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Summary. A novel point process model continuous in space-time is proposed
for infectious disease data. Modelling is based on the conditional intensity
function (CIF) and extends an additive-multiplicative CIF model previously
proposed for discrete space epidemic modelling. Estimation is performed by
means of full maximum likelihood and a simulation algorithm is presented.
The particular application of interest is the stochastic modelling of the trans-
mission dynamics of the two most common meningococcal antigenic sequence
types observed in Germany 2002–2008. Altogether, the proposed methodo-
logy represents a comprehensive and universal regression framework for the
modelling, simulation and inference of self-exciting spatio-temporal point
processes based on the CIF. Application is promoted by an implementation
in the R package RLadyBug.
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1. Introduction
Infectious diseases – such as influenza, gastroenteritis, and the “swine flu” among hu-
mans, or foot and mouth disease, the “bird flu”, and classical swine fever among animals
– are a matter of tremendous public concern especially gaining attention in case of out-
breaks. Collaboration of public health decision makers, veterinaries, microbiologists,
epidemiologists, statisticians and many others is indispensable for understanding and
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controlling disease dynamics. The statistician’s contribution is typically based on sto-
chastic epidemic models inheriting from the stochastic susceptible-infectious-recovered
(SIR) model described by, e.g., Daley and Gani (1999) or Andersson and Britton (2000).
The present work concentrates on stochastic modelling and associated inference for

spatio-temporal epidemic point referenced data. The aim is to establish a regression fra-
mework, where the transmission dynamics of an infectious disease and its dependency on
covariates can be quantified. Specifically, the statistical methodology is motivated by the
modelling of invasive meningococcal disease (IMD). IMD is a life-threatening human bac-
terial disease mostly manifesting as meningitis or sepsis. Its pathogenic agent, Neisseria
meningitidis (aka Meningococcus), can be transmitted by large droplet secretions from
the respiratory tract of colonized or infected humans. The only reservoir of Meningococci
is the human (mostly nasopharyngeal) mucosa (Rosenstein et al., 2001). Data on cases
of IMD related to the two most common meningococcal finetypes B:P1.7-2,4:F1-5 and
C:P1.5,2:F3-3 in Germany 2002–2008 are obtained from the German Reference Centre
for Meningococci (Nationales Referenzzentrum für Meningokokken, NRZM) hosted at
the Institute for Hygiene and Microbiology at the University of Würzburg, Germany.
Here, a ’finetype’ represents a unique combination of serogroup, sequence type of va-
riable region 1 and 2 of the outer membrane protein PorA, and sequence type of the
variable region of the outer membrane protein FetA. One specific question of interest
for the researchers at the NRZM is whether the two finetypes (in what follows ab-
breviated B and C) exhibit different spatio-temporal behaviour. In purely descriptive
spatio-temporal visualisations it appears as if finetype B exhibits a more stationary pat-
tern than finetype C, but quantifying this relationship would be an important step in
the finetype characterisation of IMD dynamics. Furthermore, a connection between out-
breaks of meningococci and influenza is hypothesised. For example, Jensen et al. (2004)
found an association between the influenza detection rate and the number of IMD cases
during the same week in temporal analysis of data from Northern Jutland County in
Denmark, during 1980–1999.
We want to perform such an investigation in a spatio-temporal manner. Therefore,

we use spatio-temporal point processes as framework for modelling the dynamics of
the epidemic. Point process modelling has in the context of epidemics been used in a
discrete spatial setting in, e.g., Lawson and Leimich (2000), Neal and Roberts (2004),
Diggle (2006), Scheel et al. (2007) and Jewell et al. (2009). Spatio-temporal epidemic
modelling in an explicit continuous spatial setting, however, is rare with Diggle et al.
(2005) being one of the few examples of covariate adjusted modelling. One explanation
is the balancing between optimal spatial resolution of the data for statistical analyses
and confidentiality of cases.
Recently, there have been suggestions for splitting the dynamics of infectious disease

into endemic and epidemic components, see Held et al. (2005), Held et al. (2006) and
Paul et al. (2008) for a discrete spatial – discrete time perspective and Höhle (2009) for
a discrete spatial – continuous time perspective. For the continuous spatial – continuous
time setting, similar modelling approaches have been seen in the point process analysis
of earthquake data using a trend, cyclic, and clustering decomposition, see e.g. Ogata
(1988) and Ogata (1999). Earthquakes and cases of infectious diseases have in common
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that they feature so-called self-excitement, i.e. events promote the future evolution of
the point process by producing “offspring” events. Strong earthquakes cause subsequent
aftershocks, and an infected individual may transmit the infectious agent to susceptible
individuals. Point process modelling of such clustering in space and time often inherits
in structure from Hawkes’ self-exciting process (Hawkes, 1971), which is a birth process
with immigration formulated as a purely temporal process based on the conditional in-
tensity function. Inspired by the self-exciting Hawkes process, Ogata (1988) proposed the
so-called epidemic-type aftershock-sequences (ETAS) model for earthquake occurrences.
The name of the ETAS model clearly indicates a relationship between the modelling
of earthquake occurences and infectious disease cases. Ogata’s ETAS model has been
extended to a spatio-temporal version also covering the locations of earthquakes, and
several alternatives for the earthquakes’ triggering function have been considered in the
seismological literature over the years (cf. Ogata, 1998). Other areas of application
drawing on similar modelling approaches are the modelling of forest fires (Peng et al.,
2005; Møller and Díaz-Avalos, 2010), of rainstorms (Rodriguez-Iturbe et al., 1987; Cox
and Isham, 1988), residential burglaries (Mohler et al., 2010), and the analysis of bird
nesting patterns (Diggle et al., 2009). In these applications modelling is, however, often
tailored towards the specific use and thus there appears to be a need for a more unifying
regression approach for the modelling of space-time phenomena.
In the present work, the multivariate counting process approach of the two-component

epidemic modelling of Höhle (2009) is extended to the context of continuous space.
Furthermore, the modelling of the epidemic component is additionally generalised by
marks and covariates. In the spatial SIR model of Höhle (2009), possible event locations
constituted a finite subset of R2. This enabled compartmental model formulations in an
extended SIR context, and re-infection of the same unit could be modelled. This is not
possible in the spatially continuous setting of the present work. Instead, the “population”
is now considered as a subset of R2 having infinite size. This means that the random
number of events theoretically has no upper bound, that events may occur at any location
in the observational region, and that a re-infection has zero probability. The spatial and
temporal distance kernels in Höhle (2009) were modelled as a linear combination of basis
functions, whereas in our work this restriction is dropped and any Riemann-integrable
functions with any number of parameters may be supplied. Altogether, the proposed
modelling class provides a very general regression framework – beyond epidemics – for
the modelling, inference and simulation of spatio-temporal point processes. For the IMD
application this means

1. quantifying spatio-temporal associations between disease occurrence and explai-
ning factors represented as covariates, e.g. population density and outbreaks of
influenza,

2. characterising differences in offspring behaviour concerning the two finetypes, as
well as the age and gender of infected individuals.

This paper is organised as follows: Section 2 presents the spatio-temporal two-component
epidemic model based on the CIF, whereas Sections 3 and 4 discuss inference and si-
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mulation for the proposed model. Section 5 analyses the IMD data, and a discussion in
Section 6 finalises the paper.

2. Spatio-Temporal Two-Component CIF Model
In the following, we propose a novel additive-multiplicative model for the conditional
intensity function of an infectious disease process continuous in space-time with events
occuring in a prespecified observation period [0, T ], T > 0, and observation region W ⊂
R

2. The CIF λ∗(t, s) represents the instantaneous rate or hazard for events at time t and
location s given all the observations up to time t (the asterisk notation shall represent
the conditioning on the random past history of the process).
The basic framework of the proposed model is to superimpose endemic and epidemic

components – an idea similar to the ETAS model (Ogata, 1998) or the two-component
spatial SIR model (Höhle, 2009):

λ∗(t, s) = h(t, s) + e∗(t, s) (t > 0, s ∈W ) . (1)

The epidemic component e∗(t, s) represents the spread of the disease by person-to-person
contact. The endemic component h(t, s) models otherwise imported cases and is –
contrary to the epidemic component – independent of the internal history of the process.

2.1. Specification of the Endemic Component h(t, s)
The endemic component is of the multiplicative Cox-type

h(t, s) = exp
(
h0(t, s) + β̃′z̃(t, s)

)
, (2)

where h0(t, s) is a parametric or nonparametric spatio-temporal log-baseline intensity
and the remainder is a linear predictor of endemic covariates z̃(t, s). These exogenous
covariates actually result from another jointly evolving point process. For example,
in the IMD application, an endemic covariate is the number of influenza cases on a
week× district grid (possibly time-lagged). The log-baseline intensity is conveniently
separated in its temporal and spatial dimension excluding any baseline space-time inter-
action:

h0(t, s) = htemp
0 (t) + hspat

0 (s) .

A common approach in modelling spatial inhomogeneity in epidemiology is to adjust for
the population at risk or otherwise standardize to adjust for known confounders. In our
case, we model hspat

0 (s) as an offset for the logarithmic population density in the district
containing the location s, such that the endemic rate of infection is proportional to the
population density. The temporal log-baseline htemp

0 (t) is modelled by a step function:
in principle this could be a semiparametric zero-degree B-Spline but we only consider
parametric trends (e.g. linear plus sinusoidal with a yearly frequency) measured at a
discrete set of time points. In the simplest case, htemp

0 (t) = β0 is a global intercept.
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Figure 1: Schematic illustrations of the decompositions of the (a) temporal and (b) spatial ob-
servation ranges. The dashed line in (a) represents a linear time trend of which the
step function is a discrete left-continuous version over the decomposition C1, . . . , CD.

The reason for limiting htemp
0 (t) to be a piecewise constant function is that this greatly

simplifies the later integration of the endemic component in the log-likelihood.
Altogether, the endemic component is modelled as a piecewise constant function on

some spatio-temporal grid resulting from a decomposition of the time period (0, T ] and
the observation region W . The consecutive time intervals of this decomposition (e.g.
weeks) are denoted by C1, . . . , CD ⊂ (0, T ], and the spatial tiles (e.g. districts) are
denoted by A1, . . . , AM ⊂W . An illustration is provided in Figure 1. Let the functions
τ(t) and ξ(s) return the indices of the temporal and spatial grid units containing time
point t and coordinate s, respectively. Then, the endemic component can be written as

h(t, s) = exp
(
oξ(s) + β′zτ(t),ξ(s)

)
, (3)

where oξ(s) is the tile-specific offset (e.g. the log-population density), and
{
zτ,ξ : τ ∈ {1, . . . , D}, ξ ∈ {1, . . . ,M}

}

is a collection of covariates on the spatio-temporal grid {C1, . . . , CD} × {A1, . . . , AM}.
For notational convenience, htemp

0 (t) is in (3) now included in the terms of the linear
predictor as ordinary covariates.

2.2. Specification of the Epidemic Component e∗(t, s)
The self-exciting component of the model essentially provides a description of the infec-
tion pressure at a space-time location (t, s) caused by each infectious individual. This
infectivity of an infectious individual j, denoted by ej(t, s), corresponds to the inhomoge-
neous rate of a Poisson process, the realisations of which are the space-time locations of
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infected individuals. This so called triggering function is factorised into separate effects
of marks, elapsed time, and relative location:

ej(t, s) = eηj g(t− tj) f(s− sj) , (t > tj) (4)

where ηj = γ0 + γ ′mj is a linear predictor based on the vector of unpredictable marks
mj attached to the infected individual, and g and f are positive, Riemann-integrable,
temporal and spatial interaction functions, respectively. The effects γ of marks shall
reflect that different individuals might cause more or less secondary cases, depending on
individual characteristics; e.g. probability of meningococcal transmission increases with
carriage rate, which is highest in adolescents and young adults (Claus et al., 2005).
As in classical regression models, interaction terms of different marks can also be

included in the predictor.
The interaction functions describe the decay of infectivity with an increasing spatial

or temporal distance from the infection source. In infectious disease applications, f is
often taken to be a radially symmetric kernel corresponding to an isotropic spread of
the disease, such that f(s− sj) ≡ f(‖s− sj‖). A typical example is

f(s) = exp
(
−‖s‖

2

2σ2

)
(s ∈ R2, σ > 0) , (5)

i.e. the kernel of a radially symmetric bivariate normal density with zero mean. The
temporal interaction function could be chosen similar to the original Hawkes model as

g(t) = e−αt (t > 0, α > 0) (6)

representing an exponential temporal decay of infectivity. If f or g are modelled as
constant functions equal to 1, individuals spread the disease homogeneously in space or
time, respectively.
The resulting epidemic component e∗(t, s) then is the sum of the contributions (4) of

all infectious individuals at time t and location s. Formally,

e∗(t, s) =
∫

(0,t)×W×M
1(0,ε](t− t̃)1[0,δ](‖s− s̃‖) eηj g(t− t̃) f(s− s̃) N(dt̃× ds̃× dm̃) ,

=
∑

j∈I∗(t,s;ε,δ)
eηj g(t− tj) f(s− sj) , (7)

where M is the mark space and N is the time-space-mark point process counting the
infections. In the above, the hyperparameters ε, δ > 0 are introduced as known maximum
temporal and spatial interaction ranges. A past event only influences the process at time
t and location s, if both indicator functions are true, i.e. if it occurred at most ε time
units ago at a location within distance δ. These indicator functions could alternatively
be included in the interaction functions f and g. However, treating ε and δ as separate
hyperparameters suggests a convenient decomposition by defining I∗(t, s; ε, δ) as the
history-dependent set that contains the indices of all past events which are still infective
at time t and location s. In what follows, the explicit conditioning on ε and δ will be
dropped from the function I∗.
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2.3. Characteristics of the Model
Altogether, the proposed CIF model for a self-exciting spatio-temporal point process
with components (3) and (7) is

λ∗(t, s) = exp
(
oξ(s) + β′zτ(t),ξ(s)

)
+

∑

j∈I∗(t,s)
eηj g(t− tj) f(s− sj) , (8)

which we shall call twinstim to indicate a two-component spatio-temporal (conditional)
intensity model.
Similar models have been considered in an epidemic modelling context by Diggle (2007,

Section 1.3.2.2). He describes a self-exciting spatio-temporal point process resembling
the epidemic component e∗(t, s) from equation (7). Specifically, his model is an instance
of twinstim having neither an endemic component (h0(t, s) ≡ −∞) nor a weighting of
infectives (ηj ≡ 0), and assuming ε = δ = ∞. Thus, the model basically is a Hawkes
process without immigration, spatially enriched by a Thomas process. The population
growth model described in Diggle et al. (2009) extends this by a temporally limited
interaction range ε and an endemic component being a space-time constant value, i.e.
also this model is an instance of twinstim.
For the proposed model an interesting quantity is the individual-specific mean number

µj of infections caused by individual j inside its spatio-temporal range of interaction:

µj =
∫ ∞

0

∫

R2
ej(t, s)1(0,ε](t− tj)1[0,δ](‖s− sj‖) dt ds

= eηj ·
[∫ ε

0
g(t) dt

]
·
[∫

b(0,δ)
f(s) ds

]
. (9)

Here, b(0, δ) denotes the disc centred at (0,0) with radius δ. The integration domain
R+ ×R2 above stems from the theoretical point of view that the point process occurs
in unlimited time and space. In practice this is not observable, but individuals near the
border would be attributed a truncated value of µj if integrating overW only. Similarly,
an individual which has been infected just before the end of the observation period at
time T would have µj ≈ 0 if only integrating over [0, T ]. These edge effects are thus
overcome by the formulation (9), which also simplifies interpretation and hence provides
a quantity similar to the basic reproduction number R0 known from classical epidemic
modelling (Anderson and May, 1991). Specifically, the number µj offers an intuitive
way of interpreting the parameters γ in the linear predictor ηj . An “intercept” term
γ0 multiplied by the two integral values would represent the mean number of infections
caused by an infective individual whose marksmj all equal zero. The effects of the marks
can then be interpreted as usual in Poisson regression models: a unit positive change in
a specific mark mjl multiplies the mean number by the corresponding parameter eγl .

2.4. Extension: Type-Specific twinstim

The IMD data actually represent a spatio-temporal point pattern marked by the fine-
type of infection. Although the model of the previous subsection already allows for a
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finetype-specific weight of infectivity through the vector of marks mj , it is not appli-
cable for a joint modelling of both finetypes. The main issue is that the finetypes do not
cause mutual infections but only the same finetype is transmitted. Both finetypes should
however have the same relation to the population at risk and, as we assume for simpli-
city, to the numbers of influenza cases and the time trend. The only finetype-specific
element in the endemic component would be the intercept, corresponding to the global
background rate. Taking everything into account, the model of the previous subsection
will now be extended to a marked version, which enables the joint modelling of both
finetypes in the specific application and marked point patterns in general.
Denote by K = {1, . . . ,K} ⊂ N the set of possible event types. Define an indicator

matrix
Q = (qk,l)k,l∈K qk,l ∈ {0; 1}

which determines the possible ways of transmission. If qk,l equals 1, an infective type k
event can cause an event of type l. For instance, the IMD data would require Q = I2,
because the transmission is finetype-specific. A marked spatio-temporal point process
on (0, T ] ×W × K is then defined by the following model for the conditional intensity
function:

λ∗(t, s, κ) = h(t, s, κ) + e∗(t, s, κ) (10)
h(t, s, κ) = exp

(
htype

0 (κ) + oξ(s) + β′zτ(t),ξ(s)
)

e∗(t, s, κ) =
∑

j∈I∗(t,s,κ)
ej(t, s)

ej(t, s) = exp(ηj) · g(t− tj |κj) · f(s− sj |κj)
I∗(t, s, κ) =

{
j ∈ {1, . . . , Ng(t−)} : 1(0,ε](t− tj) = 1 ∧ 1[0,δ](‖s− sj‖) = 1 ∧ qκj ,κ = 1

}

Here, the transmission indicators from the matrixQ have been integrated into I∗(t, s, κ),
where Ng(t−) is the overall number of infections just before time t, and ηj = γ ′mj is a
linear predictor based on the event marks from the history of the process. Note that the
event type κj is part of the vector mj , which enables type-specific epidemic intercepts
as well as type-interactions with individual covariates. The unmarked twinstim of the
previous subsection can be treated as a special case of the above model by assuming
K = {1}, i.e. a single type of event. The new endemic baseline component htype

0 (κ)
either represents a type-specific endemic intercept, i.e.

htype
0 (κ) =

K∑

k=1
β0,k 1{k=κ}(κ) = β0,κ ,

or contains only a single global intercept htype
0 (κ) = β0, corresponding to the hypothesis

β0 = β0,1 = · · · = β0,K . In any case, the parameter vector β of h(t, s, κ) must no longer
contain an intercept. For the remainder of the endemic predictor, the model assumes
independence of κ, which means that the effect of endemic covariates is homogeneous over
the event types. However, the history-dependent set I∗(t, s, κ) of infective individuals

8



now accounts for the transmission regimeQ between the event types, and the interaction
functions are allowed to depend on the type of the infective event. For instance by using
type-specific σ2

κ and ακ in (5) and (6), respectively.

3. Statistical Inference
After formulating the marked twinstim model in (10) this section deals with likelihood
inference for the parameters of the CIF based on the observed marked spatio-temporal
point pattern x = {(ti, si,mi) : i = 1, . . . , n}, where the event type κi is part of the
vector of marks mi, and n is the number of events, i.e. a realisation of Ng(T ). The
parameter vector in question is

θ = (β′0,β′,γ ′,σ′,α′)′ , (11)
where β0 = (β0,1, . . . , β0,K)′ (type-specific) or β0 = β0 (type-invariant), and σ and α
are the parameter vectors of the spatial and temporal interaction functions fσ and gα,
respectively.
In a frequentist framework, parameter estimates can be obtained by maximisation of

the log-likelihood or the partial log-likelihood with respect to θ. Trading the partial
likelihood off against the full likelihood, the results of the simulation study in Diggle
et al. (2009) support satisfactory relative efficiency of the partial likelihood for their
special instance of a twinstim model. However, we do not see great benefit in using
the partial likelihood approach because the need for spatial integration – which is the
computational bottleneck of statistical inference – remains. Furthermore, the parameters
eβ0 and eγ0 would not both be identifiable, but only their ratio. As a consequence, we
will concentrate on full maximum likelihood estimation – although our implementation
also provides the partial likelihood alternative.
In the next subsections, the log-likelihood and score functions related to the type-

specific twinstim are derived. Furthermore, estimation of the expected Fisher infor-
mation matrix and asymptotic properties of the maximum likelihood estimators are
discussed.

3.1. Log-Likelihood Function
In this framework, no attempt is made to model unpredictable marks like gender and
age but they are taken as given predictor variables in models of the CIF. In this case,
the conditional intensity function of the underlying point process N on [0;T ]×W ×M
may be conveniently written as

λ∗θ(t, s,m) = λ∗θ(t, s, κ) · fM̃(m̃|t, s, κ) , (12)
where the tilde separates the event type κ from the unpredictable marks m̃, and fM̃ is
the density of the mark distribution at a specific time t, location s and event type κ.
Then, the log-likelihood function l(θ;x, T,W,K) of the point process is given by
[
n∑

i=1
log λ∗θ(ti, si, κi)−

∫ T

0

∫

W

∑

κ∈K
λ∗θ(t, s, κ) dt ds

]
+
[
n∑

i=1
log fM̃(m̃i|ti, si, κi)

]
(13)
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(Daley and Vere-Jones, 2003), where the second term is an ordinary i.i.d. log-likelihood
for the unpredictable marks, and the first term has the same form as the log-likelihood of
an ordinary point process uniquely specified through its CIF. However, observe that the
history of the process hidden in the asterisk of the CIF also contains past values of the
unpredictable marks which influence the future evolution of the process. Furthermore,
if the process depends on some exogeneous variables (like e.g. the infection intensity of
IMD might depend on waves of influenza), the conditional intensity function is controlled
by some larger history, which also incorporates the pasts of all related jointly evolving
processes. As we do not attempt to model the unpredictable marks m̃, interest is
in maximizing the first term in (13) only as a kind of partial likelihood (Vere-Jones,
2009, p. 180). Therefore, the log-likelihood decomposes in a sum over the observed
conditional log-intensities log λ∗θ(ti, si, κi), i = 1, . . . , n, and a time-space-mark integral
(in the general sense of Lebesgue-Stieltjes).
The components of the above sum can be directly calculated for a specific value of the

parameter vector θ after having determined the set I∗(ti, si, κi) of potential sources of
infection for the ith event. Furthermore, the integrated conditional intensity function in
the log-likelihood is
∫ T

0

∫

W

∑

κ∈K
λ∗θ(t, s, κ) dtds =

∫ T

0

∫

W

∑

κ∈K
hθ(t, s, κ) dt ds+

∫ T

0

∫

W

∑

κ∈K
e∗θ(t, s, κ) dt ds

such that the integrations of the endemic and the epidemic component can be performed
separately. Recalling that the endemic component is a piecewise constant function on
the spatio-temporal grid {C1, . . . , CD}×{A1, . . . , AM}, the first integral is in fact a sum
over this grid of smallest observed units in space-time:
∫ T

0

∫

W

∑

κ∈K
hθ(t, s, κ) dt ds =

(∑

κ∈K
exp

(
htype

0 (κ)
))
·
D∑

τ=1

M∑

ξ=1
|Cτ ||Aξ| exp

(
oξ + β′zτ,ξ

)

(14)
The integrated epidemic component can be simplified by moving the indicators of the

function I∗(t, s, κ) back into the sum:
∫ T

0

∫

W

∑

κ∈K

n∑

j=1
1(0,ε](t− tj)1[0,δ](‖s− sj‖) qκj ,κ eηj gα(t− tj |κj) fσ(s− sj |κj) dtds

=
n∑

j=1
qκj ,• e

ηj

[ ∫ T

0
1(0,ε](t− tj)gα(t− tj |κj) dt

][ ∫

W
1[0,δ](‖s− sj‖)fσ(s− sj |κj) ds

]

=
n∑

j=1
qκj ,• e

ηj

[ ∫ min{T−tj ;ε}

0
gα(t|κj) dt

][ ∫

Rj

fσ(s|κj) ds
]
. (15)

Here, qκj ,• := ∑
κ∈K qκj ,κ is the number of different event types which can be triggered

by an event of type κj , and Rj :=
[
W ∩ b(sj ; δ)

] − sj is the spatial interaction region
of the jth event centred at its location. In the case of unlimited spatial transmission
(δ =∞), Rj = W − sj equals the translation of the whole observation region by sj such
that sj becomes the origin.
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The evaluation of the two-dimensional integral over the domains Rj is the most so-
phisticated task of the log-likelihood evaluation. Meyer (2009) compared accuracy and
speed of different cubature rules for performing the numerical integration. Here, the
two-dimensional midpoint rule (see e.g. Stroud, 1971) proved to be best suited for the
task. For the special case of the type-specific Gaussian kernel (5), robust accuracy for
any value of σκ can be achieved by an adaptive choice of the bandwidth h = φσκ, see
Meyer (2009, 3.2.7) for details.
In contrast, the evaluation of the definite integral over the temporal interaction func-

tion is analytically accessible for the choice of gα used in our work. Provided Gα(t|κ)
denotes an antiderivative of gα(t|κ), the first integral thus equals

∫ min{T−tj ;ε}

0
gα(t|κj) dt = Gα

(
min{T − tj ; ε}

∣∣κj
)−Gα

(
0
∣∣κj
)
.

For instance, the type-specific exponential decay function gα from equation (6) has
antiderivative

Gα(t|κ) = −e
−ακ t

ακ
(ακ > 0) . (16)

The case ακ = 0 would correspond to a time-invariant infectivity, i.e. gα(t|κ) = 1 with
antiderivative Gα(t|κ) = t.
Altogether, an analytical maximisation of the log-likelihood for the twinstim class is

not feasible, and a numerical optimisation routine such as BFGS (see e.g. Nocedal and
Wright, 1999, Section 8.1) is required. Here, it is advantageous to know the derivative
with respect to θ, i.e. the score function which is presented below.

3.2. Score Function
Let ϑ denote any subvector of θ. Then, the partial derivative of the log-likelihood with
respect to ϑ is

sϑ(θ) := ∂

∂ϑ
l(θ) =

n∑

i=1

∂
∂ϑλ

∗
θ(ti, si, κi)

λ∗θ(ti, si, κi)
−
∫ T

0

∫

W

∑

κ∈K

∂

∂ϑ
λ∗θ(t, s, κ) dt ds , (17)

and the score function is

s(θ) = ∂

∂θ
l(θ) =

(
s′β0 , s

′
β, s
′
γ , s
′
σ, s
′
α

)′
(θ) .

The necessary partial derivatives of the CIF with their respective time-space-mark inte-
grals are given in Appendix A, and can be plugged into the equation (17).
The analytic derivatives of f and g with respect to σ and α, respectively, have to be

determined for the specific model at hand. For instance, a type-specific spatial Gaussian
kernel with σ = (σ1, . . . , σK)′ similar to equation (5) has partial derivatives

∂

∂σk
fσ(s|κ) = 1k=κ(κ) · exp

(
−‖s‖

2

2σ2
k

)
‖s‖2
σ3
k

, for any k ∈ K . (18)
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The type-specific temporal exponential decay function with α = (α1, . . . , αK) from equa-
tion (6) has partial derivatives

∂

∂αk
gα(t|κ) = 1k=κ(κ) ·

(
−t e−αk t

)
, for any k ∈ K . (19)

While the integral of ∂
∂σκ

fσ(s|κ) over the region Rj will be approximated by numerical
integration, the temporal function ∂

∂ακ
gα(t|κ) is assumed to permit analytical integra-

tion.

3.3. Fisher Information Matrix, Uncertainty, Model Selection
The inverse of the Fisher information matrix (observed or expected) at the maximum
likelihood estimate (MLE) θ̂ML is in general likelihood theory used as an estimate of the
variance matrix of θ̂ML. This procedure is well known from classical i.i.d. statistics un-
der Fisher regularity conditions, where the maximum likelihood estimator is consistent,
asymptotically efficient, and asymptotically normal. The precise conditions under which
asymptotic properties of maximum likelihood estimators hold for spatio-temporal point
processes have been established by Rathbun (1996). Specifically, the conditions for exis-
tence, consistence and asymptotic normality of a local maximum θ̂ML as T → ∞ for a
fixed observation regionW are discussed in Meyer (2009, Section 4.2.3) and are assumed
satisfied.
As an alternative, parametric bootstrap using the simulation algorithm from Section 4

may be useful for obtaining approximate standard errors (Schoenberg et al., 2002). Ho-
wever, we will restrict estimation of the uncertainty of θ̂ML to the asymptotic properties
based on the Fisher information matrix as this computation is much faster. The expected
Fisher information I(θ) can be estimated by the “optional variation process” – adapted
from Martinussen and Scheike (2002, p. 64) to the marked spatio-temporal setting –

∫ T

0

∫

W

∫

K

(
∂

∂θ
log λ∗θ(t, s, κ)

)⊗2
dN(t, s, κ)

through its observed realisation

Î(θ) =
n∑

i=1

(
∂

∂θ̃
log λ∗

θ̃
(ti, si, κi)

∣∣∣∣
θ̃=θ

)⊗2
=

n∑

i=1

( ∂
∂θ̃
λ∗
θ̃
(ti, si, κi)

λ∗
θ̃
(ti, si, κi)

∣∣∣∣∣
θ̃=θ

)⊗2

, (20)

where a⊗2 := aa′ for a vector a. The same estimator was also recommended and
used in Rathbun (1996, equation (4.7), note that here the inverse is given). Given the
implementation of the score function, the calculation of Î(θ̂ML) poses no difficulties
because a similar quantity already appeared in equation (17).
Uncertainty of the parameter estimates is thus deduced from the diagonal of Î−1/2(θ̂ML),

which contains their standard errors. Utilizing the asymptotic normality of θ̂ML, ordi-
nary component-wise Wald confidence intervals can be constructed. In principle, of
course, likelihood-based confidence intervals dominate Wald confidence intervals, but
they require heavy computations of likelihood profiles and demand numeric root-finding.
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With respect to model selection, likelihood ratio tests and Akaike’s information cri-
terion will be used. The former permits e.g. to test whether the null hypothesis of a
type-invariant endemic intercept β0 = β0,1 = · · · = β0,K can be rejected.

4. Simulation Algorithm
In general, the usability of a model class is greatly improved by the ability of simulation
from a specific model. For instance, it enables model checking and parametric bootstrap.
For evolutionary point processes specified by their conditional intensity function, Ogata’s
modified thinning algorithm (Daley and Vere-Jones, 2003, Algorithm 7.5.V.) provides a
convenient way to simulate realisations of the process. The algorithm requires piecewise
upper bounds for the intensity λ∗g(t) of the ground process Ng(t) := N((0, t]×W ×K),
which counts the total number of points occuring up to time t anywhere in W and of
any type κ ∈ K. This intensity is determined as

λ∗g(t) =
∫

W

∑

κ∈K
λ∗(t, s, κ) ds (21)

=
(∑

κ∈K
eβ0,κ

)


M∑

ξ=1
|Aξ| eoξ+β′zτ(t),ξ


 (22)

+
Ng(t−)∑

j=1

[(∑

κ∈K
qκj ,κ

)
eηj 1(0,ε](t− tj) g(t− tj |κj)

∫

Rj

f(s|κj) ds
]
. (23)

This function is a.s. bounded above by the CIF λ∗g(t), which is defined by replacing
g(t|κ) by the constant temporal interaction function g(t|κ) = max

u>0
g(u|κ). This CIF is

piecewise constant in time as it only jumps at time points where any of the endemic
covariates in zτ(t),ξ in any tile ξ changes its value, or when the set of currently infectious
individuals changes, i.e. when a new event occurs or a previous event stops triggering.
Given a parameter vector θ, the ranges of interaction ε and δ, as well as a sampling

scheme for the marks mj , the time point of the next infection starting from the current
time t = t0 can be generated as follows:
Draw an exponentially distributed random variate ∆ with rate λ∗g(t0). The simulated

value of ∆ is a proposal for the waiting time to the next event, i.e. the next time point
of infection might be t̃ = t0 +∆. However, this proposal is not valid if the rate λ∗g(t) had
changed between t0 and t̃. In this case, time is set to the first changepoint after t0 and
a new ∆ is simulated. Eventually, a proposed time point t̃ is valid. It is then accepted
with probability λ∗g(t̃)/λ∗g(t̃). If it is rejected, time is set to t = t̃ and a new waiting time
∆ is simulated as above. If it is accepted, location s̃ and type κ̃ of the event have to be
simulated. At first, the source of infection is sampled with probabilities proportional to
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the respective components of λ∗g(t̃):

P(endemic source) · λ∗g(t̃) =
(∑

κ∈K
eβ0,κ

)


M∑

ξ=1
|Aξ| eoξ+β′zτ(t̃),ξ




P(source = event j) · λ∗g(t̃) =
(∑

κ∈K
qκj ,κ

)
eηj 1(0,ε](t̃− tj) g(t̃− tj |κj)

∫

Rj

f(s|κj) ds ,

for j ∈ {1, . . . , Ng(t̃−)}. On the one hand, if the new event has an endemic source, then

P(κ̃ = k) ∝ exp(β0,k) (k ∈ K)
P(s̃ ∈ Aξ) ∝ |Aξ| eoξ+β′zτ(t̃),ξ (ξ = 1, . . . ,M)

In the sampled tile Aξ̃, the location s̃ is uniformly distributed. On the other hand, if
the new event was triggered by the previous event j, then κ̃ ∼ U({k : qκj ,k = 1}) (i.e.
one of the types which can be triggered by the type κj without any weighting), and
s̃ = sj + V , where V is drawn from the density f(s|κj)/

∫
Rj
f(s|κj) ds on Rj , e.g. using

rejection sampling.

5. Application to the IMD Data
In what follows we analyse the spatio-temporal spread of IMD based on the 2002-2008
NRZM data. The postal code of the patient’s home address was the spatial resolution
available for our analysis. Despite being spatially discrete we consider centroids of postal
code areas as quasi-continuous in space when looking at entire Germany. As usual with
infectious diseases, the actual time point of infection is unknown for the IMD cases.
Therefore, we define the beginning of illness and infectivity as the date of specimen
sampling.
All in all, n = 636 infections with finetypes B (336) and C (300) have been registered.

Figure 2 shows the monthly numbers of IMD cases for each finetype. Cases of IMD
predominantly occur during winter and early spring, which can be seen from more or less
pronounced peaks in the figure. Except from a large outbreak caused by the serogroup
B finetype around February 2005, both finetypes exhibit a comparable amount of cases
per month.
Besides being the most common finetypes, a particular interest of the NRZM in these

two specific finetypes arises because they seem to have different spatio-temporal distri-
butions. Figure 3 presents the spatial distributions of the two finetypes based on the
postcodes of the patients’ residences. Over the 7-year period some cases shared the
same postal code, therefore, the area of each point in the figure is drawn proportional
to the number of cases at its location. For the serogroup B finetype in (a) the highest
point multiplicity is 16, whereas for the serogroup C finetype in (b) this number is 4.
In connection with the temporal occurence of the events shown in Figure 2, the spatial
distribution suggests that IMD is an endemic disease, i.e. cases can occur at any time
and at any location. The maps also show the population densities of the districts, which

14



0

2

4

6

8

10

12

14

16

Time (month)

N
um

be
r 

of
 c

as
es

2002 2003 2004 2005 2006 2007 2008 2009

(a) Finetype B:P1.7-2,4:F1-5.
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Figure 2: Monthly numbers of IMD cases for both finetypes separately.

can be assumed to be roughly proportional to the population at risk of infection. Spatial
heterogeneity of the observed point patterns thus partially arises from spatial variation
in the population density. Not surprisingly, the intensity of points in metropolitan areas
like Berlin, Munich or the Ruhr is higher.
Animated graphics of the space-time locations of infections give more insight into the

infectiousness of the finetypes, i.e. of their epidemic character, and can be found as Web
Animation 1. The most common finetype B features a more “stationary” behaviour in
the sense that infections cluster more in space and time (especially in western North
Rhine-Westphalia), whereas the serogroup C finetype appears more diffuse and does not
stay in a region for long. It is supposed, yet not proven, that this phenomenon is due
to differences in the mucosal immune reaction elicited; specifically, finetype B might be
more successful than C in evading mucosal clearance.
Concerning the supplied patient data there is not much difference between the fine-

types. About 46.3% of all infections affected females, while the finetype-specific propor-
tions are similar with 45.9% (B) and 46.6% (C). Both finetypes have a modal age of
< 1 year (13.1% of all cases) followed by children of one (10.1%) and two (7.4%) years.
A reason for the high impact among infants is that they have not yet developed pro-
tective antibodies (Rosenstein et al., 2001, p. 1378). The second large group of affected
persons is from about 12 to about 22 years of age with a peak at its centre (17 years)
for the serogroup B finetype and at 15 years for the serogroup C finetype. As much as
about 85.5% of affected persons are younger than 26 years. Other cases of IMD occur
occassionally at higher ages where they are distributed rather uniformly.
As mentioned in the introduction, a concurrent viral infection of the upper respiratory

tract is hypothesized to be an important risk factor for IMD. Since influenza is a notifiable
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(a) Finetype B:P1.7-2,4:F1-5.
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(b) Finetype C:P1.5,2:F3-3.

Figure 3: Spatial point patterns of the cases of meningococci by finetype during the years 2002–
2008. The area of each dot is proportional to the number of cases at its location.
Also shown are the population densities (inhabitants per km2) of Germany’s districts
(source: Federal Statistical Office (DESTATIS) (2009)).

pathogen we investigate the effect of the weekly number of influenza cases in the 413
districts of Germany taken from the SurvStat database (Robert Koch-Institut, 2009) on
the occurrence of the two finetypes.

Although visual comparisons between the finetypes and heuristic comparisons of the
estimates of separate finetype-specific models are possible, this does not allow to assess
potential differences statistically. We thus opt for a joint analysis of the two finetypes
by the marked twinstim of Section 2.4 in order to test whether the weight of the epide-
mic component and hence the basic reproduction number is significantly higher for the
serogroup B finetype.
We perform model selection for the joint point pattern of 630 cases of IMD with

complete age and gender information by using Akaike’s information criterion (AIC) to
compare all models with the CIF composed by subsets of the following terms:

• Endemic component: Common or finetype-specific intercept, linear time trend,
sine-cosine time-of-year effects (zero, one or two harmonics), and linear effect of
weekly number of influenza cases registered in the district of a point (lag 0 – lag
3).

• Epidemic component: Age (categorized as 0-2, 3-18 and ≥19 years), gender, fine-
type and age-finetype interaction.
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Estimate Std. Error z value P(|Z| > |z|)
h.(Intercept) −20.3652 0.0872 −233.53 < 2 · 10−16

h.I(start/365) −0.0493 0.0223 −2.21 0.027
h.sin(start*2*1*pi/365) 0.2618 0.0649 4.03 5.5 · 10−05

h.cos(start*2*1*pi/365) 0.2668 0.0644 4.14 3.4 · 10−05

e.(Intercept) −12.5746 0.3128 −40.21 < 2 · 10−16

e.agegrp[3,19) 0.6463 0.3195 2.02 0.04310
e.agegrp[19,Inf) −0.1868 0.4321 −0.43 0.66558

e.typeC −0.8496 0.2574 −3.30 0.00097
e.siaf 2.8287 0.0819

AIC: 18968
Log-likelihood: −9475

Table 1: Parameter estimates of the AIC-best model with h.<NAME> denoting endemic and
e.<NAME> denoting epidemic components, e.g. e.siaf=log σ. The p-values correspond
to Wald tests.

Fixed hyperparameters of ε = 30 days and δ = 200 km were used for all analyses.
Furthermore, a constant temporal interaction function g was used. To restrict the model
search, and hence computing time, we first performed the search for all 600 models with
constant spatial interaction function f . Hereafter, the top 10 models of this search
were investigated further with two Gaussian spatial interaction functions: one with joint
variance parameter and one with finetype-specific variance parameter.
The CIF of the resulting AIC-best model obtained by this search has the following

form:

λ∗θ(t, s, κ) = ρξ(s) · exp
(
β0 + βtrend

btc
365 + βsin sin

(btc 2π
365
)

+ βcos cos
(btc 2π

365
))

+
∑

j∈I∗(t,s,κ;ε,δ)
qκj ,κ e

γ0+γ3-181[3,18](agej)+γ≥191[19,∞)(agej)+γC1{C}(κj) fσ(s− sj).

Here, (t, s, κ) denotes days since 31 December 2001, coordinate in ETRS89 (kilometre
scale) and finetype. With btc we denote monday of week τ(t), i.e. the lower bound of time
intervals C1, . . . , CD. Furthermore, ρξ(s) denotes the district-specific population density
(inhabitants per km2). In the linear predictor of the epidemic component, age group
[0, 2] and type B serve as reference categories. The corresponding parameter estimates
of the best model, now fitted to the 635 cases with available age, are found in Table 1.
Thus, there appears to be no noteworthy difference in the endemic behaviour of the

two types: a linear downward time trend superimposed with one harmonic best describes
the endemic behaviour of the point pattern (see Figure 4(a)). An additional effect of
past numbers of influenza cases does not improve the model. In contrast, there is an
effect of past IMD cases, i.e. the process is indeed self-exciting. Comparing the endemic-
only model with the model enriched by an epidemic intercept only, greatly improves the
fit (∆AIC=202.84). In the epidemic component, there is a detectable dependence on
marks with type C being less aggressive than type B (i.e. γ̂C = −0.85 < 0). Figure 4(b)
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shows the resulting finetype-specific spatial interaction functions which for type C is
exp(γ̂C) · 100% = 43% of type B. Finally, there is a significant age difference in the
infectivity of cases: the highest potential is found in the 3-18 year old, which could
be interpreted as the school-aged children having a higher contact behaviour than e.g.
adults.
Based on the selected model, basic reproduction numbers of µ̂B = 0.25 (95%-CI: 0.19-

0.34) vs. µ̂C = 0.11 (95%-CI: 0.07-0.18) are obtained by calculating the type-specific
expectation of (9) over the empirical distribution function of the additional covariates in
the epidemic predictor (here: age group). The confidence intervals are given as the 0.025
and 0.975 quantiles of samples obtained by re-computing µ̂B and µ̂C for 999 additional
coefficient vectors drawn from the asymptotic multivariate normal distribution of the
parameter estimates in Table 1. The confidence intervals thus indicate a higher epidemic
potential of the serogroup B finetype.
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Figure 4: (a) Trend and seasonal component of the fitted model; one observes the typical IMD
peak in late February and minimum in August. Furthermore, (b) shows the spatial
interaction function multiplied by the type modifier illustrating the higher epidemic
potential of type B.

To inspect the goodness-of-fit of the selected spatio-temporal point process model,
we follow the suggestion by Berman (1983) (see also Ogata, 1988; Rathbun, 1996) by
computing

Yi = Λ̂∗g(ti)− Λ̂∗g(ti−1), i = 2, . . . , n,

where Λ̂∗g(t) is the fitted cumulative intensity function of the ground process. If the
estimated CIF describes the true CIF well, then Ui = 1−exp(−Yi) iid∼ U(0, 1). Figure 5(a)
contains a plot of the cumulative density function (CDF) of the observed Ui and for
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(a) ε-scheme.
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(b) U(0, 1)-scheme.

Figure 5: CDF of the observed Ui together with 95% Kolmogorov-Smirnov error bounds for data
with tie breaking according to the (a) ε scheme and (b) U(0, 1) scheme.

comparison the CDF of the U(0, 1)-distribution together with error bounds computed by
inverting the one sample Kolmogorov-Smirnov test. The fit appears good, but noticable
deviations for ui < 0.15 can be observed, which we suspect to occur due to the tie-
breaking strategy of subtracting ε = 0.01 days from ties. As observations are on a
per-day basis and thus are interval censored we re-estimated the model for a data set
where ties were broken by subtracting a U(0, 1)-distributed random number from each
observation time. Figure 5(b) shows the improved fit of this analysis. The relative
changes in the parameter estimates are minor and in the order of 0.98 - 1.07 except for
the estimate γ̂≥19 where the change is of order 1.43. The “residual plots” in Figure 5
thus provided important insights with respect to the obtained fit and suggest reasonable
goodness-of-fit. In addition, a scatterplot of the observed Ui against Ui+1 (not shown)
yields no evidence for serial correlation.
Altogether, we are led to the conclusion that the proposed model provides a useful

description of the spread of IMD. It allows a quantification that the serogroup B finetype
has a higher epidemic potential than the serogroup C finetype and shows, based on the
German data, no spatio-temporal influence of influenza cases.
Another way of assessing the goodness-of-fit is by simulation from the fitted CIF.

Figure 6 shows the observed 7-year incidences (per 100,000 inhabitants) of the 413
districts for both finetypes together. In order to identify extreme observations which
are not explained by the selected model, we simulated 100 realisations of the process
along the lines of Section 4, and determined the 2.5% and 97.5% quantiles of the district-
specific 7-year incidences. In the figure, districts with observed incidences outside the
simulated 95%-range are marked by triangles. There are 17 districts, which experienced
outbreaks of IMD on top of the clustering described by the model. Most of these districts
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Figure 6: Observed incidence (per 100,000 inhabitants) during 2002-2008 for both finetypes to-
gether. Triangles pointing up (down) indicate districts with a higher (lower) incidence
than explained by 100 simulations from the model.

are found in and around Aachen at the border to the Netherlands. The deviation from
the model could thus be explained by edge effects hiding potential transmissions across
the border and resulting in an underestimation of the epidemic weight.

6. Discussion
We presented a comprehensive framework for modelling, inference and simulation for
general self-exciting spatio-temporal point patterns. Our motivating example originated
from epidemic modelling, but the proposal is flexible enough to suit other applications,
e.g. the modelling of earthquakes and forest fires. Using an additive-multiplicative de-
composition of the conditional intensity function we divide modelling into endemic and
epidemic parts. In the case of IMD the infected individual is effectively removed from the
transmission network once the disease becomes manifest. Secondary cases are thought to
acquire the infective strain either from the case during incubation or from asymptomatic
carriers close to the case. While marks attached to the case can naturally not account
for the latter mode of transmission, they represent a valid proxy for the transmission
network of the case when analyzing surveillance data, which typically lack information
regarding carriage.
It is our experience that parameters in the epidemic component can be hard to identify

when looking at data sets with a limited number of direct disease transmissions. In
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this case, the epidemic component should be modelled relatively simple and it might
be worthwhile to investigate a histogram of the number of potential sources of the
events. Identifiability was also the main reason for proposing independent space and
time interaction functions – if data are plenty there is no conceptual hindrance to use a
joint space-time interaction kernel and to compute its derivatives for inference. Also, we
did only consider two artificial procedures for breaking tied event times for the analysis.
More accurate analyses must carry out sensitivity analyses on the specific choices made
with respect to breaking ties (e.g. use different randomisations), but residual plots offered
useful illustrations for identifying such problems.
An issue currently not dealt with in our estimation are edge effects, i.e. data are

only available for Germany, but infections occur outside the observation window. For
example, Elias et al. (2010) elucidate, whether an increase of disease activity in the
region of Aachen (Germany) represented local emergence or cross-border spread from
the Netherlands. Hence, the actual disease clusters are wider than observed in Germany,
which potentially causes underestimation of the epidemic weight. Edge correction for
inference in spatio-temporal point processes is still an open methodological issue. For
the IMD application we have too few cases to create a buffer zone, but the idea in
Cronie (2010) of creating a buffer zone by simulation conditioned on the actual observed
point pattern might be worth investigating. However, this would require an appropriate
adaption of the simulation algorithm for performing conditional simulation. Another
form of potential bias is also related to data sampling: location is given as centroid of
the postcode boundary of the patient’s residence, which may not always appropriatly
reflect the area of the social contact network. However, an operationalisation of the
social contact network is hardly accessible.
One way to address missing covariates or other unexplained heterogeneity is the use

of random effects, aka frailties, in the endemic component. As in the discrete time – dis-
crete space setting of Paul and Held (2010) or the survival setting in Kneib and Fahrmeir
(2007), this could be done by a spatial Gaussian-Markov random field, or possibly by a
space-continous Gaussian random field with inference by penalized likelihood. Similarly,
smooth effects based on penalized splines would consistute a further extension fitting
nicely into such a penalized likelihood framework, e.g. to describe a smooth baseline ha-
zard function htemp

0 (t) in the endemic component as in Höhle (2009) or flexible covariate
effects as in Kneib and Fahrmeir (2007). However, from a computational point of view,
maximization of the likelihood is already a daunting task. Inference for such extensions
would complicate the likelihood maximization even further.
An additional strength of the proposed modelling is that it offers a parametric frame-

work for conducting prospective change-point analysis in spatio-temporal point processes
typical in disease surveillance: Within the framework of stochastic process control one
could e.g. use likelihood ratio detectors to monitor the time point where inclusion of
an epidemic component is necessary to describe the observed data. This would corres-
pond in idea to the time series setting investigated in Höhle and Paul (2008) or the
homogeneous spatio-temporal Poisson process setting of Assunçáo and Correa (2009).
The presented methods for inference and simulation of twinstim models will be made

available as part of the R-package for epidemic modelling RLadyBug (Höhle and Feld-
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mann, 2007; Höhle et al., 2010) available from the Comprehensive R Archive Network
(CRAN).

Supplementary Materials
The Web Animation referenced in Section 5 is available from http://www.statistik
.lmu.de/~hoehle/pubs/twinstim/.
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A. Calculus of the Score Function

Endemic intercept(s) β0:
Let β0,k, k ∈ {1, . . . ,K} be one of the type-specific intercepts in β0. Then,

∂

∂β0,k
λ∗θ(t, s, κ) = 1k=κ(κ) · exp

(
β0,k + oξ(s) + β′zτ(t),ξ(s)

)

since the parameter β0,k appears in the endemic component hθ(t, s, κ) if and only if
κ = k. The corresponding integrated value is

∫ T

0

∫

W

∑

κ∈K

∂

∂β0,k
λ∗θ(t, s, κ) dt ds = eβ0,k ·

D∑

τ=1

M∑

ξ=1
|Cτ ||Aξ| exp

(
oξ + β′zτ,ξ

)
,

cf. the integral of the endemic component in equation (14). If the model assumes a
type-invariant endemic intercept β0 = β0, then

∂

∂β0
λ∗θ(t, s, κ) = exp

(
β0 + oξ(s) + β′zτ(t),ξ(s)

)

with integrated value
∫ T

0

∫

W

∑

κ∈K

∂

∂β0
λ∗θ(t, s, κ) dt ds = K eβ0 ·

D∑

τ=1

M∑

ξ=1
|Cτ ||Aξ| exp

(
oξ + β′zτ,ξ

)
.

Endemic covariate effects β:
∂

∂β
λ∗θ(t, s, κ) = exp

(
htype

0 (κ) + oξ(s) + β′zτ(t),ξ(s)
)
· zτ(t),ξ(s)

with corresponding integral vector (element-wise integral values)
(∑

κ∈K
exp

(
htype

0 (κ)
))
·
D∑

τ=1

M∑

ξ=1
|Cτ ||Aξ| exp(oξ + β′zτ,ξ) zτ,ξ .

Epidemic effects γ:
∂

∂γ
λ∗θ(t, s, κ) =

∑

j∈I∗(t,s,κ)
eγ
′mj gα(t− tj |κj) fσ(s− sj |κj)mj ,

and the corresponding integral can be deduced similar to equation (15) as
n∑

j=1
qκj ,• e

γ′mj

[ ∫ min{T−tj ;ε}

0
gα(t|κj) dt

][ ∫

Rj

fσ(s|κj) ds
]
mj .

Parameters σ and α of the interaction functions:
For a general spatial kernel fσ(s|κ),

∂

∂σ
λ∗θ(t, s, κ) =

∑

j∈I∗(t,s,κ)
eηj gα(t− tj |κj)

[
∂

∂σ
fσ(s− sj |κj)

]
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with corresponding integral
n∑

j=1
qκj ,• e

ηj

[ ∫ min{T−tj ;ε}

0
gα(t|κj) dt

][ ∫

Rj

∂

∂σ
fσ(s|κj) ds

]
.

Similarly, for a general temporal kernel gα(t|κ),

∂

∂α
λ∗θ(t, s, κ) =

∑

j∈I∗(t,s,κ)
eηj

[
∂

∂α
gα(t− tj |κj)

]
fσ(s− sj |κj)

with corresponding integral
n∑

j=1
qκj ,• e

ηj

[ ∫ min{T−tj ;ε}

0

∂

∂α
gα(t|κj) dt

][ ∫

Rj

fσ(s|κj) ds
]
.
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