ? ? 1 ? 1 ? 1 ? ? 011101101$ $0000 ? 0000 ? 111 ? 100000 ? 0010 ? ? ? ? 1110001 ? 0010 ? 0 ? 1100 ? ? ? 0010 ? 1 ? 010 ? 01 ? ? 100 ? 10 ? ? 1011 ? 1 ? ? ? ? ? 121010 ? 20 ? ? ? ? ? ? ? ? 10000011 ? ?$??001???????????111??111??10000010100101000000?101011??100000??0?10000?0????1??1?1???1????000??1??0

Gephyrosaurus

$00 ? ? 00010000 ? 000001 ? 00010 ? 01000 ? 11 ? ? 000 ? 0 ? 1010010 ? 1 ? ? 1 ? 00 ? 0 ? ? ? 01 ? 000010 ? ? 000110 ? ? 000 ? ? ? 0 ? 00111 ? ? 10 ? 10 ? ? 11 ? ? ? 0 ? 1 ?$??000?010?10001000000100010?10000000?0?0?0?0?0??00???001?00??00001???00?0110?00000010?1010100??????0000??1????00 011?????????????????1010??001??1??0?0????????01?1?010??????????1?1???????????111????0?110??????0????

Howesia

????0?10?101?111111?1?110??1?10?11??01??101?11112?1??0?0002????1?0?1111???0?111?0100???0?1111????01000????????10?
???1??02?0?11101110?111?00?11000100?????001?0???????0?0?????000????10??0??1?1?????????2101?????000???0??1????1????? ????????????????00?1??010??0??0???????????0???101?100??????000?????1???0110100000?10???????????0

Hyperodapedon

01???0??11???1??111??01?1111?10?11??11??1?1????12?1??1??1?1???10????0??????011?00?01??????1?11???1?1?0??10110111??1 12?111??010?0110?3101?1????0?0110???0?0?1?0??0???0100?????0100???00??0??1?00?0?????101010??????????????????1???????? ???????????????12???20??0??0?1?????????011??00?11????????0????????????1??0?0???1?????2????2?0

Jesairosaurus

???1?1???1????????????????????????0??????1????????1?1????0???0????????1?0??1?1???????1??1??111????1??????????????????1? ?????????????????????????????????0????????0??1???1???????????????0?0????????????????????????0??1???????????????????????? ????0??????????0??

Kadimakara

?????????????????????????????????11????????000000???0???00?1???0?1?0?0???11??0???1??0??1?0?1??????????0??????????????????? ????????0?????????10?????01?????????????????????????1??????????????0??1??? ?????????????????????????????0??

Lagosuchus

 ???0?????1???1?1??11????111???1?1?2?????11?0???????1?01??????1????????1???????????????? 0 ?????????111111111????111????? ??????212????1????00?11?1?1?1210011???0??11??00111?????011?1?1?1???????????????1?1??1???

Langobardisaurus

0??1?1?001????????????0?0?????????????????????????????????0????1?0????1????????0?????????????1????0????????? 0 ???????0?0 ?0???????000???00?0????0?0??1?0???11101??1?0?11?001?0?0?00?0??0??00?1?11?11??11011012????????11????????1????????0?? $0 ? ? 00 ? ? ? ? ? ?, 1 ? ? ? 1 ? ? ? ? 1 ? ? ? ? 0 ? 1 ? ? ? ? ? ? ? 0 ? 0 ? 100 ? 100 ? ? ? ? ? 0 ? 1 ? ? ? ? ? ? ? ? 3 ? ? 1 ? ? 1 ? 1 ? ? 01 ? ? 0 ? ? 0 ? ? ? ? 101$

Lazurussuchus

10???1??00???0??101???0?0?1??0??11?????????????00?????????????1????????????????????00??????1????????????????????????? 0 ? ?????0????000???00?0????0?0?00?????0?1?1??0???0100?????110?????,0??0??0??0?1?????101010???????????????????1????????????? ???????????10???00???????0?????????0????01???????????0???????????1??1?1???1???????????0

Lepidosauromorpha

??0?????????0??????0???????????????????0????????? 000 ????????0?000???????,0??????0000??????0??00????????????0?????? 00 ????? ????????0???0?0??00????000???0?0?0?????00?????????0?00??????0???0????0????????????????0?????????,0000?000??00??0??????? ????000????0?????0??0?0?00?000?00???0??00??0?0?0?????00??0?0????????????????????0??0???

Macrocnemus

00?101000111?000??1110010???1011110?000?01?000001?1?1000000??0???110??11?11?1111?00??1?01?1111??010010??????0??? ??000?010?0??0100000210010?010001000?????1?101??1100?1?1110??000000?00??0001?111111000?11011????0001?110?1????10 ??????000?0????10???10?1?1?10??1??1?0?1???????0?0?000?100?????0?10?????1?0?001011?0100100?1?0?00?1?0

Malerisaurus

???1??0??11????????????1??????0?0?1???0????01?????????0??????0???0????100100?111?????1?????1??????01?????????????????1 ??????0???0??0????001010??0????0???1??0????10001?1111???????????0??001???????00???????0??????00001?1?????0????????0?? ?????????000??10????0??????1??????1??1???1???1????????0????????????00??1?00?0?0??????????

Megalancosaurus

00 ??01000101??00101?1?0?0???????1?????????????????????????0??????0?1????????11?1?01????????1?1??????????????0?????0?0 ?000??????0000??1001?????0?0??0?0???10110??110??1110?0???111?0?11??0?01??????0?1?10?000????00???0????????10????????0 ????1??0????013?1?3????????0?0???????0?0?001?000???????0????????????1??0?00?10??1??0????210

Mesosuchus

$00 ? ? 00 ? 011 ? 1 ? 111111111010111000 ? 11 ? ? 011 ? 10 ? ? 10112 ? 1 ? ? 0 ? 0002 ? 1 ? 11 ? 001111 ? ? 100111 ? 0100 ? ? ? 0 ? 10111 ? ? 101000 ? ? 1111111$ $0 ? ? 001 ? 002 ? 0011 ? 010002101 ? ? 0 ? 11000000 ? 1 ? 0 ? 0 ? 1 ? 0 ? ? 010 ? 1010 ? 11 ? ? 000 ? 00 ? ? 00 ? 0001 ? 111 ? 0000 ? 121010 ? ? ? ? 0000000 ? ? 1 ? ? ? ? 1$ 1????????????????????0??1??010??0??0?0????????0000?101?100??????000?????????0110100010?10001?1?01?1?0

Ornithosuchidae

??1?????????1??????1???????????????????1?????????111???????11?1?1???????1??????1111?1????1??11?????1?1???1??????21???? ???1?????1???1?1??11?????11???1?0?2?????1??????????1?11??????1???1????0????????????????21????????10001011?111001?????
??????212????1????11?01?1?0?1211100???1??01??110011????10110?0??????????????????0?0??1???
Parasuchia
??0?????????0??????1???????????????????1?????????110???????11?111???????1??????1111?1????1??11?????1?1???1??????21???? ???1?????1???1?1??10????111???1?0?1?????10?????????1?01??????1???1????0????????????????21????????10000011?101001???? ???????111????1????00?00?0?010101100???1??01??110012????10110?0??????????????????0?0??1???

Petrolacosaurus

$00 ? 0000 ? 0010 ? 000000000000000000000 ? 0000 ? 000000000 ? 0 ? 00 ? 0000 ? 0 ? 00 ? 000000 ? 0000000 ? 0000 ? 0000 ? 0000 ? 0000000 ? 000001 ?$ $00 ? ? 0000000 ? 00000000010000000 ? 00000000 ? 0 ? 0 ? 000 ? 0 ? ? 0100 ? 010 ? 00 ? ? 000000 ? 000 ? 0000 ? 0000000000000000 ? ? 000000000 ? 0 ? ? ?$?00??????00000000100???0000??000??0??0?0????????1000?000?000?????0000?????0??00000000000?00000?0?00?0?0

Prolacerta

$00 ? 111010101 ? 000101111010 ? 01001 ? 1001000 ? 0 ? 0000000 ? 1 ? 1000000 ? 1001 ? ? 01 ? 11111 ? 0111 ? 1100 ? 11011 ? 111 ? 100000010111101$ 10??0001010?01?10?00002000101010101000???0?1?101??1100??10111??000?00??00?0001?111111000?210100??0000?0000?1??? ?10??????000?01?0??0???00?1?1010??0??0?0?1???????010?101?100?????0000???????000010000000010001?0?00?100

Prolacertoides

????1?0??1?????0????1???????1?1?1?01??0?????????????????????????????????????? ????????0??0???????110?00???????????????????0?????????????????????1?? ???

Proterochampsidae

??1?????????1??????1???????????????????20????????000???????01?1?1???????1??????1111?0????1??11?????1?????1??????11????? ??0?????1???0?0??11????111???1?0?1?????10?????????1?01??????0???0????0????????????????10????????10000001?0110?1?????? ??????11????1????00?00?1?010100000???0??00??100010????10000?0??????????????????0?0??1???

Proterosuchidae

$0000100111011000101111010111001010 ? 100110100010000 ? 010 ? 0000011111001111 ? 110011111 ? 1000 ? 01111110 ? 0100 ? 11111110$ 110100001000?01?10?00002000101?10111000000?0000?110010000?0?1?00000?0001010000101111?0000?11011?0??00?000000?0 $00010 ? 00 ? ? 00 ? 0001 ? 010010000 ? 10 ? 010 ? 0000000 ? 0 ? 0000000 ? 001010100 ? 000 ? 000000 ? 0010000010000010 ? 10001 ? 10000 ? ? 0$

Protorosaurus

00 ?1010101?????0?0????010?????1111010?0??0000?012?1?1?00000??1?0?00???1?1?0011????0??1?01?1111????0???????????00?? 0001000?0?0??00000??0010?010101000?0???1?110??0100?0?1000??000100??0??0001??11111000?0?01?????0000000??1????10?? ????00000?001?0???0?????0?0??0??0?0?1??????10?0?101?000?????0010?????1?000010?00010000001?0?00?0?0

Pterosauria
??1?????????0??????1???????????????????1??????????11???????01?1?0???????0??????0101?0????1??110????1?1???1??????11???? ???0?????0???0?1??10????101???1???2?????20?????????1?11??????1???0?????????????????????0?????????10?0???1?001100????? ?????????????1????00?00?1?1?0010011???0??11??00?1??????01??0?0??????????????????0?0??0???

Rhombopholis

 ????????1????????????1???

Rhynchosauridae

$00 ? 0 ? 0101101 ? 111111 ? 101121 ? 101011101 ? ? ? ? ? 00 ? 10012 ? 1 ? 10001 ? 2 ? 11 ? ? ? 001021010 ? 0111 ? 0001 ? 1101 ? 1111 ? ? 00 ? 0100 ? 10 ? 1011$ 1??0111112?001?00111031110?1010000110???0?00?00??0000?0?0010??010?00?001?0001?000000000?010100??000100000?1???? 11??????1???0??10?0???0?01?0010??0??0?0?0??????00???100?110?????0000?????1?100110000001010001?1?01?100

Scaphonyx

01???0??11???1??111??01?1111?10?11???1??1?1????12?1??1??1?0???10????02?????011?00?01??????1?11???1???0??10110?01??1 11?110??010?0110?3101?1????0?0110???0?0?1?0??0???0100?????0?01????0??0??1?00?0?????101010??????????????????1???????? ???????????????12???20??0??0?1?????????0?1?101?11????????0????????????1??0?0???1?????1????2??

Scleromochlus

??0????2????1??????1???1?11??????1???1????0??1???1?????????????? ?0???????????????1????1?1???????2?????00?0???????1?1????????????????1????????????????0?????????1?11?111?0010?1????????? ???12????1????1???1?1?0??0?0011??????1?????????????01??1?0??????????????????1?1??1???

Sphenodontia
???00011?000??00????0??1????0?011??1??0??011100???1?1??0?0??11?0?011??0?00001101000??11010?111?10???1??1??1??????? ????????1?1?1?1??1?1??01??11?001???1???00??????00010?0?00?????010?0?0??1?0???00001001?????0??011?00001?1????0?????? ?0000010?101???001???0????1?????????????0??1?010???1?????11?1?????0?101011101110?11000???00???0

Squamata

$00 ? ? 00010000 ? 000000100010011 ? 00 ? 11 ? ? 000 ? 01 ? 011110 ? 1 ? ? 0 ? 0010 ? 1 ? 1 ? ? 100011 ? ? 011110 ? 0000 ? ? ? 0 ? 10111 ? ? 110 ? 10 ? 10011102$ 1??0000010?01001?00001100010?11000110?0?0?000?0??0000?100?00??000011?000?0111?10000010?1000000??011?0000??1???? 10??????11000?101?1???0010??101??1??0?0????????0101?010???1??????1?1?????0?00?0111?1?10?11001?0?00?0?0

Stenaulorbynchus

00???0??11???1??111??01?2111?10?11???1??1?0????12?11?0??1?2???11????02?????011?00??1??????1?11???0???0??10110?11??0 12?112??011?0111??111?10???0?0110???0?0?1????0???0001?????0?01???00??0??1?10?0??????110?0??????????????????11??????? ???????????????12???2???0??0?1?????????0?1?101?11????????0????????????1??0?0???1??????????2?0

Suchia

??0?????????1??????1???????????????????1?????????11????????11?1?1???????1??????1111?1????1??111????1?1???1???????1???? ???1?????1???1?1??11????111???1?0?1?????10?????????1?01??????1???1?????????????????????21????????10?00011?101001????? ??????111????1????11?11?1?010101100???1??0???110012????10110?0??????????????????0?0??1???

Tanystropheus

$00 ? 101000111 ? 000101110010 ? 01101111 ? 1000 ? 001000112 ? 1 ? 1101010 ? 1001 ? ? 1002110111111 ? 0000 ? 1 ? 0100111 ? ? 010000 ? 10 ? 100 ?$ $00 ? ? 0001010 ? 00 ? 000000031000 ? ? 01000 ? 011 ? ? ? ? ? 1 ? 1 ? 0 ? ? 1111 ? 101111 ? ? 0000 ? 1$?001?0001?111111011?010121??000011100?????? 10??????11111101?11???1101?0?10??1??1?0?1???0??0010?0001??1?????0?10?????1?111010111110110111?0?10?211

Tanytrachelos

???100?0??????????????????????1?1?1??????0?00?0???1???10?1???0???0????1??1??1??1??0??1??1??1?1????0??????????????????? ????0?????0????????0???0?01????0???1??1????11101??11??????0?1?0?????01??111??011??????1???00?1111??1?????0??????1??11 ??11111?011???11????1??????1??????0??1??01???1?????0??????????111010?11110110111???10??11

Thalattosauria

????1001?101??00????1??1????0?0?0?????1??010000???1????1?1???????0?0??1??1101111?00????1?0?1??????0?0???????????????? ?????0???0?0??0?1??101?10?000???0???00??????00101?1?00?????000?0?1??001???110000???????0??00000000??1????10??????00 111?010?0???100???0??????????????????0??1?0?????0????????0?????1?110010?00011?00000???00????

Trachelosaurus

? ? ? 1 ? 0 ? ? ? ? ? ? ? ? ? 111 ? 1 ????????????????0????????????0???1??1????1??01?1111??????0????0??0?1??11100?00??????0?????? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Trilophosaurus

$00 ? 00001011 ? ? 000001 ? 00010101000 ? 10 ? ? 001 ? 0 ? 1 ? 11002 ? 1 ? 100 ? ? ? 0 ? 100 ? ? 0 ? 00 ? 1 ? ? ? 0 ? 11110000 ? 110111111 ? 10000 ? 01 ? 1 ? 110 ? 10$??0000010?0??0?000003100001110000110???0?00100??01000011010??000000?001?000????1100001?010110??100000001?1????1 0??????00010?1??10???00?1?1010??0??0?0?1??????0010?101?100?????0000?????1?000010?00010010001?0?00?000

Youngina

$00 ? 0 ? 10 ? 0000 ? 000000000010 ? 0000 ? 00000000 ? 00 ? 000000 ? 0 ? 0111000 ? 000 ? ? 010000000110 ? 0000 ? 000000000 ? 000 ? 0000001000100$??0000000?0010?00000000010001100000000?????0?001??00000000000??000000?000?00?0?00?00?1001010000??0???00000?1??? ?01??????000?00?0?00???0111?1010??0??0?0?1??????0000?000?000?????0? $00 ? ? ? ? ? ? ? 00000 ? 00 ? 00000 ? 00 ? ? 0 ? 0 ? ? ? 00$

C Further Tree Information

The diagnostic characters related to each node are listed below. Some characters are listed multiple times due to multiple character states which therefore change in several locations. Where no node is marked, it has no defining characters.

Supermatrix Tree (SM) (Figure 4)
$1-151,160,217,229,283,297: 2-189,219,221,295,316,318: 3-220,242,244,264: 4-50,113,207,293,294: 5-60,85,184$, 222: $6-230,244,321: 7-95,128,243: 8-149: 9-102,113,173,249: 10-81: 11-26: 12-242: 13-79: 14-12: 15-28,36,53$, 61, 87, 93, 94, 96, 236: $16-286: 17-2,25,115: 18-25,248,252,261: 19-84,116,119,280: 20-23,30,130: 21-14,38,117,136$, 301, 320: 22 -163: 23 - 313, 319: $24-213,214,259: 25-29: 26-155,212: 27-176,182,248,252: 28-152,185,202: 29-1,174:$ $30-209,210: 31-178,186,253,271,303$.

[^0]: *Author for correspondence and reprint requests; E-mail: dwe_hone@yahoo.com

