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Chapter 1

Introduction

It’s always an uncertainty. We’re always at the infectious disease roulette table .

Dr. William Schaffner (Anonymous, 2010)

William Schaffner is consultant for, e.g. the Centers for Disease Control and Pre-
vention (CDC) and the World Health Organization (WHO). The main task of a
statistician and this thesis is the handling of the uncertainty, he speaks about, and
find pattern to forecast how things will happen.

1.1 Presentation of Problem and Interest of Research

The most well known pandemic in history is the plague which appeared in different
waves and caused high proportions of deaths in Europe. Between the middle of the
14th until the beginning of the 18th century the plague has been the infection par
excellence. The Western World understood the infection as a punishment of God
(see Bulst, 1989). Because religious and secular departments worked out defensive
measures in close cooperation, they advised people to attend church services as “first
aid’. Other popular misconceptions appeared such as the plague being transmitted
by bad breathing air. In the middle of 16th century a variety of defensive measures
originated like controlling the access to towns, quarantine of infected, destroying
belonging of the dead, but the displacement of marginalized groups as well. Finally,
with John Snow (1813–1858) and his investigation on the 1854 cholera outbreak in
London, modern epidemiology was developed. He explored the spread of the disease
systematically and detected quality of water source as its root. This study came to
be a major break-through in the history of public health.

This thesis will investigate automated outbreak detection of infectious diseases.
Thereby, outbreaks, which means an unusual high incidence, should be identified
early to control and prevent their spread.

Today, infectious diseases are studied in a more advanced manner compared to the
time of the plague. Usually, it is known how infections are transmitted. In general,
societies have a basic infection protection by hygienically standards, and in case of
an outbreak, efficient ways to prevent the spread of an infectious disease are known.

1



2 CHAPTER 1. INTRODUCTION

Institutions for public health are established to monitor infectious diseases. In gen-
eral, they combine risk research with political advice. In Germany, through the
Law for the Prevention of Infection (Infektionsschutzgesetz, IfSG), the Robert-Koch-
Institute (RKI) was given the responsibilities of a federal epidemiological centre for
infectious diseases. The RKI cooperates with various public health institutions in
Germany and around the world, including the World Health Organization (WHO).
Guided by the United Nations, its main task is the combat of diseases with focus on
infectious kind.

Thereby, the public health organizations have to work hand in glove with various
scientists. Physicians, who need to be alert and detect the disease are important.
Afterwards, statisticians have to detect a significantly increased number of incidences
as quickly as possible and define time points of alarms. And finally, public health
scientists need to investigate these alarms, while public health politicians have to
initiate appropriate ways to prevent the spread of the disease.

1.2 Research Question

In cooperation with the RKI, automated outbreak detection of infectious diseases
based on routine surveillance data will be studied. The particular interest lies on
the hierarchical time series models approach of Heisterkamp et al. (2006). Its de-
scription, implementation in the R package surveillance (Höhle, 2007), evalua-
tion, and application on RKI’s Campylobacter data are the main tasks of this work.
Furthermore, covariate progresses will be integrated into the outbreak detection.
The potential of hierarchical time series models in comparison with the established
Farrington algorithm (Farrington et al., 1996) or other public health surveillance
algorithms will be figured out.

1.3 Introducing Issues to Automated Outbreak Detec-
tion

Detection of infectious disease outbreaks belongs to the area of surveillance, where
time series of disease counts are monitored and change points or outbreaks should
be detected. Thereby, the surveillance methods are not only applied in the context
of public health. The statistical methods are applied, e.g. in other medical areas,
in economics, environmental control, as well. Thus, different terminology for statis-
tical surveillance developed such as optimal stopping, change point stopping, early
warning system, statistical process control, quality control, etc. Each terminology
emphasize different issues corresponding to the area of application (see Frisén, 2003).

1.3.1 What is an Outbreak?

An outbreak does not have an unique definition. As an technical epidemiological
description an outbreak is defined by linked cases of a certain definition. From
the public health’s point of view an outbreak occurs if more cases than expected
are recognized (Farrington, 2010). There are other definitions as well, but in the
following I will use the later definition.
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It is distinguished between different types of outbreaks, which will be explained es-
pecially in the context of food borne diseases. A traditional food borne outbreak
is highly local with usually a high attack rate in the group which is exposed to
the source. For example, in 2005, there has been an outbreak of Campylobacter
infections on a school excursion due to raw milk in Landsberg am Lech, Germany
(Anonymous, 2006). This kind of outbreak is usually identified early by the local
public health authority (Gesundheitsamt).

Another type of outbreak is emerging as the world is getting smaller. Since persons
and food can travel more easily and faster around the world, linked cases might be
widespread and involve many countries. An example is the Salmonella outbreak,
caused by a kosher snack, detected in the United Kingdom in February 2005 (Far-
rington et al., 1996). A non food-borne example is the Swine influenza in 2009.

Moreover, there can be an outbreak by the introduction of a new pathogen into a
new geographic area, such as tropical disease outbreaks are expected in European
countries due to the climate change. For example, a Chikungunya outbreak, a
disease which is transmitted by mosquitos, has been recognized in Ravenna, Italy,
in summer 2007 (Stark, 2009).

1.3.2 Which Statistical Methods are Used?

As the range of application areas, the variety of statistical methods for surveillance
is wide. They can be summarized in two groups: Methods based on reference values,
and the framework of statistical process control. In the context of this thesis, it will
be focused on methods which construct a reference set with values of comparable
time points, e.g. the observed number of infected in the corresponding 18 weeks in
the last two years.

Special attention will be given to a simple system used at the RKI, the Farrington
algorithm which is based on a generalized linear model, the Bayes algorithm using
the predictive posterior, and the hierarchical time series algorithm which includes
all past values as an enhancement of the Farrington algorithm. Furthermore, a full
Bayesian approach will be developed on basis of this algorithm.

1.3.3 Which Software can be Used?

For practical application different statistical software such as R, SAS, or Stata
can be used. In this thesis, all analyses are carried out using the statistical pro-
gramming environment R (R Developer Core Team, 2009) in its version 2.9.2.
This software and every add-on package used in this thesis is available at http:

//www.cran.r-project.org. Especially, the add-on package surveillance and its
application will be introduced which provides a wide range of statistical methods
for automated outbreak detection of infectious diseases. Its environment for devel-
opers of new algorithms will be used for implementation of the originated Bayesian
hierarchical time series algorithm.
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1.4 Surveillance Data

To control and prevent diseases, large amounts of data about various diseases and
health events are collected, not only in various nationwide public health programmes
such as the RKI in Germany, but in international organisations such as the Euro-
pean Center for Disease Prevention and Control (ECDC) in the European Union or
the WHO in the United Nations (UNO) as well.

This thesis comes into being in cooperation with the RKI, Germany, who provided
reports on Campylobacter infections between 2001 and 2009 in Germany (Robert
Koch-Institute, 2010). Its time series is introduced in Figure 1.1. The on-going data
collection is determined by the IfSG. Campylobacter is the most common cause
of diarrhoeal diseases in Germany and many other industrial states. Food borne
diseases concern governments and food industry today more than decades ago due
to the increasing number of reported outbreaks and the impact on children, age-
ing population and immune compromised. Since the ease of worldwide shipment
of fresh and frozen food, migrant population demanding their traditional food in
the country of settlement, and the development of new food industries including
aquaculture, more world-wide associated and therefore difficult to detect outbreaks
appear (World Health Organization, 2007).

Process of Campylobacter infections in Germany
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Figure 1.1: Time series of weekly Campylobacter data and of outbreak cases counts

Using the reports of Campylobacter infections automated outbreak detection algo-
rithms under influence of weather parameters will be evaluated. This relation is
taken into consideration by different theoretical and practical investigations. In the
RKI bulletin reasons for the high incidence of Campylobacter infection in 2007 was
discussed (Jansen et al., 2007). It is believed that the comparative warm spring
resulted in different leisure activities such as picnics and barbecues. This fact, in
combination with a higher proportion of contamination in chicken meat are assumed



1.5. OVERVIEW OF STRATEGY AND OUTLINE 5

to be reasonable. A greater incidence in chicken farms by higher outdoor temper-
ature is already proofed by different studies (see Jansen et al., 2007). The direct
influence of specific weather on Campylobacter infection of chicken could not be
investigated.

In an internship during summer 2008 at the RKI, the time series of Campylobacter
incidence by weather parameters was modelled (an der Heiden et al., 2010). It
was revealed that temperature and humidity of the past weeks are able to explain
the time series of infection cases. For the evaluation of the described algorithms
the time period between 2002 and 2006 will be used for modelling and defining a
rule. The years 2007 until 2009 are monitored. Therefore, it is necessary to flag
known outbreaks. As usually in real-world data not all outbreaks are known. Using
a variable of the data frame, which identifies cases belonging to an outbreak, an
indicator for the state of outbreak will be defined and investigated.

1.5 Overview of Strategy and Outline

This thesis is organized as follows. The subject of Campylobacter disease and re-
porting system will be introduced, followed by a descriptive analysis of the RKI’s
Campylobacter count time series and description of the weather parameters in the
second chapter. It will proceed with the basic statistical theory for surveillance
methods by representing general statements on surveillance and describing the Far-
rington algorithm in chapter 3. Chapter 4 contains description, enhancement and
implementation of the Heisterkamp algorithm. To explore the potential and for
evaluation of the Heisterkamp algorithm there will be chapter 5 including simula-
tion studies, and chapter 6 with an application of the presented algorithms on the
Campylobacter data. Finally, the findings will be discussed in chapter 7.

For structuring this thesis, special environments for Example and Excursus are ap-
plied. Using them ancillary information which is not of main importance for the
statistical chain of reasoning is provided for the interested reader. The end of ev-
ery section is indicated by the diamond symbol, i.e. �. Thereby, an excursus gives
further information of subject-related issues. Throughout, a very short summary in
given in the surrounding text, so that the reader could easily skip the part. In each
chapter, a worked through example is used to illustrate the statistical theory. In
this context the special environment is reopened.

A common notation is used. Bold symbols denote vectors or matrices, e.g. x =
(x1, . . . , xn)′. Furthermore, different typefaces are used. Variables in a data set
and programming code are emphasized by typescript. Quotations are printed in
cursive characters.
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Chapter 2

Introduction to Campylobacter
and the Data

In this chapter, the reporting data of Campylobacter infections is described. Be-
ginning with an introduction to Campylobacter with its medical aspects, a basic
understanding of the disease is given. Afterwards, the German system of data col-
lection based on the Law for the Prevention of Infection (Infektionsschutzgesetz,
IfSG), is described. This is important to understand the structure and irregularities
in the data. Furthermore, a descriptive analysis of the Campylobacter data is given,
and the relevant weather data are shown. After reading this chapter, one should
have received an impression of public health surveillance data and its specialities in
general, and particular for Campylobacter infection in Germany.

2.1 Medical Issues to Campylobacter

In this section, the subject of Campylobacteriosis disease, due to infection with the
Campylobacter bacterium, and its prevention is introduced.

History

The bacterium Campylobacter was identified first in 1913 by Mc Faydean and Stock-
man in fetal tissue of aborted sheep. As a human diarrhoeal pathogen Campylobac-
ter was identified much later, in 1972 (see Altekruse et al., 1999). Hence, more and
more laboratories tested faecal specimen for Campylobacter and soon it became one
of the most common causes of diarrhoeal diseases. Today Campylobacter is con-
sidered to be the leading cause of enteritis illness in Germany and other industrial
countries (see Levin, 2007; Robert Koch-Institut, 2005). In general, only a fraction is
reported. US-American studies estimated about 1% of the population in the United
States and Europe is affected with Campylobacter each year (see Louis et al., 2005).

In 2005, the World Health Organization recognized that about 1.8 million people
died from diarrhoeal diseases. Furthermore, the consequences of food contamination
create an enormous social and economic burden on communities and their health
systems (see World Health Organization, 2007). Several studies estimated the annual

7



8 CHAPTER 2. INTRODUCTION TO CAMPYLOBACTER AND THE DATA

costs of food borne diseases due to medical treatment and lost of productivity (see
Buzby and Roberts, 2009).

Microbiological Bacterium

The Campylobacter bacterium is a small, spiral-shaped rod (see Figure 2.1) exhibit-
ing corkscrew motility (Levin, 2007). It has high demands for reproduction. Thus,
it is highly sensitive to a lot of environmental influences, e.g. it needs humidity and
a special atmosphere with specific concentrations of Carbon dioxide and oxygen.
The Campylobacter bacterium has optimum growth conditions at temperatures of
42–43°C. It is unable to grow below 30°C and does not survive temperatures over
55°C (see Levin, 2007).

Figure 2.1: Scanning electron microscope image of Campylobacter jejuni (Source:
Wood and Pooley, 2007)

Twenty species of Campylobacter bacterium can be identified where Campylobacter
jejuni, coli, and lari are the most common. The organism is omnipresent and its ini-
tial infectious reservoir is not surely explored. It is carried in the intestine of many
wild and domestic animals and is present in untreated surface waters. Many authors
assume that wild animals as suppositious infectious reservoir. Others consider the
water borne route of infection as the common factor linking infections in humans
and animals (Levin, 2007). Campylobacter jejuni is mostly found in poultry while
Campylobacter coli is mostly found in pig meat.

In 99% of human Campylobacteriosis the associated bacteria are jejuni or coli (Louis
et al., 2005). Identification of Campylobacter species is based on biochemical tests,
antibiotic resistance patterns, and growth temperatures (Levin, 2007).

Campylobacteriosis

The described bacterium causes the world-wide appearing of the infectious disease
Campylobacteriosis. In industrial countries, especially children under the age of five
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years are exposed which is usual for enteritis diseases. Furthermore, young adults
between 20 and 29 years have higher risk. The infection is caused by the described
Campylobacter bacteria of a low dose greater than 500 germs. The incubation time
varies between two and five days, in special cases it is one up to ten days (Robert
Koch-Institut, 2005).

Many infections are asymptomatic. If an infection is apparent, the symptoms are
acute enteritis, fever, headache, myalgia, anthralia, diarrhoea, abdominal ache and
cramps, and tiredness. In general, the disease lasts no longer than one week and is
self-limiting. Therefore, a symptomatic therapy is usually adequate. In a severe case
a therapy with antibiotics is applied. Complications are rare, but a chronic progress
in cases of immune weakened persons is possible.

Transmission

Campylobacter bacteria are transmitted from animals to humans, while direct trans-
mission by close contact with infected animals is rare. Animals usually do not get ill.
Nevertheless, there is an especially high contamination in their excrements. While
butchering or milking the animals food can get contaminated. Already a low number
of bacteria can cause an infection. Campylobacter does not spoil the food, so one
cannot recognize the bacteria by appearance or smell (Bundesinstitut für Risikobew-
ertung, 2009). Infection is possible by direct transmission or indirect by other food,
people’s hands, kitchen utensils or at the work space (see Table 2.1).

exposure odds ratio 95% confidence interval

contact with raw meat 9.37 [2.03 ; 43.3]
having a pet with diarrhoea 2.39 [1.09 ; 5.25]

ingesting untreated water from rivers etc.
4.16 [1.45 ; 11.9]

consumption/handling of chicken with
giblets eaten at home 0.44 [0.24 ; 0.79]

contact with animal faeces 0.44 [0.21, 0.92]

Table 2.1: Significant risk factors for Campylobacteriosis determined by conditional
logistic regression analysis (Source: Adak et al., 1995)

Campylobacter can be transmitted as well by drinking surface water during water
sport activities. A direct person-to-person transmission is possible with children.
An infected person releases between two and four weeks excretions of germs, which
are potentially infectious.

Prevention

As learned before, the bacteria are in general transmitted by contaminated food.
The initial prevention is the reduction of contamination in poultry butcheries, as
well as strict obedient butchering hygiene.

The consumer prevents Campylobacteriosis by consequent hygiene in the kitchen.
The bacteria can be destroyed by heating the food at least two minutes at 70°C
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(Robert Koch-Institut, 2005), but indirect transmission is common as well. There-
fore, high attention when preparing raw poultry meat is necessary. Freezing de-
creases contamination with Campylobacter bacteria, but does not destroy it suffi-
ciently.

2.2 The Reporting System in Germany

In this section, the background of Campylobacter infection data collection in Ger-
many is presented. The data gathered by the Robert-Koch-Institute in Germany
are part of the system for compulsory notifiable infectious diseases. With the Law
for the Prevention of Infection of 2001 by the German government, an expert-based
registration system for infectious diseases was implemented and with this new tools
for data generation, prevention, surveillance and research were created.

Law for the Prevention of Infection

The Law for the Prevention of Infection (Infektionsschutzgesetz, IfSG) replaced the
Federal Pandemic Disease Law (Bundes-Seuchengesetz, BSeuchG) on the 1st of Jan-
uary 2001. It provided a new basis for public health surveillance data collection. It
was adopted to create a statutory basis for cooperation of all parties concerned, and
has the aim of developing an overview of infections and disease dynamics reflecting
reality as closely as possible. On this basis, the target of preventing and keeping
infectious diseases at bay should be attained (Forßbohm, 2000). The Law regulates
exact content, persons of responsibility and flow of a report.

A report includes the disease and its characteristics. The list of notifiable diseases
was selected in consideration of the illness dangerousness, the need of an immediate
reaction by the public health department, and the importance of the disease as indi-
cator to reveal hygiene faults. The resulting list with 18 infectious diseases is briefer
than the pre-existing one due to the BSeuchG. In general, even suspected cases need
to be reported. Gastroenteritis, which includes Campylobacteriosis, constitute an
exception where suspicions are only reported if the case belongs to an outbreak or
the patient is working in the food industry. The report of only already confirmed
suspicions should reduce the large number of gastroenteritis cases to a manageable
level.

The Flow of Reporting

The Law for the Prevention of Infection describes the flow and sets deadlines to
accelerate the reporting flow. The reporting system itself is well-structured. It is
a sophisticated system with four levels of reporting, mapping the federal structure
of Germany: A doctor or person obliged to report, the local health department
(Gesundheitsamt), the state health department (Landesgesundheitsamt), and the
Robert Koch-Institute. The flow involves exchanges, feedbacks and inquiries be-
tween the institutions (see Figure 2.2). The SurvNet software of the RKI (Robert
Koch-Institute, 2010) organizes the electronic transmission of case-based datasets
between the different departments.
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Robert Koch-Institute

state health department

local health department

doctor/person
obliged to report laboratory

Figure 2.2: Systematic structure of reporting proceedings (Robert Koch-Institut
(2000))

If a doctor or laboratory is having suspicion of a notifiable infectious disease it has
to be reported within 24 hours. This first report includes the basic information
about the patient, infection chain, possibilities of spreading, consulted laboratories
for diagnosis, and hospital of treatment.

This information is given to the responsible local health department. In Germany,
there are 412 of those departments, one in every district. They are responsible to
investigate the cases and to complete further characteristics such as type, cause,
infection source, and spreading of the disease. For this research, the local health
department may consult the doctor, the laboratory of diagnosis, and the patient. If
necessary, the institution may already take protective measures. Finally, until the
third working day of the following week, a data set of 20 characteristics is formed
and reported to the responsible state health department.

The responsible state health department merges the reported cases. At this stage,
double reports are avoided by using the knowledge about names and birth dates.
Afterwards, these personal data are removed to fulfil privacy regulations. Within
one week the reorganized and standardized cases should be reported to the Robert
Koch-Institute.

In many cases, an infected person consults a doctor in another district than he or
she is living, such as the nearest largest town, the job location or in holidays. In
this instance, the first report is done to the local health department of the patient’s
whereabouts. Later on, the case is reported to the local health department of the
patient’s residence where further combination is possible and the procedure contin-
ues as explained above.
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Beside this system there are some infectious diseases such as HIV (human immun-
odeficiency virus), which are handled more anonymously. A case of these diseases
are reported without any personal data directly to the RKI (Robert Koch-Institut,
2000).

Resulting Data Sets

Finally, in the system of the Robert-Koch-Institute there is a standardized data set
for each reported case. The report involves not only the diagnosis of disease, but as
well the bacteria type. Beside these, there are information about the infection such as
the most probable way and risk, patient’s whereabouts, admission to a hospital, and
belonging to an outbreak. Personal data are removed, only age and sex redescribe
the patient (Robert Koch-Institut, 2000). The date of report is considered to be
the date of report to the first stage, which means to the local health department.
Moreover, other dates such as a day of diagnosis or a period for illness beginning
are stored.

2.3 Descriptive Analysis of Campylobacter Data

In this section, the reported cases of Campylobacter are analysed descriptively. After
introducing the data, the variables and their irregularities, and the incidence is
displayed. Then, the reporting delay is investigated. Finally, the infection cases are
describes and the patients characterized.

2.3.1 Introduction to Data

The data provided by the Robert Koch-Institute (Robert Koch-Institute, 2010) in-
clude a data set for every case recorded from 1st January 2001 to 3rd January 2010
in Germany, which corresponds to the calendar weeks of the years 2001 until 2009.

Variables in the Data Set

The Table B.1 in Appendix B gives a detailed overview of the initial variables of the
data set and their meaning. Information about several characteristics of infection
and patient are given.

The moment and reporting of infection is detailed by several variables indicating the
day of reporting, the date of arriving in the system of RKI, the time of diagnostic and
report of the laboratories as well as the time period for the start of illness. Further
on, the case of infection is qualified by the diagnosed subtype of Campylobacter
bacterium and a variable indicating outbreaks. Beside this, the location is given
with the resolution of districts. The patient’s age and sex are recorded as well.

Missing Data

In general, the first check of a given data set is the proportion of missing values in
the data frame (see Table B.1 in Appendix B). The most important variables for
surveillance analysis reporting date, sex, age, location and bacteria type are almost
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complete (less than 1% missings). The variable outbreak indicates the outbreak
ID, if the case belongs to one. The large number of missings (97.1%) is reasonable,
because non linked cases are indicated by NA. The second value of bacterium type
is used only if a second type of bacterium is diagnosed by the laboratory (98.5%
missings). There are some missings for the time period of illness beginning (11.5%
and 69.2% missings respectively). If the beginning of the illness is known exactly,
the value for start2 is usually not given, which explains 69.2% of missing data in
this variable. Of less relevance for the analysis in this thesis seem to be variables
locStart and locEnd which are dates indicating time period the patient spend at
the location of the infection (93.4% and 94.2% missings respectively). The variables
labReport and labDiag, the dates at which the laboratories report the diagnosed
Campylobacter infection, have a remarkable high rate of missings (43.9% and 30.8%
respectively). The variables lastUpd, for inserting the full version at the local health
department, and arriveRKI, indicating the date inserting the first version at the
RKI, are recorded electronically and therefore are almost complete (0.1% and 0.2%
missings respectively).

Quality of the Data

At the beginning of 2001, when the new reporting system was introduced, irregu-
larities in the data can be observed. The users needed to find their way around in
the system, which caused abnormal reporting behaviour. In this period, many cases
were not reported and input errors appeared. Therefore, it is preferred to exclude
these data for the later on investigations.

Furthermore, the RKI knows about misunderstandings in the meaning of variables
and typing errors. With identification of this matter the RKI is working on an
automatic quality control. Especially the variables representing a date consist of a
large amount of impossible values and a very wide range. Here, only a superficial
quality check is made. Dates outside the time period of interest are set as miss-
ings. Furthermore, for descriptive analysis robust measures such as median, 5%-
and 95%-quantiles, instead of mean, minimum, and maximum, are used to describe
the variables. Figures are plotted in a truncated manner. This strategy is confirmed
by the RKI methods.

2.3.2 Incidence

In this part, the number of Campylobacter infections is examined in aggregated,
spatial and local level.

Aggregated Incidence in Germany

As illustrated in Figure 2.3 the frequency of weekly cases ranges between 327 and
1880 in Germany. Yearly totals range between 43716 in 2003 and 61680 cases in
2007. A consistent seasonality in the data is observed. Using the weekly means of
the reported cases over the years the Campylobacter incidence peaks between the
28th and 35th calendar week. It is assumed, that this is related to different leisure
activities and to the fact that German summer holidays are in this time period.
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Figure 2.3: Progress of Campylobacter incidence between 2001 and 2009 with su-
perimposed weekly average computed from the corresponding nine values.

Using additional plotting of the weekly average, computed over all nine years, can
identify just small changes in seasonality every year. Therefore, the peak in 2003 is
later than usual. Additionally, the ’intensive’ years are in 2007 and 2008, in which
there have been much more cases than on average.

Spatial Distribution of Incidence

Even though the spatial distribution of incidence is not of major interest here, a map
of Germany’s Campylobacter incidence 2009 is displayed in Figure 2.4. The data is
stratified by the level of districts in 2009. In Germany, there were 412 districts at
this moment. The number varies, because there have been several local government
reorganizations. The living condition, especially the population size, might be very
different in the various districts. For that reason, the measure of incidence is used
which is the number of new cases of a disease per unit of time in a given popu-
lation. In general, this means the number of cases by 100.000 inhabitants within
one year. Figure 2.4 shows the yearly incidence in Germany for every district in 2009.

In the map, there are more cases in coast regions in the north of Germany. Fur-
thermore, one can find higher incidences in Saxony and the north of North Rhine-
Westphalia. Another cluster seems to be in Saarland and Rhineland-Palatinate,
which is located in the south-west of Germany.

Local Incidence

In order to examine the local incidence, ten districts (see Table 2.2) are randomly
selected. The district of Landsberg am Lech is added, because there was a described
outbreak in 2005. Four of the district’s yearly incidences are introduced in Figure
2.5. The overall incidence in Germany is plotted with a dark line to recognize local
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Figure 2.4: Map of the raw Campylobacter incidence rates per 100.000 inhabitants
for each of 412 administrative districts in Germany, 2009. (Map source: Bundesamt
für Kartographie und Geodäsie, 2010)

differences. Moreover, the grid distance in the plot is kept fixed to emphasize the
different scales. Corresponding key parameters are given in Table 2.2.

It can be recognized that the incidence time series vary more than the general one
which includes cases of all districts. Therefore, the absolute maximum of local inci-
dence is usually much larger than the incidence for whole Germany (see Table 2.2).
In all districts occur weeks without reported Campylobacter cases. Furthermore,
there are district specific differences between the general incidence levels.

The district Schmalkalden-Meiningen is located in the Thuringian Forest, in the
center of Germany. Its yearly incidence has on average a similar time series as the
overall incidence in Germany, but in some time period, for example in 2005, there
are less cases.

The district of region Hanover, with 1.130.039 inhabitants, is the most populated
district in Germany when excluding the big cities. Here, the incidences are in gen-
eral larger than the overall progress.

Kempten is a town in the Bavarian Allgau where a remarkable low incidence was
examined. There are some time periods without any reported Campylobacter cases.
The mean seasonal peak is very late in the 38th week of the year.
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population maximal max year week of
incidence mean peak

Germany 82314906 2.28 2007 28
Region.Hannover 1130039 59.96 2008 30

LK.Offenbach 336671 17.83 2007 35
SK.Trier 103888 11.34 2007 34

LK.Freising 164692 8.1 2009 28
LK.Landsberg.a.Lech 113311 13.36 2005 28

SK.Nürnberg 503110 16.21 2007 28
SK.Kempten 61703 4.86 2008 35
SK.Schwerin 95855 9.72 2004 34

LK.Görlitz 288735 45.38 2008 32
LK.Schmalkalden.Meiningen 134262 11.34 2009 35

SK.Berlin 3416255 153.96 2001 27

Table 2.2: Key parameters and population for selected districts

0
2
4
6
8

10

Time

In
ci

de
nc

e

2002 2004 2006 2008 2010

LK.Schmalkalden.Meiningen

0
10
20
30
40
50
60

Time

In
ci

de
nc

e

2002 2004 2006 2008 2010

Region.Hannover

0

1

2

3

4

5

Time

In
ci

de
nc

e

2002 2004 2006 2008 2010

SK.Kempten

0
2
4
6
8

10
12

In
ci

de
nc

e

2002 2004 2006 2008 2010

LK.Landsberg.a.Lech

Figure 2.5: Progresses of yearly Campylobacter incidences in chosen districts be-
tween 2001 and 2010 in comparison to the overall incidence (darker line) in Germany
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Landsberg am Lech, in Bavaria, has usually a lower incidence than Germany in
general. In 2005, a high peak is, however, recognizable. In the RKI bulletin an
outbreak in June 2005 due to raw milk was reported. At a school excursion to a
farm 18 children got infected by Campylobacteriosis (Anonymous, 2006).

2.3.3 Investigation of Durations and Delay

Many authors mention the importance to investigate reporting delays and their bias
(see Heisterkamp et al., 2006). Most of the algorithms for automated outbreak
detection of infectious diseases are not able to include delays properly. In the last
section, some irregularities due to delayed reporting were mentioned which are now
examined in more detail.

Variables of Delay

The variables given in the data frame representing a date, have a logical chronolog-
ical order which is caused by the regulations of the reporting system (see section
2.2). First, dates corresponding the period of illness beginning are defined by the
variables start1 and start2. In general, it follows the diagnose and report date of
the laboratory. At the date of report, the case is reported first to the local health
department. According to the time period required for the investigations of the de-
partment the date of last update is defined. Finally, there is the report to the RKI
in its first standardized version. In the special event, where a patient working in
the food industry or belongs to an outbreak this logical sequence can vary due to a
different reporting system (see section 2.2).

0.05-quantile Median Mean 0.95-quantile

Illness Start Time Period 0.00 0.00 3.10 12.00
Delay Laboratory Diagnose 1.00 6.00 7.80 17.50

Delay Laboratory Report 3.00 8.00 10.10 20.00
Reporting Delay 0.00 7.00 9.20 21.00

Delay last Update 5.40 12.00 15.50 30.50
Delay RKI Arrival 8.50 17.40 21.00 38.50
Laboratory Delay 0.00 1.00 2.30 6.00

Investigation Delay 0.50 4.00 6.40 15.50

Table 2.3: Descriptive measures for durations and delays in days

First, the time period of illness starting is investigated. In the data, it is indicated
by the two variables start1 and start2. The time period is on average 3 days, but
the median is 0 (see Table 2.3). If the beginning of the illness is known exactly, the
value for start2 is usually not given, which explains 69.2% of missing data in this
variable (see Table B.1 in Appendix B). Hereafter, the value of start1 will be used
for the illness beginning, if no value is given in start2. Otherwise the midpoint of
their interval will be used. The computed measure will be the reference value for
the delays worked out in the following.
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Figure 2.6: Truncated distribution of reporting delay in days

Distribution of Delay

For the investigations, the reporting delay is defined as the difference between start
of illness and date of report to the local health department in days. Referring to
Figure 2.6, it has a slightly left skewed distribution with an expected delay of 9.2
days. The histogram is truncated at 0 and 40 and values range mostly between 0
and 21 days (see Table 2.3). Only 50% of the cases are reported within 7 days after
the start of illness, which means 10 days after date of infection implying an average
incubation time of three days.

Composition of Delay

The variables giving different dates and related durations will be viewed in more de-
tail. Thereby, the date at which the illness started will be the reference. As before,
robust measures are chosen for description (see Table 2.3).

Figure 2.7 presents boxplots, truncated between -5 and 30 days, for duration corre-
sponding to each stage of delay. Due to missings in the variables, different number
of data sets are basis for the calculations which refers to the heights of the boxplots.
The chronological order, given by reporting flow regulations, can be identified. More-
over, with increasing delay is examined increasing variation.

Campylobacter is diagnosed with a median of six days delay. The report takes place a
bit later, in general after two days, which means eight days after start of illness. The
already investigated reporting delay has a bit lower median of seven days, which is
assumed to be caused different regulations for reporting. The following investigations
by the local health department occupy mostly between a half and four days so that
the last update in general is made 12 days after start of illness. Finally, the data
set arrives at the system of the RKI after 17 days. After three weeks 95% of the
Campylobacter cases arrived at the RKI.
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Figure 2.7: Truncated boxplots for comparison between different stages of delay in
days

Artefact of Reporting at the Turn of the Year

A special type of delay occurs during holidays, which attract most attention on
Christmas and New Years Eve (see Figure 2.8). A lot of physicians and laboratories
are closed during these days. Therefore, less reports are issued during this time.
Usually, after these holidays, there is a large increase of reports. It is assumed that
a large proportion of these cases actually originate from previous weeks.

2.3.4 Case Characteristics

In this section, the characteristics of the reported cases, regarding the type of Campy-
lobacter bacteria and belonging to an outbreak, are investigated. The characteristics
of infection are examined in relation to the demographical characteristics as well.

Characteristics of Infection

The different bacteria types are summarized into four groups of interest. Most cases
are caused by Campylobacter jejuni bacteria (60%) and 20% by Campylobacter spp.
Thereby, spp. means species pluralis, therefore the occurrence of various not declared
species. Beside this, 12% of Campylobacter species could not be differentiated and
7% are other Campylobacter types such as coli or lari. For future analysis, the last
class of cases will be excluded to obtain a data set as homogeneous as possible.
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Figure 2.8: Artefact of reporting at the turn of the year between calendar weeks 47
and 6

With every case of Campylobacter infection, it is reported whether it belongs to
recognized outbreak or not. At the same time, not every outbreak is detected by the
public health system. In the analysed data set the size of an outbreak ranges between
one and 45 cases. Outbreaks of size two are most common (64%). Outbreaks with
more than ten cases are very rare which reflects the difficulties to link outbreak cases.

Another measure for the true and undetected size of outbreaks can be derived by the
number of weekly reported outbreaks displayed in Figure 2.9, which ranges between
zero and 88 outbreaks with its average at 25.
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Figure 2.9: Truncated distribution of weekly number of reported outbreaks
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Demographical Characteristics

In this section, demographical characteristics age and sex are investigated. There are
53% male and 47% female cases. Missings are rare (0.1%). This finding corresponds
with the results of other studies where a higher proportions of males was found as
well (Louis et al., 2005).

In the following Figure 2.10, the age distributions differentiated by gender are dis-
played in an age pyramid. Furthermore, the age distribution of the general pop-
ulation in Germany is plotted to figure out age groups which get infected more
frequently than others, thus are specially exposed.
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Figure 2.10: Age distribution of the Campylobacter cases given the gender compared
to the overall age distribution in Germany.

First, the general age distribution of the Campylobacter cases is investigated. It is
multi-modal with modes in children’s first year, 25 years, and 40 years. Children
until the age of five years seem to have special exposition to fall sick. This might be
caused by generally high parents’ and doctor’s caution with diseases of small chil-
dren. It is hypothesized that children are more likely to be diagnosed and reported
and assumed to be a group almost without underreporting. Furthermore, there are
more cases in the age span between 15 and 35 years, while after the age of 50 years
less cases appear.
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Moreover, in Figure 2.10 one can recognize that boys in the age between 10 and 15
years seem to be more likely to get infected with Campylobacter than girls. On the
other hand, young women between 20 and 30 years are more exposed to get infected
than young men. For higher ages no difference can be recognized.

Factors of Belonging to an Outbreak

In this part, it is investigated, if there are any associations for belonging to an
outbreak on other case characteristics. The factors sex, age, and bacteria type are
examined.

Table 2.4 shows that females are a bit more likely to belong to an outbreak. A χ2-
test confirms this assumption (p-value < 0.001).

male female

no 0.511 0.461
yes 0.015 0.014

Table 2.4: Association between outbreak belonging and sex

For the age distribution for cases belonging to an outbreak some associations were
recognized as well (see Figure 2.11). The distribution is bimodal while the mode
at 25 years which was recognized in Figure 2.10, disappeared. Compared to the
overall age distribution in the healthy population, it can easily be examined that
children and teenagers until the age of 20 years are much more likely to belong to an
outbreak. Furthermore, in the ages between 30 and 40 years more Campylobacter
infections occur than it is expected.
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Figure 2.11: Distribution of age for cases belonging to an outbreak
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Moreover, bacteria types Campylobacter jejuni and spp. are less often diagnosed
if the case belongs to an outbreak (see Table 2.5). The bacteria type defined as
’others’ appears more frequently in outbreaks. An association is confirmed by a
χ2-test (p-value < 0.001) as well.

jejuni spp. not diff. others

no 0.588 0.194 0.122 0.070
yes 0.015 0.004 0.003 0.004

Table 2.5: Association between outbreak belonging and bacteria type

2.4 Weather Data as extern Process

In this section, a general discussion about the influence of weather parameters on
the incidence of Campylobacter based on a literature review is given. It follows a
description of available climate data which will be used as a covariate process in a
developed Bayesian hierarchical time series algorithm (see chapter 4.3) in section 6.

2.4.1 Weather Influence on Campylobacteriosis: A Literature Re-
view

Weather, as the condition of atmosphere at a particular place and time, is assumed
to influence the incidence of several diseases. It is a dynamic, seasonal, but irregular
process. In this section the literature is reviewed regarding the influence of weather
parameters on Campylobacter incidence. The section is organized as follows. First,
the investigations which try to explain the seasonal pattern in the incidence by
weather parameters are presented, and afterwards the hypotheses of weather influ-
ence on the possible reservoir of Campylobacter are resumed. Finally, consequences
for modelling the weather influence in the surveillance analysis are derived.

Investigations on direct Influence of Weather Parameters to the Campy-
lobacter Incidence

The Robert Koch-Institute detected an increased Campylobacter incidence in Ger-
many in 2007 (Jansen et al., 2007). The increased number of infections was caused
by bacteria Campylobacter jejuni. No abnormalities were found for any group of
age, gender, or regions. Only the federal states Berlin and Bremen did not show
increased incidence. An association to the special warm weather in the spring of
2007 is assumed, since the change of leisure time behaviour, such as picnics and
barbeques, definitely changes the exposition for Campylobacteriosis.

In an internship project during summer 2008, the supposed association between
weather and the Campylobacter infection cases was investigated by using a negative
binomial regression model. The most convenient model included lagged weekly mean
temperature and relative humidity. The parameters were aggregated to absolute
humidity due to content-related argumentation and the strong association between
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variable estimate 95% C.I. p-value

(Intercept) 0.040 (0.037, 0.044) <0.001
time 1.000 (0.990, 1.010) 0.964

l1.hum 1.067 (1.005,1.080) <0.001
l2.hum 1.038 (1.026,1.050) <0.001

age[<10 years] 0.650 (0.593,0.713) <0.001
sex[male] 1.289 (1.214,1.370) <0.001

time:age[<10 years] 1.049 (1.038, 1.060) <0.001
time:sex[male] 0.989 (0.979,1.000) 0.048

l1.hum:age[<10 years] 0.984 (0.969,0.999) 0.037
l2.hum:age[<10 years] 0.996 (0.981,1.012) 0.631

age[<10 years]:sex[male] 0.921 (0.880, 0.964) <0.001

Table 2.6: Parameter estimates of final negative Binomial regression model (Source:
an der Heiden et al., 2010)

temperature and relative humidity (an der Heiden et al., 2010). The resulting model
estimates are displayed in Table 2.6 and the corresponding fit is shown in Figure 2.12.

Figure 2.12: Negative Binomial regression model for reported number of Campy-
lobacter infections while covariate absolute humidity enters in the 15mb truncated
version. The red line represents observed, and the blue line modelled counts.
(Source: an der Heiden et al., 2010)

Louis et al. (2005) investigated the relationship between seasonal variation in human
Campylobacter infection in England and Wales. They used the laboratory-confirmed
reported cases between 1990 and 1999 and weather data averaged per week. They
figured out that the date and the shape of the Campylobacter time series varied with
geographical location. The incidence of Campylobacter was modelled by a regression
with autocorrelated errors. The disease rates were transformed with the Freeman-
Tukey square root and averaged weekly temperature, precipitation, and hours of
sunshine were included as covariates. Furthermore, an overall trend as long term
correction was included, and weather lags or intervals of weather influences were
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tested for better performance. Nevertheless, the three-variable-model remained the
best one.

Patrick et al. (2004) fitted a locally weighted linear model with cross-validated op-
timized number of weather lags between zero and six weeks. The effects of tem-
perature, precipitation, relative humidity, and hours of sunlight on Campylobacter
incidence in humans in Denmark were examined. Moreover, they could reveal these
effects in broiler flocks while the factors explained considerably less than in the model
for humans.

Nylen et al. (2002) investigated the seasonality of kernel smoothed Campylobacter
incidence in several European countries and New Zealand and extracted seasonal
patterns with different peaks that were consistent within each country. Several pos-
sible explanations are discussed, and unexplored reservoirs linked to the differences
in weather should be considered. A literature review summarizes them in the fol-
lowing.

Investigations on Weather Influence to Campylobacter Reservoirs

There is a remarkable pronounced and consistent seasonal pattern of Campylobacter
infections whose cause is unclear. Several authors tried to find the environmental
factors explaining the observed seasonality.

The most frequently discussed reservoir of Campylobacter, especially of subtype
jejuni, is poultry. National monitoring of Campylobacter in broiler chicken in Ger-
many in 2004 and 2005 observed a seasonality in animal incidences. There was a
significantly higher prevalence in broiler in summer months even though the indoor
temperature was consistent (Peters et al., 2006). The strongest increase was ob-
served between 13–20°C degrees which is levelling off at higher temperatures.

Nichols (2005) attempts another explanation and hypothesizes flies as reservoir for
Campylobacter in both, humans and animals. The seasonal distribution of Campy-
lobacter infections around the world could be associated with conditions of fly repro-
duction which need rainy days in warm summers, therefore high relative humidity.
This hypothesis is justified by several argumentations, but remains statistically not
verified.

Hudson et al. (2001) studied serotypes of human cases, veterinary cases, raw chicken,
milk, and water. The study could conclude that the type of serotype which was domi-
nant in February was absent in August, and that the common type of serotype in Au-
gust was absent in February. Therefore, it is hypothesized that different pathogens
cause the observed seasonality.
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Louis et al. (2005) figured out a qualitative association between Campylobacteriosis
incidence and the level of agriculture, represented by the percentage of rural ward in
a district. Furthermore, the source of drinking water (surface or not) was revealed
to be associated, but quantitative analysis did not yield significant correlations.

Consequences for Modelling

The literature review showed, that the influence of weather to the Campylobacter
incidence is confirmed by several independent studies and statistical methods, while
the explicit causality in a reservoir remains unclear. The investigations agree more
or less in their selection of mean temperature and precipitation or relative humidity
as covariates.

In the following investigations, these weather parameters are replaced by the absolute
humidity, as introduced by an der Heiden et al. (2010), to avoid possible model
collinearity. An approach of monitoring, which is able to include covariate processes,
will be introduced in chapter 4. Its application to the Campylobacter time series
will be shown in chapter 6. In the following, the preprocessing of the weather data
is described.

2.4.2 Available Weather Data

The data of the 44 freely available weather stations of the German Climate Service
(Deutscher Wetterdienst, DWD, see Table B.2 in appendix B) are used. The stations
are evenly spread in the country and each of them is typical for a natural region in
Germany.

The basis for the covariate weather process are the daily climatological values. The
DWD provides information for several weather parameters such as minimum, mean
and maximum temperature, mean relative humidity, mean wind-force and strongest
gust, total sunshine duration, mean degree of cloud coverage, and the total precipi-
tation (Deutscher Wetterdienst, 2010).

Weather Data Preprocessing

The data is available starting from 1991, but only information starting from the late
2000 is needed for the present investigations.

Eight stations are not considered for the investigations, because they represent ex-
treme weather conditions. These are five stations situated on the mountains, namely
Brocken, Fichtelberg, Hohenpeissenberg, Kahler Asten, Nuerburg-Barweiler, and
Zugspitze. Furthermore, the three stations on the islands Fehmann, Helgoland, and
Sylt are also excluded. Additionally, the data of the station in Fritzlar is excluded
due to the poor data quality.

As worked out above, the relevant variables are mean temperature and mean relative
humidity. Their composition is absolute humidity which is computed according to
formula given in the following excursus. According to an der Heiden et al. (2010),
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large and infinity values in the resulting time series of absolute humidity are limited
from above by 15 g/m3.

Since the IfSG incidence data of the Robert Koch-Institute are available on weekly
level, the daily weather values are averaged on a weekly basis as well. Therefore, the
resulting data sets contain the mean absolute humidity of each calendar week and
weather stations.
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Figure 2.13: Association between mean temperature and mean relative humidity in
Berlin, Germany

Excursus. Absolute Humidity

Water appears in three states of matter in the atmosphere: solid such as in snow,
liquid such as in fog clouds, and in form of vapour, which exist always in the air,
as well. Thereby, absolute humidity measures the actual amount of vapour in the air.

With increasing temperature, the air’s ability to absorb water in form of vapour
increases as well. Since relative humidity is the ratio of absolute humidity to the
maximum of saturation, relative humidity depends on the temperature. Therefore,
absolute humidity combines the knowledge about temperature and relative humidity.
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The absolute humidity at temperature T is computed by using a unique way to do
it in the physical literature (an der Heiden et al., 2010)

habs = hsat(T ) · hrel
100

,

where hrel is the relative humidity and hsat(T ) is the ability of the air to absorb
water vapour at temperature T which is computed by

hsat(T ) = hsat(T0) · exp

(
L

Rν

(
1

T0
− 1

T + T0

))

while L = 2.270.000 J
kg is a constant latent heat for vaporization of water, Rν =

461, 5 J
kg·K a gas constant for water vapour, T0 = 273.15K the reference temperature

measured in Kelvin with hsat(T0) = 6.11mb, measured in millibar, the reference
water absorbing ability of the air (an der Heiden et al., 2010). The formula describes
an exponential association between temperature and absolute humidity. Further
details are described e.g. in Dengler (1997).

3

Ordinary Kriging

A continuous absolute humidity map is created for each time point by using ordinary
Kriging (see following excursus). In the present application, the weather stations
have the location sit = (sitx, sity) represented by latitude and longitude coordinates,
which vary continuously in D ∈ R2. For each of these reference points an absolute
humidity for a given day y(sit) is observed.

Excursus. Ordinary Kriging

Kriging is an interpolation of spatial phenomenons (Fahrmeir et al., 2009). The ba-
sis are geostatistical point-referenced data y(s1), . . . , y(sn) of n locations s1, . . . , sn.
Thereby, y(s) can be seen as realization of a spatial stochastic process {Y (s), s ∈ D}
with D ∈ Rd, a spatial domain. If s is varying continuously in D, a Gaussian random
field Y (s) is used, which means that Y (s1), . . . , Y (sn) are assumed to be multivariate
normal distributed for all n and s1, . . . , sn.

The classical geostatistical model is followed with this assumption and is the basis
of estimation in ordinary kriging.

y(s) = µ(s) + γ(s) + ε(s)

= µ+ γ(s) + ε(s),

where µ(s) is the spatial trend, {γ(s), s ∈ R2} is a stationary random field and

ε(s)
iid∼ N(0, 1) the model errors. In case of ordinary Kriging no covariates are

included and the trend µ(s) = µ is constant. Due to the assumption of station-
ariness, the random field γ(s) is expected to be ν = 0 with variance τ2(s) = τ2,
and correlation ρ(s, t) = ρ(s − t) = ρ(h) which depends only on the distance and
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not on the exact location. The specification of correlation defines a spatial associa-
tion structure while potence, exponential, spherical, or Matérn family could be used.

The resulting estimation equation can be represented as a linear combination of
basis kernel functions. Therefore, the univariate simplification equals to a density
estimation. The spatial effect can be treated as random effect, so that inference can
be represented in a linear mixed models context.

3

Example. Figure 2.14 shows one specific Kriging result for the 28th calendar week in
2009. Higher absolute humidity in the north eastern and the south western corner
of Germany can be spotted. The lowest humidity was recognized in the west of
Germany.

Absolute Humidity in Germany in 28th week 2009

8.6

8.8

9.0

9.2

9.4

9.6

9.8

Figure 2.14: Kriging result for absolute humidity in mb in Germany in 18th calen-
dar week 2009, with the triangles indicating the positions of the included weather
stations.

3

Hereafter, the estimated constant trend µ̂, referring to the geostatistical model, is
used as overall absolute humidity in Germany. Regarding possible future analyses,
one is free to compute local humidity, e.g. for specific districts, as well.

2.4.3 Time Series of Absolute Humidity

In Figure 2.15, the process of absolute humidity is visualized. The values are gener-
ally very low, with exception in autumn and winter when the values are high, where
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Figure 2.15: Absolute humidity with superimposed weekly Campylobacter cases

they range between 2.9mb and 15mb. Note the adjustment for large values, which
are limited from above by 15mb. The median is 9.6mb while the mean is 9.9mb
which marks a strong left-skewed distribution. To investigate the association with
the Campylobacter incidence the disease cases are superimposed in the graphics.
When the values for absolute humidity are large the season of Campylobacteriosis
begins.

2.5 Wrap-up Notes

This chapter aims to set the subject of monitoring infectious outbreaks in its medi-
cal, structural, and environmental context. It was introduced exemplary to several
surveillance issues such as a reporting system, characteristics of data, and explana-
tion attempts by prospective modelling.

The reporting system of the Robert Koch-Institute was introduced. While the pub-
lic health systems in other countries, such as the Centers for Disease Control and
Prevention (CDC) in the United Kingdom or the Infectious disease Surveillance and
Information System (ISIS) in the Netherlands, have variations according to their
politically system, but they all work quite similar.

The surveillance data these systems provide, are introduced by the Campylobacter
data of the RKI. A lot of specific and general characteristics of the surveillance data
have been shown. Especially reporting delays, inaccuracies, and associations with
outbreak belonging, were examined.
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Furthermore, investigation was brought into line with the state of the disease re-
search. In the literature review, potential influences to Campylobacteriosis including
their modelling approaches were inspected. The time series of absolute humidity is
extracted to have a substantial influence to the Campylobacter incidence.

In the following chapter, the exemplary findings are generalized and statistical meth-
ods of surveillance are introduced. Later on, in chapter 6, the Campylobacter data
are monitored by using different surveillance algorithms. During the application of
a newly developed Bayesian hierarchical time series approach absolute humidity as
a covariate process will be included.
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Chapter 3

Overview on Surveillance
Methods

‘Public health surveillance is defined as the on-going systematic collection, analysis
and interpretation of outcome-specific data that are essential to the planning, im-
plementation, and evaluation of public health programmes, closely integrated with
the timely dissemination of these data to those who are responsible for prevention
and control’ (Thacker and Berkelman, 1988, quoted in Sonesson and Bock, 2003).

As the surveillance data and relevant issues were introduced in the last chapter, the
present chapter gives a general introduction to statistical concepts for surveillance
methods. First, the specific characteristics of surveillance data are described. An
outline of the general strategy for detection of aberrations and an overview on the
variety of surveillance methods will follow. Afterwards, the focus is on the Farring-
ton algorithm as this method is in routine use in many public health institutions.
Additionally, techniques for evaluation of algorithm performance and comparison of
different methods are discussed.

3.1 Introduction to Surveillance Methods

Surveillance usually includes passive case detection due to an established reporting
system and active surveillance in which the recipient takes some action to identify
the cases. Passive surveillance simplifies reporting and is less costly while active
surveillance is the best approach in outbreak investigations to elicit all cases (Straif-
Bourgeois and Ratard, 2005).

This work is focussed on the analysis of these public health data with respect to
collection and interpretation. Therefore, in the following sections the aim, purposes,
and peculiarities of the data are summarized.

3.1.1 Aim and Purposes

“Public Health surveillance of emerging infectious diseases is an essential instrument
in the attempt to control and prevent their spread’ (Höhle, 2007). Beside this,
epidemiology is the basic science to understand the disease and find appropriate

33
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interventions to break the chain of transmission to prevent diseases. Due to global
travellers and world-wide food distribution the spreading of diseases has become
faster than before. Depending of the disease the arrangement, implementation and
impact of the chosen intervention requires a sufficiently early outbreak alarm.

Furthermore, surveillance methods should be automated procedures, which are able
to handle large quantities of data. On the one hand, they should be sufficiently
robust and flexible to handle a wide range of diseases and specific characteristics of
surveillance databases.

On the basis of a time series, models should detect aberrations, which means the
detection of abnormalities, which usually are more recognized disease cases than
expected. In case of the appearance of any aberration in the time series, the time
point is flagged as alarm for further investigations.

3.1.2 Special Characteristics of Surveillance Data

The data in surveillance can be seen as a contrast to the perfectly planned data
in clinical trials. In the following, general characteristics and specific problems in
data from public health surveillance are summarized. The consideration as well
as the appropriate handling of these issues is necessary for a successful statistical
surveillance method.

Example. In Figure 3.1 are shown the counts of adult meningcoccal infections in
France between 1985 and 1998. Meningococcal infection is rare, but the most com-
mon cause of bacterial meningitis, which is an inflammation of the membranes that
cover the brain and spinal cord. On average six adult persons are infected each
month, while seasonality is obvious.

The monthly counts are an example for the typical time series of surveillance data.
In the following, this time series is used to illustrate important issues in surveillance
methods.

3

Electronic Reporting

In most countries, the surveillance system is based on computer programs and web
based reporting which allows a collection of large amounts of data within a reason-
ably short period of time. But, persons who may not be very proficient with the
software could enter data of poor quality (Straif-Bourgeois and Ratard, 2005). Be-
cause of the large number of persons involved in the reporting system it is difficult
to provide adequate software training and achieve consistency in the system which
leads to inaccuracies in the data.

Lack of Accuracy

These errors due to electronic reporting and other typing errors, i.e. by usage of
short cuts, can lead to inaccuracies in the databases. The major issue is that of an
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Meningococcal infections in France 1985−98
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Figure 3.1: Monthly counts of Meningococcal infections in France 1985–1998 in the
age group over 20 years (Data source: Höhle, 2007)

unclear case definition which results in a data-bias. This may depend on the one
hand on the definition itself and on the other hand on the handling by the person
involved in the reporting system.

Underreporting and Bias

Theoretically, public health surveillance data is assumed to be a case register which
includes a complete list of all cases of a particular disease. In practical terms, the
reports are incomplete and “cases reported are only the top of the iceberg’ (Straif-
Bourgeois and Ratard, 2005). Different stages of the disease may not be included in
the surveillance data such as

� cases diagnosed, but not reported,

� cases which seek medical attention, but were not diagnosed or get misdiag-
nosed,

� cases which were symptomatic, but did not seek medical attention, and

� cases which were asymptomatic.

To which group a non-reported case belongs to is not random. In this context, Klein-
man and Abrams (2008) speak about a syndromic surveillance system. Especially
the cases of children as well as of weak and ill patients are more likely to be reported
and examined in a more exact manner. This underreporting of other groups causes
a bias within the data.

Reporting Delays

A reporting delay is the time between the time of infection and the report. This
time period includes the incubation period, which differs by the type of disease, the
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onset of the illness, the diagnose of a doctor, an additional diagnose in a laboratory
and finally the report (see section 2.3.3).

A special type of delay results from district-specific holidays where most doctors,
laboratories and public health departments are closed. The majority of the cases
are reported after the holidays which could result in a bias in the data as well (see
e.g. the artefact of reporting at the turn of the year in Figure 2.8 in section 2.3.3).

Thus the reporting delay, it’s bias and it’s effects need to be investigated formally.
Unfortunately, hardly any statistical method for surveillance is able to consider the
reporting delays properly.

Trends and Seasonality

Usually, there are structural changes in a time series over time. Therefore, time
series are seen as a composition of the components: level, trend, seasonality, and
errors. As a result, an aberration detection algorithm should be able to handle trend
and seasonality.

Presence of Past Outbreaks

Case registers include cases of infections which belong to outbreaks as well. In order
to model the natural appearance of a disease, it is desirable to exclude these cases.
Even with a variable which is indicating outbreak, it is impossible to investigate all
outbreaks with all associated cases. Farrington et al. (1996) suggested a reweighting
procedure to correct the past for outbreaks.

Further Possible Influencing Variables

Morabia (1996) raised the question of what to monitor. He suggested to collect
data not only in context of the disease, but also data of possible risk factors such
as dietary data. Furthermore, other covariate processes such as climate parame-
ters which explain the incidence by conditions of reproductions for the germs could
be considered. With existing procedures this is not possible, but in chapter 4 an
algorithm is introduced, which is able to consider covariates.

Repeated on-line Analysis

For prospective on-line analysis the data is collected sequentially and repeated anal-
yses over time is done. Thereby, an appropriate handling of correlated observations
and repeated decision problems is necessary.

Importance of Considering Data Characteristics

Therefore, surveillance data is characterized by trends, seasonality, and inaccura-
cies through underreporting, delays, and presence of past outbreaks. The data is
on-going and electronically reported. In the following, the presented structure and
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problems with surveillance data are considered in the selection of an adequate sta-
tistical method for surveillance. No golden rule is given, so that various approaches
are studied.

3.1.3 Basic Setting of Surveillance Methods

This section introduces notation and general strategy of monitoring methods. Fur-
thermore, an overview of existing methods is given. This list is not intended to be
exhaustive. Moreover, an overview of a variety of possible solutions to the previously
described problems with surveillance data is presented.

Notation and Point of Origin

General surveillance analysis is based on public health data, i.e. data sets collected
by governmental institutions. These data sets are often aggregated by week or month
of report. The result can be seen as an univariate time series of count data. The
variable is of count nature: yt, t = 1, 2, . . . , T , where T is the current time point or
date. In some methods, further covariates, i.e. the week, season, proportion of gen-
der or region, can be considered. Such covariate processes are denoted by x1, . . . ,xT .

If one is interested in monitoring different strata simultaneously, the setting is
based on a multivariate time series represented by yt, t = 1, 2, . . . , T with yt =
(yt1, yt2, . . . , ytn)′, while n being the number of strata, i.e. regions or age groups.
During the analysis of these data it is important to recognize that correlations be-
tween the groups are taken into account.

This thesis focuses on univariate time series. Therefore, the methods are introduced
only for the univariate case. Different univariate scenarios are simulated in chapter 5
and the aggregated time series of Campylobacter infections in Germany is monitored
in chapter 6.

General Approach

Most of the surveillance methods follow the same general strategy. Outbreak de-
tection means the detection of aberrations, therefore at a certain time occurs an
important change in the time series. Thus, the process is assumed to be in-control
until an unknown time point τ . Note the retrospective behaviour of the detection:
at each time point one is only allowed to look back in time, never ahead in time.

To detect time points of aberration it is necessary to solve a binary decision prob-
lem: if everything is normal or a change in the structure of the process has occurred
(Höhle and Mazick, 2010). Each time point t of the time series is in one of the two
states. If the counts of a disease can be assumed as coming from a state of normality
the process is termed to be in-control at time t when t < τ . Otherwise, if the time
point is later than the point of change, so t > τ , the process is out-of-control. The
true but unknown state of process is denoted by zt, which takes the values 0 and 1,
where 1 indicates an out-of-control time point.
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Which kind of change should be detected depends on the type of application. The
easiest type is the step change where a parameter changes from one fixed level to
another one. Other types are gradual, linear change, or an exponential increase
(Sonesson and Bock, 2003). Considering this, a threshold ξ is defined as a fixed
threshold or varying threshold with respect to time, season, or covariate variables.

Finally, a detection method is a rule, which predicts the unknown state of zt based
on the observations y = (y1, . . . , yt)

′. Consequently

ẑt = I(r(y) > ξ),

where I(·) is the indicator function and r(·) a summary statistic (Höhle and Mazick,
2010). In order to find an appropriate summary statistic and threshold ξ, it is distin-
guished between two strategies: methods based on reference values and approaches
inspired by statistical process control, which are introduced in the following.

3.1.4 Methods based on Reference Values

First of all, the time series is modelled with the purpose to determine the usual
in-control properties of the time series. Thereby, trend, season, or/and influence
of other variables describing the time series is derived. In general, this knowledge
is used to create a prediction ŷT . The predicted value is then compared with the
observed value of disease counts.

To create the prediction a set of reference values is used

R(w,w0, b) =




b⋃

i=1

w⋃

j=−w
yT−ip+j


 ∪




−1⋃

k=−w0

yT+k


 , (3.1)

where b is the number of years to go back in time, w the number of weeks around
t to be included from these previous years, and w0 the number of previous weeks
in the current year, typically w = w0 (Höhle, 2007). Parameter p represents the
frequency of reports during a year, so that p = 52 refers to a weekly and p = 12 to
a monthly data basis.

Example. The construction of the reference set is illustrated in Figure 3.2. The
years since 1985 until 1994 are assumed to be the training data, while the data from
1995 until 1998 will be monitored later on. The reference set with b = 6 and w = 2
for the first point in the evaluation time period is highlighted. It is obvious, that
more than half of the data is not considered for surveillance.

3

The resulting prediction is compared with the observed value, whereby a decision
is made, if an alarm is to be triggered. In the following, some specific methods to
perform this prediction are summarized.
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Figure 3.2: Illustration of reference values set generation in the example dataset of
meningococcal infections in France

The System used at the Robert Koch-Institute, Germany

The method used at the RKI is inspired by Stroup et al. (1993). It observes the
progression of the disease counts in a moving window of a fixed length in comparison
with an expected number based on the previous years. The reference set is composed
by the weekly incidence of previous w0 weeks and parallel weeks in the previous
years (Höhle, 2007). The window range depends on the disease, but typical values
are w = 3 or w = 4. Note, that windowing implies a loss of information due to the
reduction of the time series information. Furthermore, the selected window length
has a strong influence on the outcome (Sonesson and Bock, 2003).

Farrington Algorithm

Farrington et al. (1996) introduced an algorithm finding a threshold based on the
prediction intervals for expected values by a generalized linear model of the base-
line rate. The automated algorithm should be applicable to various types of infec-
tions, thus should produce accurate results both for rare and common diseases. The
method is described in detail in section 3.2.

Hierarchical Time Series Algorithm

Heisterkamp et al. (2006), ten years later than Farrington et al. (1996), proceeds
essentially with the same strategy and compare the observed counts of each time
point with the predicted count of that particular time point. By usage of different
prior models for the intercept in a generalized linear model, an hierarchical model is
obtained. Therefore, the Heisterkamp algorithm can be seen as an advancement of
Farrington’s algorithm. For a more detailed description of this algorithm see chapter
4.
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A Bayesian Predictive Posterior Approach

According to Höhle (2007) a Bayesian approach is introduced. The reference values

R(w,w0, b) are assumed to be Poisson distributed yi|λ iid∼ Po(λ) with λ ∼ Γ(κ, ν)
being the conjugated prior distribution for λ. Accordingly, the predictive posterior
of yT can be simplified to a negative binomial distribution (Held, 2008).

yT+1|y1, . . . , yT ∼ NegBin

(
κ+

T∑

t=1

yi,
ν + T

ν + T + 1

)
.

Basically, a threshold is calculated using the α-quantile of the resulting predictive
posterior distribution ξα. If the observed value yT+1 is greater than the threshold
ξα an alarm is triggered at time T + 1.

The Assets and Drawbacks

The methods based on reference values handle seasonality automatically due to
using corresponding values of the previous years. But, they use only a small subset
of available data (see Figure 3.2), so that the methods based on reference values
tend to be sub-optimal (Höhle, 2007). A critical assumption is that the base-line
rate of the disease rate is known (Sonesson and Bock, 2003). Furthermore, no auto-
correlation is taken into account.

3.1.5 Algorithms Inspired by Statistical Process Control

Other approaches are inspired by statistical process control techniques. The basic
setting assumes that the observations during an in-control state has a specific dis-

tribution with mean µ1, e.g. normal distribution x1, . . . , xT
iid∼ N(µ1, 1). A change

of one level to another one is detected if the distribution changes to another mean
µ2, e.g. N(µ2, 1) (see Hawkins and Olwell, 1998).

In surveillance models, cases are assumed to follow a Poisson process or a more
complex time-varying process. Often likelihood ratios between in-control and out-
of-control state are used to construct a decision rule. Assuming a Poisson process, an
increased rate of incidence corresponds to an increased intensity of the process. The
Poisson model can be replaced by a negative binomial model when over-dispersion
occurs (Woodall, 2006).

Most common are methods based on cumulative sum statistics. The count data
y1, . . . , yT

iid∼ Po(λ) is transformed into approximately normally distributed data.
Furthermore, seasonality can be handled by letting λ vary over time by means of a
periodical transformation (Höhle, 2007).

3.1.6 Detection using Search Engine Query Data

Even the method is not in common use and in the early stage of development, it
presents an automated outbreak detection method which gives a basically different
perspective to the problem. Thus, this part introduces an algorithm which is not
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based on public health data and should outline the diversity of methods in the area
of automated outbreak detection.
The search engine operator Google analysed their inquiries and modelled the in-
fluenza epidemic in several countries. The system assumes that patients first request
the Internet with their problems before or even instead of consulting a physician. The
usage of Internet data avoids the problem of reporting delays, because search queries
can be proceeded quickly, so that outbreak could be detected on-time. (Grinsberg
et al., 2009).

The model for prognosis is based on statistically related search queries to influenza
during the influenza epidemics in the previous years. Therefore, a proper case defi-
nition is missing and only influenza-like illnesses can be prognosed. In Germany, so
far, just the spatial view at the level for the federal states is possible. Furthermore,
it is debatable whether the method is applicable to rare diseases. Therefore, the
prognosis cannot replace public health surveillance, but may add information and
help to solve some problems, especially reporting delay, with surveillance data.

Example. Figure 3.3 displays the Google Flu epidemic prognosis exemplary for
Germany. Additional plottings of the acute respiratory data of Germany examine
the fit, while not all data have been provided. In general, the prognosis is quite
accurate, even though the increase during the year 2009 is overestimated. Note,
that the case definition is not accurate.

Figure 3.3: Google Flu epidemic prognosis (blue line) compared to data of acute
respiratory infection in Germany (yellow line). (Source: Google, 2010)

3

3.2 Farrington Algorithm

Now, the algorithm of Farrington et al. (1996) is illustrated in detail. It is one of the
mostly used methods in outbreak detection and will be evaluated later in comparison
with the introduced hierarchical time series algorithm of Heisterkamp et al. (2006).

The algorithm was developed to have a robust and fast method applicable for the
routine monitoring of weekly reports on infections at the former Communicable Dis-
ease Surveillance Centre (now Health Protection Agency), the national public health
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department in the United Kingdom (Farrington et al., 1996). The method was de-
signed for all organisms which includes diseases with sporadic cases, therefore low
counts, but as well for diseases with large counts. The primary interest was to find
aberrations of abnormally high number of observed cases.

As displayed in the last section, the strategy belongs to the group of methods which
is based on reference values. First, an overdispersed Poisson log-linear model is
fitted which results in a prediction for expected value. After that, thresholds are
calculated to define an in-control area.

3.2.1 The Algorithm

The algorithm’s strategy can be summarized in five steps. Here, an overview is given
and in the following sections each step is explained in more detail.

1. Fit an initial generalized linear model and calculate estimates for expectation
µt and dispersion φ.

2. Calculate past outbreak correcting weights with Anscombe residuals and refit
the weighted model.

3. Calculate a revised estimate φ̂ and rescale the model.

4. Check if the trend component is significant. If not, repeat fitting procedure
without time trend.

5. Calculate threshold.

Step 1: Fit Generalized Linear Model

Using the reference values R(w,w0, b) ⊆ {y1, . . . , yT } a prediction for the current
time point T is calculated. For prediction a generalized linear model is fitted, where
the baseline count yt corresponds to any time point t < T .

The linear predictor is defined by the assumptions of the influencing variables in the
statistical model. Without loss of generality, only a linear time trend is included,
so that the linear predictor is ηt = β0 + β1t. Furthermore, a log-linear relation is
assumed between the linear predictor ηt and the mean counts at one time point
µt = E(yt). Therefore, the monotone link function of the generalized linear model is

log(µt) = β0 + β1t, (3.2)

The last component describing a generalized linear model uniquely is a probability
distribution. Public health data are counts of infections with large variance. There-
fore, without loss of generality, a quasi-Poisson model yt ∼ Po(µt) with Var(yt) = φµt
is assumed.

Following the theory of generalized linear models (Fahrmeir et al., 1996), the pa-
rameters are estimated by a quasi-likelihood method. In particular, the dispersion
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parameter φ is estimated by

φ̂ = max

{
1

n− p
T∑

t=1

ωt
(yt − µ̂t)2

µ̂t
, 1

}
, (3.3)

where ωt is a weight, which is discussed later, and p is the number of predicted
parameters in the linear predictor (3.2), e.g. p = 2 if the time trend is included and
p = 1 without time trend. Assuming no over-dispersion, one would have φ̂ = 1, the
expected counts for the current week T is estimated by

µ̂T = exp(β̂0 + β̂1T ).

This model can be modified by removing the non-significant time trend or adding a
seasonal component. If a seasonal component is present, the prediction bases only
on counts from comparable periods in the past year, R(w,w0, b).

Example. Using the reference set with w = 2 and b = 4, as displayed in Figure 3.2,
a generalized linear model is fitted to the time series of meningococcal infections in
France. The estimation for the intercept is β̂0 = 2.04, while the time trend does not
have a significant influence. Therefore, it is removed from the model. The dispersion
parameter is estimated to be φ̂ = 1.81. It follows the corresponding summary of the
model in a R-Output.

Call:

glm(formula = ref$observed ~ 1, family = "quasipoisson")

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.04083 0.08453 24.14 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasipoisson family taken to be 1.814752)

Thus, the first time point of the evaluation period T = 121 is predicted, based on
the defined reference set, one obtains E(y121) = exp(η121) = exp(2.04) = 7.70. The
prediction is shown in Figure 3.4. The reference points included in the model are
displayed with blank dots, while the full progress is drawn by a grey line. The
observed value is highlighted by a filled dot and is located a bit higher than its
prediction.

3

Step 2: Correction of Past Outbreaks

Past outbreaks cannot be identified completely. Therefore, Farrington et al. (1996)
suggest a reweighting procedure to reduce the influence of high base-line counts.
Corresponding weights in the generalized linear model (as mentioned in formula
(3.3)) are defined by standardized Anscombe residuals

st =
3

2φ̂1/2
y
2/3
t − µ̂2/3

µ̂1/6(1− htt)1/2
,
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Figure 3.4: Illustration of generalized linear model fit in the example dataset of
meningococcal infections in France

where htt are the diagonal elements of the hat matrix, so that the weights are

ωt =

{
γs−2t if st > 1,
γ otherwise,

where γ is a normalization constant, so that
∑
ωi = n. Hence, low weights to counts

with large residuals are given. However, note that this shrinks not only the mean,
but also the estimate of variance.

Example. In the time series of meningococcal infections in France between 1985 and
1998 no outbreaks are removed or marked. Therefore, a correction of past outbreaks
is advised. Figure 3.5 shows the influence of adjusting the data by the described pro-
cedure. The threshold based on reweighted data due to the standardized Anscombe
residuals is consistently lower.

3

Steps 3 and 4: Rescaling and Checking the Model

With the calculated weights ωt the generalized linear model is refitted and with
a revised dispersion estimate φ̂ the model is rescaled. If the time trend is not
significant, this component is omitted and the procedure is repeated.

Step 5: Calculation of Threshold

The threshold calculation is based on an assumed normal-distributed prediction of
yT . Farrington et al. (1996) introduced the algorithm with a two-sided prediction
interval, but the general aim in monitoring of infectious diseases is the detection of
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Figure 3.5: Illustration of influence of past outbreak correction in threshold calcu-
lation in the example dataset of meningococcal infections in France

aberrations of abnormally high counts. Therefore, an one-sided prediction interval
for the current count yT is constructed. Then, the prediction interval without any
reweighting for yT results in the general form

Unone = E(yT ) + z1−α
√

Var(yT − µ̂T ),

where z1−α is the 100%·(1−α)-quantile of the normal distribution, and Var(yT−µ̂T )
the prediction error variance. If no skewness transformation for yT is necessary it
follows with yT and µ̂T independent, that

Unone = µ̂T + z1−α
√

Var(yT ) + Var(µ̂T )

= µ̂T + z1−α
√
φµ̂T + Var(µ̂T )

= µ̂T

{
1 + z1−α

√
φµ̂T + Var(µ̂T )

µ̂2T

}

= µ̂T

{
1 + z1−α

√
τ̂

µ̂T

}
with τ̂ = φ+

Var(µ̂T )

µ̂T
.

A common problem in diseases with low counts is a highly skewed distribution.
Therefore, a 2

3 -power-transformation is studied. This skewness correction is based

on the transformation function g(x) = x2/3 with derivative g′(x) = 2
3x
−1/3. Using

the assumption of the quasi-Poisson model yT ∼ F (µT , φµT ) and by applying the
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∆-rule one obtains

E(y
2/3
T ) = µ

2/3
T ,

Var(y
2/3
T ) = Var(g(yT )) = [g′(E(yT ))]2Var(yT )

= [
2

3
µ
−1/3
T ]2φµT =

4

9
φµ

1/3
T ,

Var(µ̂
2/3
T ) =

4

9
µ
−2/3
T Var(µ̂T ).

The prediction error variance results as

Var
(
y
2/3
T − µ̂2/3T

)
= Var(y

2/3
T ) + Var(µ̂

2/3
T ) =

4

9
µ
1/3
T

[
φ+

Var(µ̂T )

µT

]

=
4

9
τµ

1/3
T , τ = φ+

Var(µ̂T )

µT
.

With the transformed parameters, the prediction interval construction follows the
same strategy like in the case without transformation.

U
2/3
2/3 = µ̂

2/3
T + z1−α

√
V̂ar(y

2/3
T − µ̂2/3T ) = µ̂

2/3
T +

2

3
z1−αµ̂

1/6
T

√
τ̂

⇒ U2/3 =

{
µ̂
2/3
T +

2

3
z1−αµ̂

1/6
T

√
τ̂

}3/2

= µ̂T

{
1 +

2

3
z1−α

√
τ̂

µ̂T

}3/2

,

Those observations lying outside this interval are considered to be an aberration.

Another skewness correction by a square-root transformation results in the upper
prediction interval border

U1/2 = µ̂T

{
1 +

1

2
z1−α

(
τ̂

µ̂T

)1/2
}2

.

Example. In Figure 3.6 the different thresholds are shown. ’2/3’ displays the upper
bound corrected by skewness correction in low count scenario, ’1/2’ by variance
stabilizing square-root transformation, and ’none’ by no transformation.

3

3.2.2 Enhancements and Limitations Discussion

The Farrington algorithm is very sensitive, and detects even small increases of
rare infections, while in common disease processes only large excesses are detected.
Therefore, small localized outbreaks of common diseases are unlikely to be identified
(Farrington et al., 1996).

The method is able to handle trend and seasonality in a robust way. A trend com-
ponent should be added only if the data basis covers more than three years in order
to avoid unrealistic extrapolations.
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Figure 3.6: Illustration of different transformations in threshold calculation in the
example dataset of meningococcal infections in France.

The distributional assumptions for the generalized linear model should be validated
and replaced if necessary, like it is usually done in model-fitting.

The problem with the Farrington algorithm is the missing guidance on how to choose
the values of α, b and w. The user has to have strong content-related evidence or
large experience to choose these parameters. For significance level α, it is advised
to determine it empirically to keep the number of detections to a manageable level
(Farrington et al., 1996). A simulation study to the significance level is introduced
in section 5.3.

An examination of Farrington on the behaviour of the past outbreak correction shows
that it ’substantially alleviates the effect of past outbreak but does not eliminate
it’ (Farrington et al., 1996). But Höhle (2008) showed that the downweighting of
large positive outliers not only shrinks the variance due to Var(yt) = φµt

ωt
, but the

prediction of mean as well.

Example. For the example, in Figure 3.7, it can be shown, that the predicted value
ŷ121 = 7.07 is lower than before in the unadjusted fit, where it has been ŷ121 = 7.70.
The observed value is much higher.

3

The exceedance score defined as

δ =
yT − µ̂T
U − µ̂T

is set to zero, if fewer than five reports were reported at the past four time points.
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Figure 3.7: Illustration of influence of past outbreaks detection to the generalized
linear model fit in the example dataset of meningococcal infections in France

The method is not able to consider the effect of delays, thus Farrington et al. (1996)
refers to the importance of their prior investigation.

Each time point is evaluated separately, so that a continuous observation of the
time series is not possible. Furthermore, serial correlations between base-line counts
are ignored. Therefore, non-epidemic conditions are assumed which is given for
infrequent diseases. Farrington et al. (1996) show that the bias ignoring the serial
correlation is very small .

3.3 Evaluation of Performance

Work is not done once the system flags an outbreak. This section will examine the
magnitude of evaluation, their criteria, and central key parameters.

3.3.1 Criteria for Evaluation of Surveillance Systems

Evaluation of surveillance programs is based on the criteria usefulness, cost, and
quality, while the improvement of the one may impose or compromise the other
(Thacker and Berkelman, 1988). In the following, relations are described and after-
wards central criteria are defined.

Usefulness

The measurement of usefulness is inexact and it is the practicability and early detec-
tion of an outbreak which leads to effective intervention and provides information
used for preventive purposes. For instance, the computing time of a monitoring
algorithm is still relevant, because algorithms should be practical and not too time
consuming.
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Costs

It can be distinguished between fixed costs for running a surveillance system and
variable costs. In case of an alarm, follow-up activities such as further diagnosis, case-
management, or community interventions are necessary. The financial and public
health costs of missing outbreaks (entirely or later) should not be ignored. To reduce
the variable cost an optimal surveillance method regarding its quality is needed
(Buehler et al., 2004).

Quality

There are eight attributes of quality: sensitivity, specificity, predictive value posi-
tives, representativeness, timeliness, simplicity, flexibility, and acceptability (Thacker
and Berkelman, 1988).

By controlling the values of sensitivity, specificity, and predictive value positives
the number of detections are kept in a manageable range while the probability of
an aberration detection is kept high. Representativeness refers to the surveillance
data quality, which is confronted with underreporting and bias. It ensures that the
occurrence and distribution of cases represent the true situation in the population.
Timeliness means to detect outbreaks as soon as possible to initiate interventions. A
general claim to statistical methods is to be as simple as possible while still meeting
their objectives. If a surveillance system is able to adapt changing operating condi-
tions or random variability of trend is measured by flexibility. Acceptability reflects
the willingness of participants and stakeholders to contribute to the data collection
and analysis (Buehler et al., 2004).

Thereby, special importance for the evaluation of surveillance methods for infectious
diseases have the criteria of sensitivity, specificity, predictive value positives, and
timeliness, which are described in detail in section 3.3.3.

3.3.2 Choice of Evaluation Data

For most quality criteria a ’gold standard’ from an alternative data source to con-
firm occurring outbreaks is necessary. Not all outbreaks are recognized in the public
health system. With capture-recapture techniques estimations for outbreaks missed
by the surveillance system can be achieved (Buehler et al., 2004).

Furthermore, it is possible to simulate historical data in different outbreak scenarios
and to evaluate the performance of an algorithm. Höhle (2007) provides a method
for simulation using hidden Markov models, which is described in detail in section
5.1.1. Beside this, Hutwagner et al. (2005) introduced simulated data of various
scenarios which have been adjusted by typical irregularities and superimposed by
different outbreak types. The data is provided by the CDC and section 5.4.1 puts
a finer point on it. However, simulations are limited in their ability to imitate the
diversity and unpredictability of real-life events (Buehler et al., 2004).
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3.3.3 Key Parameters in Evaluation of Infectious Disease Outbreak
Detection Methods

Validation of the surveillance system, i.e. data sources, case definitions, statistical
methods, and timeliness of reporting, can provide indirect evidence of system perfor-
mance (Buehler et al., 2004). Here, a focus is drawn on the statistical assessment of
outbreak detection quality, especially the key parameters of sensitivity, specificity,
predictive value, and timeliness.

It has to be clear in one’s mind, that these measures are not known in real disease
time series as long as the true outbreak state is unknown, and therefore can be used
only for simulated data sets.

First, the general notation is introduced (see Frisén, 2003). The observed process
is denoted by yt, t = 1, 2, . . . , T . The state of process is denoted by zt. Assuming a
process with step change, the in-control set C(s) = {τ ≤ s} implies the acceptable
value zt = z0 for t = 1, 2, . . . , τ−1 and the out-of-control set D(s) = {τ > s} implies
an unacceptable value zt = z1 for t = τ, τ + 1, . . . , T . The time point of the first
alarm generated by the surveillance method is a random variable defined as

tA = min{s|r(s) ≥ ξ},

where r(s) is an alarm statistic at time point s, and ξ is the selected threshold.

On this basis, the selected common quality criteria are introduced subsequently.

Sensitivity and Specificity

There are two kinds of errors in aberration detection: a false positive result, meaning
an alarm is triggered at an in-control time point, and the false negative, meaning no
alarm is triggered if an outbreak is present. Therefore, different values are defined
(see Table 3.1): the number of correct found outbreaks TP = |{A(s)|s ∈ C(s)}|,
of false found outbreaks FP = |{A(s)|s ∈ D(s)}|, of correct found non-outbreaks
TN = |{A(s)|s ∈ C(s)}|, and the number of not-detected outbreaks FN = |{A(s)|s ∈
D(s)}| (see Table 3.1).

XXXXXXXXXXXAlarm
Outbreak

yes no

TRUE TP FP → Positive predictive value
FALSE FN TN → Negative predictive value

↓ ↓
Sensitivity Specificity

Table 3.1: Illustration for detection rates

Aggregating these numbers to rates the criteria of sensitivity and specificity can be
deduced. Sensitivity, as the ability to identify every single case of outbreak, is the
true positive rate, i.e. the total number of correctly flagged outbreaks, divided by
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the total number of outbreaks.

se =
TP

FN + TP

Specificity is the true negative rate, i.e. the rate of correctly non-detection of non-
outbreak time points.

sp =
TN

TN + FP

Plotting the (1− sp) versus se across the values of ξ generates a receiver operating
characteristic (ROC) curve. The Euclidean distance between this curve to (0, 1) can
be used as a measure for optimality.

Predictive Value of an Alarm

The positive predictive value is PV(s) = P (C(s)|A(s)) is the proportion of alarms
that actually have been an outbreak event (see Table 3.1). Therefore, it is a general
indicator for the uncertainty in a triggered alarm. A low predictive value means a
large number of misclassification, erroneous conclusions and unnecessary interven-
tions (Straif-Bourgeois and Ratard, 2005).

In passive surveillance the predictive value increases to one as time s increases. In
active surveillance, which means the process is stopped if an alarm is triggered, the
predictive value has a limiting value of less than one.

Average of the Run Length (ARL)

A generally used quality measure is the average of the run length (ARL). Hence,
ARL0 is defined as the expected value of in-control run length until the first alarm
in a system of surveillance where no change occurs

ARL0 = E(tA|τ =∞),

and ARL1 is the average out-of-control run length, where a true change occurred at
the same time surveillance started,

ARL1 = E(tA|τ = 1).

It can be understood as the expected time to detect an outbreak which already
occurred. Optimality is found by minimizing ARL1 holding ARL0 fixed.

Expected Delay

A right decision could be useless if it is made too late. Therefore, the expected delay
matters in the evaluation of timeliness. The expected delay is the time between the
change τ and the time of alarm tA summarized using the expectation with regard
to the distribution of τ (Frisén, 2003).

ED = E[ED(τ)] = E [E[max(0, tA − τ)|τ ]] .



52 CHAPTER 3. OVERVIEW ON SURVEILLANCE METHODS

Therefore, ARL1 can be defined in terms of the expected delay ARL1 = ED(1) + 1.

For prediction of the expected delay, the beginning of each outbreak chain is located.
With this, the difference between the beginning of the outbreak and the first alarm
is the specific delay. Furthermore, a penalty is defined as a maximum detection time
range in case the outbreak is not detected. All delays of the monitored time series
are averaged to obtain an estimate for the expected delay.

Example. The following Figure 3.8 explains how the expected delay is estimated.

The specific observed lags are aggregated by its mean. Thus, ED = 1
n

n∑
k=1

lagk.

yt

t+ *

lag1

+ +

lag2

*

lag3

...

Figure 3.8: Illustration for estimation of expected delay where + indicates an out-
break and * the corresponding alarm

3

Probabilities of a Successful Detection

Often there should be a limited time d from the change to the detection if a disaster
is to be avoided (Frisén, 1992). Then, the probability of a successful detection is
defined by

PSD(τ, d) = P (tA − τ ≤ d|tA ≥ τ),

which means the probability for an alarm delay smaller than a limit d (Frisén, 2003).

3.3.4 Comparisons between Algorithms

As presented before, there is a large variety of outbreak detection methods. There-
fore, Kleinman and Abrams (2008) ask “how should system designers decide which
detection method is the best for surveillance?”.

The quality of outbreak detection may depend not only on the outbreak scenario, but
on the specific characteristics of underlying data, as well. Therefore, it is necessary
to define optimality referring to a given situation. In the last part a variety of
criteria were introduced, while most important are specificity, sensitivity as well as
expected delay for timeliness. Different surveillance methods can be compared using
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these quality measures while the trade-off between them could be solved by content-
related argumentation. Kleinman and Abrams (2008) suggested three-dimensional
analogues of the ROC curve as well as including timeliness in a ROC curve by
weighting the curve by the average proportion of time or lives saved by the detection.
It is noted that for diseases with outbreaks affecting only a few cases the reweighting
by the number of saved lives is not appropriate.
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Chapter 4

Hierarchical Time Series
Algorithm

After in the last chapter a selection of methods for monitoring surveillance time
series were introduced, this chapter presents a hierarchical time series algorithm de-
scribed by Heisterkamp et al. (2006). Firstly, the method and a newly developed
full Bayesian version of it is described in detail. Secondly, technical details of im-
plementation are given. Finally, a discussion of algorithm limitations is given. The
algorithm’s behaviour in application is investigated in the subsequent chapters 5 and
6, where simulation studies of different scenarios and the application to the Campy-
lobacter time series shows its properties compared to the previously described RKI
method, Farrington, and Bayes algorithm as established methods.

4.1 General View of the Algorithm

Heisterkamp et al. (2006) proposed an algorithm to improve the surveillance system
in the Netherlands (Infectious disease Surveillance and Information System, ISIS).
This system is based on daily laboratory reports of the test results of over 350
pathogens, which covered at that time laboratory results corresponding to about
20% of the Dutch population.

The algorithm can be seen as an extension of Farrington’s algorithm (see section 3.2)
and basically fits a generalized linear model with over-dispersion. The procedure can
be summarized in three steps:

1. The model parameters are estimated using data from a predefined training
period.

2. The expected values are updated for small time steps as new data arrive.

3. Thresholds are calculated conditionally on the expected value for the new time
point.

An alarm is triggered when the threshold is exceeded.

Example. In the following, each step is described in detail and exemplified by the
data displayed in Figure 4.1. The data are simulated from a hidden Markov model
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(see section 5.1.1) such that the probability for switching into the outbreak state
is 1%, while staying in the state is defined as 50%. If an outbreak appears the
expectation of the counts is doubled. The training period is 2001–2003 while the
years 2004 and 2005 will be monitored. The end of the training period is marked in
the time series plot by a dashed line.

Simulated data for Illustration
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Figure 4.1: Illustrative data simulated by a hidden Markov model. The symbol +
indicates an outbreak.

3

4.1.1 Definition of the Hierarchical Time Series Model

Using a training period a hierarchical time series model is fitted, which is based on a
generalized linear model and a stochastic model for the time varying parameter. Due
to the count data nature of the time series, a Poisson distribution of the response is
assumed.

yt|µt iid∼ Po(µt), t = 1, . . . , T,

such that E(yt) = µt and Var(yt) = µt. In case of over-dispersion a negative Bino-

mial distribution yt|µt iid∼ NegBin(µt, α) with E(yt) = µt and Var(yt) = µt +
µ2t
α can

be used instead.

In the Poisson model, the expectation of the response is linked to the linear predictor
by ηt = log(µt), while the linear predictor is defined as

ηt = β0t + x′tβx, t = 1, . . . , T,

where x′t is a row-vector of length p including time specific of covariates, and
βx = (β1, . . . , βp)

′ the vector of regression coefficients. The intercept β0(t) = β0t is
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assumed to be time varying with dynamics governed by a stochastic process. There-
fore, different models for this second level of the hierarchical model are investigated

stationary model: β0t|β0t−1, . . . , β01 ∼ N(β0, λ
−1), t = 2, 3, . . .

neighbour model: β0t|β0t−1, . . . , β01 ∼ N(β0t−1, λ−1), t = 2, 3, . . .

linear model: β0t|β0t−1, . . . , β01 ∼ N(2β0t−1 − β0t−2, λ−1), t = 3, 4, . . .

quadratic model: β0t|β0t−1, . . . , β01 ∼ N(3β0t−1 − 3β0t−2 − β0t−3, λ−1),
t = 4, 5, . . .

Here, λ is the precision parameter of the normal distribution, i.e. the variance is
equal to λ−1. In summary, the models can be written by the usage of the dth order
difference operator ∆d, i.e. ∆d(β0t) = ∆d−1(β0t−β0t−1) for d > 1 and ∆0(β0t) = β0t.
In particular, for the stationary model is defined ∆0(β0t) = β0t − β0.

∆d(β0t)|β0t−1, . . . , β01 ∼ N(0, λ−1), for d = 0, 1, 2, 3. (4.1)

time

β0t
(a) β0t|β0

E(.)

t time

β0t
(b) β0t|β0t−1

E(.)

tt-1

time

β0t
(c) β0t|β0t−1, β0t−2

E(.)

tt-1t-2 time

β0t
(d) β0t|β0t−1, β0t−2, β0t−3

E(.)

tt-1t-2t-3

Figure 4.2: Illustration for different latent models for intercept: (a) stationary model,
(b) neighbour model, (c) linear model, and (d) quadratic model while E(·) means the
expectation for the current parameter β0t given the corresponding previous values.

The latent models for β0t can also be seen as random walks of a specific different
order. In Figure 4.2, the trend characteristics are illustrated. The conditional dis-
tribution β0t|β0t−1, . . . , β01 simplifies due to the order of the random walk and its
Markov property. Choosing the stationary model corresponds to assuming a con-
stant overall trend. A random walk of first order is used in the neighbour model,
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where the distribution of yt conditionally on the past only depends on the first lagged
value. A local linear or quadratic extrapolation is assumed by the random walk of
second or third order.

The variance λ−1 controls the width of the normal distribution and therefore the
roughness of the random walk, as displayed in Figure 4.2. In the following, λ is
interpreted as smoothness parameter. A small λ and therefore a large variance re-
sults in a rough path, while an increasing parameter λ results in more smooth paths.

In other contexts the type of latent model in formula (4.1) is also denoted as smooth-
ing prior or Bayesian smoothing (Fahrmeir et al., 2009).

4.1.2 Model Representations for Different Concepts of Inference

Depending on the inference concept, the model can be seen from different points of
view. In the following, the model is written in context of either generalized additive
models or as a Bayesian model. Furthermore, the hierarchical time series model can
be represented as a generalized linear mixed model, but it is not considered further,
because this representation is not in the focus of interest for this thesis.

Generalized Additive Model

Using the setting of a generalized additive model (Fahrmeir et al., 2009), the time
dependent intercepts represent the coefficients of the B-spline basis functions of order
zero Bk(t) = I(k − 1 ≤ t < k), where I(·) is the indicator function and thus

β0(t) =

K∑

k=1

β0kBk(t) = β0t, t = 1, 2, 3, . . . .

Adding the parametrical term of covariates a semiparametrical model is derived as

ηt = β0(t) + xtβx.

The spline coefficients are estimated by adding a penalty term as shown in section
4.2.1 to the optimization criteria, which penalizes large variation of the time series,
approximated by the differences of the basis coefficients. Depending on the choice
of order in the penalization term, the introduced latent models of the hierarchical
time series model are obtained.

Following the theory of generalized additive models, inference can be made by pe-
nalized likelihood estimation combined with the minimization of a model selection
criteria for estimation of the smoothness parameter λ. This strategy is shown in
detail in section 4.2.1.

Bayesian Model

A Bayesian model is derived by defining priors for the parameters. For the covari-
ate coefficients βx a uninformative prior in form of a centred Gaussian with fixed
precision matrix B is assumed.

βx ∝ N(0,B−1)
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Special attention is attracting a specific prior for the time varying intercept as will
be explained in the following. Thereby, random walks are the stochastic analogue to
penalization by differences. Thus, for the parameter β0t a prior model of the form in
formula (4.1) is defined, which in combination with the information from the data
deduces a marginal posterior probability distribution.

p(β0t,βx|y1, . . . , yt) ∝ p(y1, . . . , yt|β0t) p(β0,βx)

∝ p(y1, . . . , yt|β0t) p(β0)p(βx)

Thereby, β0 and βx are stochastic independent. Note, that this marginal posterior
density for β0 cannot be derived analytically. Thus in Bayesian models, inference
is usually done by applying, e.g. Markov Chain Monte Carlo (MCMC) methods.
In this thesis it will be, however, used the approach of Integrated Nested Laplace
Approximation (INLA) which is characterized in section 4.3 in detail. Bayesian
inference quantifies uncertainty of estimates directly and the prediction takes the
uncertainty in the parameter estimates into account

4.2 Algorithm using Likelihood Inference

Regarding the different representations of the hierarchical time series model, the fit
and update the model, and corresponding threshold calculation differ. In the fol-
lowing, the algorithm is described using likelihood inference as introduced in Heis-
terkamp et al. (2006).

4.2.1 Step 1: Fit Model using Generalized Additive Model Repre-
sentation

For model fitting, Heisterkamp et al. (2006) proposed the iterative re-weighted least
squares algorithm (IRWLS) as the model is a special case of a generalized additive
model. IRWLS obtains the estimates iteratively by performing Newton-Raphson or
equivalent steps in form of weighted least squares. The weight of an observation
depends on the predicted value (Cox et al., 2006). In this particular case, the es-
timation of coefficients β0 and βx depend on the optimal smoothness parameter λ̂
and are denoted with β = (β′0,β

′
x)′.

Following the theory of generalized additive models (see Fahrmeir et al., 2009), the
parameter β are estimated by using the penalized log-likelihood criteria

lpen(β) = l(β)− λ

2
β′Adβ,

where the second term is a penalty term for the roughness of the estimated function
f̂(t) = β̂0t. The notation results by

λ

T∑

t=d+1

(∆d(β0t))
2 = λβ′D′dDdβ = λβ′Adβ.

Here, the shrinkage matrix Ad is constructed by the matrix of differences Dd corre-
sponding to the random walk order d in the latent model with Ad = D′dDd.
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For illustration, if no covariates are assumed, the difference matrix of the neighbour
model is

Dneigh =




−1 1 . . . 0

−1 1
...

...
. . .

. . .

0 . . . −1 1



⇒ Aneigh =




1 −1 . . . 0

−1 2 −1
...

. . .
. . .

. . .
... −1 2 −1
0 . . . −1 1



,

while for the local linear prior model results

Dlin =




1 −2 1 . . . 0

1 −2 1
...

...
. . .

. . .
. . .

0 . . . 1 −2 1



⇒ Alin =




1 −2 1 . . . 0

−2 5 −4 1
...

1 −4 6 −4 1
. . .

. . .

1 −4 6 −4 1
... 1 −4 5 −2
0 . . . 1 −2 1




.

In case, covariates are included in the model, at the position of their coefficients the
matrices have zeros, because they are not penalized. Thus,

Ad =

(
D′dDd 0

0 0

)
.

The estimation of βλ, with fixed λ, is given by the weighted least squares solution

β̂λ = (X ′WX + λAd)
−1X ′W y,

where W = DΣ−1D is a matrix of weights with D = diag(d1, . . . , dT ) the deriva-
tive of response function, and Σ = diag(σ21, . . . , σ

2
T ) the variance matrix of β which

is obtained by iterative updating of a working covariance. The covariates X are
centred and scaled.

For optimization of the smoothness parameter λ several choices exist. Heisterkamp
et al. (2006) choose the model selection criteria ABIC. The optimal λ is chosen as
the value of λ which minimizes ABIC.

ABIC(λ) = l(y|β,X, λ)− 1

2
β′Adβ +

rg(Ad)

2
log(λ)− 1

2
log(det(H)),

where H is the Hessian of the penalized likelihood. With the new estimate of λ the
least squares equation is reweighted and the procedure is iterated.

Example. Using the simulated data of Figure 4.1 for illustration, a generalized
additive model is fitted as described before while outbreaks have been excluded.
The obtained model for the training period is displayed in Figure 4.3. Note, that at
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Fit of Generalized Linear Model
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Figure 4.3: Illustrative simulated data with model fit on training data (left of the
dashed line) using a random walk of order one as latent model.

the time period of outbreak the fit has a higher level than the year before, but does
not follow the peak. This is caused by excluding the observed values in the weeks
of outbreak while fitting. In the following, it is shown how this fit is used to update
the model stepwise due to the arriving of the data.

3

4.2.2 Step 2: Sequential Model Update

To avoid lengthy computations whenever new data arrive, the model is fitted based
on the training data y1, . . . , yT only once. Hereafter, λ̂ and the β coefficients in-
cluding β0 = (β01, . . . , β0T )′ and βx are kept fixed, ignoring any uncertainty, and
the model is updated sequentially as soon as a new observation yT+1 arrive. Thus,
only the intercept β0T+1 is updated to make application of the algorithm faster.
Therefore, a penalized log-likelihood is considered to be

l(β0T+1|β̂m, β̂x, λ̂, yT+1,xT+1) = l(yT+1|β0T+1, β̂x, λ̂,xT+1) (4.2)

+p(β0T+1|β̂m, λ̂)

where β̂x = (β̂1, . . . , β̂p) are the parameter estimates of the covariates xT+1 which

are kept fixed, and β̂m represents an artificial conditioning variable derived from β0

and depending on the chosen model for the time varying intercept.

β̂m1 = β̂stat = β̂0

β̂m2 = β̂neigh = β̂0T

β̂m3 = β̂lin = 2β̂0T − β̂0T−1
β̂m4 = β̂quad = 3β̂0T − 3β̂0T−1 + β̂0T−2
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The first term of the penalized log-likelihood in (4.2) is the log-likelihood of the new
observation yT+1 given the past, and the second term is the penalty term of β0T+1

given the previous estimates. The model may include the covariates at time T + 1.

In case of the Poisson distribution the log-likelihood of yT+1 is

l(yT+1|β0T+1, β̂x, λ̂,xT+1) ∝ yT+1β0T+1 − exp(β0T+1 + x′T+1βx).

The penalty term of β0T+1 is

p(β0T+1|β̂m, λ̂) ∝ 1

2
(β0T+1 − β̂m)′(λ̂−1 + Σ̂m)−1(β0T+1 − β̂m),

where β̂m is defined as above and Σ̂m depends on the chosen prior model of the
time varying intercept as well. The covariance is Σ̂m = w′mσ̂

′
mR̂mσ̂mwm with

the correlation matrix R̂m estimated from the training time period, σ̂m the up-
dated standard error diagonal matrix of the model parameters used inβ̂m, and wm

a weighting vector corresponding to the chosen model, i.e. wlin = (−2, 1)′.

Example. This predictive posterior density is displayed in Figure 4.4 for the data
from Figure 4.1. A prediction for the next time point T + 1 = 157 is derived. Thus,
the optimal β0T+1 is estimated as the mode of the predictive posterior, which is
represented in Figure 4.4 by a green dot. Note, that the figure corresponds to the
last time points of the fit tail in Figure 4.3.
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Figure 4.4: Last time point of the fit in Figure 4.3 together with the predictive
posteriori density. The symbol + indicates an outbreak.

3

Therefore, the penalized log-likelihood for β0T+1 from formula (4.2) derives as

l(β0T+1|β̂m, β̂x, λ̂, yT+1,xT+1) ∝ yT+1 − exp(β0T+1 + x′T+1β̂x) (4.3)

−1

2
(β0T+1 − β̂m)(λ−1 + Σ̂m)−1(β0T+1 − β̂m)
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To estimate the parameter of time trend β0T+1 the mode of this penalized likelihood
is taken. Therefore, the score equation has to be solved,i.e.

s(β0T+1)
!

= 0 ⇔
yT+1 − exp(β0T+1 + x′T+1β̂x)− (λ̂−1 + Σ̂m)−1(β0T+1 − β̂m)

!
= 0.

To determine the asymptotic variance of the estimate the observed Fisher informa-
tion is needed. It can be derived from the negative inverse of the second derivative
of the log-likelihood

σ2β0T+1
= Var(β̂0T+1) = [s′(β0T+1)]

−1

=
[
exp(β0T+1 + x′T+1β̂x) + (λ̂−1 + Σ̂m)−1

]−1
.

Substituting β̂0T+1, its variance estimation is derived as

σ̂2
β̂0T+1

=
[
yT+1 + (λ̂−1 + Σ̂m)−1(1− β̂T+1 + β̂m)

]−1
.

With the additional feature of updating the hierarchical time series model whenever
new data arrive the algorithm becomes fast and efficient. Now, the updated model
is used to calculate a threshold for aberration detection.

4.2.3 Step 3: Threshold Calculation

The basic setting for the threshold computation is similar to the Farrington algo-
rithm (see chapter 3.2): The hierarchical time series model is fitted and the estimates
are used to define a threshold.

For outbreak detection again only high counts of the disease are of interest. There-
fore, a one-sided 100% · (1−α) interval for the next observation yT+1 is constructed
at time point T . Depending on the monitored organism different types of threshold
might be appropriate.

The absolute aberration detection compares the upper interval border with a fixed
threshold. The relative threshold is an upper border for the variation of the time
series, which is compared with the current differences in the process. The comparison
with the cumulative threshold works similarly while the process variation over an
aggregated time period is considered.

Absolute Threshold

A time constant and known mean of E(yt) = µ0, t = 1, . . . , T , which can be com-
puted, e.g. based on the training period, is assumed, and a fixed exceedance score
δ > 0 is defined. Then, an alarm is triggered if the observed value exceeds the ex-
pected one by an amount of (1 + δ). Thus the absolute threshold for yT+1 is defined
as

ξabs = µ0(1 + δ).
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Thereby, the exceedance score δ can be seen as percentage of exceeding, i.e. for
δ = 0.5 the amount of excess is 50%.

The threshold at time T + 1 is defined by the upper border of the 100% · (1 − α)
interval for the expectation at time T , E(yT ). Thereby, the maximum likelihood
estimation of β0T has the property to be asymptotically normal distributed, thus
β̂0T

a∼ N(β0T , σ̂
2
β0T

). As a consequence the upper limit of a corresponding 100% ·
(1− α) Wald interval for β̂0T is constructed by

β0T + z1−α
√
σ̂2β0T

The upper border is retransformated by the inverse link, i.e. E(yT+1) = exp(ηT+1) =
exp(β0T+1 + x′T+1βx), and an alarm is triggered if

exp
(
β0T + x′T+1β̂ + z1−α

√
σ̂2β0T

)
≥ ξabs,

where z1−α is the 100% · (1 − α)-quantile of the standard normal distribution and
the parameter estimates are substituted where necessary. Note that the uncertainty
due to the estimation of the parameters βx is therefore not considered.

Example. In Figure 4.5 the absolute aberration calculation on the evaluation time
period in the presented data from Figure 4.1 is shown. During the whole time period
of high season is triggered an alarm. The type of threshold can be used for sporadic
or highly infectious diseases.
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Figure 4.5: Illustrations for absolute aberration calculations
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Relative Threshold

A so-called relative threshold is adequate if one is interested in a sudden increase
of cases compared with the normal day-to-day variation. It is assumed that in
the training period the best latent model has a difference order d. The observed
count yT+1 is not monitored directly, because it would require approximation of its
marginal distribution. Instead of, the depending coefficient β0T+1 is used, which
is included in ∆d(β0T+1). Thereby, the estimates obtained by penalized likelihood
maximization are approximately normal distributed with β̂0T

a∼ N(β0T , σ̂
2
β0T

+λ−1).
A upper border of a 100% · (1− α) Wald interval at time T is derived as

β̂0T+1 + z1−α
√
σ̂2β0T + λ−1.

The variation in form of the dth difference ∆d(β0T+1) will be monitored while the
uncertainty for estimation of β̂m and β̂ is ignored. Thus, the relative threshold is
defined as

ξrel,T+1 = log(1 + δ) + z1−α
√
σ̂2
β̂0T

+ λ−1,

and an alarm is triggered if

∆d(β̂0T+1) ≥ ξrel,T+1.

As before, the parameter estimates are substituted where necessary.

Example. In the following Figure 4.6 the relative threshold is illustrated. It can
be observed that it varies over time according to the current variation of the time
series.
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Figure 4.6: Illustrations for relative aberration calculations
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Cumulative Threshold

Using a so called cumulative excess over a number of time points can result in more
stability of the monitoring. Assuming a given lag time k and δ like above, the
threshold at time T + 1 is based on the distribution of the difference β0T − β0T−k,
which is assumed to be normally distributed with β0T − β̂0T−k ∼ N(0, σ2β0T−β0T−k

+

k λ−1). Thus, the cumulative threshold is defined as

ξcum,T+1 = log(1− δ) + z1−α
√
σ̂2β0T−β0T−k

+ k λ−1

= log(1− δ) + z1−α
√
σ̂2β0T + σ̂2β0T−k

− 2 cov(β0T , β0T−k) + k λ−1.

where z1−α is the (1 − α)-quantile of the standard normal distribution, δ the per-
centage of allowed exceeding. The parameters are replaced by their estimates. Here,
the variation resulting by the estimation of the parameters is ignored, as well. An
alarm is triggered, if

β0T − β0T−k ≥ ξcum,T+1,

Example. In Figure 4.7 is shown the absolute aberration calculation on the evalu-
ation time period in the data introduced in Figure 4.1. The threshold varies much
more the in the previous example.
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Figure 4.7: Illustrations for cumulative aberration calculations
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4.3 Bayesian Version of the Algorithm

Heisterkamp et al. (2006) treat the model as a generalized linear model. Therefore,
the updating step and the calculation of thresholds are handled accordingly based
on frequentist methods. As described, the model can be seen from a fully Bayesian
point of view as well. In this case, the threshold could be derived in the context of
Bayesian inference, which means directly by the predictive posterior of the obser-
vation. Thus, the threshold calculation includes directly uncertainty of prediction,
and of the estimation of parameters in the model.

4.3.1 Step 1: Fit Bayesian Model

As shown before the hierarchical time series model can be represented as a Bayesian
model.

yt ∼ Po(µt) or yt ∼ NegBin(µt, α) with

log(µt) = ηt = β0t + xtβx,

where β0t is modelled by one of the specific random walk models as prior model

β0t = βm + ut, ut
iid∼ N(0, τ2). (4.4)

According to the multivariate normal density, the prior density of β =
(β01, . . . , β0T , β1, . . . , βp)

′, when λ is given, can be written as

p(β) ∝
(
λ

2π

) rg(A)
2

exp

(
−λ

2
β′Adβ

)

∝ λ
rg(A)

2 exp

(
−λ

2
β′Adβ

)
,

and the posterior distribution is

p(β|y,X, λ) =
f(y|β)p(β)

f(y)
=

f(y|β)p(β)∫
f(y|β)p(β)dβ

∝ f(y|β)p(β).

It can be shown that the posterior optimization problem can be written equivalently
as penalized log-likelihood

log(p(β|y,X, λ)) = log(f(y|β,X, λ)) + log(p(β))

∝ l(y|β,X, λ)− 1

2
β′Adβ +

rg(Ad)

2
log(λ)

= lpen(β|y,X, λ),

where the last two terms were defined in section 4.2.1, in the likelihood inference, and
make up the penalty term withAd the shrinkage matrix, and λ the given smoothness
parameter.

Example. In the illustrative example the last time point of the training period
t = 156 is used to illustrate the knowledge increase about the parameter β̂0t due to
the consideration of the data. Since a random walk 1 model is used, the mode of
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Figure 4.8: Comparison of prior and posterior for β0t=156 at time point t = 156.

the prior at 0.37 is defined by β̂0t, t = 154, 155. The precision of the normal distri-
bution, λ, is estimated as hyperparameter. The posterior distribution considers the
new observation y156 = 4.

The prior has its maximum with density 0.37 at β0t=156 = −0.36, while the posterior
reaches a density of 0.64 at β0t=156 = 0.73. Therefore, the posterior distribution is
more steep and the variance is smaller. Thus, the uncertainty about the parameter
is reduced by including the information on the latest time point.

3

Usually, the posterior’s normalization constant is unknown. Therefore, the posterior
cannot be derived analytically. Thus, inference in Bayesian models can be drawn
from Markov chain Monte Carlo (MCMC) methods, which could have high com-
puting time. Therefore, the posterior distribution will be computed by a Laplace
approximation instead, which is described in detail in section 4.4.2.

4.3.2 Step 2: Sequential Model Update

According to Bayesian inference, the model can be updated by using the obtained
parameter posteriors based on the training period. The estimates include informa-
tion about previous observations, and therefore could be included as priors in the
updating step. The resulting uncertainty needs to be considered when the predictive
posterior is constructed. In the context of this thesis, such work would be beyond the
scope of what is possible. Therefore, the sequential model update in the Bayesian
version of the hierarchical time series algorithm is not considered further. An ef-
ficient implementation for model fitting will be applied by using INLA, so that in
spite of that an efficient working algorithm is obtained.
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4.3.3 Step 3: Alarm Triggering using the Bayesian Approach

The strategy of triggering an alarm in a Bayesian setting follows the approach of
Höhle (2008). Here, a threshold is calculated using the 100% · (1 − α)-quantile of
the predictive posterior distribution f(yT+1|y1, . . . , y1). If the observed value yT+1

is greater than the threshold ξ1−α an alarm is triggered for the week T + 1.

The predictive posterior can be written as a function of the new observation’s like-
lihood and the parameter posterior with

p(yT+1|y1, . . . , yT ) =

∫
f(yT+1, β0T+1|y1, . . . , yT ) dβ0T+1

=

∫
L(yT+1|β0T+1) p(β0T+1|y1, . . . , yT ) dβ0T+1.

If the value is located in the upper, say, 5%-tail of the distribution, the value is
unexpected high and therefore an alarm is triggered. A threshold ξ1−α is calculated
by using a quantile parameter α, so that

P (yT+1 ≤ ξ1−α|y1, . . . , yT ) ≥ 1− α.

Thus, the threshold is defined as the 100%·(1−α)-quantile of the predictive posterior,

ξ1−α = inf{yT+1|F (yT+1|y1, . . . , yT ) ≥ 1− α},

where yT+1 ≥ 0 and F (yT+1|y1, . . . , yT ) =
yT+1∑
x=0

f(x|y1, . . . , yT ) is the cumulative

distribution function of the predictive posterior. An alarm is triggered, if

yT+1 > ξ1−α.

Example. In Figure 4.9 the Bayesian aberration calculation is illustrated using the
evaluation time period of data introduced in Figure 4.1. The 95%-quantiles for the
different latent models are shown. At the time point, the threshold falls below the
count time series of observations an alarm would be triggered.

It can be observed that the stationary model (’iid’) is very restrictive and does not
allow much variability so that it does not reflect the seasonality of the time series.
The quantiles using the neighbour model (’rw1’) and linear model (’rw2’) have more
or less the same structure, while the local linear model tends to be more flexible to
deal with strong variation.

3

Corresponding to Heisterkamp et al. (2006) different kinds of thresholds can be
defined, as well. Regarding the absolute threshold, an alarm will triggered, if

ξt,1−α > µ0(1 + δ)

A kind of cumulative threshold can be derived by aggregating the k last thresholds,
i.e. by triggering an alarm, if a percentage of the k last observations exceeds the
corresponding calculated thresholds.
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Figure 4.9: Illustrations for Bayesian aberration calculations. The symbol + indi-
cates an outbreak and 4 an alarm.

The main advantage of the Bayesian approach is that not only a binary information
is given which seems to be very restrictive. Here, a probability for aberration given
an observed values can be obtained, so that an easy interpretable probability for
outbreak is provided.

4.4 Implementation

The implementation in software is a very important factor for the utilization of
methodological proposals. The developed full Bayesian version of the hierarchical
time series algorithm has several advantages such as direct threshold calculation,
including prediction and estimation error, and the simple consideration of covariate
processes.

For implementation, the parallelism to generalized additive models, thus likelihood
inference, can be used as well. Heisterkamp et al. (2006) implemented this strategy
in S-PLUS while his implementation in R is in progress.

4.4.1 surveillance Package for R

R (R Developer Core Team, 2009) is a free environment for statistical computing
with increasing acceptance and popularity within the statistical community. It pro-
vides a large variety of statistical and graphical methods and is easily extensible.
Since R is Open Source available under the GNU GPL licence software, it is free for
anyone to use and modify.

The R add-on package surveillance (Höhle, 2007) offers functionality for the visu-
alization, monitoring, and simulation of count data and categorical time series. In



4.4. IMPLEMENTATION 71

this context it provides methods for online change-point detection with a focus on
outbreak detection in count times series, like they are usual obtained in the public
health surveillance context. The package is available under the GPL licence and
downloadable from Comprehensive R Archive Network (CRAN). It provides an en-
vironment for developers of new algorithms as well.

All aberration detection algorithms in surveillance have the same structure of
application. The first object denotes an object of class sts containing the observed
and state time series, and the second argument control is a list of vector range

specifying the time points to monitor, and algorithm specific control options (Höhle
and Mazick, 2010).

In the context of this diploma thesis, the Bayesian version of the hierarchical time se-
ries algorithm was implemented in the surveillance framework. To fit the Bayesian
models efficient approximations by INLA (Integrated Nested Laplace Approxima-
tion) will be used instead of time consuming Markov Chain Monte Carlo methods.

4.4.2 Implementation of algo.hts() using INLA

For implementing, the hierarchical time series algorithm the underlying model is
seen as a Bayesian hierarchical model with dynamics of the intercept β0(t) = β0t
over time given by random walks with latent Gaussian random walks.

The general procedure is summarized in the following steps:

1. Preprocessing: Distinguish modelling and evaluation time, exclude observa-
tions of outbreak state during the modelling time, set formula, and prepare
covariates.

2. Sequential steps for each time point in evaluation period:

(i) Fit Bayesian model using INLA (Rue and Martino, 2009).

(ii) Calculate predictive posterior for yT+1 using Monte Carlo integration.

(iii) Compute 100%·(1−α)-quantile of predictive posterior for defining thresh-
old ξ1−α, compare threshold of observed value, and trigger alarm if nec-
essary.

3. Return an object survRes object with the modelling results including an array
alarm, which indicates the triggered outbreaks.

In the following, the application of the algorithm using the R package surveillance

is described and after that the implementation is outlined step by step. Further
technical details are given in appendix A which includes the entire code of the
resulting functions algo.hts and algo.htsFit.
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Application of algo.hts()

The function is called by

algo.hts(disProgObj, control=list(range=NULL, co.arg=NULL, prior='iid',

family='poisson', alpha=0.05, mc.betaT1=100, mc.yT1=10))

Here, disProgObj is an S3 object of class disProgObj as specified by the package
surveillance including the observed and the state time series. Furthermore, a list
of control arguments is given.

Thereby, the first argument range specifies the index of all time points, which should
be monitored. If the range is not defined, i.e. range=NULL, the time points starting
with the second period is monitored.

Furthermore, it is possible to include covariates in the model. With defining the
control argument co.arg known covariates can be considered easily in the outbreak
detection model. Thereby, the argument co.arg has to be an numerical object
of the same length as the observed disease progress. Assuming the specification
co.arg=cbind(x1,x2), the formula follows as observed ~f(time, model=’rw1’)

+ x1 + x2.

Three of the four prior models, described in section 4.1.1, are implemented. The
stationary model is available by choosing prior=’iid’, the neighbour model by
specifying prior=’rw1’ in the functional part of the formula argument, and the lo-
cal linear model by selecting prior=’rw2’. The quadratic model is not implemented.

The argument family specifies the model distribution. The options ’poisson’ for
Poisson, or ’nbinomial’ for negative Binomial distribution can be used.

Furthermore, by specifying alpha the probability parameter for the threshold, the
quantile 100% · (1 − α) of the predictive posterior, is chosen, while mc.betaT1 and
mc.yT1 are the number of trials for Monte-Carlo simulation deriving the predictive
posterior.

Example. For the example introduced in Figure 4.1, the algorithm is applied with
the neighbour prior model. First, the control argument is specified and then included
in the algorithm function algo.hts

control <- list(range=157:length(disProgObj$observed), prior='rw1',

family='poisson', alpha=0.05, mc.betaT1=100, mc.yT1=10)

modelRW1 <- algo.hts(disProgObj=disProgObj, control=control)

In Figure 4.10 the surveillance result is plotted. In late spring of 2004, one outbreak
which is difficult to recognize, and is not detected by the algorithm. Using the
survRes object all methods of the R package surveillance can be called.

3

In the following, technical details of the algorithm are given step by step.
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Analysis using hts(prior=rw1)
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Figure 4.10: Application of surveillance by algo.hts using a latent neighbour model.

Step 1: Preprocessing

The model fit should represent an model of ’normality’. Thus, before fitting the
model, the observations at a time point of outbreak state, which is indicated by
state=1, are excluded by replacing their values with NA. This is a standard procedure
which cannot turned off.

observed[which(state==1)] <- NA

As mentioned above, covariates can be included into the model by using the control
argument co.arg. All selected variables are included as they are, which means that
transformations or interactions need to be calculated in advance. Thus, the formula
is specified as follows:

modelformula <- as.formula(paste("observed~f(time, model='",prior,")",

co.arg.formula, sep="")).

The following steps are repeated sequentially for each time point T + 1 of the mon-
itoring time which is specified by the control argument range.

Step 2 (i): Fit Bayesian Model using Integrated Nested Laplace Approx-
imation

The Bayesian model is fitted using the R package INLA. Rue et al. (2009) presented
this fully automatic approach for approximate inference in latent Gaussian models
named Integrated Nested Laplace Approximation (INLA). Thereby, direct compu-
tations of very accurate approximations of the posterior marginals are provided, and
INLA outperforms without comparison any Markov chain Monte Carlo (MCMC) al-
gorithm in terms of accuracy and computational speed. Where INLA requires seconds
and minutes to fit a model MCMC can take up to hours and days.



74 CHAPTER 4. HIERARCHICAL TIME SERIES ALGORITHM

The marginal posterior for the latent model defined in section 4.3.1 can be written
as

p(β0t|y) =

∫
p(β0t|θ,y) p(θ|y) dθ

with p(θj |y) =

∫
p(θ|y) dθ−j ,

where θ is the vector of hyperparameters. The equation is used to construct nested
approximations. Therefore, the posterior marginals are achieved by approximations
of their components according to the following three steps:

1. Approximation of the posterior marginal p(θ|y) by using Laplace approxima-
tion.

2. Improved approximation of p(β0t|θ,y) for selected θ by (simplified) Laplace
approximation.

3. Combining the steps 1 and 2 by using numerical integration.

Thereby, Laplace approximation is the approximation to an integral based on the
second-order Taylor expansion of the log integrand and Gaussian approximation
about its mode (Cox et al., 2006). In the following each step is described in more
detail.

Excursus. Integrated Nested Laplace Approximation

The first step is the computation of the second part of the integrand in formula 4.5

p(θ|y) ∝ p(β,θ,y)

p(β|θ,y)

∣∣∣∣
β=β∗(θ)

,

where β∗(θ) is the mode of the full conditional for β given hyperparameter θ and the
normalisation constant is unknown. The denominator is computed by a Gaussian
approximation, which is iteratively obtained by a quadratic Taylor approximation
of the curvature around the mode. Using this approximation, the mode of the
distribution p(θ|y) is derived by using the procedure quasi-Newton. To compute
the curvature of the distribution, selected points based on a normalised θ(z) with
z ∼ N(0, 1) are computed and interpolated.

The second step is the approximation of p(β0t|θ,y), which is derived from the already
computed Gaussian marginal p(β|θ,y) by

p(β0t|θ,y) ∝ p(β,θ,y)

p(β−0t|β0t,θ,y)

∣∣∣∣
β0t=β∗

−0t(β0t,θ)

,

where p(β−0t|β0t,θ,y) is a Gaussian approximation and β∗−0t(β0t,θ) its mode. The
expression is modified due to computational benefits. First, the mode is approxi-
mated by β∗−0t(β0t,θ) ≈ E(β−0t|β0t). Beyond, only those β0s that are close to β0t
determine the marginal of β0t. Therefore, the ’region of interest’ around t is simply
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defined as Rt(θ) = {s : |ats(θ)| > 0.001}. Using these modifications, the approxima-
tion for p(β|θ,y) is computed for different values and interpolated. Furthermore,
a simplified Laplace approximation is introduced by doing a series expansion of
p(β0t|θ,y) around its mode β0t = µt(θ).

Finally, the first two steps are combined in accord to the formula 4.5 using numerical
integration. Further details are described in Rue et al. (2009).

3

An implementation of the integrated nested Laplace approximation approach is pro-
vided by the R add-on package inla (Rue and Martino, 2009). Several different
hierarchical Bayesian models are available. A Bayesian model is fitted by calling the
function inla() as follows:

inla(formula, family=<error.distribution>, data=data.frame()).

For the presented approach of hierarchical time series algorithm, Poisson and nega-
tive Binomial likelihoods are used by specifying family=’poisson’ or
family=’nbinomial’. The latent model for the time effect is given by the latent
random noise model model=’iid’ reflecting the stationary model, the latent random
walk of order one model=’rw1’ specifying the neighbour prior model, or order two
model=’rw2’ for the local linear prior model.

model <- inla(observed ~ f(time, model=<c('iid','rw1','rw2')>),

family=<c('poisson','nbinomial')>), data=data}

Example. An exemplary model is fitted for the simulated data in Figure 4.1 at time
point t = 157, thus the first point of the monitoring period. It is examined, that the
approximation procedure is very fast and lasts took 1.5 seconds using a Duo core
processor with 2.26GHz.

Call:

c("inla(formula = observed ~ f(time, model = 'rw1'),

family = 'poisson', data = dati)")

Time used:

Pre-processing Running inla Post-processing Total

0.0990510 0.4091651 0.1394680 0.6476841

Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant

(Intercept) 1.035719 0.0539935 0.9276392 1.036475 1.139566

kld

0.3502116

Random effects:

Name Model Max KLD

time RW1 model 0.01048
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Model hyperparameters:

mean sd 0.025quant 0.5quant 0.975quant

Precision for time 10.879 3.330 5.793 10.378 18.820

Expected number of effective parameters(std dev): 42.86(4.497)

Number of equivalent replicates : 3.64

Marginal Likelihood: -351.44

Warning: Interpret the marginal likelihood with care if the

prior model is improper.
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Figure 4.11: Posterior marginals by inla() using a latent neighbour model.

As described before, instead the model contains a fixed intercept, a latent effect for
the time, which represents aggregated the time dependent intercept. It is used the
random walk of order one, thus the neighbour model. The precision of this latent
model λ is estimated as hyperparameter. The corresponding estimated posteriors
are shown in Figure 4.11.
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3

The model is fitted for each time point during the evaluation period range. Since
the posterior for β0T+1 given the observations y1, . . . , yT should be derived, the value
yT+1 is unknown, hence it would be NA at the time point T + 1.

observed <- append(observed[1:T], NA)

Thus, the predictive posterior p(β0T+1|y1, . . . , yT ) can be obtained as

inla.dmarginal(x, model$marginals.random$time[[T+1]])

Detailed informations for the application of the R inla package are provided in
Martino and Rue (2009).

Step 2 (ii): Calculation of Predictive Posterior

In this section, the computation of the predictive posteriori is described. Since
the model is seen in a Bayesian setting, the threshold is defined in this context as
well. Thus, the threshold is the 100% · (1 − α)-quantile of the predictive posterior
distribution at the time point T + 1. It can be calculated by

p(yT+1|y1, . . . , yT ) =

∫
L(yT+1|β0T+1) p(β0T+1|y1, . . . , yT ) dβ0T+1.

It is derived numerically by using Monte Carlo simulation, which includes the steps:

1. Sample mc.betaT1 realizations of βT+1 ∼ p(βT+1|y1, . . . , yT ).

2. Sample mc.yT1 realizations of yT+1 ∼ f(yT+1|βT+1, y1, . . . , yT ) for each of the
sampled βT+1.

Thereby, random draws of p(βT+1|y1, . . . , yT ) are obtained using the fitted model by

m <- model$marginals.random$time[[T+1]]

betaT1 <- model$summary.fixed[1] + inla.rmarginal(n=mc.betaT1, m)

where the first term is the posterior mean of the fixed intercept β0, and the second
the time varying component. The addend of them is the time varying intercept
β0T+1 as introduced in formula 4.4.

The sampling distribution of yT+1 in the second step depends on the distribution
family assumed in the fitted hierarchical Bayesian model. First, the linear predictor
is computed which may include covariates as well

etaT1 <- betaT1 + sum(dat[T1,-c(1:2)]*model$summary.fixed[-1,1]).

Thus, if a Poisson model was fitted, the random realizations of f(yT+1|βT+1, y1, . . . , yT )
are computed by

yT1[((j-1)*mc.betaT1+1):(j*mc.yT1)] <- rpois(n=mc.yT1,

lambda=exp(etaT1[j]))
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or, if a negative Binomial distribution was assumed,

yT1[((j-1)*mc.betaT1+1):(j*mc.yT1)] <- rnbinom(n=mc.yT1,

size=exp(model$theta.mode[1]), mu=exp(etaT1[j])).

It results in a vector of length mc.betaT1*mc.yT1 with random draws of the esti-
mated f̂(yT+1|β0T+1, y1, . . . , yT ).

In the strict sense of the Bayesian idea, it would be necessary to use also random
draws of the so called fixed components in the model, i.e. the intercept β0 and the
covariates coefficients βx. Due to technical complications this variation is ignored.

Step 2 (iii): Threshold Calculation and Comparison for Alarm Triggering

The quantile of the predictive posteriori distribution is obtained by

qi <- quantile(yT1, probs=1-alpha, type=3, na.rm=TRUE),

where the function quantile estimates the underlying quantiles based on the or-
der statistics of the vector yT1 representing random draws of yT+1 following the
estimated predictive posterior f̂(yT+1|βT+1, y1, . . . , yT ). Because of the discontinu-
ous nature of the count data the nearest even order statistic is chosen by selecting
type=3.

The deduce quantile is compare with the observed count, and an alarm is triggered,
if necessary.

alarm <- disProgObj$observed > xi

Step 3: Return Surveillance Result

The last steps were computed for each time point of the specified range. Finally,
an object SurvRes is returned. It includes an matrix alarm which indicates the the
triggered alarms, and an matrix upperbound reflecting the threshold. Using this
object several available evaluation functions of the surveillance package can be
called, e.g. plot() and algo.quality().

4.4.3 Error Handling

During the implementation of algo.hts some problems occurred, because INLA is
still in development. Regarding the problems, an email contact with H̊avard Rue,
the maintainer of the R package INLA, was initiated. Several emails gave some
answers, but could solve all problems. In the following, possible errors of the function
algo.hts will be summarized and suggestions for their handling are given.

Operating System and Software Issues

The algorithm was implemented on the Linux system Ubuntu 9.10. The errors, de-
scribed in the following, occurred on this system. Regarding an email of Havard Rue
is Linux usually much faster and safer, and the operating system ’Windows could be
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tricky’. There were made some tests in Windows as well, but running the procedure
in other operating systems might trigger further errors.

Usually, the R version is not important, because R is used only for input-output-
operations and administrative issues. The R package works as an interface to the
inla program which uses the algorithms in the GMRFLib library which is an Open
Source library in C and Fortran. Detailed informations can be found in the manual
for INLA Martino and Rue (2009).

It could recognized irregularities due to the usage of a multiprocessor system and
resulting random-bit in the computations. If the results should be reproducible the
option

inla.setOption('num.threads', 1)

is suggested which allocates the inla to use only one processor.

Found Warnings and Errors

In this section, occurred problems will be described and possible actions will be sug-
gested.

Firstly, the model was specified as initially introduced so that it included only a
time varying intercept. The model has been very unstable and collapsed frequently.
Thus, a fixed intercept as an overall mean was included.

The error message number 2 claiming that the matrix is not positive definite ap-
peared some times during the simulation studies when negative Binomial distribution
was assumed.

GMRFLib version 3.0-0-snapshot, has recived error no [2]

Reason : Matrix is not positive definite

Function : GMRFLib_factorise_sparse_matrix_TAUCS

File : smtp-taucs.c

Line : 698

RCSId : file: smtp-taucs.c hgid: 5968749cefcc date: Fri Jul 30

It was figured out that the error might be resulted by the overdispersion parameter
going to zero. The INLA upgrade on 30 July, 2010, could not solve the problem in
every case of occurring. Thus, in the function algo.htsFit no threshold is com-
puted and instead a missing value is returned.

Furthermore, in several cases the warning message of the Hessian having a negative
eigenvalue which is set automatically to some other value was triggered.

*** WARNING *** Eigenvalue 0 of the Hessian is -40.6532 < 0

*** WARNING *** Set this eigenvalue to 0.532968

*** WARNING *** This might have consequence for the accuracy of

*** WARNING *** the approximations; please check!
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In these cases the marginals were checked and examined as reasonable. Thus, the
predictive posterior and the corresponding threshold is calculated. Nevertheless, it
is advised to check if the result is sensible.

Another problem appeared when realizations of the time marginal were drawn. The
marginal density has been zero so that the approximation did not seem to be con-
verged. In the function algo.hts, this error is handled by returning NA as threshold
value.

Very rare occurred the error number 21. Its reason could not figured out in context
of this thesis.

GMRFLib version 3.0-0-snapshot, has recived error no [21]

Reason : This should not happen

Message : Condition `density->spline_Pinv != ((void *)0)' is not TRUE

Function : GMRFLib_density_Pinv

File : density.c

Line : 934

RCSId : file: density.c hgid: 5968749cefcc date: Fri Jul 30

The described errors occurred usually when negative binomial distribution was as-
sumed. Here, a further hyperparameter is assumed. During the simulation studies
of chapter 5, all Poisson distributed models converged while negative Binomial dis-
tribution models collapsed. Therefore, in case of an aborted model it is advised to
refit it with same specifications, but assuming Poisson error distribution.

4.4.4 Rejected Enhancements because of Errors

In context of improving the algorithm a further seasonal component was used. Es-
pecially in the stationary model the option was tried out to allow more flexibility,
if required. Furthermore, the possibility of using cyclic random walks instead of
the ordinary ones were checked. It is assumed, that these models could improve
the algorithm’s handling of common seasonality in surveillance data. Nevertheless,
these enhancements were rejected because of a high frequency of errors. Debugging
the described errors might open a wide range of possible model enhancements.

4.5 Enhancements and Limitations Discussion

It could be shown, that the hierarchical time series algorithm is very flexible and
different inference can be used. A special enhancement in comparison to other
surveillance algorithms is the possibility to include covariate effects. All presented
versions of the approach have pros and cons. In the following, they are identified
and discussed.

4.5.1 Updating the Model

Because several diseases are monitored at once, the efficiency of the algorithm is very
important. Therefore, it is a good solution to update the model stepwise instead of
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the refitting the whole model. To update the model the likelihood (4.3) derived by
Heisterkamp et al. (2006) is used. The problem with it is that uncertainty due to
the previous parameter estimations is ignored. Apart from that, it will be necessary
to refit the model from time to time to avoid structural change errors. This issue is
not discussed, so that no time intervals of complete refitting are suggested.

It needs to be taken in account how a prior including the history of the random time
effect can be hold fixed for the following updating steps. Therefore, the previously
achieved parameters have to be substituted. In the presented implementation this
feature is not adapted. This strategy includes a refit at each time point, which tends
to be inefficient. By using the efficient fitting procedure of INLA one can cope with
the computational time.

4.5.2 Threshold Computation

Heisterkamp et al. (2006) introduced three types of aberration detection based on
absolute, relative, or cumulative thresholds. Note, that this approach ignores the
uncertainty by the estimation, e.g. due to the covariates.

An alternative threshold calculation is given by the Bayesian version of the algo-
rithm. Corresponding to Bayesian inference, the predictive posterior is computed,
and uncertainty due to the prediction and estimation of parameters, is directly in-
cluded.

Regarding the α-level of the quantiles it is necessary to specify a larger number of
Monte Carlo iterations to generate an appropriate sample of the predictive posterior.
This might increase the computing time, but the results will be more accurate.

Example. At the first twenty points of the evaluation period threshold of various
significance levels are computed and displayed in Figure 4.12. At each time point,
the 1000 realizations are drawn from the marginal of the time varying intercept
(nmc.betaT1 = 1000), and for each resulting setting 100 values due to the Poisson dis-
tribution (nmc.yT1 = 100) are drawn to obtain realizations of the predictive marginal.
Thus, the predictive posterior estimation is based on 100.000 Monte Carlo simulated
draws which is considered to be appropriate if the α-level is small, e.g. 99% thresh-
old. Default is nmc.betaT1 = 100 and nmc.yT1 = 10, which is usually appropriate for
α = 0.05.

3

4.5.3 Considering of Reporting Delay

Heisterkamp et al. (2006) describes the possibility of including reporting delays and
emphasizes the truly retrospective manner of outbreak detection. Nevertheless, he
does not utilize it.

Therefore, yit, i = 0, . . . , Dmax, t = 1, . . . , T is introduced where Dmax is the maxi-
mum delay between sampling and reporting. Thus, yit denotes the number of cases
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Figure 4.12: Exemplary comparison of different quantiles based on a neighbour
latent model. The symbol + indicates an outbreak and 4 an alarm.

originating at time t− i but first reported at time t. Furthermore, π0, π1 . . . , πDmax

are the probabilities of the cases being reported after 0, 1, . . . , Dmax time units.
Moreover, it can be considered that each laboratory l with a weight of fl has specific
days of reporting, e.g. every Friday. Assuming Nt to be the number of laboratories
connected at each date t, the generalized model is defined by

yit|µit ∼ Po(µit) with

µit = exp(ηt) · πi
Nt∑

l

fl, t = 1, . . . , T, i = 0, 1, . . . , Dmax,

where ηt is the linear predictor including the parameter of interest. But finally,
Heisterkamp et al. (2006) ignore the reporting delay due to simplicity and the com-
ponents are aggregated to yt = y·t =

∑Dmax
i=0 yit.

Instead, this thesis introduces a slightly different ad-hoc solution for consideration
of reporting delays. It does not include further information whose collection might
be costly. As before, it is assumed that

yt =
∑

i

yit, i = 0, 1, . . . , Dmax, t = 1, . . . , T.

Therefore, πit is defined as the proportion of reported data after i time points at
time t, so that

yit = πityt ⇔ πit =
yit
yt
,

while πit ∈ [0, 1] and
∑
i
πit = 1. If the variation in reporting over time is small, it

can be defined a generalized time-independent proportion by

π̂i =

i∑

j=0

1

T

T∑

t=1

π̂jt =
1

T

T∑

t=1

yit
yt
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Using this estimate for proportion of already reported data at the time point with
delay i, the threshold can be adjusted correspondingly. The strategy will be applied
to the Campylobacter infection reportings of the RKI in section 6.3.3.

4.5.4 Further Enhancements of the Bayesian Version

In this chapter, several further enhancements of the Bayesian hierarchical time series
algorithm were introduced. In context of this thesis, it was not possible to finalized
all ideas. In the following, possible enhancements are summarized to illustrate the
potential of the developed version of the algorithm.

Sequential Model Update

A sequential updating procedure was introduced by Heisterkamp et al. (2006) based
on likelihood inference. A Bayesian version could imaginable due to the consideration
of previous observations in the parameter posteriors. These could be used as priors
in a Bayesian model for updating.

Threshold Calculation

Using the predictive posterior for threshold calculation, a probability of outbreak
given an observed value is obtained. Thus, other more advanced threshold are
imaginable.

Seasonality

A further latent component for season to handle seasonality of surveillance time
series in a proper way was added to the INLA model, but caused a high frequency
of errors. Because inla is still development, it is assumed that these errors could
be handled in future.

Multiple Time Series

With the current approach and implementation the handling of multiple time series
is not possible. Therefore, possible associations between the time series and simul-
taneous fitting need to be considered. In principle, the fit of the Bayesian model
using INLA can be extended for spatial modelling.
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Chapter 5

Simulation Studies

In the previous chapters, several statistical methods for surveillance were introduced.
Especially, a Bayesian version of the hierarchical time series algorithm was developed
in chapter 4.3. Furthermore, in section 3.3, a variety of key parameters for evalu-
ation were described. In the following, these will be used to evaluate the Bayesian
version of the hierarchical time series algorithm in comparison to other introduced
algorithms, such as the system used at the RKI (see section 3.1.4), the Farrington
algorithm (see section 3.2), and the simple Bayes algorithm (see section 3.1.4).

For evaluation of surveillance methods, knowledge regarding true events of outbreaks
is necessary. In real reporting data of public health organizations this information
is usually not given. Instead, although it cannot represent reality in all its facets,
simulated data is used.

5.1 Evaluation using surveillance

The R add-on package surveillance, already described in 4.4.1, provides not only
several methods to detect aberration, but also procedures to evaluate their quality.

5.1.1 Simulation of Surveillance Data

One possibility of simulating data for monitoring is the usage of a hidden Markov
model. Thereby, the hidden process is a Markov chain as identifier of an outbreak.
Conditioning on this Markov chain, a Poisson process is simulated representing the
number of disease counts.

Let be Zt a homogeneous Markov chain defined for t = 1, . . . , T by

Zt =

{
1 outbreak at t
0 else,

and P =

(
p 1− p

1− r r

)
,

where P is the transition matrix with p the probability for no transition to an epi-
demic state, if the progress is in a non-epidemic state, and r the probability to stay
in an outbreak state.

85
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The number of observed counts are simulated by a Poisson process

Yt ∼ Po(µt + κZt),

where κ is the size of outbreak and µt models the time varying trend, e.g. by log(µt) =
α + βt + A sin(ω(t + φ)) with level α, linear trend β, and season frequency φ. The
hidden Markov model approach can be applied by calling the procedure
sim.pointSource() of the surveillance package.

Example. In this example, the application of the R package surveillance procedure
sim.pointSource is illustrated. It creates a disease progress object disProgObj by
using a hidden Markov model with length of 400 time points.

> disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0,

+ frequency = 1, state = NULL, K = 1.7)

The parameters p and r specify the hidden Markov chain: p = 0.99 defines the
probability of the Markov chain staying in the non-epidemic state to be 99%, while
r = 0.5 defines the probability to stay in the state of an epidemic with 50%. By
using the parameter state the Markov chain can be predefined.

Furthermore, no trend is used since beta=0 is used, and a season with amplitude
A=1 and oscillation frequency (frequency=1) is assumed. A factor to create seasonal
moves along the x-axis is not specified by phi=0. Moreover, K=1.7 is an additional
weight for an outbreak. The period length of the season is automatically set to be
52.

3

5.1.2 Evaluation Parameters

Function algo.quality() in the package surveillance computes the number of
true positives (correct found outbreaks), false positives (number of false found out-
breaks), true negatives (number of correct found non outbreaks), false negatives
(number of false found non outbreaks). Furthermore, the procedure computes sen-
sitivity, specificity, and the Euclidean distance between (1 − spec, sens) and (0, 1).
Moreover, the function computes an average value for the lag of the outbreak rec-
ognizing by the system (Höhle, 2007).

Example. The above simulated disease progress is tested with a RKI algorithm,
which uses a reference set including values from the past six weeks, and its quality
values are computed.

> survResObj1 <- algo.rki1(disProgObj1, control = list(range = 200:400))

> algo.quality(survResObj1)

TP FP TN FN Sens Spec dist mlag

rki(6,6,0) 5 5 191 0 1 0.9744898 0.02551020 0

Very high sensitivity and specificity can be recognized with a alarm delay of zero.
Thus, the algorithm performs very well to detect the outbreaks in the data.

3
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5.1.3 Comparison between Various Algorithms

The function algo.compare() returns the above described quality measures for each
algorithm neatly arranged, so that the algorithms can be compared. Furthermore,
algo.summary() summarizes evaluation parameters for different data sets.

Example. The methods are explained in an example using three simulated data
sets, which are separately applied to three types of RKI algorithms.

First, further two test objects are created as described above.

> disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0,

+ frequency = 1, state = NULL, K = 5)

> disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

+ A = 1, alpha = 1, beta = 0, phi = 0,

+ frequency = 1, state = NULL, K = 17)

These objects are monitored by the RKI algorithm in the range between 200 and 400,
and their quality measures are computed. Regarding the results of the first disease
progress object, the results in the first line already appeared in the last example.

> range <- 200:400

> control <- list( list(funcName = "rki1", range = range),

+ list(funcName = "rki2", range = range),

+ list(funcName = "rki3", range = range))

>

> compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control))

> compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control))

> compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control))

> compMatrix1

TP FP TN FN sens spec dist mlag

rki(6,6,0) 5 5 191 0 1 0.9744898 0.02551020 0

rki(6,6,1) 4 0 196 1 0.8 1 0.2 5

rki(4,0,2) 4 0 196 1 0.8 1 0.2 5

Finally, the quality measures corresponding to the different data sets are summarized
using algo.summary().

> algo.summary( list(compMatrix1, compMatrix2, compMatrix3))

TP FP TN FN sens spec dist mlag

rki(6,6,0) 10 18 573 2 0.8333333 0.9695431 0.16942667 0.000000

rki(6,6,1) 11 4 587 1 0.9166667 0.9932318 0.08360773 1.666667

rki(4,0,2) 11 7 584 1 0.9166667 0.9881557 0.08417085 1.666667

On the one hand, it can be examined that the first type of algorithm has the least
alarm delays in the three settings, and on the other hand that the second algorithm
has the best values regarding sensitivity and specificity.

3
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5.2 Comparison of INLA with Analytical Bayes

Before starting the simulation studies themselves, it will be examined if INLA pro-
duces appropriate results.

5.2.1 Setting

It is assumed, that the predictive posterior obtained with INLA is similar to the
predictive posterior obtained analytical by using the conjugated prior following a
Gamma distribution. This approach is implemented in the Bayes algorithm as in-
troduced in section 3.1.4.

In INLA, a centred Gaussian distribution is assumed as prior, and the posterior
marginals are approximated by integrated nested Laplace approximation while in
the Bayes algorithm the conjugated Gamma prior is assumed, so that the predictive
posterior can be obtained analytical as a negative Binomial distribution.

For the comparison, a simple setting of simulated data will be used.

# simulation data set

stsim <- sim.pointSource(p = 0.99, r = 0.5, length = 314, A = 1,

alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K = 2)

observed <- stsim$observed

freq <- stsim$freq

Furthermore, the Bayes algorithm uses a reference set of similar observations. For
this investigation, it will be chosen the last two years (b = 2) with corresponding
nine values symmetrical around the current observation (w = 4).

control <- list(range=157:314, b=2, w=4, actY=TRUE)

timePoint <- 314

# compute reference set

basevec <- c()

if (control$actY) {

basevec <- observed[(timePoint - control$w):(timePoint - 1)]

}

if(control$b >= 1) {

for (i in 1:control$b) {

basevec <- c(basevec, observed[(timePoint - (i * freq) -

control$w):(timePoint - (i * freq) + control$w)])

}

}

To ensure comparability, the same reference set is used in INLA while the observa-
tions are only influence by a fixed intercept.

# compute inla model only with fixed intercept

model <- inla(basevec~1,family='poisson', data=data.frame(basevec))

In this setting the predictive posteriors are computed using algo.bayes() and using
inla() to verify this procedure.
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5.2.2 Results

The predictive posterior of the analytical setting is obtained as described in Held
(2008) and summarized in section 3.1.4.

# compute predictive posterior based on conjugated Gamma prior

sumBasevec <- sum(basevec, na.rm = TRUE)

lengthBasevec <- sum(!is.na(basevec))

predPost <- function(x){

dnbinom(x,sumBasevec + 1/2, (lengthBasevec)/(lengthBasevec + 1))

}

The predictive posterior in the function algo.hts is obtained by Monte Carlo meth-
ods. Thus, 1000 values for yT+1 are sampled corresponding to its predictive posterior.

# compute predictive posterior using approximation of inla

yT1 <- vector(length=100*10, mode='numeric')

m <- model$marginals.fixed[[1]]

betaT1 <- sample(m[,1], prob=m[,2], replace=TRUE, size=100)

for(j in 1:100){

yT1[((j-1)*10+1):(j*10)] <- rpois(n=10,lambda=exp(betaT1[j]))

}

In Figure 5.1 the comparison is shown while the predictive posterior obtained by
INLA is displayed in a barplot and the analytical obtained one is superimposed with
a dark green line. It can be examined that the predictions are very similar.

0 1 2 3 4 5 6 7 8 9 10

Predictive Posterior of yT+1

yT+1

D
en

si
ty

0.00

0.05

0.10

0.15

0.20

0.25
based on INLA
based on Bayes Algorithm

Figure 5.1: Comparison between predictive posterior obtained by INLA and analyt-
ical obtained predictive posterior using the simple conjugate prior-posterior Bayes
algorithm
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5.3 Observance of Significance Level

As described in section 3.1.2, infectious disease outbreak detection algorithms usually
face the problem of multiple testing. The presented algorithms do not purpose a
multiple adjustment procedure for the significance level. Therefore, in this section
the algorithms are compared in respect to the number of triggered alarms if the time
series does not include any outbreaks. It is measure corresponding to the average
run length ARL0, introduced in section 3.3.3 in detail.

5.3.1 Data Setting

For the purpose to observe the significance level, ten disease progresses for six years
without outbreaks are simulated using hidden Markov models in the procedure
sim.pointSource. Thus, the probability to get a no new epidemic at a time t
is assumed to be p = 1 if there is no epidemic at time t− 1. Therefore, the hidden
Markov chain transition into the state of outbreak is not possible.

stsim <- sim.pointSource(p = 1, length = 314, A = 1, beta = 0,

phi = 0, frequency = 1, K=1)

One obtains a suppositious disease progress for the years 2001 until 2007 with sea-
son, but without trend and any outbreaks. In Figure 5.2, one of them is shown
exemplary. The years 2001–2004 are assumed to be training data while 2004–2007,
i.e. after time point 157, will be monitored.

Simulated Data without Outbreaks
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Figure 5.2: Exemplary simulated Data without outbreaks.

This evaluation procedure includes the significance levels α = 0.05, α = 0.025, and
α = 0.01 and is applied to the Bayesian version of the hierarchical time series algo-
rithm with its different variations: the stationary (iid), neighbour (rw2), and linear
(rw2) prior model with assuming Poisson or negative Binomial error distribution.

The results will be compared with the Farrington algorithm with and without option
of reweighting the time series for past outbreaks, and the simple conjugate prior-
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posterior Bayes algorithm. In each of them, the reference set includes symmetrically
four values before and after the current week (w = 4) of the last two years (b = 2).

5.3.2 Results

In Table 5.1 the results of the simulations are shown. For each setting of algorithm
and each α-level is computed the corresponding proportion of alarm as the ratio of
the number of alarms nA and the number of monitored time points nT , i.e.

αobserved =
# alarms

# time points
=
nA
nT

.

The algorithm would be optimal if the procedure has a proportion of alarms corre-
sponding to the chosen α-setting. Thereby, it needs to distinguished between local
and global α-level. Here, in case of dependent time points, the global α-level qual-
ifies by 1 − (1 − αlocal)nT ≤ αglobal. In the considered algorithms usually the local
α-level is determined and no adjustments regarding multiple comparisons are made.
However, in this simulation studies only the resulting global α-level is investigated.

α = 0.05 α = 0.025 α = 0.01

HTS Poisson iid 0.038 0.017 0.004
rw1 0.036 0.018 0.008
rw2 0.038 0.017 0.009

Negative Binomial iid 0.039 0.012 0.004
rw1 0.035 0.016 0.007
rw2 0.039 0.021 0.013

Farrington reweight = FALSE (2,0,4) 0.017 0.009 0.004
reweight = TRUE (2,0,4) 0.030 0.016 0.007

Bayes (2,0,4) 0.081 0.043 0.019

Table 5.1: Simulation results for setting of significance level observance: Average
observed global α-level for respective algorithm in ten times series similar to Figure
5.2.

The developed Bayesian hierarchical time series algorithm yields consistent results
for the different models. The α-level observations are usually lower than the defined
significance level. Regarding the simulation for the significance level α = 0.01, there
is a tendency of increasing observed significance levels due to increasing allowed
variation in the model. Thus, the linear prior model with negative Binomial error
distribution assumption is the only model with a slightly too high observed level.
Thereby, the assumption of Poisson or negative Binomial distribution did not show
considerable differences. If a α-level of 5% is assumed, the algorithms keeps the level
between 3.5% and 4%. The assumption of α = 0.025 results observed levels ranging
between 1.2% and 1.8%, and if α is assumed to be 1%, the observed significance
level is between 0.4% and 1.3%.

The Farrington algorithm holds a much lower significance level than it is assumed.
The assumed value is until three times higher than the observed one. In contrast,
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the observed value of the Bayes algorithm almost doubles the assumed α-significance
level. The results for the reweighted Farrington algorithm are comparable with these
of the hierarchical time series algorithm. For the RKI algorithm the significance level
cannot be specified. Therefore, a comparison is not possible. In the given setting a
average observed significance level of 0.013 was computed.

Summarized, it can be examined that none of the methods keeps the α-level con-
sistently while the smallest differences showed the hierarchical time series and the
reweighted version of the Farrington algorithm. This observation might be reasoned
in the type of simulated data which base on a Poisson Process. The method allow
more variability by using quasi-Poisson or negative Binomial assumption.

5.4 Comparison Regarding Quality Key Parameters

In this section, the Bayesian hierarchical time series algorithm is evaluated regard-
ing its quality measures sensitivity, specificity, and timeliness. These measures are
compared to those obtained in other established methods of the RKI and Farrington
et al. (1996).

5.4.1 Simulation Data

The simulated data is provided by the Centers for Disease Control and Prevention
(CDC) in the United States(CDC Emergengy Risk Communication Branch (ERCB),
Division of Emergency Operations (DEO) Office of Public Health Preparedness and
Response (OPHPR), 2004). Regarding the comparison of aberration methods Hut-
wagner et al. (2005) introduced these simulation data.

There are given six-years time series which are obtained as follows: for 56 negative
binomial parameter sets, estimated in observed diseases, are generated 1.000 itera-
tions. Thus, 56.000 count data sets of basically 6 settings are given: mild, medium
or strong seasonal progress with or without trend. Furthermore, the data has been
adjusted for irregularities due to days of the week, holidays, and post-holiday periods.

For numerical reasons, the observations are aggregated per calendar week, such as
the reporting data of the RKI. Furthermore, one parameter set was chosen at ran-
dom of each setting, where 10 iterations were evaluated. In Table 5.4.1 the settings
and their characteristics are summarized.

Ten types of outbreaks, representing various types of natural occurring events, are
superimposed (see Table 5.4.1): the log normal distribution simulates a rapidly
increasing outbreak, an inverted log normal distribution a slowly starting outbreak,
and the spike a single day outbreak. These outbreak types are combined with
different standard deviations and incubation times. During the simulation studies
only the three types of distributions are distinguished, i.e. three types of outbreaks
are investigated. In the following sections, aggregated and separated for each type
of outbreak, sensitivity (sens), specificity (spec), and time of detection (mlag) for
the selected outbreak detection algorithms are calculated.
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Setting Set file Trend Seasonality Mean Standard
name Deviation

1 s03 No Mild 7 42
2 s02 No Medium 210 42
3 s05 No Very 266 91
4 s01 Yes Mild 630 231
5 s11 Yes Medium 2107 553
6 s04 Yes Very 42 28

Table 5.2: Chosen parameter sets of weekly aggregated simulated CDC data.

Outbreak Type Distribution Incubation Time ζ σ Peak Size
(in days) (X*SD)

1 Spike 1 3
1 1 2
2 Invert log Normal < 7 1.3 0.4 3
2 2
2 7–14 2.4 0.3 3
2 2
3 Log normal <7 1.3 0.4 3
3 2
3 7–14 2.4 0.3 3
3 2

Table 5.3: Outbreak types in the simulated CDC data.

The Bayesian hierarchical time series algorithm is evaluated regarding different spec-
ifications to figure out the best one for a specific outbreak setting. As in section 5.3,
the Farrington, RKI, and Bayes algorithms are applied for comparison. Each of
them includes 18 reference values from the previous two years, in each year nine
values symmetrical around the comparable week.

5.4.2 Setting One: Mild-None Seasonality Without Trend

The first setting is characterized by no trend and mild seasonality, It has in average
seven cases per week with strong variation (sd=42). Thus, it is a setting of low
counts. It could be used to figure out algorithms, which have some problems with
zero-observations and high variation. In Figure 5.3, the first time series of the set-
ting is plotted.

Regarding the results in Table 5.4, the hierarchical time series algorithm has poor
performance in this setting. At maximum 20% of the registered outbreaks are de-
tected using the linear prior model. The outbreak types 1 and 3 have been detected
the best by using a neighbour prior in a Poisson model while the outbreak type 2
is detected most frequently by the negative Binomial model with linear prior. The
Poisson-iid-model has poor performance in detecting of all outbreak types. How-
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Figure 5.3: Example of CDC simulation data for setting one with mild seasonal
setting without trend.

ever, the specificity, meaning the ability to detect non-outbreaks, ranges between
87% and 95%.

In comparison, the simple Bayes algorithm is examined as the best one. It has high
values in sensitivity and specificity while the delay of alarm triggering is short. It has
even acceptable specificity of 0.32 for the outbreak type 1, which is an one day spike
and difficult to detect. The other algorithms perform in terms of their specificity a
bit better than the hierarchical time series algorithm, but cannot persuade by good
performance in this setting.

5.4.3 Setting Two: Medium Seasonality Without Trend

The time series of the second setting do not have trend either, but medium season-
ality. In Figure 5.4, a high level of cases with a mean of 210 cases per week, low
variation, and a large number of outbreaks can be recognized.
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Figure 5.4: Example of CDC simulation data for setting two with medium seasonal
setting without trend.
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In the second setting (see Table 5.5), the hierarchical time series algorithm does not
perform well. The outbreak detection rates are very low and do not exceed 13%.
Furthermore, the average delay of alarm triggering is between 10 and 14 weeks. The
model with Poisson distribution and random walk of order two performs the best.
Especially, the one-day peaks are detected in comparison quite well.

Again, the simple conjugate prior-posterior Bayes algorithm shows good results.
53% of the outbreaks are detected, while 95% of the weeks without outbreaks are
classified correctly. Similar quality measures can be recognized for the outbreak
types two and three

5.4.4 Setting Three: Strong Seasonality Without Trend

The third setting is characterized by strong seasonality combined without any trend,
The mean level is 266 cases per week. In Figure 5.5 a time series is shown exemplary.

Strong Season without Trend
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Figure 5.5: Example of CDC simulation data for setting three with strong seasonal
setting without trend.

Regarding the results of the hierarchical time series model (see Table 5.6), the differ-
ent models have similar results. The Poisson model with neighbour prior performs
not well, but the best. It detects 17% of the outbreak weeks and 88% of the non-
outbreak time points. Thereby, the delay is estimated to be eight weeks.

The performance of the Bayesian algorithm persuades by good quality values and
short detecting delay of, in average, half a week regarding long-term outbreaks of
type 2. The RKI and Farrington algorithms are able to detect all non-outbreak
weeks while their sensitivity, especially in detection of outbreak type 1, is poor.

5.4.5 Setting Four: Mild-None Seasonality With Trend

This setting has mild seasonality with a weekly mean of 630 cases and standard
deviation of 231 (see Figure 5.6). Furthermore, a strong trend is found.
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Mild Season with Trend
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Figure 5.6: Example of CDC simulation data for setting four with mild seasonal
setting with trend.

By far, the stationary model (iid) obtains the best values for sensitivity for the hier-
archical time series algorithm while the negative Binomial model is a bit better (see
Table 5.7). Half of the outbreaks are detected while half of weeks without outbreak
are triggered as alarms as well. This result can be compared with a repeated binary
decision at each time point without any foreknowledge, e.g. coin flipping. Thus, the
hierarchical time series does not perform well. The expected delay is estimated to
be less than 1.5 weeks.

For comparison, in terms of specificity, the other algorithms perform so-so as well.
Probably the best performance obtains the reweighted Farrington algorithm by de-
tecting 68% of outbreaks, 0.78 specificity and an expected delay of 2.7 weeks. Ex-
cluding the difficult to detect outbreak type 1, the rates are even better. The Bayes
algorithm shows a high rate of sensitivity and a low expected delay, while its speci-
ficity is low. Thus, the Bayes algorithm triggers a high number of alarms.

5.4.6 Setting Five: Medium Seasonality With Trend

This setting has a high level of weekly counts, in average 2107, while the standard
deviation is 553. It is characterized by trend and medium seasonality (see Figure
5.7).

Regarding the hierarchical time series algorithm, the stationary model performs the
best (see Table 5.8). The decision which error distribution is assumed depends on
the primary aim of detection. If higher sensitivity and less specificity is required,
negative Binomial distribution is appropriate, otherwise the Poisson distribution.

The Bayes algorithm failed in this setting, because it triggered at almost all time
points an alarm. The best quality has the RKI algorithm which detected 71% of
outbreaks while its specificity is 0.75.
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Medium Season with Trend
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Figure 5.7: Example of CDC simulation data for setting five with medium seasonal
setting with trend.

5.4.7 Setting Six: Strong Seasonality With Trend

The sixth setting is characterized by strong seasonality and the appearance of a
trend. The weekly cases have mean 42 and standard deviation 28.

Strong Season with Trend
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Figure 5.8: Example of CDC simulation data for setting six with strong seasonal
setting with trend.

Regarding the Bayesian hierarchical time series model (see Table 5.9), it can be
examined that the Poisson model with a stationary prior is not flexible enough to
monitor such strong seasonality. This model almost never detected an outbreak.
The random walk models perform better with sensitivity of about 16% and speci-
ficity of about 88%. All models were not able to detect properly the outbreak type 1.

The algorithms of RKI and Farrington detect all non-outbreak days correctly. Re-
garding the different types of outbreaks the specificity is a bit lower due to the setting
of evaluation. Nevertheless, the simple Bayes algorithm is able to detect 78% of the
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outbreaks while specificity is higher (0.83). The expected delay is estimated to be
only one week. Its quality is good regarding all types of outbreak.

5.5 Comparison Regarding Computing Time

A usual surveillance time series, obtained by simulation using hidden Markov model
(see Figure 5.2), is used to examine the algorithms regarding their computing time.
All presented algorithms were applied on a 2.26GHz Duo CPU and their system
time is measured.

HTS Poisson Negative
Binomial

stationary 154.60 226.47
neighbour 140.22 258.39

linear 169.26 258.55

farrington(4,0,2) reweight=F reweighted=T

3.32 4.58

RKI(4,0,2) 0.06

Bayes(4,0,2) 0.02

Table 5.10: Computing time of the outbreak detection algorithms in seconds.

In Table 5.10 the results are listed. The computation of the Bayesian hierarchical
time series algorithm requires between 2:20 and 4:20 minutes. Regarding the us-
age of Bayesian models at each time point of the monitoring period, it is very fast.
Alternatively, can be used Markov Chain Monte Carlo methods, whose computing
time is many times higher.

Meanwhile, the Farrington algorithm requires 3 until 4.5 seconds, the RKI algorithm
less than 1/10 seconds, and the Bayes algorithm takes only 0.02 seconds.

Thus, it is examined that the hierarchical time series algorithm needs much more
time for computation than the others. Nevertheless, the computing time is in a
manageable level. In practice, it may be acceptable as only one model is usually
computed.

5.6 Conclusions of Simulation Studies

Due to the simulation studies one get an impression of the Bayesian hierarchical
time series algorithm’s performance in comparison to the more established RKI,
Farrington and Bayes algorithm.

In this thesis, it is attached great importance to evaluate a large variety of setting.
As consequence, the number of repetitions are chosen to be low (10 iterations).
Comparisons to runs with 100 iterations did not show considerable differences.
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At first, it is examined that the implementation of the Bayesian hierarchical time
series algorithm is working for a wide variety of settings. Its performance is com-
pared with the method used at the RKI, the established Farrington algorithm, and
a simple version of Bayes algorithm.

In comparison to these methods, the hierarchical time series algorithm is able to
keep the significance level the best.

The performance of the Bayesian hierarchical time series algorithm could not per-
suade in all settings. In a mild until medium seasonal setting a model with a station-
ary prior had good performance. In seasonal settings, the models with neighbour
and linear prior have better results while their quality was still poor.

The simple conjugate prior-posterior Bayes algorithm shows problems in settings
with trend. It performs very well in settings without trend while it specificity was
very low in settings with strong trend.

The method of the RKI and the Farrington algorithm have comparable performance
in the different settings. Thereby, better performance is examined in settings in-
cluding trends, where detection rates up to 89% were achieved, while specificity is
poor. Nevertheless, the performance, especially in data settings without trend, do
not satisfy.

Apart from this, the computing time of the hierarchical time series algorithm is very
slow in comparison to other surveillance methods. On the other hand, the algorithm
is very fast regarding the included Bayesian models.
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Chapter 6

Application to Campylobacter
Data

In the second chapter medical, administrative backgrounds, as well as descriptive
analysis were introduced for the Campylobacter data. Afterwards, several basic is-
sues regarding outbreak detection and methods were introduced in chapter 3, and in
chapter 4 was developed an alternative method based on Bayesian hierarchical time
series models. In the following, these methods will be applied for infectious disease
outbreak detection with the Campylobacter data.

The chapter starts with some surveillance-specific preparations of the data which
includes the investigation of a definition for outbreak time points. Unfortunately, it
is not suitable, so that the following application of the surveillance methods is done
without outbreak state reference. Thus, the algorithms performance is examined
qualified, and the developed Bayesian hierarchical time series algorithms results
are compared to those of the other methods by the key measures sensitivity and
specificity.

6.1 Preparation of Campylobacter Data for Surveillance
Analysis

In the following, preprocessing steps and considerations on the preparations to the
Campylobacter data for surveillance analysis are presented.

6.1.1 Restrictions on Reporting Data

The data covers the reports between 2001 and 2009. With the implementation of the
reporting system in 2001, data inaccuracies were recognized. Therefore, the reports
of the first year are excluded for the analysis.

> since02 <- which(cam.aggr$date >= as.Date("2001-12-31"))

> cam.aggr <- cam.aggr[since02, ]

The time period between 2002 and 2006 will be used as training period to obtain a
approximation of in-control data. Consequently, outbreak cases are excluded in this
time period. The defined rule is evaluated on the datasets between 2007 and 2009.
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> inControl <- cam.aggr$cases - cam.aggr$outbreak

> range <- which(cam.aggr$date >= as.Date("2007-01-01"))

Furthermore, only the mainly diagnosed Campylobacter bacteria type jejuni, Campy-
lobacter spp., and Campylobacter jejuni not differentiated are monitored to obtain
reporting datasets as homogeneous as possible, which consist mostly of Campylobac-
ter cases with subtype jejuni. Therefore, for the analysis, the category of ’others’ is
excluded in advance.

6.1.2 Definition of Past Outbreak Reference

For creating a disease progress object disProgObj, required when the framework
of the R package surveillance is used, a time series for the state of outbreak
needs to be defined. The construction of the outbreak reference set has particular
importance for quality interpretation of the algorithm results. Thus, if the a priori
state definition is inadequate the algorithms quality will be examined as poor as
well.

Distribution of Outbreak Counts per Report Week

Number of outbreak counts in one report week
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Figure 6.1: Distribution of weekly number of outbreaks

One possibility is the definition of an outbreak day as follows: If the number of out-
break cases per week is larger than a 90%-quantile threshold, the progress is defined
to be out-of-control. Comparing to Figure 6.1.2, this threshold is set to 46 outbreaks
per week.
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Already recognized outbreak cases have been excluded, so that this information
would be included to the system by the state definition. A disadvantage of this
definition occurs due to the seasonal characteristics in the outbreak cases time series.
Thus, the described measure includes only high season days. Especially the reporting
of unusual many cases in spring 2007 mentioned in literature (Jansen et al., 2007)
cannot be reproduced by this measure. Therefore, the definition is rejected and it is
preferred to monitor the time series with the assumption that no past outbreaks are
included in the data. The algorithm’s performance will be achieved using qualified
examination of the results.

6.1.3 Create Disease Progress Object

To monitor the time series a disease progress object disProgObj needs to be created.
As discussed before, data since 2002 is included, the range represent the years 2007
until 2009. The state of outbreak is unknown and therefore no outbreak time points
are defined.

> state <- rep(0, length(cam.aggr$cases))

> cam.disProg <- create.disProg(week = 1:length(cam.aggr$date),

+ observed = inControl, state = state, start = c(2002,

+ 1), freq = 52, epochAsDate = TRUE)

6.2 Application of Surveillance Algorithms

This section will show the application and results of different outbreak detection
methods to the Campylobacter data. The current used method for these data is the
RKI algorithm. Alternatively, will be given by Farrington and the simple conjugate
prior-posterior Bayes Algorithm of Höhle (2007). The developed Bayesian version of
the hierarchical time series algorithm will be applied to examine its potential in the
next section. Note, that there are not defined any outbreak time points regarding
the missing true or suitable definition of it.

6.2.1 RKI Method

Currently, outbreak detection in Campylobacter data is done by using the RKI
method which is called by rki() of the surveillance package. The reference set
is constructed by the w = 4 weeks before and after the current week in the last two
years b = 2.

> control = list(range = range, b = 2, w = 4)

> rki <- rki(disProg2sts(cam.disProg), control = control)

Running algo.rki on area 1 out of 1

Comparing Figure 6.2.1, the RKI algorithm detects two outbreak periods, one in
the spring of 2007, one in late 2008, and one single week in the early beginning of
2009.
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Surveillance using rki(4,0,2)
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Figure 6.2: Automated Outbreak detection in the IfSG Campylobacter data by RKI
method

6.2.2 Farrington Algorithm

The algorithm of Farrington et al. (1996) can be applied by calling the function
farrington() of the surveillance package. The reference set is chosen as before.
It is taken into consideration the last two years (b = 2), and corresponding four
weeks before and after the current week (w = 4). A trend cannot be assumed,
because less than 4 years of training period is available. Furthermore, the 2/3-
power-transformation should be used to normalize the data, and the reweighing
procedure for past outbreaks is applied, as well. Because the function is defined
for a two-sided significance level, alpha is specified by 0.05 · 2 = 0.1 to obtain the
required one-sided 5%-significance level.

> control <- list(range = range, b = 2, w = 4, trend = FALSE,

+ powertrans = "2/3", reweight = TRUE, alpha = 0.1)

> farr <- farrington(disProg2sts(cam.disProg), control = control)

Running algo.farrington on area 1 out of 1

In Figure 6.2.2, the result of the Farrington algorithm applied to the Campylobacter
data is shown. The algorithm detects two periods in the beginning of 2007. Fur-
thermore, in fall 2008 a sequence of alarms is triggered. At the turn of the years ,
there are each two single alarm weeks.

6.2.3 Simple Conjugate Prior-Posterior Bayes Algorithm

The simple conjugate prior-posterior Bayesian Algorithm bases on Poisson dis-
tributed observations in a reference set and the assumption of a Gamma prior,
which leads to negative Binomial distributed predictive posterior for the current
observation. It is implemented with the procedure bayes() and applied as follows:
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Surveillance using farrington(4,0,2)

time [years]

N
o.

 in
fe

ct
ed

2007

II

2007

IV

2008

II

2008

IV

2009

II

2009

IV

0
50

0
10

00
15

00
20

00
25

00
Infected Upperbound Alarm

Figure 6.3: Automated outbreak detection in the IfSG Campylobacter data by Far-
rington algorithm

> control <- list(range = range, b = 2, w = 4, actY = FALSE,

+ alpha = 0.05)

> bayes <- bayes(disProg2sts(cam.disProg), control = control)

Running algo.bayes on area 1 out of 1

Surveillance using bayes(4,0,2)
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Figure 6.4: Automated outbreak detection in IfSG Campylobacter data by simple
Bayes algorithm

The Bayes algorithm does not perform very well on the Campylobacter data. It
detects almost the whole time period of the defined range. Only in 2009, the number
of alarms decreases to a manageable level.



112 CHAPTER 6. APPLICATION TO CAMPYLOBACTER DATA

6.3 Application of Hierarchical Time Series Algorithm

In the following, various versions of the hierarchical time series algorithm are ap-
plied to the Campylobacter reporting data to examine the potential of the algorithm.
First, the simple version corresponding to the established algorithms presented be-
fore is applied. Later on, covariates are added and the adjustments for reporting
delay are tested in application.

6.3.1 Simple Application

In the model by an der Heiden et al. (2010) because of observed overdispersion a
negative binomial error distribution was assumed. Thus, in the monitoring will be
assumed this error distribution as well. Furthermore, it was figured out that the
neighbour model is the best assumption for the varying time trend. The stationary
prior cannot be applied because of strong seasonality in the Campylobacter data
and the linear model seems to be too noisy.

> control <- list(range = range, co.arg = NULL, prior = "rw1",

+ family = "nbinomial", alpha = 0.05, mc.betaT1 = 100,

+ mc.yT1 = 10)

> hts <- algo.hts(cam.disProg, control = control)

Analysis of  using hts(prior=rw1)
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Figure 6.5: Automated outbreak detection in IfSG Campylobacter data by Bayesian
hierarchical time series algorithm

The number of alarms is on a manageable level, while the higher level in early 2007
cannot detected completely. Furthermore, the algorithm is able to detect some high
peaks in the following low seasons of 2008 and 2009.
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6.3.2 Application including Covariates

First, a simple Bayesian model is fitted by using inla() examining the influence of
the covariates to the observed Campylobacter cases. In section 2.4 it was assumed
the influence of absolute humidity in the previous two weeks, proportion of sex and
of children cases in the age under 10 years. Since the response variable in this model
is the number of infected person at the current time point, and here are used the
number of reported cases, it need to be considered the incubation period and the
reporting delay. The incubation time is between two and five days. In chapter 2.3.3
was found that 95% of the cases were reported within three weeks. Thus, it need to
be include further four weeks of absolute humidity to obtain a comparable model. It
was found that sixth lag does not have any influence. Relevant variables construct
the model data frame and the inla negative binomial model was applied.

> inla.cam <- inla(cases ~ f(time, model = "rw1") + l1.hum +

+ l2.hum + l3.hum + l4.hum + l5.hum + age + sex, family = "nbinomial",

+ data = modeldat)

> summary(inla.cam)

Call:

c("inla(formula = cases ~ f(time, model = 'rw1') + l1.hum + l2.hum +

l3.hum + l4.hum + l5.hum + age + sex, family = 'nbinomial',

data = modeldat)")

Time used:

Pre-processing Running inla Post-processing Total

0.2143540 3.3029730 0.3781068 3.8954339

Fixed effects:

mean sd 0.025quant 0.5quant

(Intercept) 7.2940147274 0.262443525 6.77819626 7.2940518949

l1.hum 0.0008993357 0.005631842 -0.01016509 0.0008984256

l2.hum -0.0033044966 0.005661695 -0.01442929 -0.0033048483

l3.hum -0.0111122213 0.005692110 -0.02229617 -0.0111128118

l4.hum -0.0083833875 0.005663672 -0.01951399 -0.0083830563

l5.hum -0.0079432815 0.005601814 -0.01895273 -0.0079427401

age 1.4642870049 0.541335505 0.40023804 1.4644144940

sex -0.6275952050 0.409668547 -1.43220401 -0.6277324843

0.975quant kld

(Intercept) 7.808883e+00 4.321562e-07

l1.hum 1.195355e-02 8.740793e-09

l2.hum 7.806711e-03 4.449264e-08

l3.hum 5.948503e-05 3.881157e-07

l4.hum 2.729561e-03 4.598067e-07

l5.hum 3.047383e-03 3.030373e-07

age 2.526081e+00 1.359389e-06

sex 1.766872e-01 3.563528e-07
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Random effects:

Name Model Max KLD

time RW1 model 9e-05

Model hyperparameters:

mean sd 0.025quant 0.5quant

Overdispersion 28827.640 24251.180 4863.629 20195.642

Precision for time 36.595 2.791 31.505 36.446

0.975quant

Overdispersion 95792.963

Precision for time 42.467

Expected number of effective parameters(std dev): 386.30(2.775)

Number of equivalent replicates : 1.082

WARNING: The approximations could be not very accurate

Marginal Likelihood: -2767.68

Warning: Interpret the marginal likelihood with care if the prior

model is improper.
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Figure 6.6: Posterior marginals for fixed effects in INLA model.
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The posterior marginals approximations corresponding to the INLA model are shown
in Figures 6.6 and 6.7.
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Figure 6.7: Posterior marginals for random effects and hyperparameters of INLA
model.

In the following, monitoring including covariates with Bayesian hierarchical time
series algorithm will be presented. Because of instabilities in the algorithm it is used
Poisson instead of negative Binomial error distribution as mentioned in section 4.4.3.

> control <- list(range = range, co.arg = cbind(l1.hum, l2.hum,

+ l3.hum, l4.hum, l5.hum), prior = "rw1", family = "poisson",
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+ alpha = 0.05, mc.betaT1 = 100, mc.yT1 = 10)

> hts.hum <- algo.hts(cam.disProg, control = control)

Analysis of  using hts(prior=rw1)
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Figure 6.8: Automated outbreak detection in IfSG Campylobacter data by Bayesian
hierarchical time series algorithm including covariates

The Figure 6.3.2 shows a very similar picture as the monitoring result by the simple
hierarchical time series algorithm without included covariates. In the low season
several outbreak alarms are triggered.

6.3.3 Adjustment for Reporting Delay

First, the proportions of reported cases are computed and examined over time to
answer the question if its means can be generalized and used for prediction. As
introduced in section 4.5, the means of the observed proportions during the training
period are used for adjustment of outbreak detection. Thus, the proportions of delay
are computed by the ratio of cases reported and total number of cases.

> pi1 <- cam.aggr$delay1/cam.aggr$cases

> pi2 <- cam.aggr$delay2/cam.aggr$cases

> pi3 <- cam.aggr$delay3/cam.aggr$cases

Figure 6.3.3 shows the proportion of reported cases within one week increases slightly
over time. Furthermore, mild seasonality is detected. These characteristics disap-
pear with increasing time of reporting and will be ignored in further analysis. The
extrapolation for the time points is justifiable, because the means do not differ sub-
stantially.

Afterwards, the mean of these proportions is calculated including only the time
points of the training period.
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> mpi1 <- mean(pi1[-range])

> mpi2 <- mean(pi2[-range])

> mpi3 <- mean(pi3[-range])

Within one week 45.8% of the cases are reported, after two weeks the proportion
increases to 77.5%, and after three weeks in average 84.7% of the cases are reported.
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Figure 6.9: Proportions of reported cases over observed time.

At each time point, the partially observed count is adjusted by the averaged pro-
portion of already reported cases. Thus, it is estimated how many cases would be
reported when completeness is reached. The above calculated threshold ξhts is used
and compared with the adjusted observed value of already reported cases. Thus, the
alarms are computed corresponding to:

> alarm.delay1 <- (cam.aggr$delay1/pi1)[range] > hts$upperbound

> alarm.delay2 <- (cam.aggr$delay2/pi2)[range] > hts$upperbound

> alarm.delay3 <- (cam.aggr$delay3/pi3)[range] > hts$upperbound

To simplify the application of the adjustment for reporting delay no covariates were
included in the fitting of the Bayesian hierarchical models as their integration does
not change the procedure of reportng delay adjustment.

6.4 Algorithm Comparisons

In section 6.1.2 a definition for the outbreak state in the Campylobacter time series
which used the number of weekly outbreak counts was investigated and proved to
be unsuitable. Therefore, the surveillance methods were applied without assuming
any outbreak time points. Thus key quality measures for outbreak detection as in-
troduced in section 3.3 cannot be computed to obtain comparable performance of
the algorithms. In the context of this thesis, especially the comparison with the new
developed hierarchical time series algorithm is of special interest.
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6.4.1 Quality of Algorithms

The algorithms results itself were examined qualified. The quality comparisons of the
applied methods regarding the Bayesian hierarchical time series algorithm are done
by using specificity and sensitivity. Therefore, the triggered alarms of the simple
Bayesian hierarchical time series algorithm are compared with those triggered by
the other algorithms (see Table 6.1).

sensitivity specificity

RKI 0.11 0.95
Farrington 0.10 0.95

Bayes 0.08 0.97
with Covariates 1.00 0.99

delay within 1 week 1.00 1.00
delay within 2 weeks 1.00 1.00
delay within 3 week 1.00 1.00

Table 6.1: Comparison with Bayesian hierarchical time series algorithm alarms

In comparison with the results of the RKI method a sensitivity of 0.11 and specificity
of 0.96 is found. The hierarchical time series algorithm compared with the results of
the Farrington algorithm results sensitivity of 0.14 and specificity of 0.97. When the
alarms are compared with these triggered by the Bayes algorithm specificity of 0.97
and a very low sensitivity of 0.06 is observed. This corresponds to the high number
of triggered alarms by the Bayes algorithm.

6.4.2 Quality of Algorithm with Consideration of Covariates

The INLA model was able to prove an influence of absolute humidity to the re-
ported cases of Campylobacter infections. Thus, it would be expected that the
algorithm result does change by including these covariates. This can be examined
only marginal, because sensitivity and specificity equals almost one (see Table 6.1).
Thus, the results are similar whether covariates are included, or not.

6.4.3 Quality of Adjustments for Delay

To assess quality of the adjustment for the reporting delay consideration the ’gold
standard’ is assumed to be the monitoring result which is achieved when all data is
availible. Thus, the result of Bayesian hierarchical time series algorithm with com-
plete Campylobacter data as presented in section 6.3.1.

In the Table 6.1 the above computed alarm sets are compared with the ’gold stan-
dard’. It can be examined that the adjustment is working very well regarding all
types of delays. All time points are classified in the same category compared as in
the case all data is given.
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6.4.4 Conclusions

All applied versions of the algorithms gave reasonable results. They differ in the
number of triggered alarms. Thus, the RKI method gave 9 alarms, the Farrington
triggered 21 alarms, the Bayes algorithm 86 alarms, which is not on a manageable
level, and the hierarchical time series algorithm 9 alarms out of the monitored 157
time points.

Final quality comparisons of the algorithms are not possible, because an objective
and generally valid reference definition for true outbreak state is not available. In
literature spring 2007 was examined as a time period with unusual many Campy-
lobacter cases (Jansen et al., 2007). This period was detected the best by the
Farrington algorithm.

The application of including covariates is working while the integration of absolute
humidity did not change the resulting alarm set. The adjustment for reporting is
reasonable and derives the same results as the procedure including the complete
reporting data.
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Chapter 7

Discussion

It is a capital mistake to theorize before one has the data.

Sherlock Holmes in Arthur Conan Doyle’s ’Scandal in Bohemia’ (Gaither and
Cavazos-Gaither, 1996)

In this thesis, a particularised description of the reported Campylobacter infections
in Germany between 2001 and 2009 was given. The weekly aggregated counts were
examined in Germany. Regarding the spatial distribution and local incidence time
series of selected districts, spatial differences could be recognized. For better under-
standing of the flow of reporting, especially the reporting delay in all its stages was
examined. Moreover, male patients and specific age groups were found to be more
exposed to Campylobacteriosis. Finally, associations for belonging to an outbreak
on the factors sex, age, and bacteria type have been found.

The surveillance analysis of the Campylobacter data the algorithms of the RKI,
Farrington, Bayes, and the Bayesian hierarchical time series algorithm were applied
and their results compared. All methods were able to trigger off several alarm in the
spring of 2007, which was considered by other sources to have unusual high counts
(Jansen et al., 2007). Furthermore, the integration of absolute humidity as covariate
process, reflecting the weather in Germany, into the hierarchical time series algo-
rithm was shown. Due to the reporting delay the considered order of lags need to
be enlarged.

We are making forecasts with bad numbers, but bad numbers are all we’ve got.

Michael Penjer, New York Times, September 1, 1989) (Gaither and
Cavazos-Gaither, 1996)

There are several sources of irregularities in surveillance data. In this thesis, espe-
cially reporting delay and past outbreaks in the time series were investigated.

In general, reporting delays bias the results, and most authors emphasize the im-
portance of their consideration, but there is not much literature about adjustment
methods. In this thesis an ad-hoc adjustment was introduced to handle this prob-
lem. It investigates the proportions of reporting in dependence of the delays in the
past and use them to adjust the computed threshold.
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Another issue without an appropriate solution is the handling of past outbreaks in
the time series. Most of the methods ignore them. Farrington et al. (1996) suggested
to down weight the time series, but disadvantages of this approach were shown in
chapter 3.2.

Methods cannot be better than the data they base on. Thus, a way out might be
the integration of further information from other sources. In this thesis, a surveil-
lance method based on fast available, but inaccurate Internet search query data was
shortly mentioned. The combination with the delayed, but well defined public health
data, might improve surveillance results.

How easy it is for unverified assumptions to creep into our reasoning unnoticed!

Beveridge, W.I.B., The Art of Scientific Investigation (Gaither and
Cavazos-Gaither, 1996)

Statistical methods base on various assumptions which might need to be reconsid-
ered.

The aim of all investigated surveillance methods is the detection of an unusual high
count of infection. Thereby, only the public health definition of an outbreak is used.
It is a critical concept, because the existence of an aberration is necessary, but not
sufficient, for the occurrence of an epidemic (see Stroup et al., 1993). Other features
of an outbreak, such as linked cases, are not considered.

The presented algorithms use an in-control process model to derive an upper predic-
tion border. A naive approach would be the direct modelling of the threshold, e.g. by
quantile regression. Thereby, a threshold could be derived by modelling directly e.g.
the 95%-quantile. The problem with it could be quantile crossings and instabilities
of estimations in the edges. Furthermore, it need to find a appropriate handling for
the count data nature which are not standard for quantile regression (Koenker, 2005).

During the application of surveillance analysis on Campylobacter, the choice of error
distribution assumption was based on a model explaining the influence of weather
to the infection counts. In general, the choice of distribution is more complicated.
Assuming Poisson might be too restrictive in some infectious diseases. Otherwise,
negative Binomial or quasi-Poisson can be chosen.

Seasonality is a common characteristic of time series in surveillance. In the context
of this thesis, their consideration through constructing reference sets or modelling
via splines was investigated. Other techniques such as time series decomposition
might be appropriate as well. Thereby, the time series is splitted into its compo-
nents level, time, seasonality, and error (Cleveland et al., 1990). The developed
Bayesian hierarchical time series algorithm could be enhanced to provide a Bayesian
version of the decomposition by integrating a further seasonal component.

In the example of Campylobacter several differences regarding regions, age, sex, and
argent could be recognized. According to expert knowledge of the RKI, outbreaks
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usually occur in a specific strata. Thus, the simultaneous monitoring of different age
groups, regions or argent might be more appropriate to detect local and national
outbreaks. This leads to the multivariate surveillance. Here, questions regarding
the choice of stratification, such as group size, level of location, and a meaningful
association model, need to be answered (Frisén, 2003).

It is more important to predict than to estimate.

Peter Diggle (Farrington, 2010)

The thesis gave an overview of current statistical methodology in surveillance. In
this context, the algorithm of Farrington, based on a generalized linear model, and
hierarchical time series algorithm by Heisterkamp et al. (2006) have been described
in detail. The hierarchical time series algorithm estimates the counts of observed
infection cases, instead of predicting them. Thus, uncertainty is ignored when the
threshold is constructed.

Moreover, choice of distribution for constructing this interval is discussable. It is
based on a normal distribution due to the properties of the likelihood inference while
a naive approach would be the usage of the assumed error distribution.

A theory has only the alternative of being right or wrong. A model has a third
possibility: it may be right, but irrelevant.

Manfred Eigen, The Physicist’s Conception of Nature (Gaither and
Cavazos-Gaither, 1996)

The main outcome of this thesis is the developed Bayesian hierarchical time series
algorithm. Based on a Bayesian model, a threshold calculation was developed which
includes uncertainty of estimates and prediction simultaneously by using the predic-
tive posterior.

This approach was implemented in the framework of the R package surveillance.
Here, the fast and efficient approximation procedure of integrated nested Laplace
approximation (INLA) was applicated. The resulting function algo.hts() is work-
ing reliable and could be verified in simulation study and in application on the time
series of Campylobacter infections. It was examined that the algorithm using a
stationary prior model performs well in most settings with mild season, and that
the Farrington algorithm does not perform fundamentally better. The usage of the
modern statistical method INLA has the disadvantage of causing problems, because
INLA is still in development.

For now, the approach cannot regarded whether as right, wrong, or irrelevant. It
was not possible to document superior performance, but the concept as a Bayesian
model and the implementation with INLA provides a variety of enhancements, such
as sequential model update, more advanced threshold calculations, a further com-
ponent for explicit seasonality modelling, or spatial monitoring.
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The time for this thesis project has been restricted to six month. Thus, the re-
search needs to be focused on selected issues. If there would be more time, it would
be focused on enhancements of the the Bayesian hierarchical time series algorithm.
Firstly, the method would be enhanced by error handling, when negative Binomial
error distributed models are assumed, and by adding a seasonal component. It is
expected to improve the performance of the algorithm in application to time series
with strong seasonality. Further, a proper version of the introduced adjustment for
reporting delay might be added as an option in the algorithm. Additionally, if there
would be much more time, the possibility of adapting the algorithm for multiple
surveillance would be checked. Thereby, enhancing model complexity increases the
computing time of the approach. Thus, the implementation of a sequential updating
step is suggestive.

There is no such thing as the best method.

David Conesa (Farrington, 2010)

Using the example of Campylobacter infections in Germany, the thesis investigated
and applied for surveillance analysis the system used at the RKI, the Farrington al-
gorithm, the Bayes algorithm, and a Bayesian version of the hierarchical time series
algorithm. In the simulation studies, an overall best performing method could not
be determined. But, regarding the Bayesian hierarchical time series algorithm, and
several possible enhancements, such as adding a further component for seasonality,
the approach has the potential to get a very good, may be an overall best perform-
ing, surveillance method.

Thus, a full Bayesian surveillance approach, based on a time varying intercept, was
developed which is able to estimate and predict threshold directly, and which has
great potential due to several possible enhancements. The algorithm was imple-
mented in the framework of the surveillance package, so that it is available free
for everyone.
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Code of Implementation

algo.hts <- function(disProgObj, control=list(range=NULL, co.arg=NULL,

prior='iid', family='poisson', alpha=0.05, mc.betaT1=100, mc.yT1=10)){

# Implementation of Hierachical Time Series Algorithm

observed <- disProgObj$observed

state <- disProgObj$state

### control arguments

### define range

# missing range

if(is.null(control$range)){

warning('No range given. Range is defined as time from second

period until end of time series.')

control$range <- (disProgObj$freq+1):length(observed)

}

# check that range is subset of time series indices

if(any(control$range %in% 1:length(control$observed))){

stop("Evaluation period 'range' has to be vector of time series

indices.")

}

#set order of range

control$range <- sort(control$range)

### set model distribution

control$family <- match.arg(control$family, c('poisson','nbinomial'))

### setting for different priors

prior <- match.arg(control$prior, c('iid','rw1','rw2','rw3'))

if(prior=='rw3') stop("Sorry, this prior 'rw2' is not implemented

yet")

### setting for covariables

co.arg.formula <- NULL

if(!is.null(control$co.arg)){

if(is.vector(control$co.arg)){
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control$co.arg <- as.matrix(control$co.arg,ncol=1)

}

if(nrow(control$co.arg)!=length(observed)){

stop("Argument for covariates 'co.arg' has to have the same

length like the time series")

}

for(i in 1:ncol(control$co.arg)){

co.arg.formula <- (paste(co.arg.formula ,'+',

colnames(control$co.arg)[i]))

}

}

### set model formula

# if(prior=='rw1' || prior=='rw2'){

modelformula <- as.formula(paste("observed~f(time, model='",prior,"',

cyclic=FALSE)", co.arg.formula, sep=""))

# setting for threshold calcuation

if(control$alpha <= 0 | control$alpha >= 1){

stop("significance level 'alpha' has to be a probability, thus

between 0 and 1.")

}

# setting for monte carlo integration

if(!control$mc.betaT1>0 || !control$mc.yT1>0 ||

control$mc.betaT1!=round(control$mc.betaT1,0) ||

control$mc.yT1!=round(control$mc.yT1,0)){

stop('Number of Monte Carlo trials has to be an integer larger

than zero')

}

### clean model data from given outbreaks

observed[which(state==1)] <- NA

##### sequentiell steps #####

# progress bar

pb <- tkProgressBar(title='progress bar', min=min(control$range),

max=max(control$range), width=300)

xi <- rep(NA,length(observed))

### calculate predictive posterior using MonteCarlo-Simulation

for(i in control$range){

### prepare data frame: value for next time point yT+1 = NA

time <- 1:i

# data frame without covariables

if(is.null(control$co.arg)){

co.argi <- NULL

dati <- data.frame(observed=c(append(observed[1:(i-1)],NA)),
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time=time)

}else{ # data frame with covariables

co.argi <- control$co.arg[1:i,]

dati <- data.frame(observed=append(observed[1:(i-1)],NA),

time=time, co.argi)

}

# fit model and calculate quantile

xi[i] <- algo.htsFit(dat=dati, modelformula=modelformula,

family=control$family, alpha=control$alpha,

mc.betaT1=control$mc.betaT1, mc.yT1=control$mc.yT1)

# update progress bar

setTkProgressBar(pb, i, label=paste(round((i-min(control$range))/

length(control$range)*100,0), '% done'))

}

# close progress bar

close(pb)

# compare observed with threshold an trigger alarm: FALSE=no alarm

alarm <- disProgObj$observed > xi

# return argument

control$name <- paste('hts(prior=',prior,')',sep='')

result <- list(alarm=as.matrix(alarm[control$range]),

upperbound=as.matrix(xi[control$range]), disProgObj=disProgObj,

control=control)

class(result) <- 'survRes'

return(result)

}

#####################################################################

algo.htsFit <- function(dat=dat, modelformula=modelformula,

family=family,alpha=alpha, mc.betaT1=mc.betaT1, mc.yT1=mc.yT1){

# set time point

T1 <- nrow(dat)

#print(T1)

### fit model

model <- inla(modelformula, data=dat, family=family)

if(is.null(model)){

return(qi=NA)

}

### mc simulation

# draw sample from posteriori of betaT1

m <- model$marginals.random$time[[T1]]
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betaT1 <- try(inla.rmarginal(n=mc.betaT1,m), silent=TRUE)

if(inherits(betaT1,'try-error')){

return(qi=NA)

}

else{

betaT1 <- model$summary.fixed[1] + betaT1

}

# draw sample from yT1|yT,..,y1~f(exp(etaT1)) using sampled

# betaT1

nmc <- mc.betaT1 * mc.yT1

yT1 <- vector(length=nmc, mode='numeric')

# compute value for linear predictor

if(ncol(dat)==2){

etaT1 <- betaT1

}else{

etaT1 <- betaT1 + sum(dat[T1,-c(1:2)]*

model$summary.fixed[-1,1])

}

# model poisson distribution

if(family=='poisson'){

for(j in 1:mc.betaT1){

yT1[((j-1)*mc.yT1+1):(j*mc.yT1)] <- rpois(n=mc.yT1,

lambda=exp(etaT1[j]))

}

}

# model negative binomial distribution

if(family=='nbinomial'){

for(j in 1:mc.betaT1){

yT1[((j-1)*mc.yT1+1):(j*mc.yT1)] <- rnbinom(n=mc.yT1,

size=exp(model$theta.mode[1]),mu=exp(etaT1[j]))

}

}

### calculate threshold from MC samples

qi <- quantile(yT1, probs=(1-alpha), type=3, na.rm=TRUE)

return(qi)

}



Appendix B

Tables of Data Sources

initial name new name explanation NA (in %)
Id id id of case 0
InterneRef id.int intern reference number 0
MeldeWoche week week of report 0
MeldeJahr year year of report 0
PersonGeschlecht sex sex of patient 0.1
AlterTheoretisch age theoretical age calculated 0

by the birthday
Landkreis districtID id of reporting district 0
LKName district name of reporting district 0
Bundesland stateID id of reporting federal state 0
BLName state name of reporting federal 0

state
ErkranktZeitraum
DatumVon start1 earliest date of illness start 11.5
DatumBis start2 latest date of illness start 69.2
Herd outbreak intern id of outbreak, 97.1

otherwise NA

ErregerCAM1 type1 type of bacteria type 0.4
Wert1 value1 value of bacteria type 0.5
ErregerCAM2 type2 second type of bacteria 0
Wert2 value2 value of second bacteria type 98.5
RKI V1 arriveRKI date inserting the first version 0.2

of data set in the system of RKI
GA V1 lastUpd date inserting full version 0.1

at local health department
IOrt
DatumVon locStart start date for infection location 93.4
DatumBis locEnd end date for infection location 94.2
Lab Melde labReport date of laboratory report 43.9
LabDiag labDiag date of laboratory diagnose 30.8

Table B.1: Overview for initial variables in the data frame and their meaning
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station id station name altitude latitude longitude remarks
10015 Helgoland 4 54° 01’ 07° 53’ island
10020 List/Sylt 26 55° 00’ 08° 24’ island
10035 Schleswig 47 54° 31’ 09° 32’
10055 Fehmarn 3 54° 31’ 11° 03’ island
10147 Hamburg 11 53° 38’ 09° 59’ airport
10162 Schwerin 59 53° 38’ 11° 23’
10170 Rostock 4 54° 01’ 12° 04’
10184 Greifswald 2 54° 05’ 13° 24’
10200 Emden 0 53° 23’ 07° 14’
10224 Bremen 5 53° 02’ 08° 47’ airport
10270 Neuruppin 38 52° 54’ 12° 48’
10315 Muenster 48 52° 08’ 07° 42’ airport
10338 Hannover 59 52° 27’ 09° 40’ airport
10361 Magdeburg 76 52° 06’ 11° 35’
10379 Potsdam 81 52° 23’ 13° 03’
10384 Berlin 49 52° 28’ 13° 24’ airport
10393 Lindenberg 112 52° 12’ 14° 07’
10400 Duesseldorf 37 51° 17’ 06° 46’ airport
10427 Kahler Asten 839 51° 11’ 08° 29’ high altitude
10439 Fritzlar 174 51° 07’ 09° 17’ airport,

TX missing
10453 Brocken 1142 51° 48’ 10° 37’ high altitude
10469 Leipzig 131 51° 26’ 12° 14’ airport
10488 Dresden 227 51° 07’ 13° 45’ airport
10499 Goerlitz 238 51° 09’ 14° 57’ airport
10501 Aachen 202 50° 47’ 06° 05’
10506 Nuerburg-Barweiler 485 50° 22’ 06° 52’ high altitude
10548 Meiningen 450 50° 33’ 10° 22’
10554 Erfurt 316 50° 59’ 10° 57’ airport
10578 Fichtelberg 1213 50° 25’ 12° 57’ high altitude
10609 Trier-Petrisberg 265 49° 44’ 06° 39’
10637 Frankfurt 112 50° 02’ 08° 35’ airport
10655 Wuerzburg 268 49° 46’ 09° 57’
10675 Bamberg 239 49° 52’ 10° 54’
10685 Hof 567 50° 18’ 11° 52’
10708 Saarbruecken 320 49° 12’ 07° 06’ airport
10727 Karlsruhe 112 49° 02’ 08° 21’ airport
10731 Rheinstetten 116 48° 58’ 8° 20’ continues

for Karlsruhe
10738 Stuttgart 371 48° 41’ 09° 13’ airport
10763 Nuernberg 314 49° 30’ 11° 03’ airport
10788 Straubing 351 48° 49’ 12° 33’
10852 Augsburg 462 48° 25’ 10° 56’ airport
10870 München 444 48° 22’ 11° 49’ airport
10929 Konstanz 443 47° 40’ 09° 11’ airport
10946 Kempten 705 47° 43’ 10° 20’ airport
10961 Zugspitze 2960 47° 25’ 10° 59’ high altitude
10962 Hohenpeissenberg 977 47° 48’ 11° 00’ high altitude

Table B.2: List of freely available weather stations of the German Climate Service
(Deutscher Wetterdienst, DWD)
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