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Abstract

Copulas have become a popular tool in multivariate modeling.
Applications include actuarial sciences, medical and epidemiological
studies and hydrologic engineering. This thesis describes an extension
to the R package FlexMix for copula clustering using finite mixture
models. Foremost, the theoretical background is briefly introduced, in-
cluding copulas, ML-estimation in copulas and estimation in mixture
models using the EM-algorithm. Gumbel–Hougaard copulas serve as
example throughout the thesis. Then the usage of this implementation
is demonstrated in form of a tutorial. Also, the performance of the
implementation is tested in a set of simulations, in which the estimates
appear to asymptotically converge to their real values. Higher values
of the copula parameter θ have a positive effect on the estimation error
as well, while the estimation error increases with increasing amounts
of clusters.
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1 Motivation

Copulas have become a popular tool in multivariate modeling. Copulas are
functions that provide a “coupling” between several univariate distribution
functions into a joint distribution function. Also, with the choice of a spe-
cific copula one can model different kinds of dependence between the margins.
This can be used for example in cases where a multivariate joint distribution
is not already known and one would want to model a dependence structure
between the margins, or to construct a joint distribution from (possibly differ-
ent) univariate distributions while even accounting for dependency. Formu-
lating multivariate distributions from copulas can also be easier than having
to analytically derive a multivariate joint distribution.

Applications can be found in medical and epidemiological studies, actu-
arial sciences and hydrologic engineering, to name a few. Frees and Valdez
[1998] name a list of possible applications, for example “survival of multi-
ple lives” where the joint mortality rate of groups or pairs of individuals is
assessed. Conversely, competing risks models can, in medical applictions,
model the survival rate of individuals facing several causes of death, or in
systems reliability, the failure rate of mechanical devices when single compo-
nents fail. As for actuarial sciences, Frees and Valdez [1998] demonstrate the
fitting of a copula to data containing insurance company indemnity claims,
describing the joint distribution of company losses (indemnity payments) and
expenses (such as lawyers’ fees and investigation expenses).

In this thesis we consider data that consists of multiple clusters, where
each cluster follows the same copula distribution with different parameters.
This can be expressed as a finite mixture model, where each cluster is as-
signed a prior probability for an observation to originate from this specific
cluster. These prior probabilities are assumed unknown and would have to
be estimated along with the parameters of each cluster. For this we use
the Expectation–Maximization (EM) algorithm. Conveniently there exists
already an R package called FlexMix [Leisch, 2004], which offers an easily
extendible implementation of the EM algorithm. Moreover, the copula pack-
age [Yan, 2007] provides support for different families of copulas and means
to describe multivariate distributions made up of copulas and arbitrary mar-
gins in R. The goal of this thesis will then be to develop an M–step driver
for FlexMix, using the functionality provided by the copula package.
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2 Copulas

First of all a short introduction to copulas is given, limiting however to
the case of bivariate copulas. Multivariate copulas behave analogously to
bivariate copulas in many aspects, therefore bivariate copulas were chosen
here for simplicity and easier visualization on two–dimensional paper.

Copulas can be defined as follows [Nelsen, 2007, p. 10]:

Definition 1 (Copula) A copula is a function C from [0, 1]2 to [0, 1] with
the following properties:

1. For every u, v in [0, 1]

C(u, 0) = 0 = C(0, v)

and
C(u, 1) = u and C(1, v) = v

2. For every u1, u2, v1, v2 in [0, 1] such that u1 6 u2 and v1 6 v2

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) > 0

The first property makes a statement about the value of C at the edges
of its domain. With either u or v being zero, C equals zero as well. If either
u or v equals one, then the value of C equals v or u respectively. Considering
the unit cube [0, 1]3 with axes u, v and w = C(u, v), the section between the
graph of C and the u = 1 or v = 1 plane is always the straight line from
[1, 0, 0] or [0, 1, 0] to [1, 1, 1]. Also the value of C(1, 1) obviously equals one.

The second property is also called 2–increasing or quasi–monotone1. This
is similar to the term monotone increasing for one–dimensional functions as
it can be shown that C is nondecreasing in each argument2.

For example figure 2 shows the graphs of a Farlie–Gumbel–Morgenstern
copula and a Gumbel–Hougaard copulas. The latter will be discussed in more
detail in section 2.1.

The most fundamental property of copulas, which was first shown by
Sklar and is hence named after him, is decribed in theorem 1 3:

1[Nelsen, 2007, p.8]
2[Nelsen, 2007, Lemma 2.1.4]
3[Nelsen, 2007, Theorem 2.3.3]
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Figure 1: Example surfaces of Farlie–Gumbel–Morgenstern and Gumbel–
Hougaard copulas.

Theorem 1 (Sklar’s theorem) Let H be a joint distribution function with
margins F and G. Then there exists a copula C such that for all x, y in
R ∪ (−∞,∞),

H(x, y) = C(F (x), G(y))

If F and G are continuous, then C is unique; otherwise, C is uniquely de-
termined on RanF × RanG. Conversely, if C is a copula and F and G are
distribution functions, then the function H defined by [theorem 1] is a joint
distribution function with margins F and G.

According to theorem 1 any (bivariate) joint distribution function can be
expressed as the combination of a copula and its univariate margins. Inter-
esting about this is that, in this notation, all the “ingredients” for a joint
distribution can be changed out and replaced at will. For instance the prac-
ticioner could replace the copula, and therefore the dependence structure, by
another copula which he deems more suitable for his data. The same applies
to the marginal distributions as well. This is a rather simple process and
even more so, with appropriate software packages (like the copula package in
R).

2.1 Example: Gumbel–Hougaard copulas

As an example Gumbel–Hougaard copulas are presented here. These copulas
belong to a class of copulas called archimedian copulas. Archimedian copulas
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are constructed using a generator function ϕ:

Theorem 2 Let ϕ be a continuous, strictly decreasing and convex function
from [0, 1] to [0,∞] with ϕ(1) = 0 and ϕ[−1] being the pseudo–inverse of ϕ.
Then the function C : [0, 1]2 → [0, 1] given by

C(u, v) = ϕ[−1] (ϕ(u) + ϕ(v))

is a copula4.

This is one of numerous methods of constructing copulas; Nelsen [2007] even
devotes a whole chapter to these methods. For archimedian copulas it is
however sufficient to find a generator function ϕ and to apply theorem 2.

Such a function is
ϕθ(t) = (− ln t)θ

which satisfies the conditions from theorem 2 for θ > 1 (see appendix A.1)
and can therefore be used as a generator function. First, one determines the
inverse of ϕθ

ϕθ(t) = y = (− ln t)θ

y1/θ = − ln t

ϕ
[−1]
θ (y) := exp

(
−y1/θ

)
= t

and applies theorem 2 to obtain:

ϕ
[−1]
θ (ϕθ(u) + ϕθ(v)) = ϕ

[−1]
θ

(
(− lnu)θ + (− ln v)θ

)
Cθ(u, v) := exp

(
−
[
(− lnu)θ + (− ln v)θ

]1/θ
)

(1)

The resulting function Cθ(u, v) is referred to as Gumbel–Hougaard copula,
whose graph was also shown in figure 2. Cθ is a one–parameter copula, i.e.
it is parameterized by a single parameter θ. The value of θ determines the
correlation between the margins. This is illustrated in figure 2.1; it shows
example scatter plots of Gumbel–Hougaard copulas, where both margins are
uniform over [0, 1] for different values of θ. Additionally, two–dimensional
kernel density estimates5 of the data depicted in the scatter plots were plotted
as contour plots to further visualize the dependence of the data. For θ = 1,
the lowest possible value of θ, there is barely any dependence visible in the
plots. For larger values of θ the plots show a stronger dependence between the
margins and the data points appear to be accumulating around the diagonal
line in a roughly elliptical shape.

4As derived from Lemma 4.1.2 and Theorem 4.1.4 in Nelsen [2007].
5Estimates were obtained using kde2d from R’s MASS library.
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Figure 2: Example scatterplots and estimated densities thereof of Gumbel–
Hougaard copulas with θ ∈ {1, 2, 3}.
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2.2 Maximum–Likelihood estimation

Parameter estimates of a multivariate distribution constructed from a copula,
can be obtained rather easily using Maximum–Likelihood estimation. First,
the joint density of such a multivariate distribution (as in theorem 1) is
determined by differentiating:

∂2H(x, y)

∂x∂y
=
∂2C (F (x), G(y))

∂x∂y
· ∂F (x)

∂x
· ∂G(y)

∂y

Let h(x, y) be the joint density function, c(u, v) the second order derivative
of C(u, v) and f(x), g(y) the densities of F (x), G(y) respectively. Then the
previous equation can be written more concisely

h(x, y) = c [F (x), G(y)] · f(x)g(y) . (2)

Then one can formulate the likelihood function:

L(θC , θM |x, y) =
N∏

i=1

h(xi, yi) =
N∏

i=1

c [F (xi), G(yi)] · f(xi)g(yi)

where x = (x1, . . . , xN) and y = (y1, . . . , yN) are the data vectors and θC

is the parameter vector of the copula (or just a scalar for one–parameter
copulas) and θM the parameter vector of the margins. Consequently, the
log–likelihood would then be:

`(θC , θM |x, y) =
N∑

i=1

ln (c [F (xi), G(yi)] · f(xi)g(yi))

Thus one gets the ML–estimator:

θ̂ML = arg max
θ

`(θC , θM |x, y)

with θ = (θC , θM). Estimates can be determined by optimizing the log–
likelihood. As a simple extension one can also define the weighted ML–
estimator, which will be needed later on

θ̂WML = arg max
θ

`(θC , θM |x, y, w)

= arg max
θ

N∑
i=1

wi ln (c [F (xi), G(yi)] · f(xi)g(yi)) (3)

8



where w = (w1, . . . , wN) depicts the vector of weights for each observation.
For instance, the weighted ML–estimator for Gumbel–Hougaard copulas is
then obtained by inserting its second order derivative (see appendix A.2)

θ̂WML = arg max
θ

N∑
i=1

wi ln

(
1

C

∂C

∂u

∂C

∂v

(
1 + (θC − 1)(− lnC)−1

))
with C := CθC

(F (xi), G(yi)).
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3 Model–based clustering

Clustered data can be described in form of a finite mixture model. The whole
dataset is said to be composed of several components or clusters, where each
component follows the same distribution p whose parameters θk vary between
components. Also, each component is assigned a prior–probability πk ≥ 0
with

∑K
k=0 πk = 1. A mixture distribution h with K components is then

written as:

h(z;ψ) =
K∑

k=1

πk p(z; θk)

with ψ = (π1, . . . , πK , θ1, . . . , θK). In this case p refers to a multivariate joint
density constructed from copulas as shown in equation 2. That is:

h(x, y;ψ) =
K∑

k=1

πk · c [F (x), G(y)] · f(x)g(y) .

In order to estimate ψ one would try to maximize the corresponding log–
likelihood

L(x, y;ψ) =
N∑

i=1

ln

(
K∑

k=1

πk · c [F (xi), G(yi)] · f(xi)g(yi)

)
which is, however, not directly optimizable. Therefore the iterative expectation–
maximization algorithm is used, which is implemented by FlexMix. Leisch
[2004] defines the algorithm as follows:

Estimate the posterior class probabilities for each observation

p̂nk = P(k|xn, yn, ψ̂)

[ . . . ]

Maximize the log-likelihood for each component separately us-
ing the posterior probabilities as weights

max
θk

N∑
n=1

p̂nk log f(yn|xn, θk)

The E- and M-steps are repeated until the likelihood improvement
falls under a a pre-specified threshold or a maximum number of
iterations is reached.

For clustering using a specific distribution, one only needs to implement
the M-step, which in this case essentially consists of implementing equation
3, therefore providing a weighted ML–estimator for copulas. Appendix B
contains the actual implementation.
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4 Usage

This section aims to give a short introduction on how to use FlexMix for
copula clustering using an example with artificial data. First of all one needs
to load the FlexMix and copula packages, which are both available from
CRAN, as well as the copula M-step driver available from http://epub.ub.uni-
muenchen.de/view/subjects/160103.html (in form of an electronic appendix
to this thesis):

> library(copula)

> library(flexmix)

> source("flxmccopula.R")

The distribution in question, consisting of a copula and its margins, needs to
be specified; in this example a two–dimensional Gumbel–Hougaard copula is
used with chi–square and poisson distributions as margins:

> my.copula <- gumbelCopula(dim = 2, param = 1)

> my.mvdc <- mvdc(copula = my.copula,

+ margins = c("chisq", "pois"),

+ paramMargins = list(

+ list(df = 1),

+ list(lambda = 1)))

A copula object is instantiated using gumbelCopula() with dimension 2 and
parameter θ = 1, which is passed on to the constructor of the mvdc class,
which represents a multivariate distribution constructed from a copula. It
also takes a vector with the names of the margins (margins) and a list of the
parameters of the margins (paramMargins). Note, that the copula package
assembles the names of the respective density, distribution and quantile func-
tions from the entries in margins, for instance it expects to find functions
named dchisq, pchisq and qchisq. Analogously the elements of param-

Margins need to be named lists where the names of the list entries equal
the parameter names of the corresponding density, distribution and quantile
functions (e.g. dchisq takes a parameter named df).

For this example, two clusters are considered:

Cluster df λ θ
1 2 2 2
2 4 4 1

11
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In order to generate the dataset two copies of my.mvdc are created (one
for each cluster) with updated parameters6. These copies are then used to
generate the two clusters of size 100 each7:

> comp1 <- mvdcSetParam(c(2, 2, 2), my.mvdc)

> comp2 <- mvdcSetParam(c(4, 4, 1), my.mvdc)

> data <- rbind(rmvdc(comp1, n = 100), rmvdc(comp2, n = 100))

Estimates are then obtained by calling flexmix() on the dataset:

> m <- flexmix(data ~ 1, k = 2,

+ model = FLXMCcopula(mvdc = my.mvdc))

> m

Call:

flexmix(formula = data ~ 1, k = 2, model = FLXMCcopula(mvdc = my.mvdc))

Cluster sizes:

1 2

96 104

convergence after 30 iterations

The parameter k = 2 tells FlexMix to try two estimate two clusters. The
result can however contain less clusters if they are not sufficiently distin-
guishable. For a reference mvdc instance, my.mvdc is supplied, whose initial
parameters are used as starting value for the optimizer, since it is not trivial
to find these automatically. In case, optim reports an error stating the like-
lihood of the initial values could not be evaluated, the parameters need to
be re–adjusted and the call to flexmix needs to be repeated. This usually
happens if either one or more parameter value lies outside their supports, or
the likelihood at that point is numerically -Inf.

6See appendix B.1 for function mvdcSetParam
7The example uses set.seed(42) in case one wants to reproduce the results.
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After the estimation is done one might want to examine the original and
estimated cluster assignments (figure 3):

> orig <- c(rep.int(1, 100), rep.int(2, 100))

> est <- clusters(m)

> par(mfrow = c(1, 2))

> plot(data[, 1], data[, 2], col = orig, pch = 1 + orig)

> plot(data[, 1], data[, 2], col = est, pch = 1 + est)

0 2 4 6 8 10 12
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2

4
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10

original

data[, 1]

da
ta

[, 
2]

0 2 4 6 8 10 12

0
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6
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Figure 3: Original and estimated cluster assignments.

One can further examine how many observations were (in)correctly classified:

> table(orig, clusters(m))

est

orig 1 2

1 76 24

2 20 80

Both clusters were assigned most of their original observations, only 20 and
24 were incorrectly assigned to the other cluster respectively. With a total
of 156 correctly classified observations this yields a ratio of 78% correctly
classified observations.

The estimated parameters can be obtained with parameters() which
returns a list of mvdc objects, one for each estimated component. The pa-
rameter values can be extracted using mvdcGetParam (see appendix B.1):
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> lapply(parameters(m), function(x) mvdcGetParam(x))

$Comp.1.mvdc

df lambda

1.483955 2.159034 2.292523

$Comp.2.mvdc

df lambda

4.0176387 3.7696889 0.9500256

The parameter values lie within the area of the orginal ones and both com-
ponents can be recognized from the parameter values alone.
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5 Simulations

A number of simulations was run in order to see how well this implementation
for copula clustering performs. For this, datasets were generated given a
certain copula and margins and different parameters per cluster using the
rmvdc function from the copula package. Then parameter estimates were
obtained using FlexMix.

Primarily the difference between the original and estimated parameters
in each cluster or component is considered. However, “[m]ixture models are
only identifiable up to a permutation of the component labels”(Leisch [2004]).
That is, the original ordering of the clusters might not be preserved during the
estimation step, and for example “Cluster 1” might then be called “Cluster
2”. To compare the parameters of corresponding clusters nonetheless, one
would have to determine a plausible permutation of the resulting cluster
labels, which, in this case, was done by minimizing the sum of the euclidean
distances between original and estimated parameter vectors for all clusters:

d(θ(O), θ(E)) := min
σi

K∑
k=1

∥∥∥θ(O)
σi(k), θ

(E)
σi(k)

∥∥∥
2

(4)

where θ(O) and θ(E) are original and estimated parameter vectors respectively.
σ is the set of all possible permutations, σi is the i–th permutation and σi(k)
is then the i–th permutation of k. The distance d(θ(O), θ(E)) is considered to
be a metric for the difference between the original and estimated parameters.

The underlying copula of all of the following simulations was the two–
dimensional Gumbel–Hougaard copula. Also, in about 0.7% of the cases
FlexMix estimated a lesser number of clusters, than there were originally
specified. These models were excluded from the following analysis.
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5.1 Simulation 1

For the first three simulations the estimation error for increasing sample sizes
was examined. The simulation dataset consisted of two clusters in each case,
and the sample size was increased in multiples of 50 starting with 50 up to 500
observations per cluster. Both margins were exponential and the parameters
for each cluster were:

Cluster θ λ1 λ2

1 2 2 3
2 1 4 5

Figure 4 shows an example scatter plot with 200 observations per cluster, as
well as the corresponding estimated cluster assignments. Figure 5 shows a

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

original

x

y

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

estimated

x

y

Figure 4: Original vs estimated cluster assignments

plot of the mean distances between original and estimated parameters per
total sample size on the left hand side and a plot of the mean ratio of cor-
rectly classified observations on the right hand side. Also, the estimated
standard deviations were plotted around the means as a symmetric inter-
val using dotted lines. As one would suspect, the estimation error and its
deviation decreases with increasing sample sizes. The ratio of correct classi-
fications however only shows slight improvements, which could be attributed
to the relatively large overlap area shown in the previous scatter plots. It
should be noted though that the ratio starts off at a quite high value of about
60%.
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Figure 5: Distances and ratio of correctly classified observations

5.2 Simulation 2

The second simulation was run under the same circumstances as the first,
only with different parameters (see the following table). Again the estimation
error and the variance improve with increasing sample size while the ratio of
correct classifications remains almost the same (figures 6 and 7).

Cluster θ λ1 λ2

1 2 3 5
2 1 5 3
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Figure 6: Original vs estimated cluster assignments
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Figure 7: Distances and ratios of correctly classified observations

18



5.3 Simulation 3

As a variation of the above simulations, the margins were changed to follow a
gamma–distribution (see table below for parameters). The mean estimation
error declines here as well with increasing sample size. The estimation error
seems to be a bit larger in general, as opposed to the previous simulations,
which could be attributed to the extra number of parameters and/or the
change in marginal distributions (figures 8 and 9).

Cluster θ shape1 scale1 shape2 scale2
1 2 2 4 4 5
2 1 5 4 3 4
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Figure 8: Original vs estimated cluster assignments

5.4 Simulation 4

For the fourth simulation the variation of the parameter θ of the copula
was examined. The same margins and parameters as in simulation 2 were
used, with θi ∈ {1, 2, 3, 4, 5} and θ1 = θ2. While the estimation error shows
no discernible improvement for θ ≥ 2, the classification ratio continually
increases. Figure 11 shows example scatter plots; for larger values of θ both
components become better separated thus explaining the improvement of the
classification ratio (figure 10).
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Figure 9: Distances and ratios of correctly classified observations
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Figure 10: Distances and ratios of correctly classified observations
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Figure 11: Example scatter plots for different values of θ
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5.5 Simulation 5

For the last simulation datasets with varying amounts of clusters, i.e. two
to five, were generated. The simulation specified a total of five clusters
with exponential margins (see table below) from which n ∈ {2, 3, 4, 5} were
randomly chosen without replacement.

Cluster θ λ1 λ2

1 2 1 5
2 2 2 4
3 2 3 3
4 2 4 2
5 2 5 1
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Figure 12: Distances and ratios per amount of clusters

Judging from figure 12 the estimation error increases with the amount of
clusters and the ratio of correctly classified observations decreases. Also see
figure 13 for example scatter plots with 2–4 clusters.
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Figure 13: Original vs estimated cluster assignments
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6 Conclusion

The objective of the thesis was to develop an M–step driver for copula clus-
tering with FlexMix. For this, a brief overview over the theoretical back-
ground, i.e. copulas, ML-estimation with copulas and finite mixture models,
was given in sections 2 and 3. The implementation itself then mostly con-
sisted of implementing the weighted ML–estimator (equation 3) using the
copula package and writing the necessary boiler plate code for interfacing
with FlexMix. As for the type of copulas and margins that can be utilized,
no further restrictions had to be made, and as such, all the copulas supplied
by the copula package should be usable. Similarly any marginal distribution,
for which maximum likelihood estimation is applicable and the density, dis-
tribution and quantile functions are known, or can be estimated, should be
usable as well.

In section 5 a set of simple scenarios was simulated. The first three simu-
lations showed, while varying the margins, that the estimation error shrunk
for increasing sample sizes. Clusters that contained highly correlated data,
as seen in simulation 4, were also better estimated, presumably because of
the higher degree of separation between the components. For larger amounts
of clusters the estimation error increased (see simulation 5), since more clus-
ters, in this setting, also caused bigger overlaps of observations between the
components, which was particularly well visible with 4 or more clusters. The
ratio of correctly classified observations in generally depended on the overlap
area in the simulated datasets. Less overlap usually resulted in a higher ratio
and vice versa.

While being able to actually fit a model to data, one would require a way
of assessing the model fit in practice. For copulas, a simple graphical method
described in Genest and Favre [2007] would be to compare the empirical
data to artificial data generated from the assumed copula and estimated
parameters thereof. One could then use Q–Q–plots or K–plots (described
in Genest and Favre [2007] as well) for comparison between observed and
generated data. This approach could probably be extended to be used along
with mixture models. On the other hand there are formal goodness–of–
fit tests being discussed. Genest et al. [2009] propose the use of “blanket
tests”, i.e. tests that neither “require an arbitrary categorization of the data
nor any strategic choice of smoothing parameter, weight function, kernel,
window”. The corresponding p–values are then computed using parametric
bootstrap. Kojadinovic et al. [in press] implemented a faster version of this
test procedure for the copula package. Whether this test can be used for
mixture models with copulas could be worth of an investigation.
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A Proofs

A.1 ϕθ(t) = (− ln t)θ is a valid generator function

ϕθ needs to satisfy the conditions from theorem 2.

1. ϕθ is continuous, since ln t is continuous and so is − ln t and (− ln t)θ.

2. ϕθ is strictly decreasing:

∂ϕθ

∂t
= θ(− ln t)θ−1(−1

t
) = θ

(− ln t)θ

t ln t
< 0

for θ > 0 and t ∈ [0, 1) (⇒ ln t < 0).

3. ϕθ is convex:

∂2ϕθ

∂t2
=

∂

∂t

θ(− ln t)θ

t ln t
=
θ2(− ln t)θ − θ(− ln t)θ(ln t+ 1)

(t ln t)2
=

=
θ(− ln t)θ (θ − ln t− 1)

(t ln t)2

Then ∂2ϕθ

∂t2
is positive if θ(θ − ln t− 1) > 0 and thus if θ > 1.
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A.2 Derivatives of Gumbel–Hougaard copulas

The derivates of Gumbel–Hougaard copulas can be determined as follows
(see [Frees and Valdez, 1998, Appendix A]). First C := Cθ(u, v) is defined for
better readability. Then one might want to reorder equation 1:

C = exp
(
−
[
(− lnu)θ + (ln v)θ

]1/θ
)

(− lnC)θ = (− lnu)θ + (− ln v)θ

Derive both sides with respect to u and reorder:

θ(− lnC)θ−1

(
− 1

C

)
∂C

∂u
= θ(− lnu)θ−1

(
−1

u

)
(− lnC)θ−1

C

∂C

∂u
=

(− lnu)θ−1

u
∂C

∂u
=

(− lnu)θ−1

u

C

(− lnC)θ−1

∂C

∂u
=

(
lnu

lnC

)θ−1
C

u

From symmetry one obtains:

∂C

∂v
=

(
ln v

lnC

)θ−1
C

v

The second–order derivative then is rather straight–forward:

∂2C

∂u∂v
=

∂

∂v

(
lnu

lnC

)θ−1
C

u

=

(
lnu

lnC

)θ−1
1

u

∂C

∂v
− 1

u
(θ − 1)

(
lnu

lnC

)θ−2
lnu

(lnC)2

∂C

∂v

=

(
lnu

lnC

)θ−1
1

u

∂C

∂v

[
1− (θ − 1)

lnu

(lnC)2

(
lnC

lnu

)]
=

1

C

∂C

∂u

∂C

∂v

(
1− (θ − 1)

1

lnC

)
=

1

C

∂C

∂u

∂C

∂v

(
1 + (θ − 1)(− lnC)−1

)
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B Implementation

B.1 Utility functions

The copula package defines a class mvdc, which is used to describe multi-
variate distributions constructed from copulas. This class for one contains
an instance of the copula class, describing the underlying copula as well as
its parameter(s). On the other hand it provides a generic way to describe
the marginal distributions and its parameters. The M–step driver for copula
clustering makes extensive use of the mvdc class, therefore a set of utility
functions was introduced to facilitate exchanging parameter values with an
mvdc instance.

Listing 1: mvdc(Get|Set)Param

1 mvdcGetParam <-
2 function(mvdc) {
3 mpar <- unlist(mvdc@paramMargins)
4 dpar <- mvdc@copula@parameters
5

6 c(mpar , dpar)
7 }
8

9 mvdcSetParam <-
10 function(param , mvdc) {
11 poff <- 1
12

13 for(i in 1: length(mvdc@paramMargins )) {
14 for(j in 1: length(mvdc@paramMargins [[i]])) {
15 mvdc@paramMargins [[i]][j] <- param[poff]
16 poff <- poff + 1
17 }
18 }
19

20 for(i in 1: length(mvdc@copula@parameters )) {
21 mvdc@copula@parameters[i] <- param[poff]
22 poff <- poff + 1
23 }
24

25 mvdc
26 }

The function mvdcGetParam (lines 1–7) takes an mvdc instance as param-
eter and returns a vector of the parameters extracted from the mvdc instance.
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By convention, the vector first contains the parameters of the margins, then
the parameters of the copula. The mvdc class stores the parameters of the
margins as a list of lists: the “outer” list just contains one entry per margin,
while the “inner” lists contain the parameters of each margin as a named list,
where the key corresponds to the name of the parameter, and the value is
the respective value of that parameter. Extracting the parameter values of
the margins is then easily done using unlist (line 3) while the parameters
of the copula can be directly accessed using the appropriate slot (line 4).

mvdcSetParam (lines 9–26) takes an mvdc instance and a vector of param-
eters as arguments and returns a copy of this mvdc instance, containing the
given parameters. Then it is iterated over the elements of the list–of–lists
containing the parameters of the margins (lines 13–18), while counting the
position in the parameter vector (poff). Each iteration step stores one ele-
ment from the parameter vector. Analogously the parameters of the copula
are being copied to the copula instance (lines 20–23). The resulting mvdc

instance is then returned (line 25).

B.2 Weighted Log–Likelihood

The function copLogLik implements the log–likelihood from equation 3; it
takes a vector of parameters param, a matrix of observations x, an mvdc

instance and a vector weights w for arguments and returns the log–likelihood
for the given observations and parameters. The matrix x contains one row per
observation and one column for each margin. The vector w usually contains
one weight per observation, but by default uses 1 for each observation thus
resulting in the ordinary log–likelihood.

Listing 2: copLogLik

1 copLogLik <-
2 function(param , x, mvdc , w=1) {
3 ll <- -Inf
4

5 mvdc <- mvdcSetParam(param , mvdc)
6

7 tryCatch ({
8 dens <- dmvdc(mvdc , x)
9

10 if(any(is.na(dens )))
11 return(-Inf)
12 if(any(dens <= 0))
13 return(-Inf)
14
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15 ll <- sum(w * log(dens))
16 }
17 )
18

19 return(ll)
20 }

First, the parameters of the given mvdc instance are updated to the position
where the log–likelihood is to be evaluated (line 5). Then, an attempt is
made to calculate the densities for each observation in x (line 8) using dmvdc

from the copula package.
The call to dmvdc may cause an error, usually because the optimizer

tried to obtain the log–likelihood for an invalid parameter combination, for
example where at least one parameter lies outside its domain (simple exam-
ples would be a negative variance for normal distributions or a negative rate
parameter for exponential distributions). The optimizer just assumes each
parameter lives on the real line and is not told otherwise8. Instead, eventual
errors are intercepted with tryCatch and -Inf is returned. Additionally, if
dmvdc did not fail but returned densities which are either NA, negative or
equal to zero, -Inf is returned as well (lines 10–13) because the following
call to log would cause an error.

If no error occured, the log–likelihood is calculated and returned (lines 15
and 19).

B.3 ML–estimator

The function copMLE implements the Maximum–Likelihood estimator from
equation 3; it takes a matrix of observations x, an mvdc instance and a vector
of weights as parameters and returns an mvdc instance with parameters set
to the coordinates of a maximum. This function is essentially a wrapper for
optim, which in turn requires a starting point for its optimization. Since it is
not trivial to automatically determine such a starting point, the parameters
set in the mvdc instance are used. Therefore the user needs to initialize this
instance with reasonable defaults.

The parameters x, mvdc and w are then just passed on to copLogLik via
optim.

8It might in theory be possible to use an optimizer with box constraints, such as L-
BFGS-B, which would however require the task of specifying these constraints by hand from
the user. Therefore it seemed easier and more practical to just accept anything as input
and handle error case appropriately.
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Listing 3: copMLE

1 copMLE <-
2 function(x, mvdc , w=1, method="Nelder -Mead") {
3 st <- mvdcGetParam(mvdc)
4

5 ret <- optim(st, copLogLik ,
6 x=x, mvdc=mvdc , w=w,
7 method=method ,
8 control=list(fnscale =-1))
9 mvdcSetParam(ret$par , mvdc)

10 }

B.4 FlexMix–Interface

Finally, FLXMCcopula implements the M–step driver for FlexMix. It takes
a reference mvdc instance, which was created and initialized by the user as
parameter and returns a FLXMC instance which is then used by FlexMix.

Listing 4: FLXMCcopula

1 FLXMCcopula <-
2 function(formula =.~., mvdc=NULL) {
3 z <- new("FLXMC",
4 weighted=TRUE ,
5 formula=formula ,
6 dist="copula",
7 name="model -based copula clustering")
8

9 if(is.null(mvdc))
10 stop("mvdc object missing")
11

12 z@defineComponent <- expression ({
13 logLik <- function(x,y) {
14 log(dmvdc(mvdc , y))
15 }
16

17 predict <- function(x, ...) {
18 stop("predict () not implemented")
19 }
20

21 new("FLXcomponent",
22 parameters=list(mvdc=mvdc),
23 df=1,
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24 logLik=logLik ,
25 predict=predict)
26 })
27

28

29 z@fit <- function(x, y, w) {
30 mvdc <- copMLE(y, mvdc , w)
31

32 para <- list(mvdc=mvdc)
33 with(para , eval(z@defineComponent ))
34 }
35

36 z
37 }

At first, an FLXMC object is instantiated and initialised with the formula
parameter (line 5) and the notion that weighted estimation is being used
(line 4) as well as some metadata (lines 6–7).

Next, some slots of the newly–created FLXMC instance have to be ini-
tialised; the fit slot is assigned a wrapper function around copMLE that
returns an instance of FLXcomponent (lines 29–34). The parameters x and
y correspond to the respective values in the formula parameter earlier. de-

fineComponent then stores a function that creates an FLXcomponent object
and expects to find an mvdc instance in its environment that contains the
parameters estimated in fit (lines 12–26). Also, the FLXcomponent object
is supplied with functions logLik and predict. The former computes the
log–likelihood per observation, while the latter was left unimplemented. pre-
dict would usually predict the target variable given a dataset, in this case
however only clustering was of interest and since there is no target variable,
prediction would not have been very meaningful.

The end user would then usually call flexmix() with the FLXMC object
and thus obtain an object of class flexmix which encodes the estimated
model. parameters() returns a list of mvdc instances, one per estimated
component, where the parameters of each component can be extracted with
mvdcGetParam.
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C Simulation Code

This section contains the code that was used to run the simulations from
section 5. The underlying idea was to do the simulations on a number of
computers, which would each repeatedly run one simulation and store the
results locally in a file. In each simulation run, one kind of a simulation and
a corresponding parameter (e.g. cluster size in simulations 1–3) was chosen
randomly, so there would not have to be any coordination between the com-
puters. Also, this way simulations could be terminated while only affecting
the current model and one did not have to wait until a set of simulations
was complete. The data files were then (incrementally) copied to a central
location where the results were post–processed (such as calculating the pa-
rameters’ estimation error) and stored in a more convenient format that can
be read by read.table.

First off a couple of utility functions; cluster.distance implements the
sum part of equation 4. origParam and estParam are each lists of parameter
vectors (original and estimated respectively). perm is a vector denoting the
permutation that should be applied to the cluster labels.

Listing 5: cluster.distance

1 cluster.distance <-
2 function(origParam , estParam , perm) {
3 sm <- 0
4 for(i in 1: length(origParam )) {
5 dif <- origParam [[i]] - estParam [[ perm[i] ]]
6 sm <- sm + sqrt(sum(dif*dif))
7 }
8 return(sm)
9 }

cluster.order tries to find the permutation that minimizes the sum in
equation 4. It determines all possible permutations using the equally named
function permutations from the gtools package, calculates the estimation
difference for each permutation and then returns the permutation with the
least difference.

Listing 6: cluster.order

1 cluster.order <-
2 function(origParam , estParam) {
3 stopifnot(length(origParam) == length(estParam ))
4

5 lngth <- length(origParam)
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6 mperm <- permutations(lngth ,lngth)
7 perm <- lapply(seq.int(nrow(mperm)),
8 function(x) mperm[x,])
9

10 diflist <- double(length(perm))
11

12 for(i in 1: length(perm)) {
13 diflist[i] <- cluster.distance(origParam ,
14 estParam ,
15 perm[[i]])
16 }
17

18 return(perm[[which.min(diflist )]])
19 }

cluster.classification determines the amount of correctly classified ob-
servations given the permutation perm. orig and est are each vectors where
the i–th entry contains the assigned cluster number of the i–th observation.

Listing 7: cluster.classification

1 cluster.classification <-
2 function(orig , est , perm) {
3 est <- sapply(est , function(x) perm[x])
4 Ncorrect <- length(which(orig == est))
5 return(Ncorrect/length(orig))
6 }

The following five functions construct a number of objects needed for a cer-
tain kind of simulation without actually running the simulation; that is, a
reference mvdc instance is created, containing the starting values for the op-
timizer. Then for each cluster an mvdc instance of the same structure is
created, with the cluster’s parameters, as well as a vector containing the
sample sizes of each cluster. Each of these functions represent one simulation
type from section 5.

Listing 8: sim.exp2345

1 sim.exp2345 <-
2 function(n=NULL) {
3 if(is.null(n))
4 n <- sample(x=c(1:10 * 50), size =1)
5
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6 my.mvdc <- mvdc(copula = gumbelCopula(param=1,dim=2),
7 margins = c("exp", "exp"),
8 paramMargins = list(
9 list(rate=1),

10 list(rate =1)
11 )
12 )
13

14 clusterList <- c(
15 mvdcSetParam(c(2,3, 2), my.mvdc),
16 mvdcSetParam(c(4,5, 1), my.mvdc)
17 )
18

19 clusterSizes <- c(n, n)
20

21 list(
22 name = "exp2345",
23 clusterList = clusterList ,
24 clusterSizes = clusterSizes ,
25 startMvdc = my.mvdc
26 )
27 }

Listing 9: sim.exp3553

1 sim.exp3553 <-
2 function(n=NULL) {
3 if(is.null(n))
4 n <- sample(x=c(1:10 * 50), size =1)
5

6 my.mvdc <- mvdc(copula = gumbelCopula(param=1,dim=2),
7 margins = c("exp", "exp"),
8 paramMargins = list(
9 list(rate=1),

10 list(rate =1)
11 )
12 )
13

14 clusterList <- c(
15 mvdcSetParam(c(3,5, 2), my.mvdc),
16 mvdcSetParam(c(5,3, 1), my.mvdc)
17 )
18

19 clusterSizes <- c(n, n)

34



20

21 list(
22 name = "exp3553",
23 clusterList = clusterList ,
24 clusterSizes = clusterSizes ,
25 startMvdc = my.mvdc
26 )
27 }

Listing 10: sim.gamma24455434

1 sim.gamma24455434 <-
2 function(n=NULL) {
3 if(is.null(n))
4 n <- sample(x=c(1:10 * 50), size =1)
5

6 my.mvdc <- mvdc(copula = gumbelCopula(param=1,dim=2),
7 margins = c("gamma", "gamma"),
8 paramMargins = list(
9 list(shape=2, scale=2),

10 list(shape=2, scale =2)
11 )
12 )
13

14

15 clusterList <- c(
16 mvdcSetParam(c(2,4, 4,5, 2), my.mvdc),
17 mvdcSetParam(c(5,4, 3,4, 1), my.mvdc)
18 )
19

20 clusterSizes <- c(n, n)
21

22 list(
23 name = "gamma24455434",
24 clusterList = clusterList ,
25 clusterSizes = clusterSizes ,
26 startMvdc = my.mvdc
27 )
28

29 }

Listing 11: sim.theta12345

1 sim.theta12345 <-
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2 function(theta=NULL) {
3 n <- 400
4

5 if(is.null(theta ))
6 theta <- sample(seq.int(5), size =1)
7

8 my.mvdc <- mvdc(copula = gumbelCopula(param =1.5,dim=2),
9 margins = c("exp", "exp"),

10 paramMargins = list(
11 list(rate=1),
12 list(rate =1)
13 )
14 )
15

16 clusterList <- c(
17 mvdcSetParam(c(3,5, theta), my.mvdc),
18 mvdcSetParam(c(5,3, theta), my.mvdc)
19 )
20

21 clusterSizes <- c(n, n)
22

23 list(
24 name = "theta12345",
25 clusterList = clusterList ,
26 clusterSizes = clusterSizes ,
27 startMvdc = my.mvdc
28 )
29

30 }

Listing 12: sim.Ncluster

1 sim.Ncluster <-
2 function(n=NULL) {
3 if(is.null(n)) {
4 n <- sample (1+seq.int(4), size =1)
5 }
6

7 my.mvdc <- mvdc(copula = gumbelCopula(param =1.5,dim=2),
8 margins = c("exp", "exp"),
9 paramMargins = list(

10 list(rate =1.5),
11 list(rate =1.5)
12 )
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13 )
14

15 theta <- 2
16

17 clusterList <- c(
18 mvdcSetParam(c(1,5, theta), my.mvdc),
19 mvdcSetParam(c(2,4, theta), my.mvdc),
20 mvdcSetParam(c(3,3, theta), my.mvdc),
21 mvdcSetParam(c(4,2, theta), my.mvdc),
22 mvdcSetParam(c(5,1, theta), my.mvdc)
23 )
24

25 clusterList <- sample(clusterList , size=n, replace=F)
26

27 clusterSizes <- rep(400, n)
28

29 list(
30 name = "Ncluster",
31 clusterList = clusterList ,
32 clusterSizes = clusterSizes ,
33 startMvdc = my.mvdc
34 )
35 }

sim.once runs just one simulation, calling one of the functions above. It
calls one of the functions above, generates the dataset and original cluster
assignments. Then flexmix is called and the result stored along with some
metadata.

Listing 13: sim.once

1 sim.once <-
2 function(simname=NULL , n=NULL) {
3 if(is.null(simname )) {
4 simList <- c("sim.exp3553", "sim.exp2345",
5 "sim.gamma24455434",
6 "sim.theta12345", "sim.Ncluster")
7 sim <- sample(simList , size =1)
8 } else {
9 sim <- paste("sim.", simname , sep="")

10 }
11

12 ret <- eval(call(sim , n))
13
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14 simName <- ret$name
15 clusterList <- ret$clusterList
16 clusterSizes <- ret$clusterSizes
17 startMvdc <- ret$startMvdc
18 Ncluster <- length(clusterList)
19

20 fname <- sprintf("data/sim%d_%d",
21 as.integer(Sys.time()),
22 as.integer(runif (1 ,1 ,9999999)))
23 outfname <- paste(fname , ".Rout", sep="")
24 fname <- paste(fname , ".RData", sep="")
25

26

27 N <- sum(clusterSizes)
28

29 cat("Name:", simName , "\n")
30 cat(class(startMvdc@copula), "dim =",
31 startMvdc@copula@dimension , " param =",
32 startMvdc@copula@parameters , "\n")
33 cat("Margins:", startMvdc@margins , "\n")
34 cat(N, ":", clusterSizes , "\n")
35 cat("\n")
36

37 origCluster <- c()
38 data <- NULL
39

40 for(i in 1: Ncluster) {
41 origCluster <- c(origCluster ,
42 rep.int(i, clusterSizes[i]))
43

44 dataCluster <- rmvdc(clusterList [[i]],
45 clusterSizes[i])
46 if(is.null(data))
47 data <- dataCluster
48 else
49 data <- rbind(data , dataCluster)
50 }
51

52 time.start <- Sys.time()
53 mod <- NULL
54 try(mod <-
55 flexmix(data~1, k=Ncluster ,
56 model=FLXMCcopula(mvdc=startMvdc )))
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57 time.end <- Sys.time()
58

59

60 out <- list(
61 data = data ,
62 name = simName ,
63 orig = origCluster ,
64 mvdcList = clusterList ,
65 sizes = clusterSizes ,
66 mvdc = startMvdc ,
67 model = mod ,
68 startTime = time.start ,
69 endTime = time.end ,
70 sysInfo = Sys.info()
71 )
72

73 save(out , file=fname , compress="bzip2")
74 }

makedata.R is script that iterates over all the data files created by sim.once

and then stores the results of the simulation using write.table. Mostly the
estimation error, the ratio of correctly classified observations and simulation
covariates, such as the sample sizes of the clusters, the amount of clusters or
the value of θ (depending on simulation type) is stored.

Listing 14: makedata.R

1 library(copula)
2 library(flexmix)
3 source("flxmccopula.R")
4 source("sim.R")
5

6

7 files <- Sys.glob("data/*.RData")
8 Nfiles <- length(files)
9

10 olddata <- NULL
11 try(olddata <- read.table("data/sim.txt",
12 header=T, as.is=T))
13 if(!is.null(olddata )) {
14 if(nrow(olddata) == 0)
15 olddata <- NULL
16 }
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17

18 cnt <- 0
19 data <- NULL
20

21 start <- Sys.time()
22

23 for(fn in files) {
24 cnt <- cnt+1
25 out <- NULL
26 cat(sprintf("%5d/%5d %2.1f%% >> %s\n",
27 cnt , Nfiles , cnt/Nfiles*100, fn))
28 newid <- substr(fn, 9, nchar(fn)-6)
29

30 if(!is.null(olddata )) {
31 if(nrow(subset(olddata , id == newid)) > 0) {
32 next
33 }
34 }
35

36 load(fn)
37

38 if(!is.null(out) & !is.null(out$model)) {
39 if(length(parameters(out$model)) ==
40 length(out$mvdcList )) {
41 param.orig <- lapply(out$mvdcList , mvdcGetParam)
42 param.est <- lapply(parameters(out$model), mvdcGetParam)
43

44 perm <- cluster.order(param.orig , param.est)
45 stat <- cluster.distance(param.orig , param.est , perm)
46 ratio <- cluster.classification(out$orig ,
47 clusters(out$model),
48 perm)
49 } else {
50 perm <- NA
51 stat <- NA
52 ratio <- NA
53 }
54

55 duration <- as.double(out$endTime - out$startTime ,
56 units="secs")
57

58 theta <- NA
59 Ncluster <- 2
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60

61 if(out$name == "theta12345") {
62 theta <- out$mvdcList [[1]] @copula@parameters
63 } else if(out$name == "Ncluster") {
64 Ncluster <- length(out$mvdcList)
65 }
66

67 newdata <- c(newid , out$name ,
68 stat , ratio ,
69 sum(out$sizes), Ncluster ,
70 theta , duration ,
71 out$sysInfo [["nodename"]] )
72

73 if(is.null(data)) {
74 data <- matrix(nrow=1, data=newdata)
75 } else {
76 data <- rbind(data , newdata)
77 }
78 }
79 }
80

81 end <- Sys.time()
82 print(as.double(end -start , units="secs"))
83

84 rownames(data) <- NULL
85 df <- as.data.frame(data , stringsAsFactors=F)
86 colnames(df) <- c("id", "name", "stat", "ratio",
87 "N", "Ncluster",
88 "theta", "duration",
89 "nodename")
90

91 if(!is.null(olddata )) {
92 if(all(colnames(df) == colnames(olddata ))) {
93 df <- rbind(df, olddata)
94 }
95 }
96

97 write.table(df , file="data/sim.txt")
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