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Zusammenfassung

Motiviert durch mögliche Anwendungen bei der Tumorklassifikation auf Basis micro-

array-basierter Daten kehrte die Diskriminanzanalyse im letzten Jahrzehnt als For-

schungsgegenstand zurück. Die folgende Arbeit lässt sich durch drei Hauptpunkte

charakterisieren. 1. Wir führen zunächst ein Verfahren zur Schätzung regularisierter

Kovarianzmatrizen ein, das auf dem Shrinkage Kovarianzschätzer nach Ledoit und

Wolf [31, 33, 32] basiert, zusätzlich jedoch a priori Wissen über die Zugehörigkeit von

einzelnen Genen zu bestimmten funktionellen Gruppen aus der Datenbank KEGG

integriert. Es wird in dieser Arbeit mit SHIP (SHrinking and Incorporating Prior

knowledge) bezeichnet. Für die konkrete Integration von Wissen entwickeln wir

mehrere, in ihrem Informationsgehalt unterschiedliche Ansätze. Die optimale Inten-

sität der Schrumpfung wird entgegen der üblichen Prozedur nicht durch Kreuzvali-

dierung, sondern gemäß Ledoit und Wolf analytisch bestimmt. 2. Wir schlagen weit-

erhin eine modifizierte Form der linearen Diskriminanzanalyse (LDA) vor, die den

oben genannten regularisierten Kovarianzschätzer technisch einbettet. 3. Im letzten

wesentlichen Teil evaluieren wir die Klassifikationsgenauigkeit der hier eingeführten

Methode anhand realer Genexpressionsdaten. Hierbei berücksichtigen wir sowohl

den Zwei- als auch den Mehr-Klassen-Fall und wählen zu Vergleichszwecken die di-

agonale lineare Diskriminanzanalyse sowie die nearest shrunken centroids Methode

[15]. Es wird gezeigt, dass die rlda.TG - eine der hier eingeführten Varianten der

LDA - insgesamt in allen Klassifikationsproblemen gut abschneidet und die anderen

Methoden, wenn auch geringfügig, in manchen Datensituationen übertrifft. Es stellt

sich jedoch heraus, dass eine weitere auf dem Kovarianzschätzer nach Ledoit und

Wolf basierende Variante der LDA, die kein biologisches Wissen integriert, ebenso

genau klassifiziert wie die rlda.TG.
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Abstract

In the last decade, the renaissance of interest in discriminant analysis has been

primarily motivated by possible applications to tumor classification using high-

dimensional microarray-based data. In this thesis, we do three things: 1. First, we

introduce a new regularizing covariance estimation procedure we refer to as SHIP:

SHrinking and Incorporating Prior knowledge. The resulting covariance estimator

is based on the shrinkage estimator by Ledoit and Wolf [31, 33, 32], but additionally

incorporates prior knowledge on gene functional groups extracted from the database

KEGG. In order to integrate this knowledge into the shrinkage estimator, we develop

multiple options. Instead of using a standard cross-validation procedure for deter-

mining the optimal shrinkage intensity, we determine it analytically as introduced by

Ledoit and Wolf. 2. Second, we propose a variant of regularized linear discriminant

analysis. This method generalizes the idea of the shrinkage estimator from above

into the linear discriminant analysis (LDA). 3. Third, we apply our method to pub-

lic gene expression data sets and examine the classification performance in both the

binary and the c-nary case, where c > 2. We choose the diagonal linear discriminant

analysis and the nearest shrunken centroids method [15] as competitors. It is shown

that the rlda.TG - one of our variants of LDA ‘via the SHIP’ - performs well in all

classification problems and even outperforms, albeit marginally, the competitors in

some situations. Unexpectedly, we find that another variant of LDA which is based

on the shrinkage estimator by Ledoit and Wolf and which does not incorporate any

biological knowledge is as competitive as the rlda.TG.
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Chapter 1

Overview

1.1 Introduction

In the last decade, biomedical research has experienced a revival due to microar-

ray technology which allows the measurement of expression levels of thousands of

genes simultaneously. During this period, the number of publications within the

scope of microarray-based research increased explosively from few hundreds to sev-

eral thousands per year [36]. Concurrently, however, the so-called ‘small n, large

p’ problem arised. It describes the typical data setting in all applications of mi-

croarray technology where the number of variables (genes) p is considerably larger

than the number of observations n (chips), hence the term ‘high-dimensional’. Since

traditional methods often yield deficient results in these high-dimensional data sit-

uations or even become inapplicable, it has been a challenging task to develop new

adequate methods. As a consequence of both the difficulty of the methodological

statistical questions and the uncertainty about the reliability of microarray-based

data, statisticians have been split into two camps, the optimistic and the pessimistic

one. Those constituting the former camp have often been lead by the objective the

biochemist Mark Schena formulated in 2003, namely that ‘[...] all human illness can

be studied by microarray analysis, and the ultimate goal [...] is to develop effective

treatments [...] for every human disease by 2050’ [39]. On the other hand, John

P. A. Ioannidis stated in 2005 that ‘Microarrays need evidence and this cannot be

obtained from a couple of small studies, no matter how high-tech’ [25, 26].
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CHAPTER 1. OVERVIEW

It may has been a disillusioning experience for some of those involved, but has also

led to a plethora of new methodological developments. For instance, classification

based on high-dimensional gene expression data has been of major interest in cancer

research since a precise prediction of tumor classes is essential for successful diag-

nosis and treatment. A comprehensive review on classification methods using gene

expression data is given by Dudoit et al. [11]. In particular, this article includes

nearest-neighbor classification methods, classification trees, modern approaches like

bagging and boosting and the (regularized) linear discriminant analysis which is

still of interest in current research. A crucial property of the latter is that the

within-class covariance matrices are assumed to be equal. Moreover, since the linear

discriminant analysis encloses the inverse of the covariance matrix in its discrimi-

nant function used for classification of an observation to the most likely underlying

class, the estimator of the covariance matrix is required to be both invertible and

well-conditioned. Traditionally, one employs the pooled empirical covariance matrix

as estimator which, however, has undesirable characteristics in the high-dimensional

data setting: it is ill-conditioned and singular, thus not invertible. Hence, the ob-

jective of regularized linear discriminant analysis is to modify the pooled covariance

matrix such that the resulting estimator has the desirable properties from above and

yields an accurate classification. Furthermore, an increasingly popular approach is

to regularize the within-class covariance by incorporating external biological knowl-

edge on the functions of genes from databases like the Kyoto Encyclopedia of Genes

and Genomes [28]. While Guillemot et al. [17] and Tai and Pan [46] propose ap-

proaches embedding biological knowledge into the regularized linear discriminant

analysis, there is a growing number of authors addressing other class prediction

methods incorporating biological knowledge, for instance Li and Li [34], Rapaport

et al. [14], Binder and Schumacher [5] and Slawski et al. [44].

Especially for scientists who, from the point of view of statistical research, have

grown up with microarray-based data, the additional incorporation of recent bi-

ological knowledge from databases into statistical methods might be what high-

dimensional molecular data once were: a mystery splitting statisticians into two

camps.
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CHAPTER 1. OVERVIEW

1.2 Subject of this work

Within the scope of current scientific focus, this thesis deals with a further variant of

regularized linear discriminant analysis incorporating biological knowledge on gene

functional groups.

It is organized as follows. Chapter 1 completes with an overview of the five microar-

ray gene expression data sets we use throughout this thesis. Chapter 2 presents

the scientific scope on which this thesis is built. In particular, we start with ex-

plaining the idea behind discriminant analysis and discuss its generalization to the

high-dimensional setting, where n � p. We further address the issue of measuring

the prediction accuracy. We give some basic insights into the database KEGG and

define what biological knowledge means from this work’s perspective. The chapter

completes with an outline of existing approaches incorporating prior knowledge into

the regularized linear discriminant analysis. In Chapter 3, the main and most exten-

sive part of this thesis, we introduce a new covariance estimation procedure we refer

to as SHIP: SHrinking and Incorporating Prior knowledge. The resulting covari-

ance estimator represents the shrinkage estimator introduced by Ledoit and Wolf

[31, 33, 32], being enhanced by consideration of prior knowledge on gene functional

groups. An important feature of this estimator is that the optimal shrinkage inten-

sity it is based on is determined analytically. This constitutes a clear advantage over

common approaches like cross-validation depending on computationally very expen-

sive procedures. We give a detailed derivation of this shrinkage intensity. Chapter

4 addresses a variant of regularized linear discriminant analysis which generalizes

the idea of the shrinkage estimator introduced in Chapter 3. We demonstrate in

detail how the ideas from Chapter 3 can technically be included into the framework

of linear discriminant analysis. We further examine the classification performance

of the method proposed in this work using the real-life data presented in Chapter

1. We complete with a summary of the most important results in Chapter 5 and

provide an outlook to our future work in this field.

We have implemented the methods proposed in this thesis in the language R 2.9.1

[47]. In Appendix A, we give an outline of the programming code which can be

found in its complete and commented version on the attached CD.
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CHAPTER 1. OVERVIEW

1.3 Real data sets

In this section, we give a brief overview of the five public microarray gene expression

data sets we use throughout this thesis. For computational reasons, we do not em-

ploy all available genes, but perform a variable selection before. In particular, we use

the method GeneSelection() of the open source R package CMA [43]. Since it is not

within the scope of this thesis, we do not address this topic in detail. Without any

deeper motivation, we thus choose an ordinary two sample t.test (method=“t.test”)

as concrete variable selection method. We generate the learning and test samples

by employing the CMA method GenerateLearningsets() and use, except where

indicated, a stratified five-fold cross-validation (method=“CV”, fold=5, niter=10,

strat=TRUE) as evaluation scheme, repeated ten times in order to achieve more sta-

ble results [10, 8, 47]. As the number of top genes can vary, we specify it separately

in the respective sections.

• Golub−Merge [16]:

The Golub−Merge data set is available from the Bioconductor package golub-

Esets and consists of gene expression intensities for 7 129 genes of 72 different

individuals from two cancer classes, 47 with acute lymphoblastic leukemia

(ALL) (=̂ ‘0’) and 25 with acute myeloid leukemia (AML) (=̂ ‘1’).

• sCLLex (chronic lymphocytic leukemia):

The sCLLex data set is available from the Bioconductor package CLL and

consists of gene expression intensities for 12 625 genes of 22 individuals with

chronic lymphocytic leukemia, from which 14 are classified as progressive (=̂

‘0’) and 8 as stable (=̂ ‘1’) in regard to disease progression.

• ALL (Acute Lymphoblastic Leukemia Data):

The ALL data set is available from the Bioconductor package ALL and consists

of gene expression intensities for 12 625 genes of 128 different individuals with

acute lymphoblastic leukemia, whereas the classes are built by the type and

stage of the disease (five subtypes of B-cell ALL and five subtypes of T-cell

ALL, respectively). Thus, the original data set is a ten-class data set which

4



CHAPTER 1. OVERVIEW

leads to rather inaccurate within-class estimates. Consequently, the number

of classes should be decreased by adequately pooling together the subtypes of

both B-cell ALL and T-cell ALL, respectively. For instance, taking together

all subtypes yields two classes, where 95 patients are diagnosed B-cell ALL

and 33 are diagnosed T-cell ALL. Note that the data sets Golub−Merge and

sCLLex are both two-group classification problems, and since it is easier for

most classification methods to work well in the binary setting our objective is

to find a compromise between two and ten classes, with regard to an accurate

evaluation of the classification method proposed in this thesis. The data sets

thus obtained are characterized as follows:

ALL−a:

The data set ALL−a consists of gene expression intensities for 12 625 genes of

128 different individuals from 6 cancer classes, 24 with B or B1 B-cell ALL (=̂

‘0’), 36 with B2 B-cell ALL (=̂ ‘1’), 35 with B3 or B4 B-cell ALL (=̂ ‘2’), 6

with T or T1 T-cell ALL (=̂ ‘3’), 15 with T2 T-cell ALL (=̂ ‘4’) and 12 with

T3 or T4 T-cell ALL (=̂ ‘5’).

ALL−b:

The data set ALL−b consists of gene expression intensities for 12 625 genes of

128 different individuals from 4 cancer classes, 60 with B or B1 or B2 B-cell

ALL (=̂ ‘0’), 35 with B3 or B4 B-cell ALL (=̂ ‘1’), 21 with T or T1 or T2

T-cell ALL (=̂ ‘2’) and 12 with T3 or T4 T-cell ALL (=̂ ‘3’).

ALL−c:

The data set ALL−c consists of gene expression intensities for 12 625 genes of

128 different individuals from 2 cancer classes, 95 with B-cell ALL (=̂ ‘0’) and

33 with T-cell ALL (=̂ ‘1’).

5



CHAPTER 1. OVERVIEW

The following figures illustrate graphically, for each data set, the number of obser-

vations in each class of the dependent variable.

Figure 1.1: Number of observations in each cancer class for the data set Golub−Merge.

Figure 1.2: Number of observations in each cancer class for the data set sCLLex.

Figure 1.3: Number of observations in each cancer class for the data sets ALL−a, ALL−b

and ALL−c.
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Chapter 2

Scientific scope

The subject of this work merges traditional methods with very modern ideas and

applications resulting from recent technical advances. Hence, it is a challenge to

define the scientific scope on which we build our work. In this chapter, we though try

to distinguish between essential and negligible information. We start with explaining

the idea behind discriminant analysis. Subsequently, we discuss its generalization

to the high-dimensional setting, where n � p. The chapter completes, after a

brief introduction to the database KEGG, with an outline of modern approaches

incorporating prior knowledge into discriminant analysis.

2.1 Discriminant analysis

The discriminant analysis is a widely used classification method belonging to the

supervised learning techniques in the machine learning framework. For the first

time, it was introduced by Ronald Aylmer Fisher in 1936. Although, since Fisher’s

discriminant analysis, a multiplicity of other variants has been developed, it is still of

interest in current research. In this thesis, we briefly outline the basic concept behind

this classification method, being aware of possible incompleteness because of the

large amount of literature on this subject. The explanations in this section are based

on Fahrmeir, Hamerle and Tutz [18] and the lecture notes on multivariate statistics

by Tutz [48]. In a nutshell, the objective in such classification problems can be

7



CHAPTER 2. SCIENTIFIC SCOPE

described as follows: suppose there are c different populations which are represented

by a finite set of class labels {1, ..., c}. Let Y be the stochastic variable indicating the

underlying class, i.e. Y ∈ {1, ..., c}. Further, XT = (X1, ..., Xp) denotes the (1 × p)
stochastic vector of predictor variables. Consider now a set of observed predictors

xT = (x1, ..., xp) for each sample of an object with known class y. Let a finite

sample of n predictor-class pairs be given, i.e. {(x1, y1), ..., (xn, yn)}. Now suppose

that we have a new observation given by (xn+1, Yn+1), i.e. only the vector xn+1

of predictor variables is observed while Yn+1 can take values from {1, ..., c}, thus

is unobserved. The question is now how to identify correctly the class from which

the new observation comes. Hence, the classification problem consists in finding

an accurate classification rule - often denoted as classifier - for the class Y , being

based on the given sample of n objects with both observed predictor variables and

observed class. Classifiers are thus built from past experience. In the following, we

describe in detail how to derive such a classification rule, taking into account the

given information. Note that a classification problem in this sense can be interpreted

as a prediction problem since the true underlying class is, in fact, predicted.

2.1.1 Bayes classification rule

In the explanations above, we pointed out the objective in a typical classification

problem which consists in finding an accurate classification rule for the class Y ,

where Y ∈ {1, ..., c}. Since there is a multiplicity of different classification rules in

the literature [48, 18], we focus on the intuitive and widely used Bayes classification

rule in this thesis. Before explaining the latter in detail we first introduce some

essential terms, whereas the assumptions described above hold.

• Prior probabilities:

The prior probabilities for the particular classes or populations are denoted by

p(r) = P (Y = r), where r = 1, ..., c.

• Posterior probabilities:

The posterior probabilities for the particular classes or populations are denoted

by p(r|x) = P (Y = r|x), where r = 1, ..., c. Such a posterior probability is

a conditional probability for class r given a vector x of observed predictor

8



CHAPTER 2. SCIENTIFIC SCOPE

variables. Note that it seems to be obvious to compare these probabilities for

the purpose of classification.

• Within-class densities:

The within-class densities, i.e. the densities of the predictor variables given

the underlying class, are denoted by f(x|1), ..., f(x|c), whereas a special dis-

tribution has to be specified.

• Mixture density of the population:

The density of the whole population, that means the density of the predic-

tor variables not separated according to the respective classes, is denoted by

f(x) = p(1)f(x|1) + ...+ p(c)f(x|c).

Definition 1 (Classification rule) A classification rule or classifier can be de-

fined as a mapping δ(·), for which it holds:

δ(·) : Rp −→ {1, ..., c}
x 7−→ δ(x),

where {1, ..., c} is a finite set of class labels and x is set of predictor variables, i.e.

xT = (x1, ..., xp).

A basic classification rule is the Bayes classification rule which has the following form:

δ∗(x) = r ⇐⇒ p(r|x) = max
i=1,...,c

p(i|x). (2.1)

Thus it appears that, for given x, the class is chosen for which the posterior probabil-

ity is maximal. However, for instance if the posterior probabilities are not available,

alternative forms of the Bayes classification rule can be formulated by using the prior

and the within-class predictor densities. For this purpose, it is helpful to consider

the Bayes classification rule as a maximizer of discriminant functions [48]. Let for

each x the functions dr(x), r = 1, ..., c, measure the ‘plausibility’ that observation

9



CHAPTER 2. SCIENTIFIC SCOPE

x comes from class r. By using dr(x) = p(r|x) we obtain the following notation for

the Bayes classification rule:

δ∗(x) = r ⇐⇒ dr(x) = max
i=1,...,c

di(x). (2.2)

Note that the functions dr(x), where r = 1, ..., c, are called discriminant functions.

Alternative formulations may be obtained by using the Bayes theorem, which has

the form:

p(r|x) =
f(x|r)p(r)
f(x)

=
f(x|r)p(r)∑c
i=1 f(x|i)p(i)

. (2.3)

According to Eq. 2.3, it follows directly for the comparison of two different classes

r and s:

p(r|x) ≥ p(s|x)

⇔ f(x|r)p(r)
f(x)

≥ f(x|s)p(s)
f(x)

(2.4)

⇔ f(x|r)p(r) ≥ f(x|s)p(s) (2.5)

⇔ log(f(x|r)) + log(p(r)) ≥ log(f(x|s)) + log(p(s)). (2.6)

Thus it appears that the maximization of p(r|x) over the classes r = 1, ..., c can

furthermore be obtained by maximization of the discriminant functions employed

in Eq. 2.4, 2.5 and 2.6. The different forms may be used in order to emphasize

different aspects of the Bayes classification rule as well as for simplification reasons.

For instance, the logarithmic form in Eq. 2.6 is rather beneficial in the case of

normally distributed predictors since it simplifies the Bayes classification rule in a

crucial way. We will deal with this aspect in 2.1.2.

10



CHAPTER 2. SCIENTIFIC SCOPE

2.1.2 Bayes classification rule with normally distributed predictors

In 2.1.1, we have studied the Bayes classification rule in general. Hence, we did

not specify any concrete within-class distribution f(x|r), r = 1, ..., c, in order to

determine the posterior probability p(r|x), r = 1, ..., c, or one of the equivalent di-

criminant functions described by Eq. 2.4, 2.5 and 2.6. In the following, however,

we assume normally distributed predictor variables xT = (x1, ..., xp), i.e. we assume

x|Y = r ∼ N(µr,Σr). The within-class densities thus have the form:

f(x|r) =
1

(2π)
p
2 |Σr|

1
2

exp

(
−1

2
(x− µr)TΣ−1

r (x− µr)
)
, (2.7)

where µr is the (p × 1) mean vector for class r, r = 1, ..., c, and Σr denotes the

(p× p) covariance matrix for class r, r = 1, ..., c.

As pointed out in 2.1.1, the discriminant function dr(x) = log(f(x|r)) + log(p(r))

simplifies considerably the Bayes classification rule in the context of normally dis-

tributed predictors. Moreover, we distinguish between two different assumptions

concerning the within-class covariance Σr, which results in two variants of discrimi-

nant analysis, namely the linear and the quadratic discriminant analysis (LDA and

QDA, respectively).

• Homogeneous case

The homogeneous case implies equivalent within-class covariance matrices, i.e.

x|Y = r ∼ N(µr,Σ), where Σ = Σ1 = Σ2 = ... = Σc. Note that we consider

the logarithmic discriminant function specified above by Eq. 2.6. By employ-

ing the within-class density from Eq. 2.7 and by leaving out irrelevant terms,

we obtain the following discriminant function:

dr(x) = −1

2
(x− µr)TΣ−1(x− µr) + log(p(r)). (2.8)

Furthermore, it is of interest how the maximization of dr(x) discriminates be-

tween two arbitrary classes r and s. Let us consider these two classes. We then

11



CHAPTER 2. SCIENTIFIC SCOPE

obtain, after simple rearrangements, the following expression for the difference

between the respective discriminant functions:

dr(x)− ds(x) = −1

2
µTr Σ−1µr +

1

2
µTs Σ−1µs + log

(
p(r)

p(s)

)
︸ ︷︷ ︸

:=β0rs

+ xT Σ−1(µr − µs)︸ ︷︷ ︸
:=βrs

= β0rs + xTβrs. (2.9)

Thus it appears that the classification rule is linear since we prefer class r

over class s if β0rs + xTβrs ≥ 0. More precisely, this leads us to the lin-

ear discriminant analysis (LDA), where the linearity results from the as-

sumption of equal covariance matrices. In this thesis, we solely constrain

our attention on this variant of discriminant analysis. Note that in reality,

both µr and Σ are unknown and thus have to be estimated from the sam-

ple, which yields an estimated classification rule or discriminant function, i.e.

δ̂∗(x) = r ⇐⇒ d̂r(x) = max
i=1,...,c

d̂i(x). Note further that the priors p(r) may

be replaced by the proportion p̂(r) = nr
n . Hence, in order to obtain such an

estimated discriminant function from above, we replace µr and Σ in Eq. 2.8

by the following estimators:

µ̂r = x̄r =
1

nr

nr∑
k=1

xrk, (2.10)

Σ̂ = Spool =
1

n− c

c∑
r=1

nr∑
k=1

(xrk − x̄r)(xrk − x̄r)T , (2.11)

12
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where nr : number of observations in class r, r = 1, ..., c, where∑c
r=1 nr = n

x̄r : (p× 1) mean vector for class r, r = 1, ..., c

xrk : (p× 1) vector of predictor variables corresponding to the

k-th observation in class r, r = 1, ..., c

Spool : (p× p) pooled empirical covariance matrix.

• Heterogeneous case

In the heterogeneous case, in contrast to the homogeneous one, differing within-

class covariance matrices are allowed. Thus it holds x|Y = r ∼ N(µr,Σr).

Note that here, the classification rule does not simplify to a linear form since

the difference between the discriminant functions dr(x) and ds(x) contains

both quadratic terms x2
1, ..., x

2
p and interaction terms xixj , where i, j = 1, ..., p,

i 6= j. Hence, this yields the quadratic discriminant analysis (QDA). Although

the latter offers more flexibility, it is not widely applied because of the multi-

plicity of parameters to be estimated, which often results in a poor performance

in the case of small sample sizes. Since in this work, our main focus will be

the linear discriminant analysis, we do not address this topic in detail. For

further reading we refer especially to [18].

Additionally, without giving detailed explanations, we want to point out two further

variants of discriminant analysis, namely the diagonal linear discriminant analysis

(DLDA) and the nearest shrunken centroids method (NSC). The former assumes

equal diagonal within-class covariances, whereas the latter can be interpreted as a

variant of the diagonal linear discriminant analysis, in which only the most relevant

variables contribute to classification by identifying subsets of variables that best

characterize each class [15].

13
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2.1.3 Measuring the prediction accuracy

Having studied the question of identifying the underlying class of a new observa-

tion, we now concentrate on how to measure the prediction accuracy of an estimated

classification rule which is a widely discussed topic in the literature. For example,

a comprehensive review on this topic is given by Boulesteix et al. [9]. Nevertheless,

we do not address this topic to its full extent, but give a brief outline concerning

the prediction measures employed in this thesis. Note that for investigating the

performance of a classification rule it is essential to distinguish between prediction

measures based on the learning sample and prediction measures based on new ob-

servations, i.e. the test sample. More precisely, the terms can be explained as

follows. The learning or training set is denoted by L = {(yk,xk), k = 1, ..., n}, from

which the classification rule is derived. The test set T = {(yk,xk), k = 1, ..., nT }
is a sample of new observations, being used in order to assess the performance of

the classification rule. Usual prediction measures are empirical error rates, whereas

some of these error rates have the drawback of being based on the learning sample.

Accordingly, the learning sample is used twice, the first time for the derivation of the

classification rule and the second time for the evaluation of its accuracy. As a result,

such empirical error rates tend to be underestimated, thus have a negative bias.

Further, choosing a classification rule based on the learning sample may lead to an

overfitting of the sample, which often results in a poor performance on independent

data. Alternatively, the so-called empirical test error can be employed, which has

the following form:

ε̂Test(δ̂) =
1

nT

∑
(yk, xk)∈ T

I(yk 6= δ̂(xk)), (2.12)

where nT is the number of observations in the test sample T . Note that here, the

derivation of the classification rule and the evaluation of the accuracy are carried

out by means of different samples since the data are split into a learning and a test

set. Although the empirical test error is a popular prediction measure, it may some-

times be rather unsuitable [9]. Employing the test error as defined in Eq. 2.12, we

implicitly consider all misclassifications symmetrically and hence the corresponding

costs to be equal. This point of view, however, is not adequate in all cases. Note
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that the term ‘costs’ has to be considered from a decision theoretic perspective and

thus does not only comprise monetary costs. Let us now consider two cancer classes

indicating the stage of the disease, e.g. 0 (=̂ early stage of the disease) and 1 (=̂

advanced stage of the disease). Let us further consider two therapies T0 and T1

especially developed for class 0 and 1, respectively. If a patient from class 0 is in-

correctly classified as a patient from class 1, the costs of misclassification could be

severe side-effects of a useless therapy and the monetary costs for this therapy. On

the other hand, if a patient from class 1 is incorrectly classified to belong to class

0, this patient is not medicated effectively like in the first scenario, but the costs of

misclassification might be impairment or even the patient’s death. Thus it appears

that it might be beneficial to consider the misclassifications asymmetrically which

leads us to the terms sensitivity and specificity. Relating to the settings above, the

sensitivity of a classification rule is the probability of correctly identifying a patient

from class 1. It can be estimated by the proportion of observations from the test set

that are correctly classified to class 1:

ŝTest(δ̂) =

∑
(yk, xk)∈ T I(yk = 1) · I(δ̂(xk) = 1)∑

(yk, xk)∈ T I(yk = 1)
. (2.13)

The specificity is the probability of correctly identifying a patient from class 0 and

can be estimated by the proportion of observations from the test set that are cor-

rectly classified to class 0:

ŝpTest(δ̂) =

∑
(yk, xk)∈ T I(yk = 0) · I(δ̂(xk) = 0)∑

(yk, xk)∈ T I(yk = 0)
. (2.14)

Hence, the calculation procedure for the three prediction measures follows the inten-

tion to separate model selection and model evaluation. However, the fact that only

a subset of the data determines the classification rule could be seen as a drawback,

which leads us to the K-fold cross-validation. For simplicity’s sake, we consider

the empirical test error in the following, but the same principles hold for the other

prediction measures such as sensitivity or specificity. In K-fold cross-validation the

data of the learning set is split into K parts of roughly equal size. Let T1, ..., TK ,
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where T1 ∪ T2 ∪ · · · ∪ TK = L, denote the disjoint partition of the learning sample.

W.l.o.g. consider T1. Then the classification rule is derived from T2 ∪ · · · ∪ TK and

the empirical test error rate is computed using T1. This procedure is carried out for

m = 1, ...,K, yielding the K-fold cross-validation error:

ε̂KCV (δ̂) =
1

n

K∑
m=1

∑
(yk, xk)∈ Tm

I(yk 6= δ̂\m(xk)), (2.15)

where δ̂\m means that the classification rule is estimated without part Tm. Ac-

cordingly, in the extreme case it holds K = n, which is known as leave-one-out

cross-validation. Note that, by using K-fold cross-validation, it is possible to obtain

improved estimates. While this is not necessarily of relevance if p � n, it becomes

beneficial in the inverse case, i.e. if n� p. We will deal with this aspect in 2.2.1.

2.2 Discriminant analysis in the high-dimensional set-

ting

In the previous section, we have discussed the discriminant analysis, being especially

interested in the linear variant (LDA) which results from the assumption of equal

within-class covariance matrices. Starting from this assumption, we now address

the linear discriminant analysis in the high-dimensional setting, thus for n � p,

where p is the number of variables and n is the number of observations. In this

thesis, we work with high-dimensional microarray gene expression data as described

in 1.3. Note that, henceforth, we concentrate solely on the linear discriminant

analysis and leave the other variants for further research. In the following, we first

analyze the diverse methodological challenges emerging if n � p. Subsequently,

we present the idea behind the approaches coping with high-dimensionality. Both

topics are depicted briefly in order to provide a superficial insight into the crucial

methodological questions in the n� p setting. By far more detailed information and

illustrations are given in Chapter 3, where we first detach our explanations from the

special case of linear discriminant analysis in order to present a general framework.
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2.2.1 Methodological challenges

The linear discriminant analysis discussed in 2.1 can be applied in a straightforward

way in the p� n case, i.e. if the number of predictor variables does not exceed the

number of observations. In the high-dimensional setting, however, using this method

is associated with undesirable characteristics of the resulting covariance estimator,

which traditionally is the pooled empirical (p×p) covariance matrix Spool as denoted

by Eq. 2.11. In particular, Spool is singular and cannot be inverted. Thus, the linear

discriminant analysis in its known nature turns out to be inapplicable if n � p.

Therefore, a modified version of the original linear discriminant analysis has to be

applied to circumvent these difficulties. In order to resolve the singularity problem,

we ‘regularize’ Spool according to the shrinkage principle described in 2.2.2.

Moreover, since matrix operations become very extensive due to high-dimensionality,

it is worthwhile to simplify the computation of the modified discriminant function

which results from employing the regularized covariance estimator. By means of the

singular value decomposition (SVD) it is possible to compute the inverse of a matrix

in an efficient way. It can be shown for the n� p case that, by applying the singular

value decomposition to a (p × p) matrix, a (n × n) matrix remains to be inverted.

The interested reader is suggested to study Hastie, Tibshirani and Friedman [23]

for more details about the algorithm. In this thesis, however, we do not address

this topic in a precise way since our main interest focuses on finding a covariance

estimator being both invertible and well-conditioned. Note that we examine this

topic in Chapter 3.

Additionally, besides the construction of a classification rule in the high-dimensional

case the estimation of its prediction accuracy demands further considerations. By

increasing the size of the learning set L the constructed classification rule can usually

be improved. On the other hand, the reliability of its evaluation decreases. Con-

versely, increasing the size of the test set T leads to an improvement of the accuracy

estimation. However, as a negative result one typically obtains poorly performing

classification rules [43]. In 2.1.3, we discussed prediction measures and pointed out

that the K-fold cross-validation error ε̂KCV is more adequate than the empirical

test error ε̂Test in the case of small sample sizes. The underlying motivation is to

reduce the error estimator’s variance which is achieved by averaging. Note that
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the method GenerateLearningsets() from the open source R package CMA allows

the choice between several techniques generating L and T . One of these techniques

is the K-fold cross-validation as described in 2.1.3 by Eq. 2.15. Braga-Neto and

Dougherty [10] recommend to repeat the whole procedure several times in order to

obtain more stable results. Thus, the results obtained for several different partitions

are proposed to be averaged. The corresponding technique generating L and T ,

respectively, can be carried out by including the argument niter into the method

GenerateLearningsets() [43].

2.2.2 Shrinkage based approaches

Let us consider Spool. As indicated above, this covariance estimator generally em-

ployed in linear discriminant analysis is singular and cannot be inverted. For this rea-

son, the regularized linear discriminant analysis has become an established method

with its distinct advantage being the applicability for n � p. However, the term

‘regularized discriminant analysis’ does not pinpoint one special technique, but is

rather a superordinate concept for a multiplicity of methods. For instance, in 1989

Jerome H. Friedman published a seminal work on regularized (Fisher’s) discriminant

analysis, which we recommend to the interested reader [19]. Nowadays, numerous

related methods exist, from which we want to emphasize the shrunken centroids reg-

ularized discriminant analysis (SCRDA) by Guo et al. [22], a further development

of the nearest shrunken centroids mentioned in 2.1.2. The property these methods

share is that they are based on the shrinkage principle outlined as follows.

The shrinkage principle has a long history in statistics, albeit it is often regarded

as a new technique due to its successful application during the last ten years in the

context of microarray data analysis. For the first time, it was introduced by Pro-

fessor Charles Stein of Stanford University in 1955 in the context of estimating the

mean vector of a multivariate normal distribution [45]. In 1977, Efron and Morris

published a worth reading non-technical primer on shrinkage using a real-life setting

of baseball batting averages [13] which we recommend to both statisticians and non-

statisticians since it conveys the idea behind the shrinkage principle in an unique

way. The main statement of the concept can be depicted in a few words: by properly

‘combining’ two extreme estimators it is possible to obtain an estimator that outper-

18



CHAPTER 2. SCIENTIFIC SCOPE

forms either of the extreme ones both in terms of accuracy and statistical efficiency.

The ‘combined’ estimator, hence, dominates the two individual estimators, i.e. the

individual estimators are inadmissible from a decision theoretic point of view [4].

‘Combining’, in this context, is meant as follows. Instead of choosing between one of

these two extreme estimators, the shrinkage approach suggests to build a weighted

average of them. As a result, we both resolve the singularity problem and stabilize

the covariance estimator, thus its variance.

In the following, we briefly describe the shrinkage estimator for the covariance ma-

trix. In particular, a shrinkage estimator consists of an estimator with no structure,

an estimator with a lot of structure and a shrinkage intensity λ ∈ [0, 1] which, in-

tuitively, measures the weight given to the structured estimator. As a result, the

estimator with no structure is ‘shrunken’ towards the structured estimator. The lat-

ter contains relatively little estimation error, but is usually misspecified and biased,

whereas the former has a lot of estimation error, but is unbiased. Hence, the shrink-

age principle responds to the fundamental question of the optimal trade-off between

bias and estimation error. More concretely, we will study this topic in Chapter 3.

Note that if λ = 1 the shrinkage estimator equals the highly structured estimator.

If λ = 0 the unstructured estimator is recovered. Note further that, in general, it

is possible to combine more than two estimators, for instance see Tai and Pan [46].

In this thesis, however, except in 2.4 where we present the work by Tai and Pan, we

focus on shrinkage estimators which result from combining solely two estimators.

2.3 Prior knowledge on gene functional groups: the

database KEGG

An increasingly popular approach is to regularize the within-class covariance by

incorporating prior biological knowledge from databases. For instance, the Kyoto

Encyclopedia of Genes and Genomes [28] is a freely available database of biological

systems; it itself consists of several databases, each providing special information

about biological and chemical objects. KEGG PATHWAY as one of these databases

contains a collection of pathway maps representing the current knowledge on molec-

ular interaction and reaction networks for metabolism, various cellular processes and
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human diseases. More precisely, KEGG PATHWAY represents pathways as graphs

in which the edges stand for the chemical reactions or relations and the vertices

stand for the genes taking part in these reactions or relations. Prior biological in-

formation is thus encoded by graphs. Here, when talking about ‘gene functional

groups’, we mean special sets of related genes, i.e. a KEGG pathway forms a gene

functional group. Note that we define the congruency of a KEGG pathway and a

gene functional group in this work, which corresponds to Tai and Pan [46]. There-

fore, for each gene expression data set that is compatible with KEGG PATHWAY,

it is possible to pinpoint which gene occurs in which functional group. Note that the

denomination of such gene functional groups containing information on molecular

interaction for human beings begins with ‘hsa’, which stands for homo sapiens.

Figure 2.1: A fictional example graph or gene functional group, respectively.

Figure 2.2: Graphical representation of the real KEGG pathway hsa04510: The

graph consists of 203 vertices and 1906 edges.
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2.4 Approaches incorporating prior knowledge into dis-

criminant analysis

Let us consider the explanations given in the previous section. We now briefly de-

pict selected approaches incorporating prior biological knowledge on gene functional

groups into regularized linear discriminant analysis, i.e. the high-dimensional case

is addressed. Besides, a multiplicity of other class prediction methods incorporating

biological knowledge has been proposed, for instance by Li and Li [34], Rapaport et

al. [14], Binder and Schumacher [5] and Slawski et al. [44]. In the latter, for example,

the authors propose an extend of the elastic net [50] using biological knowledge on

association structures of features. The motivation behind all these approaches is to

improve both the prediction accuracy and the results’ interpretability. In particular,

we first present an outline of the regularized linear discriminant analysis version by

Guillemot et al. [17]. Subsequently, we summarize an approach by Tai and Pan [46],

which constitutes the starting point with regard to our own idea presented at the

end of this section. While Guillemot et al. base their work on Fisher’s discriminant

analysis, Tai and Pan apply the Bayes classification rule. However, apart from the

fact that these two variants correspond for c = 2 classes and the assumption of nor-

mally distributed predictors, we mainly constrain our attention on the following two

aspects. First, we want to study how, in these two approaches, the pooled empirical

covariance matrix Spool is regularized, i.e. towards which estimator it is shrunken.

Second, we are interested in how prior biological knowledge is incorporated into the

regularization or shrinkage process.

2.4.1 Guillemot et al.

The graph-constrained discriminant analysis (gCDA) proposed by Guillemot et al. in

2008 integrates prior information from graphs into the classification algorithm. Note

that, in this approach, the respective gene functional groups are not differentiated

and do not need to be. In the linear version of gCDA, Guillemot et al. assume the

availability of one single graph, including preferably all variables (genes) from the

given data set. Since detailed knowledge on the connectivity between the graph’s

vertices is extracted, we first introduce the essentially relevant definitions [17]:
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Definition 2 (Graph) A graph G is defined by a set of edges E and a set of vertices

or nodes V, i.e. G can be written as follows:

G := (V, E).

Definition 3 (Connectivity degree) Let us consider Definition 2. Let w be the

mapping w : V × V → {0, 1}, where it holds for i, j = 1, ..., p:

wij =

 1 if there exists an edge between vertex i and vertex j

0 otherwise.

For each vertex i of V, the connectivity degree di is defined as the cardinality of the

set of vertices in V being connected to i.

Definition 4 (Laplacian matrix) The Laplacian matrix LG is a matrix represen-

tation of a graph as defined in Definition 2. In particular, LG is a positive semi-

definite p× p matrix whose entries are:

lG i,j =

 −wij if i 6= j,

di if i = j,

where - according to Definition 3 - each null term corresponds to an absence of an

edge between two vertices in G.

Based on the terms defined above, the approach by Guillemot et al. can be explained

as follows. As described in 2.3, graphs are represented by edges which stand for the

chemical reactions or relations and by vertices which stand for the genes taking part

in these reactions or relations. In a nutshell, each vertex represents a variable (gene)
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and the absence of an edge between two vertices indicates that the two variables are

independent - and thus uncorrelated - given the remaining variables. In order to

describe this in a more statistical framework, Guillemot et al. consider the follow-

ing natural property of the inverse covariance matrix Σ−1 of normally distributed

predictor variables xT = (x1, ..., xp):

xi ⊥ xj | {xl, l ∈ {1, ..., p}\{i, j}}

⇔ σ−1
i,j = 0.

Thus it appears that an estimator of the inverse covariance matrix, which is used

in the linear discriminant analysis, can be derived from the Laplacian matrix LG
of a prior graph G. Guillemot et al. propose to consider LG as the matrix towards

the empirical covariance matrix Spool is shrunken. As pointed out in Definition 4,

however, LG is positive semi-definite. It is though not surprising that the highly

structured estimator should be positive definite since, otherwise, regularization in

terms of resolving the singularity problem and stabilizing the covariance estimator

turns out to be impossible. Hence, Guillemot et al. circumvent this problem by

adding a small positive constant, i.e. ε > 0, on the diagonal of LG . Thus it follows:

Σ̂−1
G = LG + εI

⇔ Σ̂G = (LG + εI)−1, (2.16)

where I is the (p× p) identity matrix. Then it holds for the regularized covariance

estimator:

Σ̂ =︸︷︷︸
Eq. 2.16

λSpool + (1− λ)(LG + εI)−1, (2.17)

where λ ∈ [0, 1] denotes the shrinkage intensity, being determined by a cross-

validation procedure [17].
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2.4.2 Tai and Pan

In order to understand the approach introduced by Tai and Pan in 2007, it is essential

to comprehend the idea behind both the nearest shrunken centroids method (NSC)

[15], often referred to as predictive analysis of microarrays (PAM), and the shrunken

centroids regularized discriminant analysis (SCRDA) [22], which is a further develop-

ment of the former. Therefore, we first briefly outline these two approaches without

claiming completeness. The reader who is familiar with these methods is recom-

mended to skip the respective explanations. We point out that, in large parts, the

following two paragraphs are adopted from [15, 22].

Let us first list the notations, where i = 1, ..., p and k = 1, ..., n, being essential for

the terms defined in NSC and SCRDA, respectively.

nr : number of observations in class r, r = 1, ..., c, where
∑c

r=1 nr = n

xki : k-th observation of the variable (gene) Xi

x̄i : i-th component of the overall centroid (overall mean), where

x̄i = 1
n

∑n
k=1 xki

xrki : k-th observation of the variable (gene) Xi in class r

x̄ri : i-th component of the centroid (mean) for class r, where

x̄ri = 1
nr

∑nr
k=1 xrki

si : pooled standard deviation of the variable (gene) Xi, i.e. si =
√
s2
ii

and s2
ii is the i-th diagonal entry of the (p× p) pooled empirical

covariance matrix Spool

Nearest shrunken centroids (NSC)

In microarray analysis, a general assumption is that most genes do not have differ-

ential expression levels among the classes and the differences we observe result from

random fluctuations. The nearest shrunken centroids method introduced by Tibshi-

rani et al. in 2002 removes the noisy information arising from such fluctuations by

setting a soft threshold, which effectively eliminates a lot of non-contributing genes.

In particular, Tibshirani et al. shrink the class centroids (class means) towards the

overall centroid (overall mean) after standardizing by the within-class standard de-

viation for each gene. This standardization has the effect of giving higher weight to

24



CHAPTER 2. SCIENTIFIC SCOPE

the genes whose expression is stable within the observations of the same class. Note

that the class centroids of each gene are shrunken individually, i.e. the genes are

assumed to be independent and thus uncorrelated of each other. This, however, is

not adequate in the majority of the cases, but will not be considered further in this

paragraph.

Let now x∗ = (x∗1, ..., x
∗
p)
T be the (p × 1) vector of predictor variables of a new

observation, where x∗i is the i-th component of x∗, i = 1, ..., p. Let further be ˜̄xri

the i-th component of the shrunken centroid (mean) ˜̄xr for class r, i.e. ˜̄xri is the

shrunken centroid of class r for gene i. The shrinkage Tibshirani et al. use is called

‘soft thresholding’ and works as follows:

˜̄xri = sgn(x̄ri)(|x̄ri| −∆)+, (2.18)

where + is the positive part and ∆ is a threshold which plays the role of the shrink-

age parameter, being determined by cross-validation. Thus it appears from Eq. 2.18

that each x̄ri is reduced by an amount ∆ in the absolute value and is set to zero if

its absolute value is smaller than zero. Since, thereby, non-contributing genes are

eliminated this method is often regarded as variable selection procedure.

Having shrunken the class centroids of the particular genes i, where i = 1, ..., p, the

gene-specific score for an observation x∗ = (x∗1, ..., x
∗
p)
T can be computed. It holds

for its i-th component:

dri(x
∗
i ) =

(x∗i − ˜̄xri)
2

2s2
i

=
(x∗i )

2

2s2
i

− x∗i ˜̄xri
s2
i

+
(˜̄xri)

2

2s2
i

. (2.19)

Thus the new observation x∗ is classified to class r if for class r the sum of the scores

over all genes is minimized, i.e.:
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x∗ ∈ class r ⇔ dr(x
∗) = min

r′=1,...,c

p∑
i=1

dr′i(x
∗
i )− log(p̂(r′)) (2.20)

⇐⇒

x∗ ∈ class r ⇔ dr(x
∗) = min

r′=1,...,c

(
x∗ − ˜̄xr′

)T
D̂−1

(
x∗ − ˜̄xr′

)
− log(p̂(r′)), (2.21)

where D̂ = diag(s2
1, ..., s

2
p) = diag(Spool). Note that Eq. 2.21 has a similar form like

the discriminant function from Eq. 2.8. Here, Σ is replaced by the diagonal matrix

D̂ and µr by the shrunken centroid vector ˜̄xr′ . Note that p̂(r) = nr
n denotes the

prior information on the classes.

Shrunken centroids regularized discriminant analysis (SCRDA)

Let us first consider an alternative notation of the linear discriminant function from

Eq. 2.8, yielding to equivalent results:

dr(x) = xTΣ−1µr −
1

2
µTr Σ−1µr + log(p(r)). (2.22)

We obtain the associated estimated discriminant function by replacing µr, Σ and

p(r) in Eq. 2.22 by appropriate estimators. In general, µr is replaced by x̄r =
1
nr

∑nr
k=1 xrk and p(r) by p̂(r) = nr

n , which is independent of the relation between n

and p. In the high-dimensional case, however, the usual covariance estimator Spool

for Σ has to be regularized. This leads us to the shrunken centroids regularized

discriminant analysis (SCRDA) proposed by Guo et al. in 2007. Here, the mainly

used version of regularization in order to resolve the singularity problem is:

Σ̂ = λSpool + (1− λ)Ip, (2.23)

where I is the (p× p) identity matrix and λ ∈ [0, 1] denotes the shrinkage intensity.
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Thus it follows for the estimated discriminant function:

d̂r(x) = xT Σ̂−1x̄r −
1

2
x̄Tr Σ̂−1x̄r + log(p̂(r)). (2.24)

Moreover, a modification of Eq. 2.24 in order to incorporate the idea of the NSC

method is to shrink the centroids x̄r, r = 1, ..., c, before calculating the discriminant

score. In addition to shrinking the centroids directly, Σ̂−1x̄r or Σ̂−
1
2 x̄r can be

shrunken, whereas Guo et al. decide for Σ̂−1x̄r. For clarity’s sake, we do not go

into detail, but keep the idea in mind. Note that the SCRDA requires determining a

pair of shrinkage parameters, often referred to as tuning parameters, i.e. (λ,∆). We

want to mention briefly that Guo et al. use cross-validation in order to determine

the ‘best’ parameter pairs. For further details we refer to [22].

Approach developed by Tai and Pan

Having studied the NSC method and the SCRDA in the previous two paragraphs,

we now have the methodical basis for an approach proposed by Tai and Pan in 2007

[46]. In their work, Tai and Pan criticize the assumptions made in both the NSC

method and the SCRDA to be too extreme. While the covariance matrix in the

former is restricted to be diagonal, i.e. the genes are assumed to be independent of

each other, there are no restrictions concerning the covariance structure in the latter.

Hence, Tai and Pan propose to estimate the covariance matrix as an intermediate

between the two from above which, in addition, integrates biological knowledge

on gene functions. The motivation behind that can be depicted in a few words:

many genes are known to have the same function or to be involved in the same

pathway. For instance, nowadays it is possible to extract biological expertise on

cancer-related genes from databases like KEGG [28]. Thus the genes from the same

functional group or pathway are assumed to co-express more likely than genes from

different gene functional groups, hence their expression levels tend to be correlated.

Note that, for the purpose of convenience, Tai and Pan assume the congruency

of a KEGG pathway and a gene functional group. In particular, their approach

incorporating biological knowledge into discriminant analysis can be explained as

follows. The genes from a given data set are grouped according to their biological
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functions, i.e. we obtain G gene functional groups. Note that not all genes are

annotated in one of the KEGG pathways. Note further that the functional groups

are not necessarily disjoint, i.e. there are genes annotated in multiple pathways. In

order to deal with these cases, Tai and Pan use the following procedure: if a gene

does not occur in any gene functional group, they assume this gene to form its own

group with group size one. If a gene occurs in multiple gene functional groups, (i)

the gene is kept in the smallest functional group and ignored in the other ones it

belongs to or (ii) the gene is duplicated in order to occur in each functional group.

In [46], strategy (i) is mainly chosen.

Tai and Pan now regularize the unstructured (p × p) pooled empirical covariance

matrix Spool by shrinking it towards a between-group independence structure. The

latter results from grouping the genes according to their biological functions and

from circumventing the overlapping of the groups by using strategy (i) as described

above. Thus it follows:

Σ̂ = λ1Spool + λ2Σ̂
∗ + (1− λ1 − λ2)D̂, (2.25)

where λ1, λ2 ∈ [0, 1] and λ1 + λ2 ≤ 1 are the shrinkage parameters determined

by cross-validation. D̂ = diag(Spool) denotes the (p × p) diagonal matrix with the

pooled empirical variances as entries. Further, Σ̂∗ = diag(Spool1, ...,SpoolG) rep-

resents a block-diagonal matrix, where Spoolg, g = 1, ..., G, is a (pg × pg) pooled

empirical covariance matrix for the genes in the functional group g. Note that the

within-group correlation structure may be of any general form. A simpler alterna-

tive is defined as follows:

Σ̂ = λΣ̂∗ + (1− λ)D̂, (2.26)

where λ ∈ [0, 1] stands for the shrinkage intensity. Furthermore, Tai and Pan pro-

pose a group shrinkage scheme which tends to retain or remove a whole functional

group of genes altogether, in contrast to the standard shrinkage on individual genes.

Since, in this thesis, our main objective is to study towards which estimator Spool is
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shrunken and how prior biological knowledge is incorporated into the regularization

or shrinkage process, we do not go into detail and refer to [46].

2.4.3 Discussion

In a nutshell, let us consider the crucial statements from above. As far as the

concrete form of biological knowledge is concerned, the approaches by Guillemot et

al. and Tai and Pan differ greatly. In the linear version of gCDA, Guillemot et al.

assume the availability of one single graph, including preferably all variables (genes)

from the given data set. Having extracted such a graph, detailed knowledge on

the connectivity between the graph’s vertices is extracted. Further, this knowledge

is reflected in the Laplacian matrix LG of a prior graph G, which Guillemot et al.

propose to consider as the matrix towards the empirical covariance matrix Spool is

shrunken. Note that LG is positive semi-definite and thus has to be modified in

order to achieve positive definiteness.

Tai and Pan, on the contrary, differentiate gene functional groups. Thus, the genes

from a given data set are grouped according to their biological functions. Since the

functional groups extracted from KEGG are not necessarily disjoint, strategies have

to be found in order to deal with these cases. One strategy Tai and Pan propose is

duplicating the genes that occur in multiple gene functional groups. This procedure,

however, increases the matrix’s dimension. Consequently, the dimension of Spool has

to be adapted. Having circumvented the overlapping of the groups, Tai and Pan

regularize the unstructured pooled empirical covariance matrix Spool by shrinking it

towards a between-group independence structure, thus a block-diagonal matrix. In

addition, a diagonal matrix is employed in order to ensure positive definiteness. Note

that in both approaches a cross-validation procedure is employed for determining

the shrinkage intensity.

As further contribution to ongoing research, we aim at developing a simplified ver-

sion of the regularized linear discriminant analysis proposed by Tai and Pan [46].

Our idea elaborated in this thesis can be outlined as follows. In this simplified

version, we replace the empirical within-class covariance matrix by a shrinkage es-

timator originally introduced by Ledoit and Wolf [31, 33, 32] and picked up by

Schäfer and Strimmer in the context of genomic data [41, 40]. In Chapter 3, we
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will study this shrinkage estimator in detail. Moreover, we extract prior knowledge

on gene functional groups from the database KEGG according to Tai and Pan. In

order to incorporate this knowledge into the regularization or shrinkage process, we

propose an alternative covariance target similar to target F from Schäfer and Strim-

mer, where genes that are biologically connected, i.e. genes that occur in the same

gene functional group, have constant correlation. Note that the term ‘covariance

target’ denotes the highly structured estimator towards the unstructured empiri-

cal covariance matrix is shrunken. Unlike Tai and Pan who use a cross-validation

procedure for determining the shrinkage intensity, we determine it analytically as

introduced by Ledoit and Wolf.
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Chapter 3

The shrinkage estimator Σ̂
SH(IP)

The so-called ‘n� p’ problem is widely known in the context of statistical analysis

for high-dimensional microarray data, where the number of variables p (genes) is

considerably larger than the number of observations n (chips). Starting from the

methodological challenges and approaches discussed in 2.2 and in 2.4, this chapter

addresses a further covariance estimation procedure we refer to as SHIP: SHrinking

and Incorporating Prior knowledge. Note that, in this chapter, it is our intention

to present a new approach concerning covariance estimation in the high-dimensional

setting. For this reason, we refer to a standard framework which does not correspond

directly to the framework of discriminant analysis, but which can be adapted to it.

The special case of discriminant analysis will be studied in Chapter 4. Considering

SHIP, the resulting covariance estimator is denoted by Σ̂SHIP. It represents the

shrinkage estimator introduced by Ledoit and Wolf [31, 33, 32] we refer to as Σ̂SH,

being enhanced by consideration of prior knowledge on gene functional groups as

described in 2.3 and 3.2.2.

Σ̂SH

+ PRIOR KNOWLEDGE−−−−−−−−−−−−−−→ Σ̂SHIP

We will see that Σ̂SH and Σ̂SHIP only differ in terms of a covariance target whose

choice we discuss in detail in 3.2. Hence, in the remainder of this work we use the

notation Σ̂SH(IP) when discussing the method in general. Moreover, since we pursue
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the aim of proposing a method that embeds prior knowledge on gene functional

groups, we will pinpoint clearly the transition from Σ̂SH to Σ̂SHIP.

3.1 Introduction to Σ̂SH(IP)

Many statistical methods require an estimator of the covariance matrix that is both

invertible and well-conditioned (i.e. inversion of the matrix does not amplify the

estimation error). For instance, the linear discriminant analysis described in 2.1

encloses the inverse of the covariance matrix estimator in its discriminant function

used for classification of an observation to the most likely underlying class. Gener-

ally, the traditional estimators are the maximum likelihood estimator Σ̂ML or the

related unbiased empirical covariance matrix S = n
n−1 Σ̂ML, whose entries are de-

fined as

sij =
1

n− 1

n∑
k=1

(xki − x̄i)(xkj − x̄j), (3.1)

where x̄i = 1
n

∑n
k=1 xki and xki is the k-th observation of the variable Xi. However,

in the special case of linear discriminant analysis, the traditional estimators are the

pooled maximum likelihood estimator Σ̂MLpool or the related unbiased pooled em-

pirical covariance matrix Spool = n
n−c Σ̂MLpool, whose entries are defined as

sijpool
=

1

n− c

c∑
r=1

nr∑
k=1

(xrki − x̄ri)(xrkj − x̄rj)︸ ︷︷ ︸
(nr−1)s

(r)
ij

=
1

n− c

c∑
r=1

(nr − 1)s
(r)
ij , (3.2)

where x̄ri = 1
nr

∑nr
k=1 xrki, xrki is the k-th observation of the variable Xi in class r

and s
(r)
ij is the (ij)-th entry of the standard unbiased empirical covariance matrix

for class r, r = 1, ..., c [18, 48]. Thus is appears that the pooled empirical covariance

matrix Spool can be written as a weighted sum of the within-class covariance ma-

trices, which in turn are estimated by the standard empirical covariance matrix as
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denoted by equation 3.1. The latter can be regarded as the more general estimator

since, besides classification, a multiplicity of other methods, for example interval

estimation and graphical models, require a well-conditioned estimator of the inverse

covariance matrix. Therefore, in this chapter we constrain our attention on the em-

pirical covariance matrix S = (s)ij , i, j = 1, ..., p.

However, in the high-dimensional data setting, the usual estimation procedure yields

undesirable characteristics of the resulting estimator: generally, it is ill-conditioned

and singular, thus not invertible. According to Schäfer and Strimmer [41, 40], we

study for fixed p = 100 and various ratios p
n the sorted eigenvalues of the sample

covariance matrix S = (s)ij and compare it to the true eigenvalues. The result-

ing Figure 3.1 presented below shows that for p
n > 1 the eigenvalues differ greatly,

whereas for p
n < 1 the difference is rather small. Further, Figure 3.1 illustrates

clearly that for n� p the sample covariance matrix loses its full rank as a growing

number of eigenvalues become zero. As a result, the sample covariance matrix is

neither positive definite nor invertible. Note that the positive-definiteness require-

ment is an intrinsic property of the true covariance matrix; it is fulfilled as long as

the considered random variables have non-zero variance.
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Figure 3.1: Ordered eigenvalues of the sample covariance matrix (red points) and true

eigenvalues (green points), calculated from simulated data with underlying p-variate normal

distribution, for p = 100 and various ratios p/n. The figure is, with minor modifications,

adopted from Schäfer and Strimmer [41].

Consequently, the sample covariance matrix S as the most commonly used covari-

ance estimator is estimated with an extreme amount of error unless p is considerably

smaller than n. Therefore, in the recent years statisticians have been engaged in

developing methods which improve the estimation of the covariance matrix and

thus circumvent these drawbacks. A clearly arranged review on this topic is given

by Schäfer and Strimmer [41, 40]. For instance, a strategy to obtain a positive

definite estimator of the covariance matrix is the application of the algorithm by

Higham [24] to the sample covariance matrix. The algorithm adjusts all eigenvalues

to be larger than some prespecified threshold ε and thereby guarantees positive def-
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initeness. Nevertheless, the resulting matrix is not well-conditioned. As a further

contribution to this problem, Ledoit and Wolf propose an estimator [31, 33, 32],

referred to as Σ̂SH in this thesis, which is based on the widely employed shrinkage

principle as outlined in 2.2.2. In our context, the estimator without structure is

the sample covariance matrix S. However, the structured estimator, referred to as

shrinkage target T, has to be chosen suitably. More precisely, T should involve only

a small number of free parameters and it must be positive definite. Nevertheless, it

should reflect important characteristics of the shrinkage estimator.

Another challenge, from the statisticians’ point of view, is the computation of the

optimal shrinkage intensity, referred to as λ. Ledoit and Wolf introduce an analytic

determination of λ, which is a distinct advantage over determining it heuristically,

usually by cross-validation [19]. The main drawback of such heuristic approaches is

that they are computationally very intensive. The difficulty of the analytic deter-

mination is that λ depends on the unobservable true covariance matrix. Ledoit and

Wolf solve this difficulty by replacing the true optimal λ by a consistent estimator

λ̂ and by proving the asymptotic equality of λ and λ̂. In detail, we will deal with

these aspects in 3.2 and in 3.3, respectively.

Assuming that the shrinkage target T is chosen and the shrinkage intensity λ is

computed, the shrinkage estimator proposed by Ledoit and Wolf is the following

asymptotically optimal convex linear combination:

Σ̂SH(IP) = λ̂T + (1− λ̂)S, (3.3)

where λ ∈ [0, 1]: shrinkage intensity that is determined analytically according

to Ledoit and Wolf

T : covariance target to be chosen suitably

S : unbiased empirical covariance matrix S = n
n−1 Σ̂ML.

In this context, optimality is meant with respect to a quadratic loss function, which

is common and intuitive in statistical decision theory [4]. The asymptotic result,

however, is less intuitive and requires further explanations: standard asymptotics

assume the number of variables p to be finite and the number of obervations n to
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go to infinity. In this framework, the sample covariance matrix is well-conditioned

asympotically. Nevertheless, the high-dimensional data setting does not comply

with the assumptions of standard asymptotics. Hence, Ledoit and Wolf use the

framework of general asymptotics, which allows both the number of variables p and

the number of observations n to go to infinity, whereas the ratio p
n must remain

bounded. Detailed information concerning general asymptotics can be found in

[31, 33, 32]. Since Monte-Carlo simulations confirm that the asymptotic results hold

well in finite samples with at least twenty observations and variables [31], this esti-

mation procedure is appropriate for the analysis of microarray gene expression data

where the number of variables p goes to infinity, but the number of observations n

remains small. The resulting estimator Σ̂SH(IP) has the following properties: it is

more efficient and more accurate than the sample covariance matrix, it is positive

definite, well-conditioned and invertible, which are crucial properties with regard

to the estimation of the inverse of the true covariance matrix. Further, Σ̂SH(IP)

has guaranteed minimum mean squared error, which results from the quadratic loss

function [4]. Another interesting property of Σ̂SH(IP) is that it does not assume

any fully specified distribution. Since merely second moments are required, Σ̂SH(IP)

is distribution-free in principle. Note that Σ̂SH(IP) is not only feasible for genomic

data, but can be employed in each high-dimensional setting such as financial data,

which actually was the original objective of Ledoit and Wolf in [31, 33, 32]. Schäfer

and Strimmer [41, 40] and Opgen-Rhein and Strimmer [37] proposed the application

to genomic data and could illustrate its high performance.

At this point, we assume that the chosen covariance target T = (t)ij incorporates

prior knowledge on gene functional groups. Hence, we obtain the concrete covariance

estimator Σ̂SHIP. In addition to the previous explanations, the following Figure 3.2

summarizes for the n� p case both the properties of the sample covariance matrix

S and the properties of the covariance estimator obtained ‘via the SHIP’. This

new estimator Σ̂SHIP results from shrinking the sample covariance matrix S = (s)ij

and from incorporating prior knowledge into the shrinkage process.
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Properties of S:

• ill-conditioned

• not positive definite

• not invertible

• inadmissibel from a

decision theoretic point of

view

• does not incorporate

any biological knowledge

• more efficient than

• more accurate than the

sample covariance

• incorporates

Properties of Σ̂SHIP

• well-conditioned

• positive definite

• invertible

• distribution-free

• guaranteed minimum

mean squared error

• more efficient than the

sample covariance

• more accurate than the

sample covariance

• incorporates biological

knowledge

Figure 3.2: Properties of the covariance estimator (for n� p) before and after SHIP.

3.2 The covariance target T

In this section we want to focus on the choice of the covariance target T = (t)ij

that plays an essential role in the computation of the shrinkage estimator Σ̂SH(IP).

It holds (see Eq. 3.3):

Σ̂SH(IP) = λ̂T + (1− λ̂)S,

where λ ∈ [0, 1]: shrinkage intensity that is determined analytically according

to Ledoit and Wolf

T : covariance target to be chosen suitably

S : unbiased empirical covariance matrix S = n
n−1 Σ̂ML.

The choice of a suitable lower-dimensional covariance target turns out to be very

complex. In a nutshell, T has to fulfill the following requirements:
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i) T must be positive definite.

ii) T should involve only a small number of free parameters.

iii) T should reflect important characteristics of the shrinkage estimator.

We will see that, in order to fulfill i), a compromise between ii) and iii) is inevitable.

In the first part of this section we give a brief overview of the lower-dimensional tar-

gets for the covariance matrix outlined in Schäfer and Strimmer [41]. Examples

for these covariance targets can be found easily in the literature, albeit not in the

combination with an analytic determination of the shrinkage intensity. Second, we

propose target G, a modified version of target F from Schäfer and Strimmer that

incorporates this biological knowledge, i.e. genes that are biologically connected

have constant correlation. We compute target G for real data and investigate its

adequacy. Third, we propose target G*, an alternative to target G that is more

adequate in the context of biological interpretation. Further, we point out some

algorithmic aspects. The section completes with studying the definiteness of the

covariance targets incorporating prior knowledge on gene functional groups.

3.2.1 Common covariance targets

Schäfer and Strimmer [41] compile the following overview of commonly used co-

variance targets which we will extend by proposing new covariance targets in 3.2.2,

taking into account prior knowledge on gene functional groups. A complete overview

of all covariance targets including the associated estimators of the optimal shrinkage

intensity will be depicted in 3.4.

• Target A: ‘diagonal, unit variance’; 0 estimated parameters

tij =

 1 if i = j

0 if i 6= j
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• Target B: ‘diagonal, common variance’; 1 estimated parameter: ν

tij =

 ν = avg(sii) if i = j

0 if i 6= j

• Target C: ‘common (co)variance’; 2 estimated parameters: ν, c

tij =

 ν = avg(sii) if i = j

c = avg(sij) if i 6= j

• Target D: ‘diagonal, unequal variance’; p estimated parameters: sii

tij =

 sii if i = j

0 if i 6= j

• Target E: ‘perfect positive correlation’; p estimated parameters: sii

tij =

 sii if i = j

√
siisjj if i 6= j

• Target F: ‘constant correlation’; p+ 1 estimated parameters: sii, r̄

tij =

 sii if i = j

r̄
√
siisjj if i 6= j

where ν : average of sample variances

c : average of sample covariances

r̄ : average of sample correlations.
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Thus it appears that the shrinkage targets can be divided into two classes. The first

class comprises target A (‘diagonal, unit variance’), target B (‘diagonal, common

variance’) and target C (‘common (co)variance’), which share several properties.

First, they are all extremely low-dimensional (0 to 2 free parameters), thus they

are highly structured. Second, the resulting covariance estimators shrink all compo-

nents of the sample covariance matrix, i.e. both the diagonal and the off-diagonal

entries. The probably mostly employed covariance targets are target A and target

B, whereas the two-parameter target C appears not to be widely used. The second

class of covariance targets comprises target D (‘diagonal, unequal variance’), target

E (‘perfect positive correlation’) and target F (‘constant correlation’), whereas es-

pecially the latter is employed in Ledoit and Wolf [33]. The properties shared by

these three targets are that they are comparatively parameter-rich, and that they

only shrink the off-diagonal elements of S. Schäfer and Strimmer and Opgen-Rhein

and Strimmer point out that, in consequence of the grouping of the covariance tar-

gets, the diagonal and the off-diagonal elements can be treated differently in the

shrinkage process. We will deal with this aspect in 3.3.3. Schäfer and Strimmer

[41, 40] focused on target D in the process of covariance estimation. According to

target A and target B it shrinks the off-diagonal entries to zero. At the same time,

like target E and F, it leaves the diagonal entries intact, i.e. it does not shrink the

variances. Therefore, we can consider target D as a compromise between the low-

dimensional targets A and B and the correlation models E and F. The shrinkage

estimator described in Schäfer and Strimmer is implemented in the open source R

package corpcor.
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3.2.2 Covariance targets incorporating prior knowledge on gene

functional groups

Target G

To incorporate the external biological knowledge from KEGG PATHWAY, we pro-

pose a modified version of target F from Schäfer and Strimmer [41], where only the

genes that occur in at least one same gene functional group have constant correla-

tion. Consequently, in order to obtain r̄ we just account for the correlations of the

genes that have at least one gene functional group in common.

We use the same notations as Schäfer and Strimmer [41]. Moreover, the notation

i ∼ j means that genes i and j are ‘connected’, i.e. genes i and j occur in the same

gene functional group.

Target G: ‘constant correlation between connected genes’;

Target G: p+1 estimated parameters: sii, r̄

tij =


sii if i = j

r̄
√
siisjj if i 6= j, i ∼ j

0 otherwise

where r̄ is the average of sample correlations between connected genes.

Adequacy of Target G

In a sense, target G assumes positive or at least not relevant negative correlations

among the genes. As the constant correlation r̄ is the average of sample correlations

between the connected genes, a high number of negative correlations leads to a fal-

sified r̄. Hence, we now focus on the within-group correlations. Note that, in this

context, the term ‘within-group’ means ‘within at least one same functional group’.

In order to investigate whether these within-group correlations are negative or pos-

itive in practice, we compute target G for the public microarray gene expression

data sets described in 1.3, whereas we only use the top 2000 genes in each data set.
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For the gene selection we use the method GeneSelection() of the open source R

package CMA [43] as described in 1.3. In the following, we deal with the correlation

structure of target G, with special attention to the effect of the negative correlations

on the average correlation as used in target G. Note that we only use the two-class

data sets Golub−Merge, ALL−c and sCLLex.

We first present in different tables analyses of the correlation structure in these data

sets. Finally, we draw the conclusion that two constant correlations, a positive and

a negative one, would be more adequate to describe the within-group correlation

structure.

Golub−Merge ALL−c sCLLex

n 72 128 22

c (# classes) 2 2 2

p (# genes) 2 000 2 000 2 000

# genes in no gene functional group 1 158 1 217 1 260

# corr. (all) 19 090 20 839 14 862

# corr. < 0 7 526 9 669 6 018

# corr. > 0 11 564 11 170 8 844

mean corr. (all) 0.098 0.047 0.111

mean corr. (without neg. corr.) 0.268 0.273 0.364

Table 3.1: Overview of the correlation structure of target G for the data sets Golub−Merge,

ALL−c and sCLLex. Since the covariance target is symmetric, we only consider the corre-

lations between different pairs of genes without the diagonal elements.
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# sign. corr. # not sign. corr.

# neg. corr. 1 819 (9.53 %) 5 707 (29.89 %) 7 526 (39.42 %)

# pos. corr. 5 914 (30.97 %) 5 650 (29.59 %) 11 564 (60.57 %)

7 733 (40.50 %) 11 357 (59.49 %) 19 090 (100.00 %)

Table 3.2: Analysis of the correlations in target G for the data Golub−Merge. A standard

correlation test is used with a confidence level of 0.95. In brackets the percentage of the

total number of correlations between different pairs of genes is given.

# sign. corr. # not sign. corr.

# neg. corr. 5 569 (26.72 %) 4 100 (19.67 %) 9 669 (46.39 %)

# pos. corr. 7 460 (35.79 %) 3 710 (17.80 %) 11 170 (53.60 %)

13 029 (62.52 %) 7 810 (37.47 %) 20 839 (100.00 %)

Table 3.3: Analysis of the correlations in target G for the data ALL−c. A standard

correlation test is used with a confidence level of 0.95. In brackets the percentage of the

total number of correlations between different pairs of genes is given.

# sign. corr. # not sign. corr.

# neg. corr. 1 168 (7.85 %) 4 850 (32.63 %) 6 018 (40.49 %)

# pos. corr. 3 359 (22.60 %) 5 485 (36.90 %) 8 844 (59.50 %)

4 527 (30.46 %) 10 335 (69.53 %) 14 862 (100.00 %)

Table 3.4: Analysis of the correlations in target G for the data CLL. A standard correlation

test is used with a confidence level of 0.95. In brackets the percentage of the total number

of correlations between different pairs of genes is given.

The results shown in Table 3.1 approve the assumption that target G does not

adequately represent the real within-group correlation structure. For all data sets

we obtain a noticeably higher average correlation r̄ by leaving out the negative

correlations in its computation. In order to receive an impression of the intensity

of the negative correlations, we apply a standard correlation test to each different

pair of genes, with a confidence level of 0.95. The results for each of the three data
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sets Golub−Merge, ALL−c and sCLLex are presented in Table 3.2, Table 3.3 and

Table 3.4. A noticeable part of the negative correlations is not significant. However,

for biological interpretation purposes, instead of leaving out any genes we consider

all genes and introduce two constant correlations r̄− and r̄+, i.e. a positive and a

negative one. The resulting covariance target G* is defined as follows:

Target G*: an alternative to target G

According to the results above, we propose target G*, a modified version of the

lower-dimensional target G that represents more adequately the real correlation

structure in the gene functional groups by introducing two constant correlations, a

positive and a negative one. Hence, it is more adequate in the context of biological

interpretation. We point out that target G* is not necessarily the better choice

concerning the prediction quality; we deal with this aspect in the sequel.

Target G*: ‘two constant correlations between connected genes: a negative

Target G*: and a positive one’; p+ 2 estimated parameters: sii, r̄−, r̄+

tij =



sii if i = j

r̄−
√
siisjj if i 6= j, i ∼	 j

r̄+
√
siisjj if i 6= j, i ∼⊕ j

0 otherwise

where r̄− is the average of negative sample correlations between connected genes

and r̄+ is the average of positive sample correlations between connected genes.

Moreover, the notation i ∼	 j means that genes i and j are ‘negatively connected’,

i.e. genes i and j occur in the same gene functional group and are negatively cor-

related. Accordingly, the notation i ∼⊕ j means that genes i and j are ‘positively

connected’, i.e. genes i and j occur in the same gene functional group and are

positively correlated.
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Additional aspects concerning target F

Unlike target G, target F from Schäfer and Strimmer [41] does not incorporate

biological knowledge on gene functional groups. Nevertheless, the assumed correla-

tion structure of target F implies the same difficulties like target G: a high number

of negative correlations leads to a falsified r̄. For this reason, we carry out the

same analyses for target F as for target G. We use the same subsets of the data

Golub−Merge, ALL−c and sCLLex as for the analyses concerning target G.

Golub−Merge ALL−c sCLLex

n 72 128 22

c (# classes) 2 2 2

p (# genes) 2000 2000 2000

# genes in no gene functional group 1158 1217 1260

# corr. (all) 1 999 000 1 999 000 1 999 000

# corr. < 0 862 638 970 516 1 009 467

# corr. > 0 1 136 362 1 028 484 989 533

mean corr. (all) 0.065 0.016 0.003

mean corr. (without neg. corr.) 0.235 0.224 0.291

Table 3.5: Overview of the correlation structure of target F for the data sets Golub−Merge,

ALL−c and sCLLex. Since the covariance target is symmetric, we only consider the corre-

lations between different pairs of genes without the diagonal elements.

# sign. corr. # not sign. corr.

# neg. corr. 200 079 (10.00 %) 662 559 (33.14 %) 862 638 (43.15 %)

# pos. corr. 505 428 (25.28 %) 630 934 (31.56 %) 1 136 362 (56.84 %)

705 507 (35.29 %) 1 293 493 (64.70 %) 1 999 000 (100.00 %)

Table 3.6: Analysis of the correlations in target F for the data Golub−Merge. A standard

correlation test is used with a confidence level of 0.95. In brackets the percentage of the

total number of correlations between different pairs of genes is given.
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# sign. corr. # not sign. corr.

# neg. corr. 540 013 (27.01 %) 430 503 (21.53 %) 970 516 (48.55 %)

# pos. corr. 602 068 (30.11 %) 426 416 (21.33 %) 1 028 484 (51.44 %)

1 142 081 (57.13 %) 856 919 (42.86 %) 1 999 000 (100.00 %)

Table 3.7: Analysis of the correlations in target F for the data ALL−c. A standard cor-

relation test is used with a confidence level of 0.95. In brackets the percentage of the total

number of correlations between different pairs of genes is given.

# sign. corr. # not sign. corr.

# neg. corr. 231 826 (11.59 %) 777 641 (38.90 %) 1 009 467 (50.49 %)

# pos. corr. 251 184 (12.56 %) 738 349 (36.93 %) 989 533 (49.50 %)

483 010 (24.16 %) 1 515 990 (75.83 %) 1 999 000 (100.00 %)

Table 3.8: Analysis of the correlations in target F for the data CLL. A standard correlation

test is used with a confidence level of 0.95. In brackets the percentage of the total number

of correlations between different pairs of genes is given.

The results in Table 3.5 show that target F - according to target G - does not

adequately represent the real correlation structure. For all data sets we obtain a

noticeably higher average correlation r̄ by leaving out the negative correlations in

its computation. In order to receive an impression of the intensity of the negative

correlations, we apply a standard correlation test to each different pair of genes, with

a confidence level of 0.95. The results for each of the three data sets Golub−Merge,

ALL−c and sCLLex are presented in Table 3.6, Table 3.7 and Table 3.8. A noticeable

part of the negative correlations is not significant. Analog the procedure described

for target G, instead of leaving out any genes we consider all of them and introduce

two constant correlations r̄− and r̄+, i.e. a positive and a negative one. The resulting

covariance target is defined as follows:
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Target F*: ‘two constant correlations between genes: a negative and a

Target F*: positive one’; p+ 2 estimated parameters: sii, r̄−, r̄+

tij =



sii if i = j

r̄−
√
siisjj if i 6= j, cor(i, j) < 0

r̄+
√
siisjj if i 6= j, cor(i, j) > 0

0 otherwise

where r̄− is the average of negative sample correlations between the genes and r̄+ is

the average of positive sample correlations between the genes.

As usual, the notation cor(i, j) < 0 means that genes are negatively correlated.

Accordingly, the notation cor(i, j) > 0 means that genes i and j are positively

correlated.

3.2.3 Algorithmic aspects

In a nutshell, we point out some algorithmic aspects since the computation of target

G and target G* requires a suitable procedure for the following occuring cases:

i) A gene does not occur in any gene functional group.

ii) A gene occurs in multiple gene functional groups.

iii) A pair of genes occurs in multiple gene functional groups.

We propose the following procedure to deal with cases i) - iii):

case i):

If a gene does not occur in any gene functional group, we assume that this gene

forms its own group with group size one. This corresponds to Tai and Pan [46].

case ii):

Unlike Tai and Pan [46] who assume a between-group gene independence in the co-
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variance target, target G is more flexible concerning the between-group correlation

structure. Hence, if a gene occurs in multiple gene functional groups, we do not

need a special treatment as this is considered by the definition of target G.

case iii):

If a pair of genes occurs in multiple gene functional groups, we ignore this in our

algorithm and only consider this pair once, i.e. the genes that occur in at least

one same functional group have constant correlation. One may argue that a pair or

group of genes occuring in multiple gene functional groups may be more important

and the correlation between these genes should be augmented in an appropriate

way. Therefore, we investigate the number of pairs of genes occuring in multiple

gene functional groups:

Golub−Merge ALL−c sCLLex

p (# genes) 2 000 2 000 2 000

# genes in no gene func. group 1 158 1 217 1 260

# gene func. groups 184 185 180

min. # of gene func. groups a pair of 0 0 0

genes occurs in

max. # of gene func. groups a pair of 27 32 19

genes occurs in

# corr. (all) = # pairs of genes 19 090 20 839 14 862

# pairs of genes in > 1 gene func. groups 3 107 4 440 3 293

# pairs of genes in > 2 gene func. groups 1 133 1 907 1 679

# pairs of genes in > 3 gene func. groups 569 1 199 344

# pairs of genes in > 4 gene func. groups 336 874 177

# pairs of genes in > 5 gene func. groups 210 663 101

# pairs of genes in > 6 gene func. groups 134 358 62

# pairs of genes in > 7 gene func. groups 90 250 35

# pairs of genes in > 8 gene func. groups 68 111 24

# pairs of genes in > 9 gene func. groups 44 71 18

# pairs of genes in > 10 gene func. groups 31 43 15

Table 3.9: Overview of the number of pairs of genes occuring in multiple gene functional

groups. Analyses here are carried out for the same subsets of the data Golub−Merge, ALL−c

and sCLLex as used above. Since the covariance target is symmetric, we only consider the

different pairs of genes without the diagonal elements.
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The results shown in Table 3.9 suggest a more precise algorithm, taking into con-

sideration the pairs of genes occuring in multiple gene functional groups. Here, we

focus on our algorithm that considers these pairs only once and leave the eventually

more suitable algorithm for further research.

3.2.4 The definiteness of the covariance targets incorporating prior

knowledge on gene functional groups

In 3.2, we have discussed the main requirements concerning the covariance target

T = (t)ij . Since T is a low-dimensional representation of the covariance matrix in

the shrinkage process, the fulfillment of the positive definiteness is essential. Target

D which is employed in Schäfer and Strimmer has the important advantage that

the resulting shrinkage covariance estimator is automatically positive definite for

the following reason: target D as a diagonal matrix is always positive definite.

Further, the convex combination of a positive definite matrix with another positive

semidefinite matrix results in a positive definite matrix. Schäfer and Strimmer point

out that this holds for the targets A and B, but not for the targets C, E and F

[41, 40] which have off-diagonal entries not equal to zero. It is not surprising that the

same problem occurs for the covariance targets F*, G and G* since they represent

modified versions of target F. The figures presented below confirm the theoretic

considerations. For each real data set we illustrate the sorted eigenvalues of the

covariance targets G and G* for the top 2000, 1000, 500 and 100 genes. Note

that we only use the two-class data sets Golub−Merge, ALL−c and sCLLex. For

comparison purposes, we present the same figure for the diagonal covariance target

D. For all three data sets we obtain indefinite covariance targets G and especially

G* for at least one set of genes, whereas the covariance target D remains positive

definite in either case. Note that the covariance targets’ structure is manipulated.

Hence, indefiniteness is possible, although a covariance matrix is (semi-) positive

definite per definition.
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Figure 3.3: Plots illustrating the sorted eigenvalues of target G for the top 2000,

1000, 500 and 100 genes in the data set Golub−Merge.
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Figure 3.4: Plots illustrating the sorted eigenvalues of target G* for the top 2000,

1000, 500 and 100 genes in the data set Golub−Merge.
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Figure 3.5: Plots illustrating the sorted eigenvalues of target D for the top 2000,

1000, 500 and 100 genes in the data set Golub−Merge.
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Figure 3.6: Plots illustrating the sorted eigenvalues of target G for the top 2000,

1000, 500 and 100 genes in the data set ALL−c.
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Figure 3.7: Plots illustrating the sorted eigenvalues of target G* for the top 2000,

1000, 500 and 100 genes in the data set ALL−c.
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Figure 3.8: Plots illustrating the sorted eigenvalues of target D for the top 2000,

1000, 500 and 100 genes in the data set ALL−c.
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Figure 3.9: Plots illustrating the sorted eigenvalues of target G for the top 2000,

1000, 500 and 100 genes in the data set sCLLex.
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Figure 3.10: Plots illustrating the sorted eigenvalues of target G* for the top 2000,

1000, 500 and 100 genes in the data set sCLLex.
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Figure 3.11: Plots illustrating the sorted eigenvalues of target D for the top 2000,

1000, 500 and 100 genes in the data set sCLLex.
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The challenging task is to suggest a method which yields a positive definite covari-

ance target without differing considerably from the original one. Inevitably, not

only from the statisticians’ point of view the question arises whether such a pro-

cedure can be reasonable. On the one hand, we consider important characteristics

of the real covariance structure by incorporating external biological knowledge on

gene functional groups. On the other hand, we manipulate the resulting covariance

target in order to achieve positive definiteness. In our opinion, it is not worthwhile

to regularize a covariance estimator by means of a covariance estimator which has

to be regularized itself. One may ask provocatively: why should we incorporate

external knowledge in the first step, being aware of the fact that we are forced to

eliminate - possibly other - knowledge in the second step? In fact, in this thesis we

will give some indication of the additional value of incorporating external biological

knowledge into the classification process. For comparison purposes, we will employ

the diagonal covariance target D. First, however, we briefly present two approaches

coping with the problem of indefiniteness. While the first one is applied to the

not positive definite covariance target T = (t)ij , the second one is applied further

in the shrinkage procedure, namely to the not positive definite shrinkage estimator

Σ̂SH(IP) = λ̂T + (1− λ̂)S.

• The algorithm by Higham

One strategy to obtain a positive definite estimator of the covariance matrix

is the application of the algorithm by Higham from 1988 to the sample covari-

ance matrix S = (s)ij . The algorithm adjusts all eigenvalues to be larger than

some prespecified threshold and thereby guarantees positive definiteness. The

algorithm is carried out by the function make.positive.definite(), imple-

mented in the open source R package corpcor. More details concerning the

theory behind Higham’s algorithm can be found in [24].

• The inverse by Moore and Penrose

The inverse by Moore and Penrose describes a generalization of the stan-

dard matrix inverse, i.e. the ‘generalized inverse’, sometimes referred to as

‘pseudoinverse’. The idea was introduced independently by Eliakim Hast-

ings Moore in 1920 and Roger Penrose in 1955 [38]. More precisely, the so-
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called ‘Moore-Penrose pseudoinverse’ can be applied to singular matrices and

is based on the singular value decomposition. In our context, the covariance

matrix ΣSH(IP) can be decomposed into ΣSH(IP) = UDVT, whereas U and

V are orthogonal matrices and D is a square diagonal matrix containing only

the positive singular values. The pseudoinverse Σ−1SH(IP) is then defined as

Σ−1SH(IP) = VD−1UT. Note that it only requires the inversion of D. Further,

it can be shown that the pseudoinverse Σ−1SH(IP) is the shortest length least

squares solution of ΣSH(IP)Σ
−1
SH(IP) = I, where I denotes the identity matrix.

Hence, it reduces to the standard matrix inverse where possible [40], which

means that for non-singular matrices the pseudoinverse is equivalent to the

standard inverse.

The computation can be carried out by means of the function pseudoinverse(),

implemented in the open source R package corpcor. For more details concern-

ing the theory behind the ‘Moore-Penrose pseudoinverse’ see [38].

Both procedures described above are dissatisfying from a statistician’s point of view

since the employment of numerical tricks seems to be inevitable. At this point of this

work, we do not know yet which covariance targets yield better results in the context

of classification. In fact, it is possible that the covariance targets incorporating

external biological knowledge on gene functional groups will yield a smaller number

of misclassifications, even if their employment requires numerical tricks.

Beyond the optimization of misclassification rates, however, we have to examine the

substantial value of the input before interpreting the output. We will deal with

this aspect in a critical way in Chapter 4, where we focus on discriminant analysis.

Nevertheless, we have to decide for one technique we will use in this work. We will

see that the estimator λ̂ of the optimal shrinkage intensity λ depends on the entries

of the covariance target T = (t)ij . Hence, it seems to be less reasonable to employ

Higham’s algorithm since we want to avoid λ̂ being numerically manipulated. For

this reason, we choose the ‘Moore-Penrose pseudoinverse’ for the analyses in this

thesis, being aware of the fact that the estimate may be unstable due to the lack of

observations. Further remarks concerning this issue will be provided in Chapter 4.
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3.3 The optimal shrinkage intensity λ

In 3.2 we have studied the first challenge in the shrinkage process from the point

of view of statisticians, namely the choice of the covariance target T = (t)ij . In

this section we address the selection of the optimal shrinkage intensity referred to

as λ. Note that in the literature, both the expression ‘shrinkage intensity’ and the

expression ‘regularization parameter’ are used for λ. It is obvious that any choice

of λ ∈ [0,1] yields a compromise between S and T, which results in infinitely many

possibilities. The objective is obtaining an ‘optimal’ shrinkage intensity, whereas

the term ‘optimality’ has to be defined. The usual way to obtain λ is determining

it rather heuristically, for example by cross-validation [19]. Other well-established

methods are based on Markov Chain Monte Carlo (MCMC) and the bootstrap [12].

The property these methods share is that they require computationally expensive

procedures which constitutes the main drawback. In this thesis, we concentrate on

the analytic determination of λ and its consistent estimation from the data, which

were introduced by Ledoit and Wolf in 2003 [31]. This analytic approach is less

known by biostatisticians, probably due to the original objective of Ledoit and Wolf

who introduced this method in the context of portfolio selection. In 2005, Schäfer

and Strimmer proposed the application to genomic data and simplified the consistent

estimation of the shrinkage intensity λ [41, 40]. In the following, we first illustrate

the analytic derivation of λ. Subsequently, we deal with the consistent estimation of

λ since it depends on unobservables and thus cannot be calculated straightforward.

We will see that the technique is very general since it is applicable to a wide range

of covariance targets T = (t)ij , being constrained due to the positive definiteness

requirement.

3.3.1 Analytical derivation of the optimal shrinkage intensity

In a nutshell, the optimal shrinkage intensity λ is considered from a decision theo-

retic perspective, which in particular means [37, 4]:

61



CHAPTER 3. THE SHRINKAGE ESTIMATOR Σ̂SH(IP)

• A loss function L(·) is selected.

Definition 5 (Loss function) A loss function is a mapping L(·), for which it

holds:

L(·) : Θ̂×Θ −→ R
L(·) : (θ̂, θ) 7−→ L(θ̂, θ),

where Θ̂ is the space of estimates and Θ is the space of true parameters. It usually

holds: Θ̂ = R and Θ = R.

• λ is chosen such that the expectation of the loss with respect to the data, i.e. the

• risk R(·) = E(L(·)) of the shrinkage estimator, is minimized:

R(λ) = E(L(λ))
λ−−→ min. (3.4)

• If Li(·) = (σiSH(IP) − σi)2, i.e. the quadratic loss function, it follows:

R(λ) = E(L(λ)) = E

(
p∑
i=1

(σiSH(IP) − σi)2

)
λ−−→ min. (3.5)

The loss function represents the objective according to which the shrinkage intensity

is ‘optimal’. Note that all existing shrinkage estimators from finite-sample statistical

decision theory as well as the empirical Bayes approach of Frost and Savarino [20]

break down in the n � p case since the applied loss functions involve the inverse

of the covariance matrix. In contrast, Ledoit and Wolf propose a loss function that

does not depend on the inverse of the covariance matrix. It is the quadratic loss

function, thus the intuitive quadratic measure of distance between the true and the

estimated covariance matrices. Note that, in the matrix setting, the quadratic loss

is based on the Frobenius norm [33].

62



CHAPTER 3. THE SHRINKAGE ESTIMATOR Σ̂SH(IP)

Definition 6 (Frobenius norm) The Frobenius norm of the p × p symmetric ma-

trix Z with entries (zij)i,j=1,...,p is defined by:

‖Z‖2
F

=

p∑
i=1

p∑
j=1

z2
ij .

In 3.1, we pointed out the distribution-freeness of the covariance estimator Σ̂SH(IP)

since it is not necessary to specify any underlying distributions. In fact, assuming

merely the existence of the first two moments of the distributions of T = (t)ij and

S = (s)ij , it follows for the risk function:

R(λ) = E(L(λ))

= E

(∥∥∥Σ̂SH(IP) −Σ
∥∥∥2

F

)

= E
(
‖λT + (1− λ)S−Σ‖2

F

)

=

p∑
i=1

p∑
j=1

E(λtij + (1− λ)sij − σij)2

=

p∑
i=1

p∑
j=1

V ar(λtij + (1− λ)sij) + [E(λtij + (1− λ)sij − σij)]2︸ ︷︷ ︸
= MSE(λtij+(1−λ)sij)

=

p∑
i=1

p∑
j=1

λ2V ar(tij) + (1− λ)2V ar(sij) + 2λ(1− λ)Cov(tij , sij)

+[λE(tij − sij) + E(sij − σij)︸ ︷︷ ︸
= Bias(sij)

]2. (3.6)

In 3.1, we pointed out without further explanations that Σ̂SH(IP) has guaranteed

63



CHAPTER 3. THE SHRINKAGE ESTIMATOR Σ̂SH(IP)

minimum mean squared error, which results from the quadratic loss function [4].

For scientists who are not familiar with statistical decision theory this might be ini-

tially surprising, but the coherence becomes clear in a straightforward way as shown

above. Thus it appears why the quadratic loss is the mostly applied loss function:

since it results in the mean squared error for biased estimators and in the variance

for unbiased ones, it is very beneficial concerning statistical questions. Note fur-

ther that the quadratic loss function is symmetric, which sometimes might be of

relevance. For the interested reader we recommend the lecture notes on statistical

decision theory by Augustin, which provide a comprehensive overview of decision

theoretic concepts [4].

In order to obtain an optimal shrinkage intensity λ, we now minimize analytically

the risk R(L(λ)) of the form from Eq. 3.6 with respect to λ:

R ′(λ) =
∂R(λ)

∂λ

= 2

p∑
i=1

p∑
j=1

λV ar(tij)− (1− λ)V ar(sij) + (1− 2λ)Cov(tij , sij)

+λ[E(tij − sij)]2 + E(tij − sij)Bias(sij). (3.7)

R ′′(λ) =
∂R ′(λ)

∂λ

= 2

p∑
i=1

p∑
j=1

V ar(tij) + V ar(sij)− 2Cov(tij , sij)︸ ︷︷ ︸
= V ar(tij−sij)

+[E(tij − sij)]2

= 2

p∑
i=1

p∑
j=1

V ar(tij − sij) + [E(tij − sij)]2︸ ︷︷ ︸
> 0

. (3.8)
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R ′(λ)
!

= 0

⇔ λ

 p∑
i=1

p∑
j=1

V ar(tij) + V ar(sij)− 2Cov(tij , sij)︸ ︷︷ ︸
= V ar(tij−sij)

+[E(tij − sij)]2


+

p∑
i=1

p∑
j=1

Cov(tij , sij)− V ar(sij) + E(tij − sij)Bias(sij)

= 0

⇔
∑p

i=1

∑p
j=1 V ar(sij)− Cov(tij , sij)− E(tij − sij)Bias(sij)∑p

i=1

∑p
j=1 V ar(tij − sij) + [E(tij − sij)]2

= λ. (3.9)

Since V ar(tij − sij) = [E(tij − sij)2]− [E(tij − sij)]2, it follows for λ = λopt:

λ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij , sij)− E(tij − sij)Bias(sij)∑p

i=1

∑p
j=1[E(tij − sij)2]

. (3.10)

Note that R ′′(λ) is always positive, i.e. λ is a minimum of the risk function R ′(λ).

Note further that the existence and the uniqueness of λ can be shown, which is il-

lustrated in detail in the literature by Ledoit and Wolf. Moreover, since the sample

covariance matrix S = (s)ij is an unbiased estimator, Eq. 3.10 reduces to:

λ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij , sij)∑p
i=1

∑p
j=1[E(tij − sij)2]

. (3.11)
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In this chapter, we concentrate on the sample covariance matrix S = (s)ij as unbi-

ased estimator of the covariance. Therefore, we use Eq. 3.11 for our calculations in

the sequel. However, Eq. 3.10 points out that the analytical determination of the

optimal shrinkage intensity, for which minimum mean squared error of the resulting

shrinkage estimator is achieved, is rather general than restricted to unbiased estima-

tors. In the following, we outline further remarks on the optimal shrinkage intensity

λ and how it is chosen:

• We see in Eq. 3.11 that the optimal shrinkage intensity depends on the corre-

lation between the estimation error of S = (s)ij and of T = (t)ij . Intuitively,

if the two are positively correlated, combining them yields a negligible benefit.

Conversely, if the two are negatively correlated, a combination of them appears

to be beneficial. In other words, if both are positively correlated the weight

put on the shrinkage target decreases, whereas it increases if both are nega-

tively correlated. Note that the introduction of this correlation term resolves

an inconsistency which arises in empirical Bayesian approaches. Here, the

prior is estimated from the sample data, assuming that this prior is indepen-

dent from the sample data at the same time. Ledoit and Wolf explicitly take

into account the correlation between prior and sample information through

Cov(tij , sij). Thus, they adjust for the two estimators both being inferred

from the same data.

• Schäfer and Strimmer point out the possibility of generalizing the concept to

multiple targets, which means that each target is assigned its own shrinkage

intensity. For instance, if the model parameters fall into two natural groups,

each could have its own target and thus its own associated shrinkage intensity.

Note that, in the extreme case, each parameter could have its own λ.

• Consider the formula for λ from Eq. 3.11. Thus it appears that it is of general

nature since the explicit form of the covariance target T = (t)ij is nowhere

used. Ledoit and Wolf point out that the equation stays the same as long as T

is an asymptotically biased estimator of the covariance matrix. In addition, we

want to point out that it has to satisfy the positive definiteness requirement.

As a result, any covariance target leads to a reduction of the mean squared
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error, albeit it is very complex to obtain a feasible one in the sense of fulfilling

the positive definiteness.

3.3.2 Estimation of the optimal shrinkage intensity

In the first part of this section we studied the analytical approach to the optimal

shrinkage intensity λ, for which we derived the following analytical form (see Eq.

3.11):

λ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij , sij)∑p
i=1

∑p
j=1[E(tij − sij)2]

.

The difficulty of the analytic determinantion is that λ depends on unobservables.

According to Ledoit and Wolf, we solve this difficulty by replacing the true optimal

λ by a consistent estimator λ̂. Schäfer and Strimmer point out the weakness of the

consistency requirement, since consistency is an asymptotic property and a basic

requirement of any sensible estimator. Hence, we follow the suggestion in Schäfer

and Strimmer to simplify the consistent estimation of the shrinkage intensity λ by

replacing all expectations, variances, and covariances by their unbiased sample coun-

terparts. Thus it follows:

λ̂ =

∑p
i=1

∑p
j=1 V̂ ar(sij)− Ĉov(tij , sij)∑p
i=1

∑p
j=1(tij − sij)2

. (3.12)

Since in finite samples it is possible that λ̂ /∈ [0, 1], i.e. λ̂ < 0 or λ̂ > 1, we

truncate the estimated intensity according to both Ledoit and Wolf and Schäfer and

Strimmer by using λ̂∗ = max(0,min(1, λ̂)) in the process of implementation.

Consider once again Eq. 3.12. In order to compute the estimator λ̂∗ of the optimal

shrinkage intensity, it is necessary to estimate the components of the given formula

which in particular are:

67



CHAPTER 3. THE SHRINKAGE ESTIMATOR Σ̂SH(IP)

V̂ ar(sij) : variances of the individual entries of S = (s)ij

Ĉov(tij , sij) : covariances between the individual entries of T = (t)ij and the

individual entries of S = (s)ij .

Note that (tij − sij)
2, i.e. the quadratic distance between the individual entries

of T = (t)ij and the individual entries of S = (s)ij , can be calculated in a straight-

forward way since all required terms are given. In the following, we explicitly address

the estimation of V ar(sij) and Cov(tij , sij), whereas the explanations of the next

two paragraphs are, with minor modifications, adopted from Schäfer and Strimmer

[41].

Useful formulae

Let xki be the k-th observation of the variable Xi and x̄i = 1
n

∑n
k=1 xki its empirical

mean. Now set wkij = (xki − x̄i)(xkj − x̄j) and w̄ij = 1
n

∑n
k=1wkij . Then the unbi-

ased empirical covariance equals:

Ĉov(xi, xj) = sij =
n

n− 1
w̄ij . (3.13)

Correspondingly, the variance is:

V̂ ar(xi) = sii =
n

n− 1
w̄ii. (3.14)

Estimation of Var(sij)

The empirical unbiased variances of the individual entries of S = (s)ij are computed

in a similar fashion as described above. Thus it follows:
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V̂ ar(sij) =︸︷︷︸
Eq. 3.13

V̂ ar

(
n

n− 1
w̄ij

)

=
n2

(n− 1)2
V̂ ar(w̄ij)

=
n

(n− 1)2
V̂ ar(wij)

=
n

(n− 1)3

n∑
k=1

(wkij − w̄ij)2. (3.15)

Correspondingly, it follows for the covariances which become necessary for the next

paragraph:

Ĉov(sij , slm) =
n

(n− 1)3

n∑
k=1

(wkij − w̄ij)(wklm − w̄lm). (3.16)

Schäfer and Strimmer point out that moments of higher order than V̂ ar(sij) are ne-

glected in estimating the optimal shrinkage intensity λ̂∗. Moreover, this procedure

treats the estimated variances as constants and hence introduces an error which,

however, is negligible.

Estimation of Cov(tij, sij)

The derivation of an estimator Ĉov(tij , sij) of the covariances between the individual

entries of T = (t)ij and the individual entries of S = (s)ij turns out to be rather

complex. In fact, Ĉov(tij , sij) becomes only relevant for the covariance targets E

and F and thus for the covariance targets F*, G and G* introduced in 3.2.2. In

[33], Ledoit and Wolf give an expression for Ĉov(tij , sij) with regard to the ‘constant
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correlation model’, referred to as target F in this work. In our opinion, however, a

more detailed derivation is not only beneficial for completeness reasons. In addition,

it improves considerably the understanding and thereby diminishes the vagueness

of the given formula. For this purpose, we want to contribute by showing that the

following formula given by Ledoit and Wolf holds asymptotically:

Ĉov(tij , sij) =
r̄

2

(√
sjj
sii
Ĉov(sii, sij) +

√
sii
sjj

Ĉov(sjj , sij)

)
, (3.17)

where r̄ is the average of sample correlations of the covariance target. For example,

r̄ = 0 results from the application of target D and r̄ = 1 from the application of

target E.

Note that by showing Eq. 3.17 it becomes possible to deduce Ĉov(tij , sij) for any

other presented covariance target. We want to point out that we do not claim neither

absolute accuracy nor completeness from a mathematical point of view. In fact, our

objective is to present an outline of the derivation of Eq. 3.17.

Let T = (t)ij , i, j = 1, ..., p, be the very general covariance target F described in 3.2.

Let further be S = (s)ij , i, j = 1, ..., p, the sample covariance matrix of the observa-

tions xk1, ..., xkp, k = 1, ..., n. According to Ledoit and Wolf it holds: the covariance

Cov(tij , sij) of the individual entries of T = (t)ij and the individual entries of

S = (s)ij can be estimated by the term r̄
2 ·
(√

sjj
sii
Ĉov(sii, sij) +

√
sii
sjj
Ĉov(sjj , sij)

)
,

where r̄ is the average of sample correlations of the covariance target. Consider

Ĉov(tij , sij). This term can be written as Ĉov(r̄
√
siisjj , sij). In order to show that

Eq. 3.17 holds, we carry out the following steps:

1. We consider
√
siisjj as a function f(sii, sjj) =

√
siisjj , where i, j = 1, ..., p.

We approximate this function by applying Taylor approximation in several

variables [1].

2. We replace
√
siisjj by the approximation obtained in 1. Subsequently, we

calculate the resulting term for Ĉov(r̄
√
siisjj , sij).
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Definition 7 (Taylor series in the one-dimensional case) The Taylor series

of a real or complex function f(x), whereas f(x) is infinitely differentiable in a neigh-

bourhood of a real or complex number a, is the following power series:

T (x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + . . . . (3.18)

Equation 3.18 can be written in a more compact form as follows:

T (x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n, (3.19)

where n! denotes the factorial of n and f (n)(a) denotes the n-th derivative of f eval-

uated at the point a. The zeroth derivative of f is defined to be f itself. Both (x−a)0

and 0! are defined to be 1.

Definition 8 (Taylor series in the multidimensional case) The Taylor series

considered in Definition 7 can be generalized to the multidimensional case, i.e.

x = (x1, x2, x3, ..., xs). The form of T (x) = T (x1, x2, x3, ..., xs) is as follows:

T (x) = T (x1, x2, x3, ..., xs)

=
∞∑

n1=0

· · ·
∞∑

ns=0

(x1 − a1)n1 · · · (xs − as)ns

n1! · · ·ns!

(
∂n1+...+nsf

∂xn1
1 · · · ∂x

ns
s

)
(a1, ..., as). (3.20)

A second-order Taylor series expansion of a scalar-valued function of more than

one variable can be compactly written as:
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T (x) = T (x1, x2, x3, ..., xs)

= f(a) + (x− a)TDf(a) +
1

2!
(x− a)T {D2f(a)}(x− a) + · · · , (3.21)

where x = (x1, x2, x3, ..., xs), a = (a1, a2, a3, ..., as) and Df(a) is the gradient of f

evaluated at x = a and D2f(a) is the Hessian matrix.

Knowing the terms and definitions now, we carry out the first step. We consider
√
siisjj as a function f(sii, sjj) =

√
siisjj , where i, j = 1, ..., p. We approximate

this function by applying Taylor expansion in two variables, namely sii and sjj . We

are interested in f(sii, sjj) =
√
siisjj in the neighbourhood (σii, σjj). Further, we

approximate f(sii, sjj) linearly, i.e. we apply a first order Taylor series expansion.

It follows:

f(sii, sjj) ≈ f(σii, σjj) +
∂f

∂sii
(σii, σjj) (sii − σii) +

∂f

∂sjj
(σii, σjj) (sjj − σjj).

Since f(sii, sjj) =
√
siisjj , it holds:

√
sii, sjj ≈

√
σiiσjj +

∂
√
σiiσjj

∂sii
(sii − σii) +

∂
√
σiiσjj

∂sjj
(sjj − σjj)

≈ √
σiiσjj +

1

2

√
σjj√
σii

(sii − σii) +
1

2

√
σii√
σjj

(sjj − σjj)

≈ √
σiiσjj +

1

2

√
σjj√
σii

sii −
1

2

√
σiiσjj +

1

2

√
σii√
σjj

sjj −
1

2

√
σiiσjj

≈ 1

2

(√
σjj√
σii

sii +

√
σii√
σjj

sjj

)
. (3.22)
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Equation 3.22 yields an approximation for
√
siisjj which we utilize for deriving

a term for Ĉov(r̄
√
siisjj , sij) in the second step:

Ĉov(r̄
√
siisjj , sij)

≈︸︷︷︸
Eq. 3.22

Ĉov

[
1

2
r̄

(√
σjj√
σii

sii +

√
σii√
σjj

sjj

)
, sij

]

≈︸︷︷︸
Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)

Ĉov

(
1

2
r̄

√
σjj√
σii

sii, sij

)
+ Ĉov

(
1

2
r̄

√
σii√
σjj

sjj , sij

)

≈︸︷︷︸
Cov(aX,bY)=abCov(X,Y)

1

2
r̄

√
σjj√
σii

Ĉov(sii, sij) +
1

2
r̄

√
σii√
σjj

Ĉov(sjj , sij)

≈ 1

2
r̄

[√
σjj√
σii

Ĉov(sii, sij) +

√
σii√
σjj

Ĉov(sjj , sij)

]

≈︸︷︷︸
E(S)= Σ

1

2
r̄

[√
sjj√
sii
Ĉov(sii, sij) +

√
sii√
sjj

Ĉov(sjj , sij)

]
. (3.23)

Thus it appears that Eq. 3.23 corresponds to Eq. 3.17 which is the formula given

by Ledoit and Wolf, whereas both Ĉov(sii, sij) and Ĉov(sjj , sij) can be computed

according to Eq. 3.16.

�
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3.3.3 Shrinkage of covariances versus shrinkage of correlations

Having studied the choice of the covariance target T = (t)ij and the analytical

derivation of the optimal shrinkage intensity λ ∈ [0, 1] in the previous work, we now

constrain our attention on the interdependence of both results from above. In a

nutshell, the main issues of 3.2.1 concerning the properties of the covariance targets

are as follows:

• The shrinkage targets can be divided into two classes.

• The first class comprises target A (‘diagonal, unit variance’), target B (‘di-

agonal, common variance’) and target C (‘common (co)variance’), which are

all extremely low-dimensional (0 to 2 free parameters), thus highly structured.

The resulting covariance estimators shrink all components of the sample covari-

ance matrix, i.e. both the diagonal and the off-diagonal entries are shrunken.

• The second class comprises target D (‘diagonal, unequal variance’), target E

(‘perfect positive correlation’) and target F (‘constant correlation’), which are

comparatively parameter-rich. The resulting covariance estimators only shrink

the off-diagonal elements of S.

• As a consequence, the parameters of the covariance matrix fall into two classes,

which both are treated differently in the shrinkage process.

Schäfer and Strimmer point out that this clear separation of the diagonal and the off-

diagonal elements suggests, for shrinking purposes, to parameterize the covariance

matrix in terms of variances and correlations rather than in variances and covari-

ances, i.e. σij = rij
√
σiiσjj . Thus it appears that it is possible to shrink only the

correlations rather than the covariances, which is intuitively far more adequate for

the covariance targets D, E and F. Moreover, the fact that shrinkage is applied to

the correlations has the clear advantage that the off-diagonal elements determining

the shrinkage intensity are all on the same scale. Note that this is not the case if we

work with covariances; the (co)variance determines the scale, whereas the correla-

tion determines the dimensionless linear structure of connection. In [41, 40], Schäfer

and Strimmer propose such a parameterization of target D into variances and cor-

relations, which yields the formula λ̂ =
∑

i 6=j V̂ ar(rij)∑
i6=j r

2
ij

instead of λ̂ =
∑

i 6=j V̂ ar(sij)∑
i6=j s

2
ij

.

In this thesis, we work with modified versions of target F, which is one of the co-

74



CHAPTER 3. THE SHRINKAGE ESTIMATOR Σ̂SH(IP)

variance targets shrinking only the off-diagonal elements of the sample covariance

matrix. Hence, we apply the parameterization described above to target F, and

we obtain the simplified formula for the shrinkage intensity λ̂ =
∑

i6=j V̂ ar(rij)−r̄fij∑
i 6=j(rij−r̄)2

(where fij = 1
2{Ĉov(rii, rij)+Ĉov(rjj , rij)}) instead of λ̂ =

∑
i6=j V̂ ar(sij)−r̄fij∑
i 6=j(sij−r̄

√
siisjj)2

(where

fij = 1
2{
√

sjj
sii
Ĉov(sii, sij) +

√
sii
sjj
Ĉov(sjj , sij)}). A complete overview of the covari-

ance targets and their associated estimators of the optimal shrinkage intensity is

given in 3.4.

In order to account for the natural grouping of the covariance targets, the expression

for λ̂ has to be modified as follows. The individual covariances sij have to be replaced

by the individual correlations rij . Thus, in some cases the formula for λ̂ can be sim-

plified yet, for instance for the covariance target F as described above. Note that the

calculation of the variance V̂ ar(rij) of the empirical correlation coefficients can be

estimated similarly as the variance V̂ ar(sij) of the empirical covariance coefficients

as described in 3.3.2: the concrete way to obtain V̂ ar(rij) is applying the formula

for V̂ ar(sij), i.e. Eq. 3.15, to the standardized data matrix. This holds analogously

for obtaining Ĉov(rij , rlm), where applying the formula for Ĉov(sij , slm), i.e. Eq.

3.16, to the standardized data matrix yields the desired estimator.

3.4 Overview of the covariance targets and the associ-

ated estimators of the optimal shrinkage intensity

• Target A: ‘diagonal, unit variance’; 0 estimated parameters

tij =

 1 if i = j

0 if i 6= j

λ̂ =
∑

i6=j V̂ ar(sij)+
∑

i V̂ ar(sii)∑
i 6=j s

2
ij+

∑
i(sii−1)2
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• Target B: ‘diagonal, common variance’; 1 estimated parameter: ν

tij =

 ν = avg(sii) if i = j

0 if i 6= j

λ̂ =
∑

i6=j V̂ ar(sij)+
∑

i V̂ ar(sii)∑
i 6=j s

2
ij+

∑
i(sii−ν)2

• Target C: ‘common (co)variance’; 2 estimated parameters: ν, c

tij =

 ν = avg(sii) if i = j

c = avg(sij) if i 6= j

λ̂ =
∑

i6=j V̂ ar(sij)+
∑

i V̂ ar(sii)∑
i6=j(sij−c)2+

∑
i(sii−ν)2

• Target D: ‘diagonal, unequal variance’; p estimated parameters: sii

tij =

 sii if i = j

0 if i 6= j

λ̂ =
∑

i6=j V̂ ar(sij)∑
i 6=j s

2
ij

• Target E: ‘perfect positive correlation’; p estimated parameters: sii

tij =

 sii if i = j

√
siisjj if i 6= j

λ̂ =
∑

i 6=j V̂ ar(sij)−fij∑
i6=j(sij−

√
siisjj)2

where fij = 1
2

{√
sjj
sii
Ĉov(sii, sij) +

√
sii
sjj
Ĉov(sjj , sij)

}
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• Target F: ‘constant correlation’; p+ 1 estimated parameters: sii, r̄

tij =

 sii if i = j

r̄
√
siisjj if i 6= j

λ̂ =
∑

i 6=j V̂ ar(sij)−r̄fij∑
i6=j(sij−r̄

√
siisjj)2

• Target F*: ‘two constant correlations between genes: a negative and a

Target F*: positive one’; p+ 2 estimated parameters: sii, r̄−, r̄+

tij =



sii if i = j

r̄−
√
siisjj if i 6= j, cor(i, j) < 0

r̄+
√
siisjj if i 6= j, cor(i, j) > 0

0 otherwise

λ̂ =
∑

i6=j V̂ ar(sij)−I(cor(i,j)<0) r̄−fij−I(cor(i,j)>0) r̄+fij∑
i6=j(sij−I(cor(i,j)<0) r̄−

√
siisjj−I(cor(i,j)>0) r̄+

√
siisjj)2

• Target G: ‘constant correlation between connected genes’;

Target G: p+ 1 estimated parameters: sii, r̄

tij =


sii if i = j

r̄
√
siisjj if i 6= j, i ∼ j

0 otherwise

λ̂ =
∑

i6=j V̂ ar(sij)−
∑

i∼j r̄fij∑
i6=j(sij−I(i∼j) r̄

√
siisjj)2
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• Target G*: ‘two constant correlations between connected genes: a negative

Target G*: and a positive one’; p+ 2 estimated parameters: sii, r̄−, r̄+

tij =



sii if i = j

r̄−
√
siisjj if i 6= j, i ∼	 j

r̄+
√
siisjj if i 6= j, i ∼⊕ j

0 otherwise

λ̂ =
∑

i 6=j V̂ ar(sij)−
∑

i∼	j r̄−fij−
∑

i∼⊕j r̄+fij∑
i6=j(sij−I(i∼	j) r̄−

√
siisjj−I(i∼⊕j) r̄+

√
siisjj)2

where ν : average of sample variances

c : average of sample covariances

r̄ : average of sample correlations (for all genes in target F and

only for the connected genes in target G)

r̄−: average of negative sample correlations (for all genes in

target F* and only for the connected genes in target G*)

r̄+: average of positive sample correlations (for all genes in

target F* and only for the connected genes in target G*).
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Chapter 4

Linear discriminant analysis

using Σ̂
SH(IP)

Starting from the shrinkage estimator Σ̂SH(IP) studied in the previous chapter, we

now address its use in the special case of linear discriminant analysis. So far, we have

only dealt with Σ̂SH(IP) under the assumption that the n observed (1× p) predictor

vectors xTk = (xk1, ..., xkp), k = 1, ..., n, come from one homogeneous population.

Within the scope of (linear) discriminant analysis, however, where the predictor

vectors fall into groups or classes, the previous procedure is no more convenient.

In the first section of this chapter, we present and discuss two possible approaches to

the pooled version of Σ̂SH(IP), being referred to as Σ̂∗SH(IP) in the remainder of this

work. Subsequently, we apply the linear discriminant analysis ‘via the SH(IP)’ to

the real-life data sets described in 1.3 and examine both the binary and the c-nary

case, where c > 2. Finally, we discuss our method’s results from different points

of view and give some indication of the additional value of incorporating biological

knowledge into the classification process in the way we proposed in this thesis.

4.1 Σ̂SH(IP) in the case of linear discriminant analysis

Let us consider Section 2.1. We have seen that the pooled empirical (p× p) covari-

ance matrix Spool has the following form (see Eq. 2.11):
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Spool =
1

n− c

c∑
r=1

nr∑
k=1

(xrk − x̄r)(xrk − x̄r)T ,

where nr is the number of observations in class r, r = 1, ..., c, x̄r is the (p× 1) mean

vector for class r and xrk is the (p× 1) vector of predictor variables corresponding

to the k-th observation in class r. It can be easily seen that Spool can be written as

a weighted sum of the within-class covariance matrices, which in turn are estimated

by the standard empirical covariance matrix [18, 48]:

Spool =
1

n− c

c∑
r=1

nr∑
k=1

(xrk − x̄r)(xrk − x̄r)T

=
1

n− c

c∑
r=1

nr∑
k=1

(xrk − x̄r)(xrk − x̄r)T︸ ︷︷ ︸
(nr−1)S(r)

=
1

n− c

c∑
r=1

(nr − 1)S(r), (4.1)

where S(r) denotes the standard unbiased (p × p) empirical covariance matrix for

class r. However, in the high-dimensional setting where Spool is no more suitable we

need a pooled version of a regularized shrinkage estimator.

In Chapter 3, we have introduced the shrinkage estimator Σ̂SH(IP) in a general

framework, i.e. the observations were assumed to come from one homogeneous pop-

ulation. Thus, Σ̂SH(IP) can be regarded as the high-dimensional counterpart of the

standard empirical covariance matrix S in this work. Here, however, we want to

find a high-dimensional counterpart of the pooled empirical covariance matrix Spool

which means formulating a pooled version of Σ̂SH(IP). Note that henceforth the term

Σ̂∗SH(IP) will stand for this pooled version unless otherwise emphasized. In summary:

Standard covariance estimator Pooled covariance estimator

p� n S = 1
n−1

∑n
k=1(xk − x̄)(xr − x̄)T Spool = 1

n−c

∑c
r=1(nr − 1)S(r)

n� p Σ̂SH(IP) = λ̂T + (1 − λ̂)S Σ̂∗SH(IP) = ?
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In the following, we propose two approaches to obtain Σ̂∗SH(IP). While the first one

could be considered to be naive, the second one turns out to be very tedious.

4.1.1 Approach 1: Pooling the within-class shrinkage estimators

Let us consider Eq. 4.1. Intuitively, it may be obvious to compute the pooled version

of Σ̂SH(IP) according to the standard procedure demonstrated above. In particular,

it follows:

Σ̂∗SH(IP) =
1

n− c

c∑
r=1

(nr − 1)Σ̂
(r)
SH(IP)

=︸︷︷︸
Eq. 3.3

1

n− c

c∑
r=1

(nr − 1)
[
λ̂rT

(r) + (1− λ̂r)S(r)
]

=
1

n− c

c∑
r=1

(nr − 1)

S(r) + λ̂r

{
T(r) − S(r)

}
︸ ︷︷ ︸

Dr

 , (4.2)

where Σ̂
(r)
SH(IP) denotes the shrinkage estimator for class r, r = 1, ..., c, S(r) is the stan-

dard unbiased empirical covariance matrix for class r and T(r) denotes the within-

class covariance target for class r. Moreover, λr ∈ [0, 1] is the shrinkage intensity

for class r, i.e. the shrinkage intensities are calculated separately for each class.

Note that Eq. 4.2 characterizes λr from another interesting point of view: it can be

regarded as the weight put on the difference Dr between the covariance target T(r)

for class r and the sample covariance matrix S(r) for class r.

Intuitively, it is clear that pooling the within-class shrinkage estimators Σ̂
(r)
SH(IP) as

described above does not correspond to a pooled Σ̂∗SH(IP) with only one shrinkage

intensity. While both T(r) and S(r), r = 1, ..., c, can be pooled according to the well-

known procedure in Eq. 4.1, pooling the estimated shrinkage intensities λ̂r is far

more complex. We will deal with this subject in 4.1.2. Nevertheless, the approach

we presented is straightforward and thus convenient in practice.
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4.1.2 Approach 2: Deriving the pooled shrinkage estimator with

one shrinkage intensity

In 4.1.1, we pointed out the difficulty arising in case one is interested in a pooled

version of the shrinkage estimator Σ̂SH(IP). This difficulty results from the fact that

the shrinkage intensity has to be estimated and that the estimated λ̂ we would obtain

for the pooled shrinkage estimator Σ̂∗SH(IP) seems not to correspond to pooling the

λ̂r, r = 1, ..., c, according to the accepted procedure in Eq. 4.1. Since this does

not hold for T(r) and S(r), we constrain our attention on the shrinkage intensity,

being referred to as λpool. Note that this part can be skipped since, in this work,

the approach of choice will be the one presented in 4.1.1. For clarity’s sake, we

recommend to continue with 4.2 and to come back to this part at a later point.

In the following, we extend the estimation procedure for the optimal shrinkage in-

tensity introduced by Ledoit and Wolf [31, 33, 32] and presented in 3.3.2 in this work

from the standard to the pooled case. In particular, we draft the development of

an estimator λ̂pool for λpool. For this purpose, let us first list the results from 3.3.2,

being helpful for the subsequent calculations:

a) Eq. 3.11: Analytical form of the optimal shrinkage intensity when S = (s)ij

is unbiased

λ =

∑p
i=1

∑p
j=1 V ar(sij)− Cov(tij , sij)∑p
i=1

∑p
j=1[E(tij − sij)2]

b) Eq. 3.12: Consistent estimator of the optimal shrinkage intensity

λ̂ =

∑p
i=1

∑p
j=1 V̂ ar(sij)− Ĉov(tij , sij)∑p
i=1

∑p
j=1(tij − sij)2

c) Eq. 3.13: Alternative notation of the unbiased empirical covariance

Let xki be the k-th observation of the variable Xi and x̄i = 1
n

∑n
k=1 xki its

empirical mean. Now set wkij = (xki − x̄i)(xkj − x̄j) and w̄ij = 1
n

∑n
k=1wkij .
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Then it holds:

Ĉov(xi, xj) = sij =
n

n− 1
w̄ij

d) Eq. 3.14: Alternative notation of the unbiased empirical variance

V̂ ar(xi) = sii =
n

n− 1
w̄ii

e) Eq. 3.15: Estimator for V ar(sij)

V̂ ar(sij) =
n

(n− 1)3

n∑
k=1

(wkij − w̄ij)2

f) Eq. 3.16: Estimator for Cov(sij , slm)

Ĉov(sij , slm) =
n

(n− 1)3

n∑
k=1

(wkij − w̄ij)(wklm − w̄lm)

g) Eq. 3.17: Estimator for Cov(tij , sij)

Ĉov(tij , sij) =
r̄

2

(√
sjj
sii
Ĉov(sii, sij) +

√
sii
sjj

Ĉov(sjj , sij)

)
,

where r̄ is the average of sample correlations of the covariance target.

Let us now consider the pooled empirical covariance matrix Spool. Then it follows

for V̂ ar(sijpool
):
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V̂ ar(sijpool
)

=︸︷︷︸
Eq. 3.2

V̂ ar

(
1

n− c

c∑
r=1

nr∑
k=1

(xrki − x̄ri)(xrkj − x̄rj)

)

= V̂ ar

(
1

n− c

c∑
r=1

(nr − 1)s
(r)
ij

)

=︸︷︷︸
Eq. 3.13

V̂ ar

(
1

n− c

c∑
r=1

(nr − 1)
nr

nr − 1
w̄ijr

)

=
1

(n− c)2
V̂ ar

(
c∑

r=1

nrw̄ijr

)

=︸︷︷︸
∗

1

(n− c)2

(
V̂ ar(n1w̄ij1) + . . .+ V̂ ar(ncw̄ijc)

)

=
1

(n− c)2

(
n2

1V̂ ar(w̄ij1) + . . .+ n2
c V̂ ar(w̄ijc)

)

=
1

(n− c)2

(
n1V̂ ar(wij1) + . . .+ ncV̂ ar(wijc)

)

=
1

(n− c)2

(
n1

n1 − 1

n1∑
k=1

(wkij1 − w̄ij1)2 + . . .+
nc

nc − 1

nc∑
k=1

(wkijc − w̄ijc)2

)

=︸︷︷︸
Eq. 3.15

1

(n− c)2

c∑
r=1

nr
nr − 1

nr∑
k=1

(wkijr − w̄ijr)2

︸ ︷︷ ︸
(nr−1)2V̂ ar(s

(r)
ij )

=
1

(n− c)2

c∑
r=1

(nr − 1)2V̂ ar(s
(r)
ij ), (4.3)

where w̄ijr = 1
nr

∑nr
k=1wkijr, wkijr = (xkir − x̄ir)(xkjr − x̄jr) and s

(r)
ij is the (ij)-th

entry of the standard unbiased empirical covariance matrix for class r, r = 1, ..., c.

* Note that moments of higher order are neglected.
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It appears from Eq. 4.3 that V̂ ar(sijpool
) can be written by means of the empirical

variances of the individual entries of the within-class covariance matrices S(r) as

defined by Eq. 3.15. Correspondingly, it follows for the covariances:

Ĉov(sijpool
, slmpool) =︸︷︷︸

Eq. 3.16

1

(n− c)2

c∑
r=1

(nr − 1)2Ĉov(s
(r)
ij , s

(r)
lm). (4.4)

Facing the second term to be estimated, i.e. Cov(tijpool
, sijpool

), we find that the cal-

culations from above similarly apply, but yield a more complicated form. Eventually,

we conclude that λ̂pool cannot be written as a weighted sum of the λ̂r, r = 1, ..., c.

For the purpose of convenience, we prefer the approach presented in 4.1.1 in this

thesis.

4.2 Application to real-life data

So far, we have studied the linear discriminant analysis from a rather theoretic point

of view. In this section we focus on real cancer microarray data sets as described in

1.3 and examine the classification performance of the method proposed in this work.

We extract the biological knowledge on gene functional groups from the database

KEGG which we introduced in 2.3 and furthermore discuss the additional value of

incorporating biological knowledge into the classification process.

4.2.1 Denotations and technical remarks

For the purpose of clarity and reproducibility, we first give an outline of the de-

notations we will use and of the methodical or technical details behind the results

in 4.2.2 and 4.2.3, respectively. Let us consider these aspects in the order of their

appearance in the whole classification procedure:
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• Data preparation

We use the two-class data sets Golub−Merge and sCLLex as well as the six-

class data set ALL−a and the four-class data set ALL−b described in 1.3. We

set aside the two-class data set ALL−c for the following reason: the two classes

result from pooling together the ten classes from the original data set ALL.

This drastic pooling, however, is attended by a severe loss of information.

Hence, since we have two other two-class data sets available, we omit the data

set ALL−c.

Note that for computational reasons, we do not employ all variables (genes)

of each data set, but perform a variable selection before. A classical mistake

is to select variables (genes) as a preliminary step based on the whole data set

and to build classification rules based on this reduced set of variables (genes).

However, variable selection should be considered as a part of the construction

of classification rules. Consequently, it should be carried out for each learning

set separately, thus in each iteration of the classification procedure. Further

details and studies concerning this topic can be found in [2, 7, 35, 42, 49]. As

briefly depicted in 1.3, the R package CMA offers various methods performing

variable selection for each learning set separately [43]. In particular, we use

the method GeneSelection(). We choose an ordinary two sample t.test as

concrete variable selection method. We generate the learning and test sam-

ples by employing the method GenerateLearningsets() and use a stratified

five-fold cross-validation as evaluation scheme for the two-class data sets and

a three-fold cross-validation otherwise, repeated ten times in order to achieve

more stable results [10]. The concrete R code for the data preparation is avail-

able on the attached CD.

• Linear discriminant analysis

We have implemented the variants of linear discriminant analysis proposed in

this thesis, i.e. we have implemented the linear discriminant analysis using the

shrinkage estimator Σ̂SH(IP) according to the scheme illustrated below, where

T = {target D ∧ target G ∧ target G∗ ∧ target F ∧ target F∗}:
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Σ̂∗
SH(IP) = 1

n−c

∑c
r=1(nr−1)

[
λ̂rT

(r) + (1− λ̂r)S(r)
]

︸ ︷︷ ︸
Σ̂

(r)

SH(IP)

see:

Eq.3.3, Eq.3.12, Eq.3.13,

Eq.3.14, Eq.3.15, Eq.3.16,

Eq.3.17, Eq.4.2

11111111111111111111⇓

1111111Σ̂∗ −1
SH(IP) = pseudoinverse

(
Σ̂∗

SH(IP)

) see:

part 3.2.4 of Section 3.2

11111111111111111111⇓

d̂r(x) = − 1
2 (x−x̄r)T Σ̂∗ −1

SH(IP) (x−x̄r)+log(p̂(r))
see:

Eq.2.8, Eq.2.10

In words, we first compute the pooled shrinkage estimator from Eq. 4.2. Sub-

sequently, we employ the (pseudo)inverse of this pooled shrinkage estimator in

order to perform the linear discriminant analysis, whereas we use the function

pseudoinverse() from the R package corpcor to obtain the pseudoinverse.

As a result, this yields five variants of LDA ‘via the SH(IP)’, differing only

in terms of the covariance target T. Note that henceforth, we use the follow-

ing abbreviations: rlda.TD, rlda.TG, rlda.TG∗, rlda.TF and rlda.TF∗. The R

program carrying out these different variants of LDA will be outlined in Ap-

pendix A and may be inspected on the attached CD. It has been implemented

such that it can be incorporated into the framework of the CMA package [43].

Thereby, the variants of LDA proposed in this thesis can be called in the CMA

method classification() which carries out the classification by means of the

learning and test sets as defined above.

• Prediction accuracy and comparison of methods

Once the classification has been carried out for all iterations, i.e. for all learn-

ing and test sets, the CMA method evaluation() offers the calculation of a

multiplicity of prediction accuracy measures [43]. In this thesis, we focus on

the average misclassification rate, i.e. the average test error obtained for the

test sets described above. Moreover, we ascertain both the sensitivity and the

87



CHAPTER 4. LINEAR DISCRIMINANT ANALYSIS USING Σ̂SH(IP)

specificity for the two-class data sets according to the explanations in 2.1.3

and 2.2.1.

In order to decide whether our variants of LDA work well on real data sets

we have to compare it to existing classification methods. In this work, we

choose both the diagonal linear discriminant analysis (DLDA) and the nearest

shrunken centroids method (NSC) as competitors. While we perform a variable

selection in the former, this is not necessary in the latter since the NSC method

eliminates a lot of non-contributing variables (genes) itsself [15, 22]. Note that

it is possible to call both methods in the CMA method classification().

Note further that for the NSC method the shrinkage parameter ∆ is optimized

over the grid {0.1, 0.25, 0.5, 1, 2, 5}. Additionally, we do not only constrain our

attention on the comparison with the two competitors from above, but also fo-

cus on the comparison between the five variants of LDA proposed in this thesis.

For this purpose, let us consider these methods. We point out that rlda.TG

and rlda.TG∗ incorporate biological knowledge on gene functional groups. In

contrast, the methods rlda.TD, rlda.TF and rlda.TF∗ do not embed external

knowledge from databases. For instance, it is thus possible to contrast rlda.TG

with rlda.TF and rlda.TG∗ with rlda.TF∗, which gives some indication of the

additional value of incorporating biological knowledge into the classification

process. Further, contrasting rlda.TD with the other variants allows general

statements about the additional value of accounting for correlations between

genes. We will deal with these aspects in 4.2.2 and 4.2.3, respectively.

4.2.2 The binary case: c = 2

Consider the explanations in 4.2.1. Let us now report - for the two-class data sets

Golub−Merge and sCLLex - the results obtained for the different variants of LDA

‘via the SH(IP)’ as well as for the competitors DLDA and NSC method. For each

variant of LDA the top 50, 100, 200 and 500 genes are employed and the results

are compared. Note that the NSC method is carried out once for the whole data

set since it eliminates non-contributing genes itsself. For clarity’s sake, we mark the

best and the second best result by ? and •, respectively.
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Application to the Golub−Merge data

Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 50 0.043 • 0.916 0.979

rlda.TG 50 0.045 0.912 0.979

rlda.TG* 50 0.043 • 0.916 0.979

rlda.TF 50 0.043 • 0.932 • 0.971

rlda.TF* 50 0.254 0.652 0.796

dlda 50 0.057 0.844 0.996 •
nsc 7 129 0.021 ? 0.940 ? 1.000 ?

Table 4.1: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 50 genes (except for nsc) of the two-class data Golub−Merge (n=72).

Figure 4.1: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 50 genes (except for nsc) of the two-class

data Golub−Merge.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 100 0.028 • 0.960 ? 0.979 •
rlda.TG 100 0.029 0.956 • 0.979 •
rlda.TG* 100 0.033 0.944 0.979 •
rlda.TF 100 0.034 0.960 ? 0.969

rlda.TF* 100 0.382 0.516 0.672

dlda 100 0.042 0.880 1.000 ?

nsc 7 129 0.021 ? 0.940 1.000 ?

Table 4.2: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 100 genes (except for nsc) of the two-class data Golub−Merge (n=72).

Figure 4.2: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 100 genes (except for nsc) of the two-class

data Golub−Merge.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 200 0.028 • 0.960 ? 0.979

rlda.TG 200 0.028 • 0.960 ? 0.979

rlda.TG* 200 0.091 0.876 0.927

rlda.TF 200 0.028 • 0.960 ? 0.979

rlda.TF* 200 0.384 0.584 0.632

dlda 200 0.035 0.908 0.996 •
nsc 7 129 0.021 ? 0.940 • 1.000 ?

Table 4.3: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 200 genes (except for nsc) of the two-class data Golub−Merge (n=72).

Figure 4.3: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 200 genes (except for nsc) of the two-class

data Golub−Merge.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 500 0.032 0.948 • 0.979

rlda.TG 500 0.032 0.944 0.981

rlda.TG* 500 0.228 0.744 0.788

rlda.TF 500 0.030 • 0.952 ? 0.979

rlda.TF* 500 0.417 0.584 0.583

dlda 500 0.031 0.916 0.998 •
nsc 7 129 0.021 ? 0.940 1.000 ?

Table 4.4: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 500 genes (except for nsc) of the two-class data Golub−Merge (n=72).

Figure 4.4: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 500 genes (except for nsc) of the two-class

data Golub−Merge.

Results:

• In each data setting, i.e. for the top 50, 100, 200 and 500 selected genes, the methods

rlda.TD, rlda.TG and rlda.TF produce similar results. The slight differences often

are in the range of error fluctuation.

• The methods rlda.TD, rlda.TG and rlda.TF perform well with regard to all prediction

measures. At least two of them outperform, even though marginally, the competitors

NSC method and DLDA as well as the other variants rlda.TG∗ and rlda.TF∗ of LDA

‘via the SH(IP)’ in terms of the sensitivity in three of the four data settings.

• The competitor NSC method outperforms the other methods with regard to the mis-
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classification rate and the specificity. The second competitor DLDA is basically as

competitive as the NSC method in terms of the specificity, but performs only moder-

ately otherwise.

• The methods rlda.TG∗ and rlda.TF∗ tend to produce the worst results. While

rlda.TG∗ performs moderately for the small numbers of selected genes, rlda.TF∗ yields

the highest misclassification rate and also the lowest sensitivity and specificity in all

data settings.

Application to the data sCLLex data

Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 50 0.244 • 0.480 0.913

rlda.TG 50 0.244 • 0.480 0.913

rlda.TG* 50 0.253 0.450 0.913

rlda.TF 50 0.247 0.460 0.920 •
rlda.TF* 50 0.416 0.580 ? 0.593

dlda 50 0.204 ? 0.530 • 0.953 ?

nsc 12 625 0.333 0.380 0.833

Table 4.5: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 50 genes (except for nsc) of the two-class data sCLLex (n=22).

Figure 4.5: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 50 genes (except for nsc) of the two-class

data sCLLex.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 100 0.249 0.450 0.920 •
rlda.TG 100 0.224 ? 0.520 ? 0.920 •
rlda.TG* 100 0.264 0.450 0.897

rlda.TF 100 0.248 0.450 0.920 •
rlda.TF* 100 0.468 0.490 • 0.553

dlda 100 0.228 • 0.480 0.933 ?

nsc 12 625 0.333 0.380 0.833

Table 4.6: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 100 genes (except for nsc) of the two-class data sCLLex (n=22).

Figure 4.6: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 100 genes (except for nsc) of the two-class

data sCLLex.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 200 0.265 0.420 0.913

rlda.TG 200 0.267 0.430 0.903

rlda.TG* 200 0.284 0.510 • 0.833

rlda.TF 200 0.249 • 0.440 0.927 •
rlda.TF* 200 0.533 0.560 ? 0.410

dlda 200 0.228 ? 0.480 0.933 ?

nsc 12 625 0.333 0.380 0.833

Table 4.7: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 200 genes (except for nsc) of the two-class data sCLLex (n=22).

Figure 4.7: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 200 genes (except for nsc) of the two-class

data sCLLex.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 500 0.222 • 0.470 0.953 ?

rlda.TG 500 0.218 ? 0.480 0.953 ?

rlda.TG* 500 0.279 0.550 ? 0.813

rlda.TF 500 0.218 ? 0.480 0.953 ?

rlda.TF* 500 0.444 0.510 • 0.580

dlda 500 0.264 0.450 0.893 •
nsc 12 625 0.333 0.380 0.833

Table 4.8: Overview of the 10 × five-fold CV error (the average misclassification rate over

all 10×5=50 test sets), the sensitivity and the specificity obtained for each variant of LDA

using the top 500 genes (except for nsc) of the two-class data sCLLex (n=22).

Figure 4.8: Graphical illustration of the misclassification rate, the sensitivity and the

specificity for each variant of LDA using the top 500 genes (except for nsc) of the two-class

data sCLLex.

Results:

• The classification results we obtain with this data set are relatively bad throughout all

methods. This is likely to arise from the fact that the data set sCLLex only contains

n=22 observations.

• In each data setting, i.e. for the top 50, 100, 200 and 500 selected genes, the methods

rlda.TD, rlda.TG and rlda.TF produce similar results. The differences often are in

the range of error fluctuation.

• The methods rlda.TD, rlda.TG and rlda.TF perform relatively well with regard to all
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prediction measures in each data setting and even outperform the other methods in

some situations. Especially for p=500, these three methods outperform the competi-

tors NSC method and DLDA as well as the other variants rlda.TG∗ and rlda.TF∗ of

LDA ‘via the SH(IP)’ in terms of the miclassification rate and the specificity.

• The competitor DLDA outperforms the other methods with regard to the misclassi-

fication rate and the specificity in two of the four data settings and works relatively

well otherwise. The second competitor NSC method leads to the worst sensitivity and

performs only slightly better otherwise.

• Although rlda.TF∗ produces the worst results in general, it outperforms in terms

of the sensitivity in two of the four data settings. The method rlda.TG∗ performs

relatively well with regard to the sensitivity, but is not competitive otherwise.
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4.2.3 The c-nary case: c > 2

Consider the explanations in 4.2.1. In the following, we present - for the six-class

data set ALL−a and for the four-class data set ALL−b - the results obtained for the

different variants of LDA ‘via the SH(IP)’ as well as for the competitors DLDA and

NSC method. For each variant of LDA the top 50, 100 and 200 genes are employed

and the results are compared. Note that the NSC method is carried out once for the

whole data set since it eliminates non-contributing genes itsself. For clarity’s sake,

we mark the best and the second best result by ? and •, respectively.

Application to the ALL−a data

Method p (# genes) 10 × three-fold

CV error

rlda.TD 50 0.365

rlda.TG 50 0.362 •
rlda.TG* 50 0.494

rlda.TF 50 0.362 •
rlda.TF* 50 0.807

dlda 50 0.349 ?

nsc 12 625 0.384

Figure 4.9: Overview and graphical illustration of the 10 × three-fold CV error (the average

misclassification rate over all 10×3=30 test sets) obtained for each variant of LDA using the

top 50 genes (except for nsc) of the six-class data ALL−a (n=128).
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Method p (# genes) 10 × three-fold

CV error

rlda.TD 100 0.363

rlda.TG 100 0.361 •
rlda.TG* 100 0.542

rlda.TF 100 0.362

rlda.TF* 100 0.806

dlda 100 0.351 ?

nsc 12 625 0.384

Figure 4.10: Overview and graphical illustration of the 10 × three-fold CV error (the

average misclassification rate over all 10×3=30 test sets) obtained for each variant of LDA

using the top 100 genes (except for nsc) of the six-class data ALL−a (n=128).

Method p (# genes) 10 × three-fold

CV error

rlda.TD 200 0.373

rlda.TG 200 0.372

rlda.TG* 200 0.583

rlda.TF 200 0.371 •
rlda.TF* 200 0.840

dlda 200 0.357 ?

nsc 12 625 0.384

Figure 4.11: Overview and graphical illustration of the 10 × three-fold CV error (the

average misclassification rate over all 10×3=30 test sets) obtained for each variant of LDA

using the top 200 genes (except for nsc) of the six-class data ALL−a (n=128).
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Results:

• The classification results we obtain with this data set are relatively bad throughout

all methods. This, however, is the standard case for c-class data sets (c > 2).

• In each data setting, i.e. for the top 50, 100 and 200 selected genes, the methods

rlda.TD, rlda.TG and rlda.TF produce similar results. The slight differences often are

in the range of error fluctuation. The three methods rlda.TD, rlda.TG and rlda.TF

outperform, even though slightly, the other methods except the DLDA in all data

settings.

• The competitor DLDA marginally outperforms the other methods in each data setting.

The second competitor NSC method classifies only moderately.

• The methods rlda.TG∗ and rlda.TF∗ produce the worst results, rlda.TF∗ yields even

more misclassifications than correct classifications in all data settings.

Application to the ALL−b data

Method p (# genes) 10 × three-fold

CV error

rlda.TD 50 0.250 •
rlda.TG 50 0.255

rlda.TG* 50 0.313

rlda.TF 50 0.250 •
rlda.TF* 50 0.639

dlda 50 0.236 ?

nsc 12 625 0.250 •

Figure 4.12: Overview and graphical illustration of the 10 × three-fold CV error (the

average misclassification rate over all 10×3=30 test sets) obtained for each variant of LDA

using the top 50 genes (except for nsc) of the four-class data ALL−b (n=128).
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Method p (# genes) 10 × three-fold

CV error

rlda.TD 100 0.266

rlda.TG 100 0.269

rlda.TG* 100 0.344

rlda.TF 100 0.261

rlda.TF* 100 0.709

dlda 100 0.231 ?

nsc 12 625 0.250 •

Figure 4.13: Overview and graphical illustration of the 10 × three-fold CV error (the

average misclassification rate over all 10×3=30 test sets) obtained for each variant of LDA

using the top 100 genes (except for nsc) of the four-class data ALL−b (n=128).

Method p (# genes) 10 × three-fold

CV error

rlda.TD 200 0.280

rlda.TG 200 0.281

rlda.TG* 200 0.446

rlda.TF 200 0.277

rlda.TF* 200 0.768

dlda 200 0.238 ?

nsc 12 625 0.250 •

Figure 4.14: Overview and graphical illustration of the 10 × three-fold CV error (the

average misclassification rate over all 10×3=30 test sets) obtained for each variant of LDA

using the top 200 genes (except for nsc) of the four-class data ALL−b (n=128).
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Results:

• The classification results we obtain with this data set are relatively bad throughout

all methods. This, however, is the standard case for c-class data sets (c > 2).

• In each data setting, i.e. for the top 50, 100 and 200 selected genes, the methods

rlda.TD, rlda.TG and rlda.TF produce similar results. The slight differences often are

in the range of error fluctuation. The three methods rlda.TD, rlda.TG and rlda.TF

perform well, but do not outperform the other methods.

• The competitor DLDA outperforms, even though marginally, the other methods in

each data setting. The second competitor NSC method performs slightly better than

the variants of LDA ‘via the SH(IP)’.

• The methods rlda.TG∗ and rlda.TF∗ produce the worst results, rlda.TF∗ yields even

more misclassifications than correct classifications in all data settings.

4.3 Discussion

Having reported the results obtained for the different variants of LDA ‘via the

SH(IP)’ and its competitors DLDA and NSC method using the real-life gene ex-

pression data sets described in 1.3, we now constrain our attention on the extensive

discussion of the results from above.

Generally, it appears that a decrease of the sample size n and an increase of the

number c of classes leads to worse results. For instance, the effect of the sample size

can be illustrated by comparing the misclassification rate, the sensitivity and the

specificity for the two-class data sets Golub−Merge and sCLLex. Intuitively, these

effects are clear and have been observed frequently in previous studies. Further, we

find that the methods rlda.TD, rlda.TG and rlda.TF produce similar results in each

data setting for all data sets. This finding also applies for the standard deviations

which can be inspected in Appendix B. The slight differences often are in the range

of error fluctuation. This unexpected result gives some indication of the additional

value of incorporating external biological knowledge into the covariance target and

of accounting for correlations between genes in general. Both rlda.TG and rlda.TF

assume correlations between genes while rlda.TG additionally incorporates external

biological knowledge, see 3.2. Neither rlda.TG nor rlda.TF performs considerably

better than rlda.TD which employs a diagonal covariance target. In the following,
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we point out possible reasons explaining this result. Note that rlda.TG equals

rlda.TD if the selected genes do not belong to any gene functional group in the

database KEGG. Theoretically, this can occur since more than 50 % of the genes

from the data sets we used are in no gene functional group 1. Hence, the reason for

rlda.TG and rlda.TD producing similar results might be that they have basically

the same form in the data settings we have chosen. On the other hand, rlda.TD

equals rlda.TF if the average of sample correlations , i.e. r̄, takes the value zero. In

3.2, we have found that r̄ in fact is very close to zero.

The methods rlda.TD, rlda.TG and rlda.TF perform well in binary and c-nary clas-

sification problems in each data setting. In some situations, they even outperform

the competitors DLDA and NSC method. Although the margin of improvement

often is slight, it is nevertheless remarkable that the three methods are still compet-

itive in the c-nary case. On the contrary, rlda.TG∗ and rlda.TF∗ tend to produce

the worst results. These methods seem to suffer severely from the fact that the

associated covariance targets are likely to be indefinite. Consequently, the compu-

tation of the Moore-Penrose pseudoinverse is unstable which leads to bad results.

Concerning the competitors DLDA and NSC method, we find that they work well

and often outperform the other methods, but are also outperformed themselves by

the methods rlda.TD, rlda.TG and rlda.TF in some situations. Especially when the

number of classes increases, the DLDA shows advantage over the other methods. It

outperforms, albeit marginally, the other competitor NSC method and the variants

of LDA ‘via the SH(IP)’ in each data setting. The NSC method appears to weaken

the more classes a data set consists of. This confirms the findings by Guo et al. [22].

In conclusion, let us sum up the crucial statements: 1. According to our results,

there is no additional value of incorporating external biological knowledge in the way

we did in this thesis and of accounting for correlations between genes in general. The

method rlda.TD turns out to suffice. Note that we have only considered data settings

with p ≤ 500. 2. The method rlda.TD can be as competitive as the NSC method in

binary classification problems and appears to perform better in c-nary classification

problems. Both methods require the determination of a shrinkage parameter. While

1In the data set Golub−Merge 4 172 out of 7 129 genes (=̂ 58.5%) are in no gene functional

group. In the data sets ALL and sCLLex 8 040 out of 12 625 genes (=̂ 63.7%) are in no gene

functional group.
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the shrinkage parameter in the NSC method is determined using a cross-validation

procedure which is computationally very expensive, the shrinkage parameter in the

rlda.TD is determined analytically. 3. For the purpose of prognosis, more studies

are still needed. A simulation study might be beneficial for the comparison of the

NSC method and the rlda.TD.
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Chapter 5

Summary and Outlook

In this thesis, we have studied a variant of regularized linear discriminant analysis

incorporating biological knowledge on gene functional groups from the database

KEGG. This chapter’s objective is to give a summary of the methodological path

we followed as well as the results we achieved. The crucial statements are stressed

and an outlook to our future work in this field - being within the scope of current

scientific focus - is given.

In the introductory Chapter 1, we lead to the topic and gave a brief guideline through

this thesis. We further provided an overview of the five microarray gene expression

data sets we used throughout this thesis. For the purpose of knowledge extraction,

such data sets have to fulfill the requirement of being compatible with the database

KEGG.

In Chapter 2, we presented the scientific scope on which this thesis is built. In

particular, we started with explaining the idea behind discriminant analysis which

nowadays can be seen as a generic term for a multiplicity of methods. In this thesis,

we focused on the linear discriminant analysis (LDA) resulting from the assumption

of equal within-class covariance matrices. We further discussed its generalization

to the high-dimensional setting where the number p of variables by far exceeds the

number n of observations. Here, the major challenge is to modify the traditional

pooled empirical covariance estimator such that the resulting estimator has the

required properties of being well-conditioned and invertible. In 2.2.2, we briefly
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mentioned some approaches coping with high-dimensionality and pointed out the

shrinkage principle they are based on. Moreover, we addressed the issue of measuring

the prediction accuracy. According to several studies using a repeated K-fold cross-

validation procedure turns out to be beneficial in the n� p case [9]. Basic insights

into the database KEGG where prior biological information is encoded by graphs

were given in 2.3. For simplicity’s sake, we assumed that a KEGG pathway forms a

gene functional group. We completed Chapter 2 with a review of the approaches by

Guillemot et al. [17] and Tai and Pan [46], both differentially incorporating prior

knowledge into the regularized linear discriminant analysis. Guillemot et al. assume

the availability of one single graph including all genes from a given data set which,

however, is not available in practice. Tai and Pan group the genes from a given data

set according to their biological functions into a block-diagonal structure. Hence,

the genes occuring in multiple gene functional groups are omitted or duplicated in

order to ensure the between-group independence. In our opinion, however, neither

omitting nor duplicating should be the strategy of choice.

In Chapter 3, we first detached our explanations from the special case of linear

discriminant analysis and introduced a new covariance estimation procedure we re-

ferred to as SHIP: SHrinking and Incorporating Prior knowledge. The resulting

covariance estimator Σ̂SHIP is based on the shrinkage estimator introduced by Ledoit

and Wolf [32] and picked up by Schäfer and Strimmer [41], being enhanced by con-

sideration of prior knowledge on gene functional groups. In order to incorporate this

knowledge into the shrinkage estimator, we proposed two modified versions of target

F from Schäfer and Strimmer where genes that occur in the same gene functional

group have constant correlation. As a consequence, we do not need to omit or du-

plicate any genes like in Tai and Pan. While the first version employs one constant

correlation (i.e. the average of sample correlations between connected genes), the

second one employs a negative and a positive constant correlation. Although the

latter appears to be more adequate in the context of biological interpretation, it

turns out to be strongly indefinite and thus does not fulfill the positive definiteness

requirement. In 3.3, we studied in detail the analytic determination of the optimal

shrinkage intensity λ, whereas optimality is considered from a decision theoretic

perspective with a quadratic loss function. In fact, the analytic determination of

λ constitutes a clear advantage over common approaches like cross-validation de-
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manding computationally very expensive procedures. Subsequently, we dealt with

the consistent estimation of λ. For this purpose, we followed the explanations by

Ledoit and Wolf and Schäfer and Strimmer and additionally gave a detailed proof

of the formula. We have implemented the shrinkage estimator ‘via the SH(IP)’, i.e.

the shrinkage estimator where one can choose between different covariance targets,

in the language R.

Chapter 4 addressed a variant of regularized linear discriminant analysis which gen-

eralizes the idea of the shrinkage estimator introduced in Chapter 3. We demon-

strated in detail how the ideas from Chapter 3 can technically be included into the

framework of linear discriminant analysis. In particular, we discussed two possible

approaches to the pooled version of the shrinkage estimator from above. While the

first one consists in pooling the within-class shrinkage estimators, the second one

aims at establishing the theoretical framework for the pooled shrinkage estimator

with one shrinkage intensity in the sense of Ledoit and Wolf. In this thesis, we em-

ployed the first approach. Using the real-life data presented in Chapter 1, we further

examined and compared the classification performance of five variants of the LDA

‘via the SH(IP)’, from which two incorporate biological knowledge on gene func-

tional groups and three do not. They have been implemented in the language R. We

chose the diagonal linear discriminant analysis (DLDA) and the nearest shrunken

centroids method (NSC) [15] as competitors. According to our results, there seems

to be no additional value of incorporating external biological knowledge in the way

we did in this thesis and of accounting for correlations between genes in general. We

found that the variant of LDA ‘via the SH(IP)’ employing the diagonal covariance

target D from Schäfer and Strimmer suffices. Moreover, it was shown that it can

be as competitive as the NSC method in binary classification problems and appears

to perform better in c-nary classification problems. Although more studies are still

needed in order to compare both methods, the fact that the shrinkage intensity in

the method we proposed is determined analytically and thus leads to a minimum

mean squared error of the resulting estimator appears to be a clear advantage.
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In the following, let us consider some subjects to our future research within this

field. Some of these subjects are directly based on the ideas pursued in this thesis.

Outlook 1

In 2.3, it was shown that KEGG pathways are represented as graphs in which the

edges stand for the chemical reactions or relations and the vertices stand for the

genes taking part in these reactions or relations [28]. According to Tai and Pan [46],

we assumed that a KEGG pathway forms a gene functional group. In the latter

all genes are related to each other via their function. Thus, we concluded that for

each pair of genes in a KEGG graph there exists at least one path whose length

can be defined as the number of edges lying between these two genes. Our idea was

the additional incorporation of the length of the shortest path between two genes

from one gene functional group into target G proposed in 3.2.2. The underlying

hypothesis was that genes being close to each other in the pathway are more likely

to co-express. We defined the resulting covariance target as follows.

Target H:

tij =


sii if i = j

r̄
√
siisjj

l(gi,gj) if i 6= j, i ∼ j

0 otherwise

where r̄ is the average of sample correlations between connected genes and l(gi, gj)

denotes the length of the shortest path between the genes gi and gj , i 6= j, i, j =

1, ..., p. We found, however, that this approach fails for the following reason. The

genes included in a KEGG graph, i.e. the graph’s vertices, are not necessarily asso-

ciated via any path. More precisely, the number of edges being connected to such a

gene might be zero. Figur 5.1 (see below) shows the graphical representation of the

KEGG pathways hsa04510, hsa04664, hsa04010 and hsa04640 and illustrates well

the difficulties possibly arising in the computation of target H as proposed above.

For instance, the pathway hsa04640 represents the extreme case since is consists of

87 vertices and zero edges.
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Figure 5.1: Graphical representation of the KEGG pathways hsa04510, hsa04664,

hsa04010 and hsa04640 (from top left to bottom right).

An alternative to target H imposing an additional restriction might be as follows.

Target I:

tij =


sii if i = j

r̄
√
siisjj

l(gi,gj) if i 6= j, i ∼ j, l(gi, gj) > 0

0 otherwise

where r̄ is the average of sample correlations between connected genes and l(gi, gj)
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denotes the length of the shortest path between the genes gi and gj , i 6= j. Moreover,

a rigorous approach we though try to avoid would be to consider only the genes for

which the length as defined above is positive. Nevertheless, we have not fully under-

stood yet the detailed biological background of gene functional groups, pathways and

their graphical representation. We are currently trying to gain more understanding

of this topic in order to improve the handling of biological knowledge within the

regularized linear discriminant analysis. In fact, future research in biostatistics will

demand more biological and medical expertise on the part of statisticians.

Outlook 2

In this thesis, we have tried to incorporate biological knowledge on gene functional

groups by shrinking the empirical covariance matrix towards a non-diagonal covari-

ance structure. For instance, we have considered target G in 3.2.2 where genes

occuring in at least one same gene functional group have constant correlation. We

found in 4.2 that non-diagonal covariance targets do not lead to an improvement of

the classification accuracy. It was shown that the method rlda.TD which employs

a diagonal covariance target performs well and can be as competitive as the NSC

method. Hence, the question of developing a diagonal covariance target incorporat-

ing prior knowledge on gene functional groups arises. In a next step, we will study

a modified version of the diagonal target B outlined in 3.2.1 which is characterized

by common variances. One idea might be to group the genes according to their

functions and to compute the mean variance for each gene functional group sepa-

rately such that the genes occuring in the same group have common variance. For

G disjoint gene functional groups, this procedure would yield G variances. Since,

however, the gene functional groups do overlap in practice, one might apply the fol-

lowing strategy. Let gene g occur in three gene functional groups. Then we propose

its variance to be computed as the average of the three mean variances obtained for

the gene functional groups gene g occurs in. In our opinion, it might be worthwhile

to work on such a covariance target in order to subsequently include it into the

framework of LDA ‘via the SH(IP)’.
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Outlook 3

In 4.1, we proposed two possible approaches to the pooled version of the shrinkage

estimator from Chapter 3. In the second approach we tried to establish the theo-

retical framework for the pooled shrinkage estimator with one shrinkage intensity in

the sense of Ledoit and Wolf. Obviously the situation becomes more difficult than

in the first approach which consists in pooling the within-class shrinkage estima-

tors. Nevertheless, it is worthwhile to establish the full theoretical framework and

to implement the resulting pooled shrinkage estimator in order to examine whether

the second approach yields a better classification performance. We are currently

working on this topic.

Outlook 4

Moreover, it might be beneficial to incorporate prior biological knowledge on gene

functional groups into the variable selection process. One possibility could be to

select solely the genes occuring in at least one gene functional group. In case the

number of genes is still too large, one could subsequently perform variable selection

using the reduced set of genes. In this thesis, we have performed variable selection

without considering the knowledge extracted from KEGG. The motivation behind

this approach was being cautious in using this prior knowledge.

Outlook 5

In this thesis, we extracted the biological knowledge on gene functional groups using

the database KEGG. Additionally, it might be interesting to employ one of the

various other existing databases in order to compare the results. Besides KEGG

[28] the well-known databases are Biocarta [6], BioCyc [29], Gene Ontology [3],

GenMAPP [21], Reactome [27] and TransPath [30].
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Chapter 6

Conclusion

The result of our endeavors to improve the prediction accuracy by incorporating

prior biological knowledge on gene functional groups is - from one of the various

points of view of this thesis - disappointing. Even though we have suggested two

different possibilities to embed external knowledge on gene functional groups into

the regularized linear discriminant analysis, there is no evidence for neither of them

to be the clear winner in comparison with well-known methods such as the diagonal

linear discriminant analysis (DLDA) and the nearest shrunken centroids method

(NSC) which both are applicable in the high-dimensional setting. The fact that our

approach may improve the results’ interpretability is only a cold comfort given that

the price for this slightly better interpretability is a more technical procedure due

to the application of the database KEGG. On the other hand, initially unexpected

results opened up the gate to interesting directions of our future research in this

field. From the current point of view, the next step should be developing a diagonal

covariance target incorporating prior knowledge on gene functional groups in order

to subsequently include it into the framework of LDA ‘via the SH(IP)’.

In conclusion, we believe that the field of class prediction methods incorporating

prior biological knowledge from databases is on the rise. Due to the tremendous

progress on the biological side it is though a challenge to handle this knowledge

appropriately. Indeed, future research in biostatistics - and especially in the field of

statistical genetics - will demand a large degree of biological and medical expertise

on the part of statisticians.
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Computational aspects

The statistical analyses presented in this thesis were carried out by means of the

statistical software and language R 2.9.1. Most of these analyses also can be car-

ried out by using former versions of R. The extraction of biological knowledge from

KEGG, however, requires the loading of packages which were built under recent

versions. In order to ensure a proper operability of these packages, we thus recom-

mend to use at least R 2.9.1. We have both employed existing methods and newly

implemented the methods proposed in this thesis, e.g. the variants of LDA ‘via the

SH(IP)’ examined in Chapter 4.

For clarity’s sake, we will solely give brief descriptions of the most important pro-

cedures we have implemented. The complete programming codes, inclusively de-

tailed examples for the extraction of knowledge from KEGG as well as the methods

employed in Chapter 3, can be found in the folder ‘R.code’ on the attached CD.

Subsequently, we present an example demonstrating how to perform the different

variants of LDA proposed in this thesis in R.

A.1 Description of the software

In a nutshell, we present an outline of the most important methods we have imple-

mented. Note that - according to the explanations in Section 2.3 - we assume that

a KEGG pathway is a gene functional group and vice versa.
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• check.path()

The auxiliary function check.path() checks whether two pathway lists p1

and p2 share at least one name. Here, a pathway list represents a list of

pathways/gene functional groups in which a certain gene is included. It can

be obtained from KEGG. Correspondingly, check.path() checks whether two

genes have at least one pathway in common.

Input:

1. A pathway list p1.

2. A pathway list p2.

Output:

0 or 1. The value 1 means that the two genes have at least one pathway in

common. The value 0 means that the two genes have no pathway in common.

In case both genes are in no pathway, i.e. p1 = NA and p2 = NA, this is not

considered as common pathway.

• target.help()

The auxiliary function target.help() uses check.path() and creates a ma-

trix indicating whether there is a connection between two genes (i.e. whether

the two genes have at least one pathway in common).

Input:

A gene list genesINpaths which can be obtained from KEGG. For details

see the file ‘pathway.extraction.KEGG.r’ in the folder ‘KEGG.examples’ of the

folder ‘R.code’ on the attached CD. Each entry of genesINpaths is itself a list

of pathway names specifying the pathways in which a gene is included. If a

gene is not included in any pathway, the entry is NA.

Output:

A matrix with the entries 0 and 1. 0 means that the two genes have no pathway

in common. 1 means that the two genes have at least one pathway in common.

• targetG()

The function targetG() uses target.help() and creates the covariance tar-

get G as introduced in Chapter 3.
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Input:

1. A gene list genesINpaths. Each entry of genesINpaths is itself a list of

pathway names specifying the pathways in which a gene is included. If a gene

is not included in any pathway, the entry is NA.

2. The data matrix x.

Output:

1. The covariance target G.

2. The mean correlation cora over the genes that have at least one pathway

in common.

• targetGstar()

The function targetGstar() uses target.help() and creates the covariance

target G∗ as introduced in Chapter 3, i.e. we allow two mean correlations (a

positive and a negative one) in order to pay attention to the fact that genes

can be negatively correlated within the same pathway.

Input:

1. A gene list genesINpaths. Each entry of genesINpaths is itself a list of

pathway names specifying the pathways in which a gene is included. If a gene

is not included in any pathway, the entry is NA.

2. The data matrix x.

Output:

1. The covariance target G∗.

2. The mean correlation cora.pos over the genes that have at least one path-

way in common and that are positively correlated.

3. The mean correlation cora.neg over the genes that have at least one path-

way in common and that are negatively correlated.

• choose.target()

The function choose.target() is able to create three types of target matrices,

i.e. target D, target F and target F∗ from Chapter 3. The choice of the

concrete covariance target is controlled by the argument type.
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Input:

1. The data matrix x.

2. The denotation type of the concrete target matrix to be computed.

Output:

1. The covariance target chosen by the argument type.

2. The mean correlation cora over all correlations. For type = “targetF∗”

cora is a vector consisting of cora.pos and cora.neg.

• shrink.estim()

The function shrink.estim() is able to compute the different variants of the

shrinkage estimator ‘via the SH(IP)’ from Chapter 3. Since only the correla-

tions are shrunken, the standardized data matrix is employed as proposed by

Schäfer and Strimmer [41], see 3.3.3. The method shrink.estim() is created

for the target matrices D, F, F∗, G and G∗ which can be obtained by using

the functions targetG(), targetGstar() or choose.target().

Input:

1. The data matrix x.

2. An object tar created by targetG(), targetGstar() or choose.target().

Output:

1. One variant of the shrinkage estimator ‘via the SH(IP)’, depending on the

argument tar.

2. The shrinkage intensity lambda.

• rlda.iter()

The function rlda.iter() carries out the LDA based on the Bayes classifica-

tion rule with normally distributed predictors for one iteration. The possible

covariance estimators are pooled variants of the shrinkage estimator ‘via the

SH(IP)’ obtained by using shrink.estim() (see Section 4.1).

Input:

1. The learning set Xlearn (see Section 2.1.3).

2. The test set Xtest (see Section 2.1.3).

3. The vector Ylearn of class observations belonging to the learning set.
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4. The argument type indicating which target matrix is used for computing

the shrinkage estimator. One can choose between type = “targetD”, type =

“targetF”, type = “targetF∗”, type = “targetG”, type = “targetG∗”and

type = “standard” (especially for n > p, computes the standard pooled co-

variance matrix).

5. A gene list genesINpaths (see above). It is relevant for type = “targetG”

and type = “targetG∗”, i.e. for the targets incorporating biological knowl-

edge from KEGG. For the other types where a gene list is not necessary, one

can set genesINpaths=NA.

Output:

The predicted classes for Xtest.

• rldaCMA()

The method rldaCMA() has been incorporated into the framework of the CMA

package [43]. It employs rlda.iter() in each iteration and can be called as

classifier in the CMA method classification() which subsequently carries

out the class prediction using the learning and test sets as generated by the

CMA method GenerateLearningsets().

Input:

1. The complete data matrix X.

2. The vector y of class observations belonging to X.

3. The indices learnind specifying the learning and test sets which in turn

are generated by the CMA method GenerateLearningsets().

4. The argument type indicating which target matrix is used for computing

the shrinkage estimator (see rlda.iter()).

5. A gene list genesINpaths (see rlda.iter()).

Output:

The predicted classes for all iterations, i.e. for all test sets.
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A.2 Using the software

In the following, we present an example in order to demonstrate how to use the

software from A.1. We use the two-class data set Golub−Merge. We presume that

the necessary programming codes as supplemented on the attached CD are properly

loaded before the code of the example is used. Loading all required packages and

the programming codes can be done by using the file ‘initialization.r’ in the folder

‘R.code’.

1. Initialization

source("initialization.r")

2. Data preparation

# a) We load and prepare the data set Golub_Merge.

library(golubEsets)

data(Golub_Merge)

show(Golub_Merge)

phenodata <- pData(Golub_Merge)

Y <- phenodata$ALL.AML

X <- exprs(Golub_Merge)

X <- t(X)

# b) We load the annotation package for the data set Golub_Merge.

library(hu6800.db)

# c) We extract the "biological knowledge" for the data set Golub_Merge.

genelist <- as.list(hu6800PATH)

# d) We generate the learning and test sets employing the CMA package and

# use a stratified five-fold cross-validation as scheme.
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set.seed(1234)

learnset <- GenerateLearningsets(y=Y,method="CV",fold=5,niter=10,strat=TRUE)

# e) We perform a gene selection in each learning set using the CMA package.

geneselect <- GeneSelection(X=X,y=Y,learningsets=learnset,method="t.test")

3. Linear discriminant analysis ‘via the SH(IP)’

# a) We carry out the classification using rldaCMA, the method we developed

# in the Chapters 3 and 4. First, we choose type="TargetD". Second, we

# choose type="TargetG" for illustration purposes. The argument nbgene=50

# indicates that a variable selection is performed in each iteration and

# the best 50 genes are employed.

classifyTD <- classification(X=X,y=Y, learningsets=learnset, type="TargetD",

genesINpaths=NA, genesel=geneselect, nbgene=50,

classifier=rldaCMA)

classifyTG <- classification(X=X,y=Y, learningsets=learnset, type="TargetG",

genesINpaths=genelist, genesel=geneselect, nbgene=50,

classifier=rldaCMA)

# b) We examine the classification performance using the CMA method

# evaluation(). We choose the prediction accuracy measures average

# misclassification rate over all iterations, average sensitivity over

# all iterations and average specificity over all iterations.

evalTD.m <- evaluation(classifyTD, measure="misclassification")

evalTD.s <- evaluation(classifyTD, measure="sensitivity")

evalTD.sp <- evaluation(classifyTD, measure="specificity")

evalTG.m <- evaluation(classifyTG, measure="misclassification")

evalTG.s <- evaluation(classifyTG, measure="sensitivity")

evalTG.sp <- evaluation(classifyTG, measure="specificity")
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4. Some outputs

# a) show(Golub_Merge) leads to the annotation package to be loaded from

# http://www.bioconductor.org/.

show(Golub_Merge)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 7129 features, 72 samples

element names: exprs

phenoData

sampleNames: 39, 40, ..., 33 (72 total)

varLabels and varMetadata description:

Samples: Sample index

ALL.AML: Factor, indicating ALL or AML

...: ...

Source: Source of sample

(11 total)

featureData

featureNames: AFFX-BioB-5_at,AFFX-BioB-M_at,...,Z78285_f_at(7129 total)

fvarLabels and fvarMetadata description: none

experimentData: use ’experimentData(object)’

pubMedIds: 10521349

Annotation: hu6800

# b) The genelist has the following form (we consider only the first,

# the second and the sixth element (gene) for illustration). It

# corresponds to the argument genesINpaths.

genelist[c(1:2,6)]

$A28102_at

[1] "04080"

$AB000114_at

[1] NA

$AB000409_at

[1] "04010" "04910"
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# c) The evaluation of classifyTD and classifyTG yields the following

# results (we consider only the misclassification rate):

evalTD.m

evaluated method: ’rldaCMA’

scheme used :’iterationwise’

performance measure: ’misclassification’

mean performance is 0.043

with a standard error of 0.007

evalTG.m

evaluated method: ’rldaCMA’

scheme used :’iterationwise’

performance measure: ’misclassification’

mean performance is 0.045

with a standard error of 0.008
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Additional remarks

In Section 4.2, we found that the methods rlda.TD, rlda.TG and rlda.TF produce

similar results in each data setting for all data sets we employed, i.e. for the two-

class data sets Golub−Merge and sCLLex as well as for the six-class data set ALL−a

and for the four-class data set ALL−b. Thus, we obtained similar results with

regard to the prediction measures misclassification rate, sensitivity and specificity,

whereas each given prediction measure is the average prediction measure over all

test sets. For the sake of completeness and accuracy, the standard deviation should

be examined. In the following, we present - for the methods rlda.TD, rlda.TG

and rlda.TF - the results from 4.2 and the corresponding standard deviations for

each data set. Apparently the similarity of the results also applies for the standard

deviations which confirms the findings from 4.2.
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Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 50 0.043 (± 0.007) 0.916 (± 0.018) 0.979 (± 0.006)

rlda.TG 50 0.045 (± 0.008) 0.912 (± 0.019) 0.979 (± 0.006)

rlda.TF 50 0.043 (± 0.007) 0.932 (± 0.016) 0.971 (± 0.007)

rlda.TD 100 0.028 (± 0.006) 0.960 (± 0.011) 0.979 (± 0.006)

rlda.TG 100 0.029 (± 0.006) 0.956 (± 0.013) 0.979 (± 0.006)

rlda.TF 100 0.034 (± 0.006) 0.960 (± 0.011) 0.969 (± 0.007)

rlda.TD 200 0.028 (± 0.006) 0.960 (± 0.011) 0.979 (± 0.006)

rlda.TG 200 0.028 (± 0.006) 0.960 (± 0.011) 0.979 (± 0.006)

rlda.TF 200 0.028 (± 0.006) 0.960 (± 0.011) 0.979 (± 0.006)

rlda.TD 500 0.032 (± 0.006) 0.948 (± 0.014) 0.979 (± 0.006)

rlda.TG 500 0.032 (± 0.006) 0.944 (± 0.014) 0.981 (± 0.006)

rlda.TF 500 0.030 (± 0.006) 0.952 (± 0.013) 0.979 (± 0.006)

Method p (# genes) 10 × five-fold CV error Sensitivity Specificity

rlda.TD 50 0.244 (± 0.026) 0.480 (± 0.057) 0.913 (± 0.028)

rlda.TG 50 0.244 (± 0.026) 0.480 (± 0.057) 0.913 (± 0.028)

rlda.TF 50 0.247 (± 0.024) 0.460 (± 0.057) 0.920 (± 0.026)

rlda.TD 100 0.249 (± 0.026) 0.450 (± 0.056) 0.920 (± 0.026)

rlda.TG 100 0.224 (± 0.027) 0.520 (± 0.057) 0.920 (± 0.026)

rlda.TF 100 0.248 (± 0.025) 0.450 (± 0.056) 0.920 (± 0.026)

rlda.TD 200 0.265 (± 0.025) 0.420 (± 0.056) 0.913 (± 0.027)

rlda.TG 200 0.267 (± 0.025) 0.430 (± 0.057) 0.903 (± 0.026)

rlda.TF 200 0.249 (± 0.023) 0.440 (± 0.055) 0.927 (± 0.024)

rlda.TD 500 0.222 (± 0.025) 0.470 (± 0.058) 0.953 (± 0.021)

rlda.TG 500 0.218 (± 0.025) 0.480 (± 0.061) 0.953 (± 0.021)

rlda.TF 500 0.218 (± 0.025) 0.480 (± 0.057) 0.953 (± 0.021)

Table B.1: Overview of the 10 × five-fold CV error, the sensitivity and the specificity

obtained for the methods rlda.TD, rlda.TG and rlda.TF using the top 50, 100, 200 and 500

genes of the two-class data Golub−Merge (n=72) (top) and sCLLex (n=22) (bottom). In

brackets the standard deviation is given.
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Method p (# genes) 10 × three-fold CV error

rlda.TD 50 0.365 (± 0.010)

rlda.TG 50 0.362 (± 0.010)

rlda.TF 50 0.362 (± 0.011)

rlda.TD 100 0.363 (± 0.009)

rlda.TG 100 0.361 (± 0.010)

rlda.TF 100 0.362 (± 0.010)

rlda.TD 200 0.373 (± 0.009)

rlda.TG 200 0.372 (± 0.010)

rlda.TF 200 0.371 (± 0.010)

Method p (# genes) 10 × three-fold CV error

rlda.TD 50 0.250 (± 0.009)

rlda.TG 50 0.255 (± 0.009)

rlda.TF 50 0.250 (± 0.009)

rlda.TD 100 0.266 (± 0.010)

rlda.TG 100 0.269 (± 0.009)

rlda.TF 100 0.261 (± 0.010)

rlda.TD 200 0.280 (± 0.011)

rlda.TG 200 0.281 (± 0.010)

rlda.TF 200 0.277 (± 0.011)

Table B.2: Overview of the 10 × three-fold CV error obtained for the methods rlda.TD,

rlda.TG and rlda.TF using the top 50, 100 and 200 genes of the six-class data ALL−a

(n=128) (top) and the four-class data ALL−b (n=128) (bottom). In brackets the standard

deviation is given.
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und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

München, den 21. Dezember 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . .

München, den 21. Dezember 2009 Monika Jelizarow


