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Abstract

Hundreds of “molecular signatures” have been proposed in the literature to pre-
dict patient outcome in clinical settings from high-dimensional data, many of which
eventually failed to get validated. Validation of such molecular research findings is
thus becoming an increasingly important branch of clinical bioinformatics. More-
over, in practice well-known clinical predictors are often already available. From
a statistical and bioinformatics point of view, poor attention has been given to the
evaluation of the added predictive value of a molecular signature given that clini-
cal predictors are available. This article reviews procedures that assess and validate
the added predictive value of high-dimensional molecular data. It critically surveys
various approaches for the construction of combined prediction models using both
clinical and molecular data, for validating added predictive value based on indepen-
dent data, and for assessing added predictive value using a single data set.

1 Introduction
While high-throughput molecular data such as microarray gene expression data have been
used for disease outcome prediction or diagnosis purposes for more than ten years [1] in
biomedical research, the question of the added predictive value of such data given that
classical clinical predictors are already available has long been under-considered in the
bioinformatics literature.

This issue can be summarized as follows. For a given prediction problem (for exam-
ple tumor subtype diagnosis or long-term outcome prediction), two types of predictors are
considered. On the one hand, conventional clinical predictors such as, e.g. age, sex, dis-
ease duration or tumor stage are available as potential predictors. They have often been
extensively investigated and validated in previous studies. On the other hand, we have
molecular predictors which are generally much more difficult to measure and collect than
conventional clinical predictors, and not yet well-established. In the context of transla-
tional biomedical research, investigators may be interested in the added predictive value
of such predictors over classical clinical predictors. Note that clinical predictors may be
given as a list of individual factors or in form of a well-established index such as the IPI
index for lymphoma [2] or the Nottingham prognostic index for breast cancer [3]. In this
paper we do not distinguish between the case of individual clinical predictors and the case
of an aggregated index: from a statistical point of view, an aggregated index can be seen
as a clinical predictor.

A particular challenge when assessing the added predictive value of molecular data is
that these data are often high-dimensional, with typically p ∝ 10, 000 candidate predictors
in the special case of gene expression microarrays. This potentially leads to overfitting
problems and overoptimistic conclusions on their added predictive power [4, 5] when
researchers work with a single data set at hand. As a result of high dimension, it is almost
always possible to find a combination of molecular predictors that are associated with
the outcome in the considered data set, independently of the true predictive power. Thus,
building a molecular score based on the available data set and then testing its significance
in multivariate analysis while adjusting for clinical predictors is not appropriate. It often
yields a dramatic over-estimation of the molecular predictors’ relevance: because the
score is derived by “fishing” for relevant predictors within a huge number of molecular
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predictors, it considerably overfits the data at hand. While this problem essentially affects
all data analyses, it is strongly amplified in high-dimensional settings.

Validation of prediction models using independent validation data is a crucial step
that is always necessary before clinical applications [6, 7, 8, 9] and now required by many
high-ranking journals. See the paper by Castaldi and colleagues in this special issue for a
survey of concrete studies including a validation step. By validation of a prediction model,
researchers often mean the evaluation of the prediction model’s error when predicting new
observations from the validation data set, or some test of association between the derived
score and the outcome of interest based on the validation data.

Going one step further, George [8] states that “the purpose of validation is not to see
if the model under study is “correct” but to verify that it is useful, that it can be used as
advertised, and that it is fit for purpose”. To verify that the model is useful, validation of
the predictive ability of the model is not sufficient as the clinical interest centers around
the added value compared to previous existing models [10]. To verify that the new model
is useful, one also needs to validate the added predictive value. This concept is not trivial
from a methodological point of view and one may think of many different procedures in
this context. This paper discusses statistical techniques and gives some recommendations
for practical applications to high-throughput data.

Note that Altman and Royston [11] distinguish “statistical validity” from “clinical
validity”, which is another important aspect of validation of prognostic models. The
latter issue is related to model stability, simplicity and transportability. These aspects are
important for external validity [12] but beyond the scope of this paper. The focus of this
review is on statistical validity.

From now on, we consider that two data sets are available to the researchers. The
training data set is available from the beginning of the project and used for various sta-
tistical analyses, for instance for deriving a prediction model or a score (see Section 2 for
the definition of prediction models and scores). The validation data set is used to assess
and validate the results of the training phase. Ideally, it is not even opened until the end of
the training phase to avoid “optimal selection” mechanisms [13]. In practice, validation
data sets are often data collected later (temporal validation) or data collected elsewhere
(external validation) [11]. But the training and test sets may also be drawn randomly from
a single (large) data set at hand. already from traditional research the necessity of external
validation is well-known [14, 15]: it is the only way to ensure that the derived model is
widely useful and does not only work in the particular setting in which it was developed.

The rest of the paper is structured as follows. Section 2 introduces the terminology
of prediction models used in this paper. Section 3 gives an overview of possible methods
for deriving combined prediction models based on both clinical and molecular predictors.
Section 4 presents several existing approaches to validate added predictive value based on
training and validation data, while Section 5 briefly reviews procedures based on a single
data set. Before the concluding remarks we will discuss further evaluation procedures in
Section 6.

2 Prediction models
In this paper, we focus on two important prediction problems encountered in biomedi-
cal applications: binary class prediction and prediction of survival. The outcome is a
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binary class label in the case of binary class prediction, for instance responder versus
non-responder or healthy versus diseased. In survival analysis, the outcome is a right-
censored time-to-event such as the time to death or the time to next relapse. We will
consider logistic regression (for binary class prediction) and Cox regression (for survival
analysis) as standard multivariate methods for data with much less independent variables
than observations, although alternative approaches are conceivable like, e.g. accelerated
failure time models (for survival analysis) or probit regression (for binary class predic-
tion).

The molecular predictors measured through high-throughput experiments (like mi-
croarrays) are denoted as X1, . . . , Xp, where p is possibly as large as several tens of
thousands and most often exceeds the sample size n. Classical clinical predictors such as
age, sex, or TNM status are denoted as Z1, . . . , Zq with q commonly ranging from one
to about fifteen. Whereas the molecular predictors X1, . . . , Xp are measured at the same
scale (most often a metric scale), the clinical variables Z1, . . . , Zq may be categorical (e.g.
sex, TNM, ER status, mutational status), metric (e.g. tumor size, age), or a metric variable
categorized by using one or more cutpoints.

In our context, a prediction model is defined as a function that assigns a class (in the
case of class prediction) or a survival function estimate (in the case of survival analysis)
to each new observation. Note that many class prediction methods also output estimated
probabilities for each class in addition to the predicted class. In this paper, the term score
denotes an index computed based on a number of candidate predictors that is supposed to
be associated with the outcome of interest. Linear scores are a most important example in
practice. For instance, a 3-genes linear score may be given as

score = −0.113× geneA + 0.207× geneB + 0.091× geneC, (1)

where “geneA”, “geneB” and “geneC” stand for the respective expression levels of these
genes. Prediction models are most often based on such scores, but a score is not sufficient
to specify a prediction model. Linear scores can be derived by, e.g. lasso regression [16],
elastic nets [17, 18], superPC [19], or Cox regression performed after univariate filter-
ing. Clinical scores are usually derived with standard variable selection methods based
on logistic regression or Cox regression. Widely speaking, estimated class probabilities
returned by ensemble methods like random forests [20] in the case of class prediction can
also be considered as (non-linear) scores. Note that in this case the score does not have a
simple closed form like Eq.(1), and that the score is actually the prediction model itself.
In general, however, the score does not fully specify the prediction model. In generalized
linear models the estimated intercept and the link function are needed in addition to the
linear score of the form (1). For class prediction one or more cutpoints are needed to
separate patients into several groups. In Cox regression the prediction model consists of
the combination of the score with the estimated cumulative hazard function. Prediction
models and scores may involve only clinical predictors (clinical prediction model/score),
only molecular predictors like in the example above (molecular prediction model/score)
or a combination of both. These definitions are summarized in Table 1.
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3 Strategies to derive combined prediction models
Prediction models combining clinical with molecular data are important to assess the
added predictive value of molecular predictors. That is because some methods for as-
sessing added predictive value are based on the comparison of the accuracy of prediction
models with and without molecular predictors. However, the concept of combined mod-
els is not clearly defined and different strategies have been adopted in the literature. The
important characteristics of the five strategies outlined below are summarized in Table 2.

3.1 Strategy 1 (“naive”)
The perhaps most natural approach consists in building a combined prediction model by
treating clinical and molecular predictors in the same way. This approach is very general:
it can be applied to any prediction method that can handle predictors of the considered
types (for instance a mixture of continuous molecular predictors and categorical clinical
predictors). In this approach, individual clinical predictors may “get lost” within the
numerous molecular predictors and thus not be fully exploited – especially when clinical
information is available in form of a single aggregated score. If the clinical predictors
have good predictive value, such naive prediction models are expected to underestimate
the accuracy of combined models. The estimated added predictive value then tends to be
small – not because the molecular predictors are bad but because the combined rule does
not fully exploit the clinical predictors (that are lost within a large amount of noise).

3.2 Strategy 2 (“residuals”)
The other extreme strategy consists in deriving a fixed clinical prediction model, for in-
stance using logistic regression or Cox regression. The resulting linear predictor is then
considered as an offset and updated using molecular predictors, for instance via lasso re-
gression [16] or boosting regression [21]. This approach yields a linear predictor in which
the coefficients of the clinical variables are prone to selection bias [12] but are not affected
by the molecular predictors. It is adequate to test added predictive value [22]: the focus is
here on the residual variation of the outcome. However, it may be sub-optimal in terms of
prediction accuracy: depending on the correlation between clinical and molecular predic-
tors, accuracy may be improved by adapting the coefficients of clinical predictors [23].

An important variant of this strategy is when a clinical model is already given, e.g.
as an established index from the literature. Strategy 2 can also be applied in this case:
the only difference is that the clinical model is not estimated from the data. This avoids
a potential bias caused by building the clinical model, but in principle it does not change
the way in which the molecular component of the combined score is derived.

Another variant of this strategy where the clinical component of the combined predic-
tion model is not affected by molecular predictors consists in defining subgroups based
on the clinical predictors and then fitting molecular prediction models in each subgroup
separately. In this setup, interaction effects between clinical and molecular predictors may
lead to substantially different prediction models in the considered subgroups. Simple ex-
amples may be separate investigations in groups defined by sex or by menopausal status
in women. However, sample sizes are often (much) too small for such investigations,
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especially if there are several important clinical predictors.

3.3 Strategy 3 (“favoring”)
An intermediate strategy between strategies 1 and 2 is to fit a prediction model to clinical
and molecular predictors simultaneously while somehow “favoring” clinical predictors,
since they are more or less “established” prognostic factors. For instance, this can be
done in terms of prior in Bayesian settings or through a different penalty in penalized
regression. For example, the R package penalized [24] provides an implementation of L1

and L2 penalized regression with so-called unpenalized coefficients. In the same vein, the
CoxBoost approach [23] forces clinical predictors into the prediction model. In contrast,
the PLS+RF approach [25] builds a random forest based on the clinical predictors and
“summaries of the molecular predictors” in form of PLS components. Strategy 3 better
exploits the predictive potential of clinical predictors than Strategy 1, since they are “fa-
vored” in the model building process. In contrast to strategy 2, however, the influence of
clinical predictors in the prediction model is affected by molecular predictors. A critical
question is how much clinical predictors are/should be favored. Obviously, that should
depend on clinical knowledge. It is difficult to give clear recommendations on this hetero-
geneous family of methods. If clinical predictors are much favored, Strategy 3 is similar
to Strategy 2 and the prediction accuracy of the combined model is possibly sub-optimal.
If they are not enough favored, however, Strategy 3 has the same pitfall as Strategy 1.

3.4 Strategy 4 (“separate”)
Another approach that has sometimes been taken in bioinformatics literature [26] consists
in fitting two separate prediction models: one for clinical predictors and one for molecular
predictors, and to somehow combine them. This approach, though showing good predic-
tion results in particular situations, has two major pitfalls. First, the clinical predictors
are not taken into account when fitting the molecular prediction model: the approach thus
fails to focus on residual variation that is not captured by clinical predictors. The second
problem is the danger of overfitting through molecular predictors when combining the
two models.

3.5 Strategy 5 (“replacement”)
Use the molecular data to replace one or more of the “weaker” components of a clinical
index. The effect of a component may be “weak” if its relative importance is low [27] or
if it is affected by measurement errors. For example, tumor grade is one of three variables
in the NPI [3]. As the assessment of tumor grade can depend on the investigator, the
general usefulness of NPI may be improved if grade could be replaced by more objective
molecular information. It is well-known that variables measured with some subjective
component may increase the predictive value in the original data but fail to show its pre-
dictive value in new data [28].
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4 Validation of the added predictive value

4.1 Why validation?
Validation of prediction models using independent data is important from a clinical point
of view, because it measures the accuracy of the prediction model based on a possibly
different patient population and thus assesses its generalizability. Model calibration may
be required in this context [29]. Good discrimination in new data is an important pre-
requisite for a good prediction model. In the context of translational research, the valida-
tion of added predictive value is perhaps even more important than the validation of the
prediction accuracy of the prediction model. Some approaches have been proposed for
assessing added predictive value based on a single training data while avoiding overfitting
problems, see Section 5 for important examples. In this section, however, we address the
assessment of added predictive value based on independent validation data. Note that,
from a technical point of view, an independent validation data set can be generated artifi-
cially from a large data set by random splitting.

The many approaches reviewed below can be classified according to various charac-
teristics. A summary of these important characteristics is given in Table 3. In a nutshell,
approach A is based on prediction models, while the other approaches are based on scores
only. While approaches A and B consider combined models/scores, the other approaches
consider clinical and molecular scores, but no combined scores. In approach C, the assess-
ment of added predictive value is performed through significance testing in multivariate
models fitted on the validation data set, while approach D is based on cross-validation or
related resampling approaches performed on validation data.

4.2 Validation approaches
4.2.1 Comparing clinical prediction model and combined prediction model on val-

idation data (approach A)

The idea is here to fit two prediction models based on the training data: a clinical predic-
tion model and a combined prediction model. Note that the combined prediction model
should be fitted using strategy 2 or strategy 3. Otherwise the results cannot be correctly
interpreted. The two models are then applied to make a prediction for the observations
from the validation data set, and the predicted and true outcomes are compared for both
models. Depending on the type of outcome (right-censored time-to-event or class) and on
the point of view of the researcher, different assessment criteria are available.

For class prediction misclassification tables can be computed, and the specificity, sen-
sitivity and error rate of the two prediction models can be compared using standard statis-
tical tests (test of equality of proportions). See Pencina et al [10] for further procedures.
A comprehensive description of summary measures is given by Gu and Pepe [30]. For
time-to-event outcomes the (integrated) Brier-score and related methods such as predic-
tion error curves [31, 32] are popular measures, but other may also be used depending on
the main focus of the study [33, 34]. Measures based on the Brier score are implemented
in the R package pec [35]. The problem of the choice of a suitable measure to assess the
added value is similar for other approaches like approach D discussed below, that is also
based on the accuracy of prediction models.
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Note that approach A includes as a special case the scenario where the whole clinical
prediction model is already given in the literature instead of being estimated from the
training data.

4.2.2 Comparing clinical score and combined score on validation data (approach
B)

In some cases, prediction models resulting from the training phase cannot be directly
applied to the validation data. For instance, this may be the case if the training data
set was collected within a case-control design while the validation data set stems from a
population study with a (much) smaller percentage of cases. The probabilities output by
the prediction model from the training phase do not make sense for the validation data
set. It is then more appropriate to try to validate the discriminative ability of the score
underlying the prediction model rather than the prediction model itself. Another example
where it does not make sense to apply the prediction model and determine its prediction
error in the validation set is when the molecular predictors are measured at a different
scale in both data sets. For instance, gene expression may have been measured using
microarrays in the training set but with PCR in the validation set. In this case, it makes
sense to look at the values of the score in the validation data and its association with the
outcome rather than at the accuracy of the prediction model. One then needs criteria to
assess and compare the scores underlying the prediction models instead of the prediction
models themselves. ROC curves including tests of equality of AUC can be considered in
the case of class prediction. For survival analysis the association between the two scores
and the outcome can be assessed using Cox regression, for instance based on quantile
survival curves or other measures of discriminative ability.

An important aspect of both approaches A and B is that no model is fitted on the
clinical predictors of the validation data set. Instead, clinical predictors are taken into
account in the training phase through the use of a combined prediction model. This will
not be the case in the other approaches reviewed in the rest of Section 4.

4.2.3 Testing the molecular score based on validation data in a multivariate model
adjusting for clinical predictors (approach C)

Approaches A and B are not always used in practice, probably because combined pre-
diction models and combined scores are tricky and not yet well-established. Moreover,
practitioners often prefer to establish their score in form of a molecular score without
reference to the clinical predictors. Last but not least, the required clinical predictors are
sometimes not available for the training data.

The rest of Section 4.2 is devoted to procedures that do not necessitate the use of
combined scores and ignore the clinical training data in the analysis of the molecular data.
The training phase outputs solely a molecular score whose added predictive value is then
determined in the validation data set, thus taking into account the clinical predictors of
the validation data. We suppose from now on that the training phase outputs a molecular
score like in Eq.(1). This molecular score has been constructed without taking the clinical
variables of the training data into account. We assume that it can be computed for all
observations from the validation data set. It is in a way considered as a “new predictor”.

8



The most natural way to assess the score’s association with the outcome while ad-
justing for clinical predictors is to fit a prediction model based on the validation data
using the score as well as the clinical predictors as independent variables. One can then
perform a suitable test to check whether the regression coefficient of the score differs sig-
nificantly from zero. Since the score does not overfit the validation data set, this approach
is unbiased in the sense that it does not systematically over-estimate the added predictive
value of the molecular predictors. However, it tells nothing about the predictive value
in terms of prediction error. Furthermore, p-values get smaller with increasing sample
size – independently of the gained prediction accuracy. As stated by Altman and Roys-
ton [11] “usefulness is determined by how well a model works in practice, not by how
many zeros there are in the associated p-values”. In other words, small p-values may be
observed even if the gained prediction accuracy is poor. For a binary outcome Pepe et
al [36] illustrate that odds ratios have to be extremely high (e.g. 10 or more) to improve
classification. Even a “large” odds ratio, e.g. 3, does not give sufficient strength for a
suitable classification tool. They also discuss this issue in the context of the added value
of a marker.

Note that approach C includes as a special case the scenario where an aggregated
clinical index (such as the IPI score or the Nottingham index) is already given from the
literature. Indeed, such an aggregated score is not different from usual clinical predictors
from a statistical point of view.

4.2.4 Comparing prediction models with and without molecular score by cross-
validation in validation data (approach D)

Approach D is similar to approach C but is not based on the p-value in multivariate re-
gression, thus addressing the important pitfall of approach C. It consists in comparing –
via cross-validation or related resampling methods – the prediction accuracy of prediction
models with and without molecular score that are fitted on the validation data set. Note
that these prediction models can be constructed via logistic or Cox regression or by any
other model building approach.

Like in approach C, the molecular score is considered as a new predictor. While
approach C assesses this new predictor based on the p-value obtained in a multivariate
regression, approach D explicitly evaluates the gain of accuracy yielded by the new pre-
dictor by cross-validation. More precisely, the validation data are divided into a number k
of cross-validation folds, for instance k = 10. In the kth iteration, the kth fold is excluded
from the data and two prediction models are fitted to the remaining k−1 folds: one model
with clinical predictors only and one model with both the score and the clinical predictors.
The two models are applied to the kth fold and evaluated based on a suitable criterion like
the Brier-score [31, 32] (for survival analysis), the error rate or the AUC (for class pre-
diction). This approach has the major advantage that it can quantify the accuracy gain
obtained by incorporating the score. Note that it is also possible to repeat cross-validation
to achieve a higher stability, or to use other resampling schemes such as 0.632 or 0.632+
bootstrapping [37].
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4.3 Variants of approaches A, B, C, D
4.3.1 Subgroup analysis (SA)

A variant of the approaches A, B, C, D discussed above consists in repeating the validation
analyses in several clinical subgroups. The first step – construction of scores/models
using training data – is performed exactly as described in Section 4.2, but the evaluation
step using validation data is performed separately for the considered subgroups. This
approach allows to identify cases where the molecular data may have added predictive
value in some subgroup(s) but not in all. A typical example is when the score is highly
significant for intermediate subgroups but does not help for extreme subgroups that are
already accurately predicted by clinical predictors. This approach is most often applied to
pre-defined subgroups (e.g., positive mutational status). A variant would be to consider
subgroups defined from a clinical prediction model fitted on the training data.

If there are few important clinical predictors, it may be possible to consider all possible
subgroups successively. For instance, in the extreme case where only one binary predictor
is important, e.g., the “mutational status”, performing the analyses in the negative status
group and in the positive status group successively automatically adjusts for the (only)
clinical predictor “mutational status”. There are no clinical predictors left, and approaches
A, B, C, D can be formulated differently. In approaches A and B the comparison is
not between clinical and combined models anymore, but rather between the intercept
model and the molecular component of the combined model. Approach C is based on
significance testing in univariate regression rather than multivariate regression, since there
is only one predictor left – the score. Similarly, in each cross-validation iteration approach
D compares the score-based univariate model with an intercept model.

If there are several important clinical predictors, however, one may define the sub-
groups based on one (or two) particular clinical predictor(s) and then proceed exactly as
described above with the remaining clinical predictors and the molecular model/score.
However, the sample size is often too small for subgroup analyses.

4.3.2 Subgroup analysis with different models fitted for each subgroup (SA2)

In the subgroup analysis procedure SA sketched above, the subgroup structure is com-
pletely ignored in the training step, i.e. for the construction of the models/scores based on
training data. An interesting variant of subgroup analysis, denoted as SA2 in our paper,
would be to fit different models/scores to the considered clinical subgroups in the train-
ing phase. This approach would take potential interaction effects between clinical and
molecular predictors into account. For instance, a specific marker may be predictive of
the further disease course in men but not in women. An approach with a global molecular
score for all patients would ignore this difference and probably underevaluate the predic-
tion accuracy of the score in men. An important limitation of this approach in practice
is that it requires a large sample size so that the size of the subgroups of interest is suffi-
cient to fit molecular scores. Moreover, it evaluates the added predictive value of several
scores/models, which may be not appropriate in translational research where simplicity
of the score/model is an important aspect. Note that, like variant SA, this variant can be
accommodated to all approaches A, B, C and D.
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4.3.3 Clinical score fitted on training data (CSFTD)

Approaches C and D consider multivariate models fitted on the validation data set esti-
mating the effects of individual clinical predictors. A variant would be to fit multivariate
models based on only two “aggregated predictors”, namely the clinical and molecular
scores fitted from the training data.

The difference between this variant and the original version of approaches C and D
is that the coefficients of the individual clinical predictors are now fitted based on the
training data. In contrast, approaches C and D fit the coefficients of clinical predictors
with the validation data – while the components of the score with corresponding weights
are estimated in the training data. In a sense, the original approaches C and D may slightly
disadvantage the molecular score, especially when there are many clinical predictors. In
fact, variant CSFTD considers the problem from a different point of view. In approaches
C and D, the molecular score is viewed as a potential new predictor which is treated
like clinical predictors in the multivariate regression on the validation data: approaches
C and D assess the new “molecular predictor”. In contrast, the present variant CSFTD
rather assesses the score building processes: both scores are thus fitted with the same
data. Variant CSFTD may be particularly interesting from a methodological point of
view. In clinical applications, however, the assessment of the model building processes
is of moderate interest and the original variants of C and D may be more appropriate
because they better correspond to the concept of added predictive value by allowing the
contribution of the individual clinical predictors to be affected by the molecular score.

4.3.4 Clinical score given from literature (CSG)

An important variant of the CSFTD approach is obtained when the clinical score is already
given from the literature instead of being fitted on the training data. This approach is
denoted as CSG (standing for Clinical Score Given). In this approach, the clinical data of
the training set are not used – in contrast to CSFTD.

5 Added predictive value in training data
While the procedures outlined previously are essentially based on two data sets – a train-
ing data set and a validation data set – this section is devoted to methods using a single
data set. Note that, if this single data set is large enough, it can potentially be split ran-
domly in order to apply the methods reviewed above. From now on, we consider that the
data set at hand cannot be split, say, because it is too small or to avoid well-known prob-
lems caused by data splitting [38, 39]. Some approaches have been proposed to assess the
added predictive value of molecular predictors in this case. Roughly, they can be divided
into two categories: the global test approaches with adjustment and the resampling-based
approaches.

5.1 Global tests with adjustment
Global tests with adjustment are based on linear models with linear predictor

η = β0 + β1Z1 + · · ·+ βqZq + β∗1X1 + · · ·+ β∗pXp.
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In the example of logistic regression, the linear predictor η is linked to the probabilities
of the two classes Y = 0 and Y = 1 through the logistic function. In Cox regression, the
linear predictor corresponds to the hazard ratio. The idea of global tests in the context of
prediction is to test the null-hypothesis

β∗1 = . . . = β∗p = 0

i.e. that X1, . . . , Xp have no added predictive value in the considered generalized lin-
ear model. The two global tests by Goeman and colleagues [40, 41] and Boulesteix and
Hothorn [22] differ in the method used to test this hypothesis. Goeman considers a hi-
erarchical model where the regression coefficients have a prior distribution with variance
τ 2 and then test the null-hypothesis τ 2 = 0 based on asymptotic results. In contrast,
Boulesteix and Hothorn fit regularized regression models using boosting regression with
the clinical score as offset. Note that other regularized regression techniques could be
used in place of boosting at this stage. They test the null-hypothesis by permutation of
the molecular predictors X1, . . . , Xp – while the clinical predictors Z1, . . . , Zq (and thus
the offset) remain unchanged.

The approaches by Goeman et al [40, 41] and Boulesteix and Hothorn [22] can be
applied both to survival analysis and class prediction. They are implemented in the freely
available R packages globaltest and globalboosttest, respectively. It has been shown
in simulations that globalboosttest performs somewhat better in the important case of
few strong molecular predictors, since boosting regression focuses on good predictors
while ignoring the other. Another important global testing approach that can be applied
to class prediction is the GlobalAncova method by Hummel et al [42] implemented in the
R package GlobalAncova [43]. It is based on parallel analyses of variance performed for
all molecular predictors simultaneously with the class as factor and allows adjustment for
clinical predictors.

A shortcoming of such global approaches in the context of added predictive value is
that they provide a test but not a comparison of prediction errors. One may thus face
situations where the global test identifies added predictive value (i.e. yields small p-
values) but the prediction model based on molecular predictors performs poorly. With
respect to the connection between global tests and prediction models, note that there is
an essential difference between Goeman’s global test and the globalboosttest approach by
Boulesteix and Hothorn. While Goeman’s globaltest does not refer to a specific prediction
model, the globalboosttest can be seen as a permutation test of the model fitted by boosting
regression based on the non-permuted data set.

5.2 Resampling approaches
The approaches A and B discussed in Sections 4.2.1 and 4.2.2 can be easily applied in
cross-validation settings. At each iteration, the excluded fold plays the role of a validation
data set while the other folds are used as training data. Combining the results of the cross-
validation iterations for testing purposes, however, may be difficult because the iterations
are not independent. In the case where two prediction models are applied at each iteration
and a p-value is computed to compare their prediction error, van de Wiel et al [44] propose
a procedure to combine the obtained p-values while controlling the type I error.
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Another resampling-based approach proposed in the literature to assess added predic-
tive value is the so-called pre-validation [45]. The term pre-validation refers to a cross-
validation (CV) performed within the available data set S. At each CV iteration j, a
molecular score is derived from the data set S \ Sj , where Sj stands for the jth CV fold,
and then computed for the observations from Sj . Since the folds Sj form a partition of the
data set S, one thus obtains a score value for each observation. This score value, denoted
as “pre-validated score”, is not expected to overfit the data set, since at each CV iteration
there is no overlap between the “training data” S \ Sj and the fold Sj . Finally, a multi-
variate regression model is fitted using this pre-validated score and the clinical predictors
as predictors. The added predictive value is assessed by testing the significance of the
regression coefficient of the score. A problem of this procedure is that the conditions for
hypothesis testing are not fulfilled: the observations are not independent of each other,
since the pre-validated score is derived based on the other observations. A permutation-
based improved pre-validation procedure has been proposed recently [46] to address this
issue.

Pre-validation is essentially similar to the approach C reviewed above in that it as-
sesses within multivariate regression a score that has been derived on other data. However,
pre-validation cannot be seen as a resampling-based extension of approach C. In approach
C, the multivariate regression model is based on the validation data set only. In contrast,
pre-validation does not fit multivariate regression models based on the test fold Sj at each
iteration. It fits only one single multivariate regression model based on the whole data set
S – hence the problem with the observations’ mutual dependence. To conclude, we point
out that pre-validation, like the global tests reviewed at the beginning of this section, does
not assess the gain of accuracy but merely provides a test of significance. Like all tests of
significance, it can yield a small p-value even if the gain of accuracy is negligible.

6 Other related evaluation procedures
Many other approaches are conceivable in the context of validation of added predictive
value. In this section we briefly outline and discuss some of them that do not allow to val-
idate added predictive value in the strict sense – while they might be useful as preliminary
or additional analyses.

6.1 Testing of the molecular score without adjustment for clinical
predictors

This is of course an important preliminary step and such an analysis should be routinely
performed. However, it says nothing about added predicted value, except if this test is
performed in a clinical subgroup as discussed in Section 4.3. Note that univariate testing
of the score is more likely to yield significance if the score was built without taking
clinical predictors into account. That is because, in this case, the score is likely to be
highly correlated to the good clinical predictors. In contrast, significance of the score
might be a sign of potential added predictive value if the molecular score was fitted, say,
through penalized regression with the clinical score as an offset.
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6.2 Comparing clinical prediction model and molecular prediction
model

If the molecular prediction model performs substantially better than the clinical prediction
model, the added predictive value is established. However, this will not be the case [4]
in most practical cases, and more sophisticated strategies like those reviewed above are
necessary to address the question of added value. Moreover, just comparing the clinical
and molecular prediction models does not tell us what could be achieved by combining
both types of predictors. Thus, such an analysis answers only one part of the question. A
special case where they are more useful is when the researcher aims to establish a molec-
ular score that potentially replaces a previous score and gives better separation. In this
case, the molecular score is expected to yield good accuracy by itself, i.e. to outperform
clinical predictors. Note that this is a much stronger request than added predictive value.

6.3 Univariate testing of genes involved in the prediction rule using
validation data

If we have a molecular score like the score of Eq.(1), it may be interesting to look whether
each of its components GeneA, GeneB and GeneC are univariately significantly associ-
ated with the outcome in the validation data. One may also perform a multivariate analy-
sis (Cox regression or logistic regression) based on GeneA, GeneB and GeneC and check
whether they are all significant, and whether the sign of the association is the same as
in the score obtained from the training phase. Components of the score that are highly
significant in the training data, but not in the validation data may indicate a lack of sta-
bility or heterogeneity between the two data sets. However, it should be emphasized that
significance of all components in the validation data is not a necessary condition for con-
sidering the score as “validated”. Significance of all components is even quite unlikely if
the score is based on a larger number of genes. Conversely, the score given in Eq.(1) may
yield a poor gain of accuracy even if the univariate p-values of GeneA, GeneB and GeneC
are smaller than 0.05. Note that a change of sign of the coefficients may suggest that a
better score could be obtained by removing this component, especially if this change of
sign is observed in the multivariate analysis.

6.4 Comparing prediction models obtained from training and vali-
dation data

As an outlook, one may also repeat the model building procedure based on the validation
data and compare both prediction models. Note that it requires that the same molecular
predictors are available for both training and validation data, which is not always the case
in practice (for example because another type of array or another technique like PCR was
used for the validation data set).

Such a comparison would be interesting because it relates to the stability of the pre-
diction models. Of course, it would be satisfying to find similar models in training and
validation data sets. However, the obtained models are more likely to differ substan-
tially because high-dimensional model building is a very instable process [47, 48]. The
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top-ranking predictors in high-dimensional data differ strongly even in the case of over-
lapping subsamples or bootstrap samples [48]. One can thus not reasonably expect to
obtain the same model based on two non-overlapping high-dimensional data sets. For
several reasons the models may even differ substantially – even if the model from the
training phase is validated.

7 Concluding remarks
In this paper, we have reviewed a number of procedures that can be used to validate added
predictive value based on validation data as well as methods to assess added predictive
value using a single training data set. It is impossible to generally recommend one of these
methods over the other, because some methodological issues need further research and the
choice strongly depends on the considered particular situation. However, some specific
recommendations to avoid common errors while validating added predictive value are
given in Table 4 in form of a dos and don’ts list. Concerning microarray-based prediction
models in general and their reporting, some guidance is already available in previous
articles [49, 50].

As a conclusion, we emphasize the impressing number of mutually connected ap-
proaches to validate added predictive value and the lack of guidelines and standards. As
others [51], we feel that, in this context, the term “validation” is sometimes used with-
out enough precisions on the considered specific procedure. More research is needed to
establish standardized workflows and evaluate the respective merits of the many possible
variants outlined in our review.
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Table 1: Glossary with examples
Definition Example

score risk index derived from the training set −0.14× Sex − 0.11× geneA

+ 0.21× geneB + 0.09× geneC

clinical score score involving clinical predictors only −0.14× Sex + 0.02× Age

molecular score score involving molecular predictors only − 0.11× geneA + 0.21× geneB

prediction model (PM) function assigning a new observation Ŷ = 1 if score> 0.2

to a class Ŷ = 0 otherwise

clinical PM A PM based on clinical predictors only

molecular PM A PM based on molecular predictors only

This table gives synthetic definitions of important terms.
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Table 2: Combined prediction models – Overview
1: naive 2: residuals 3: favoring 4: separate 5: replacement

one-step approach yes no yes no no
treats clinical and molecular predictors equally yes no no no no
essentially depends on a crucial parameter no no yes no no
contribution of clinical predictors yes no yes yes depends
is affected by molecular predictors
fits an only-clinical model no yes no yes yes
fits a molecular model to the residuals no yes no no no
of the clinical model from 1st step
aims to replace a problematic clinical no no no no yes
component through molecular data
adequate to assess added predictive value no yes depends depends depends

This table gives a summary of the five strategies reviewed in the introduction to build combined prediction models based on

both clinical and molecular predictors.
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Table 3: Assessing added predictive value – Overview
A B C D

uses combined models/scores yes yes no no
is based on scores only no yes yes yes
is based on the accuracy gain as estimated yes yes no no
directly on validation data
is based on the accuracy gain as estimated no no no yes
through resampling on validation data
is based on significance testing in no no yes no
multivariate models fitted on validation data
considers the molecular score as a “new predictor” no no yes yes
fits (a) model(s) to the validation data no no yes yes
fits a model to clinical data of the training set yes yes no no

SA variant SA2 variant CSFTD GSG
performs subgroup analyses yes yes
accounts for interactions between clinical no yes
and molecular predictors
fits the clinical score based on yes no
training data

This table gives a summary of the important characteristics of procedures A,B,C,D and variants SA, SA2, CSFTD and CSG

reviewed in Section 5.
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Table 4: DOs and DONTs
DON’T modify the score or the prediction model after seeing the results on the validation data set.
DON’T select the cutpoint to dichotomize the score based on validation data.
DO select a unique score/prediction model for each setting (only clinical, only molecular or combined

– depending on the adopted approach) before opening the validation data set.
DO also assess the added predictive value based on other criteria than p-values, because p-values may be small

even if the accuracy gain is not relevant from a biomedical point of view.
DON’T fit a combined model by considering all predictors equally: the assessment of added predictive value

of molecular data is essentially asymmetric.
DON’T only consider error rates in the case of class prediction. ROC or related approaches are also useful.
DON’T think that statistically valid tests for assessing accuracy gain can be derived by considering

cross-validation or bootstrap iterations as statistical units. The iterations are not independent
and this has to be taken into account.

DO keep in mind that a p-value from a misspecified model cannot be interpreted. In contrast, the
comparison of accuracy through a correct validation scheme (e.g. cross-validation) is interpretable
even if the underlying prediction models are misspecified.

This table gives a list of general recommendations on the assessment of added predictive value.
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