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Abstract

It is common knowledge that certain characteristics of
data sets – such as linear separability or sample size –
determine the performance of learning algorithms. In
this paper we propose a formal framework for investi-
gations on this relationship.

The framework combines three, in their respective
scientific discipline well-established, methods. Bench-
mark experiments are the method of choice in machine
and statistical learning to compare algorithms with re-
spect to a certain performance measure on particular
data sets. To realize the interaction between data sets
and algorithms, the data sets are characterized using
statistical and information-theoretic measures; a com-
mon approach in the field of meta learning to decide
which algorithms are suited to particular data sets. Fi-
nally, the performance ranking of algorithms on groups
of data sets with similar characteristics is determined by
means of recursively partitioning Bradley-Terry mod-
els, that are commonly used in psychology to study
the preferences of human subjects. The result is a tree
with splits in data set characteristics which significantly
change the performances of the algorithms. The main
advantage is the automatic detection of these important
characteristics.

The framework is introduced using a simple artificial
example. Its real-word usage is demonstrated by means
of an application example consisting of thirteen well-
known data sets and six common learning algorithms.
All resources to replicate the examples are available on-
line.

1 Introduction

In machine and statistical learning, benchmark experi-
ments are empirical investigations with the aim of com-
paring and ranking learning algorithms with respect
to certain performance measures. In particular, per-
formance is investigated on a collection of data sets,
e.g., from the UCI Machine Learning Repository [1]. It
is well known that the characteristics of the data sets
have an influence on the performance of the algorithms

– almost every publication that proposes a new algo-
rithm presents its performance on data sets in relation
to different characteristics (even though often only the
number of observations and attributes vary). Nonethe-
less, in most publications differences of the data sets
are noted but not used for further well-founded analy-
ses; perhaps the best known study is STATLOG [13],
newer ones are e.g. [15] and [4].

In psychology and related disciplines the pairwise
comparative choice model suggested by Bradley and
Terry [2] is the most widely used method to study pref-
erences of subjects (e.g. consumers or patients) on some
objects (e.g. a set of chocolate bars or different pain
therapies). The preference scaling of a group of sub-
jects may not be homogeneous, but different groups of
subjects with certain characteristics may show different
preference scalings. A newly developed semi-parametric
approach for recursive partitioning of Bradley-Terry
models [19] takes this circumstance into account – it
identifies groups of subjects with homogeneous prefer-
ence scalings in a data-driven and statistically correct
way. This approach is an extension of the classical al-
gorithms for classification and regression trees (CART)
[3, 16] and results in a tree where the subjects are di-
vided into groups according to their characteristics, and
in each terminal leaf a Bradley-Terry model shows the
preference scaling within this group.

This approach can also be applied to benchmark
studies; now the data sets are the subjects and the
algorithms are the objects. The interpretation is the
following: a data set expresses its preferences for an al-
gorithm by the performance of the algorithm. In other
words, the algorithm that performs best on a certain
data set is considered to be most preferred by the data
set. Using statistical and information-theoretic mea-
sures to characterize the data sets, the approach of re-
cursive partitioning of Bradley-Terry models enables us
to determine the influence of data set characteristics on
the performance of the algorithms. It provides a frame-
work to either investigate the influence exploratorily or
test particular hypothesis of interest. This article de-
fines all parts of the framework and, as a first step,
presents its prospects for the exploratory analysis.
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Figure 1: Exemplary classification problems: (a) ds1 where the feature space is linearly separable; (b) ds2 with
non-linearly separable feature space.

The article is organized as follows: Section 2 intro-
duces all related methods in detail. First, we introduce
a formal notation for benchmark experiments; then we
define a sound and flexible framework for data set char-
acterization and introduce a common set of data set
characteristics; finally we outline preference scaling us-
ing recursive partitioning of Bradley-Terry models. A
toy example is used to demonstrate each part. Sec-
tion 3 then applies the proposed method to a real-world
example based on classification problems from the well-
known UCI Machine Learning Repository. The article
is concluded with a summary and an outlook in Sec-
tion 4 and computational details for reproducibility in
Section 5.

2 Methods

In this section the individual methods are introduced
and merged into a framework for analyzing the influ-
ence of data set characteristics on the performance of
algorithms.

For illustration purposes, an artificial toy example
is used. It consists of two 2-dimensional classification
problems with 400 observations in each case: ds1 is lin-
early separable, ds2 is not linearly separable; Figure 1
shows scatter plots of the data. The algorithms of inter-
est are support vector machines (svm), linear discrimi-
nant analysis (lda) and quadratic discriminant analysis
(qda) (see e.g. [10] and Section 5 for computational de-
tails).

2.1 Benchmark experiments

Following [11], a benchmark experiment is defined as
follows: Given is a data set L = {z1, . . . , zN}. In case
of supervised learning problems, any observation z ∈ L
is of the form z = (y, x) where y denotes the response
variable and x describes a vector of input variables (note
that for readability we omit in case of z = (y, x) the in-

dex i with i = 1, . . . , N). We draw b = 1, . . . , B learn-
ing samples of size n using a resampling scheme, such
as sampling with replacement (bootstrapping, usually
of size n = N) or subsampling without replacement
(n < N):

Lb = {zb
1, . . . , z

b
n}

Furthermore we assume that there are K > 1 candidate
algorithms ak, k = 1, . . . , K, available for the solution
of the underlying problem. For each algorithm ak the
function ak(· | Lb) is the fitted model based on the
sample Lb. This function itself has a distribution Ak as
it is a random variable depending on Lb:

ak(· | Lb) ∼ Ak(L), k = 1, . . . , K

The performance of the candidate algorithm ak when
provided with the training data Lb is measured by a
scalar function p:

pbk = p(ak, Lb) ∼ Pk = Pk(L)

The pbk are samples drawn from the distribution Pk(L)
of the performance measure of the algorithm k on the
data set L. The aim of a supervised learning task is to
construct a learner ŷ = ak(x | Lb) for any observation
z = (y, x) ∈ L.

The discrepancy between the true response y and the
predicted response ŷ for an arbitrary observation z ∈ L
is measured by a scalar loss function l(y, ŷ). The per-
formance measure p is then defined by some functional
µ of the distribution of the loss function over all obser-
vations:

pbk = p(ak, Lb) = µ(l(y, ak(x | Lb))) ∼ Pk(L)

With regard to the toy example, an exemplary loss func-
tion is the misclassification error which incurs loss 1 if
an observation is wrongly classified

l(y, ŷ) =

{
0 y = ŷ

1 otherwise,
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Figure 2: Performance measures of the candidate algorithms on (a) the linearly separable (ds1) and (b) the
non-linearly separable (ds2) classification problems.

and a reasonable choice for the functional µ is the ex-
pectation. See [9] for further common loss functions
and adequate choices for the functional µ. With a view
to practicability in real-world applications, further in-
teresting performance measures are execution time and
memory requirements of the learning algorithms.

Using the performance on the learning data as a basis
for further analyses is not a good idea, however, because
it would reward overfitting. Thus – as in most cases we
are not able to compute µ analytically – we use the
empirical functional µT based on a test sample T:

p̂bk = p̂(ak, Lb) = µ̂T(l(y, ak(x | Lb))) ∼ P̂k(L)

This means we compute the performance of the model
(fitted on the learning sample Lb) for each observation
in the test sample T and apply the empirical functional
µ̂ to summarize over all observations. The most com-
mon example for the empirical functional µ̂ is the mean,
that is the empirical analogue of the expectation.

Most further analysis methods require independent
observations of the performance measure, therefore we
define the test sample T in terms of out-of-bag obser-
vations: T = L \ Lb. Based on p̂bk the empirical per-
formance distribution P̂k(L) for each candidate algo-
rithm ak on data set L is estimated. In [9] we intro-
duced a toolbox with exploratory and inferential tools
to compare these empirical performance distributions
and, finally, compute a statistically correct order of the
candidate algorithms on the data set L.

Now, generally we are interested in the performance
of the algorithms within a domain of problems. This do-
main is specified by a collection of data sets L1, . . . ,LM .
A benchmark experiment is executed on each data set
Lm, m = 1, . . . , M and an order of the algorithms is
calculated. However, the performance-rankings of the
candidate algorithms will vary over the different data
sets in all realistic benchmark scenarios and one com-
mon assumption is that the performance depends on
particular characteristics of the data sets. This paper
proposes a first approach to answer the question which

data set characteristics make the algorithms perform
differently on certain data sets.

In case of the toy example (L1 = ds1, L2 = ds2,
B = 100 with 2/3-subsampling, i.e. n = 267, as resam-
pling scheme and p being the misclassification error),
Figure 2 shows a boxplot of the misclassification er-
ror: As expected, a1 = svm and a2 = qda solve both
problems very well; a3 = lda solves the linearly separa-
ble problem very well, but has huge problems with the
non-linearly separable one. The goal is now to provide a
method which detects that lda has problems with data
set ds2 because of the non-linearly separable feature
space.

2.2 Data set characterization

The question why certain algorithms perform better on
particular data sets than others requires a possibility
to describe the data sets. One common approach is to
extract statistical and informative measures from the
data sets; the STATLOG project [13] was the first one
which defined such a set of structural characteristics.
Newer approaches, e.g. [12] and [6], extend this set of
data set characteristics and use them in terms of meta-
learning – an approach to learn which algorithm is best
suited for an unknown learning problem (see, e.g. [22]).

Given some user-specified characteristics, data set
characterization can be seen as a two-step process: (1)
map each data set into its individual characterization
space; (2) reduce the individual characterization spaces
into one common characterization space where all data
sets are comparable, i.e. a metric can be defined. More
formal, let L be the space of all data sets and L ∈ L.
The function

map : L → R∗ with L 7→ x∗

computes one specific characteristic of a data set. R∗ in-
dicates that the dimension of the vector x∗ can depend
on the data set. For example, computing the skewness
of each continuous input variable results in a vector
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Characteristic Description ds1 ds2

obs.n number of observations 400 400
var.n number of variables 2 2

nvar.n number of nominal variables 0 0
nvar.entropy mean nominal variable entropy

nvar.bin number of binary variables 0 0
cvar.n number of continuous variables 2 2

cvar.mac mean multiple attribute correlation 0.06 0.06
cvar.skew mean skewness -0.08 -0.08
cvar.kurt mean kurtosis -1.20 -1.20

resp.cl number of response classes 2 2
resp.entropy mean response entropy 5.93 5.93

i2r.fcc first canonical correlation 0.86 0.04
i2r.frac1 variation from first linear discriminant 1.00 1.00

i2r.mi mean mutual information
i2r.envar equivalent number of variables

i2r.nsratio noise to signal ratio

Table 1: Description of the characteristics used in this paper and its realization for the linearly separable (ds1)
and non-linearly separable (ds2) classification problems.

with dimension equal to the number of continuous in-
put variables of the given data set; on the other hand,
computing the number of observations results in one
number for every data set. The dimension of x∗ can
even be zero if, for example, a data set has no continu-
ous input variables so that the characteristic is missing.
This first step does not guarantee that all data sets are
comparable, therefore another function red is defined
as

red : R∗ → Rd with x∗ 7→ xd

which reduces the dimension of characteristic vector x∗

to dimension d identical for all data sets. Examples for
such reduction functions are: the mean or a quantile
(for which d = 1) or a histogram representation (for
which d is chosen according to the number of bins) for
characteristics like the skewness, that provide a value
for each continuous variable in the data set; or the iden-
tity function (for which d = 1) for characteristics like
the number of observations, that provide exactly one
value for each data set in the first place.

A data set characterization then consists of a set of
characteristics {(map1, red1), . . . , (mapJ , redJ)}, and
for a given data set L, its characterization is the vector
c = (c1, . . . , cJ) with

cj = redj(mapj(L)), j = 1, . . . , J .

This framework allows a sound and flexible definition
of data set characterization (and a simple implementa-
tion in software, see Section 5). Common characteris-
tics, like those defined in [13], [12] and [6] can be for-
mulated in terms of this map/reduce framework. As
already noted, the STATLOG project defined the first
characteristics which are broadly established nowadays.
To simplify matters we make use of most of their char-
acteristics together with some simple additional ones.
Table 1 provides a list of typical data set characteristics
(for a detailed description we refer to the original pa-
per). With respect to our notation, mapj , j = 1, . . . , J ,
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Figure 3: Relative variation of the characterizations of
the 100 drawn samples in case of ds1. The red
line marks the characterization of the original
data set; NA means that this characteristic is
not available on this data set.

corresponds to the different characteristics in Table 1
and redj was chosen to be the mean for all charac-
teristics. Columns ds1 and ds2 of Table 1 show the
characterization of the two data sets in case of the toy
example. As the data sets are constructed in way that
they match in all characteristics except the linearly sep-
arability, the first canonical correlation (i2r.fcc) is the
only characteristic that differs; the first canonical cor-
relation ranges between [0, 1], whereas 1 means linearly
separable and 0 not linearly separable.

Now, extending the benchmark experiment frame-
work with the calculation of data set characteristics al-
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lows us to determine the influence of data set character-
istics on the performance of algorithms: for each sample
b drawn from the original data set m, the benchmark
experiment provides (1) the performance of the candi-
date algorithms pmbk (k = 1, . . . , K), and (2) the char-
acterization of the sample cmb = (cmb1, . . . , cmbJ) with
cmbj = redj(mapj(L

b
m)). Note that some characteris-

tics could vary between samples drawn from the same
data set, while others definitely stay constant. For ex-
ample, the mean response entropy (resp.entropy) could
vary depending on how many observations are drawn
from each class, whereas the number of variables (var.n)
always stays constant. Figure 3 shows the relative vari-
ation of the characterization of the 100 drawn samples
in case of ds1.

The result of such an experiment is a collection of
tuples of the performance of each algorithm on each
learning sample and the characterizations of each sam-
ple. The corresponding data matrix is of the form of a
tabular with B · M rows (for B samples drawn from M
original data sets) and K + J columns (for the perfor-
mances measures of K algorithms and the J data set
characteristics):

K algorithms J characteristics

B sam-
ples from
data set 1





p111 · · · p11K

...
. . .

...
p1B1 · · · p1BK

c111 · · · c11J

...
. . .

...
c1B1 · · · c1BJ

...
. . .

...
...

. . .
...

B sam-
ples from
data set
M





pM11 · · · pM1K

...
. . .

...
pMB1 · · · pMBK

cM11 · · · cM1J

...
. . .

...
cMB1 · · · cMBJ

2.3 Preference scaling

The basic model for preference scaling, that is used here
for comparing the performance of different candidate al-
gorithms on a variety of data sets, is the Bradley-Terry
model [2]. Here, we consider the formulation by [5],
that allows for ties so that each comparison of the per-
formance of two algorithms has three possible outcomes:
(1) the first algorithm wins, (2) the second algorithm
wins, or (3) both algorithms perform equally (i.e., a
tie).

Here, we conduct paired comparisons of the perfor-
mance measures for the K algorithms: For K algo-

rithms there are K·(K−1)
2 paired comparisons. Accord-

ingly, the left part of the data matrix illustrated above

is now replaced by a B ·M × K·(K−1)
2 table with an en-

try for each paired comparison (columns) on each data

set (rows):

K · (K − 1)/2 comparisons

B sam-
ples from
data set 1





R(p111, p112) · · · R(p11K−1, p11K)
...

. . .
...

R(p1B1, p1B2) · · · R(p1BK−1, p1BK)
...

. . .
...

B sam-
ples from
data set
M





R(pM11, pM12) · · · R(pM1K−1, pM1K)
...

. . .
...

R(pMB1, pMB2)· · · R(pMBK−1, pMBK)

The entries of the table are the relations
R(pmbk, pmbk′) describing one of the outcomes (1), (2)
or (3) of the comparison of algorithms k and k′ on
sample b drawn from data set m. Since this new data
matrix still has one row for each sample b drawn from
data set m, it is compatible with the table of data set
characteristics from the above illustration. Thus, the
complete data matrix used for the following analysis

consists of a B · M × K·(K−1)
2 table for the paired

comparisons and a B · M × J table for the data set
characteristics, that will be used to identify groups of
data sets between which the performance comparisons
of the algorithms differ.

When we now consider the paired comparisons, ac-
cording to the Bradley-Terry model the three possible
outcomes have the probabilities:

P (R(pmbk, pmbk′) = 1) =
πk

πk + πk′ + ν
√

πkπk′
,

P (R(pmbk, pmbk′) = 2) =
πk′

πk + πk′ + ν
√

πkπk′
,

P (R(pmbk, pmbk′) = 3) =
ν
√

πkπj′

πk + πk′ + ν
√

πkπk′
,

where πk ≥ 0, k = 1, . . . , K, are the parameters indicat-
ing the strength of each algorithm, and ν ≥ 0 is a dis-
crimination constant governing the probability of ties.
For parameter estimation via maximum likelihood, one
restriction is necessary: usually, either one parameter is
fixed to zero or the sum of all parameters constrained
to 1, as in the following illustrations.

In order to assess whether there are groups of
data sets with certain characteristics, for which the
performance-rankings of the candidate algorithms – and
thus the parameters indicating the strength of each al-
gorithm in the Bradley-Terry model – differ systemat-
ically, the model-based partitioning approach of [19] is
used. The algorithm for model-based recursive parti-
tioning is an extension of the popular CART algorithm
for classification and regression trees [3] and consists of
the following consecutive steps:

1. Fit a Bradley-Terry model for the paired compar-
isons of the algorithms based on all data sets in the
current node (starting with the root node including
all data sets).

2. Assess the stability of the Bradley-Terry model pa-
rameters with respect to each characteristic of the
data sets.
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3. If there is significant instability in the model pa-
rameters, split the data sets in two nodes along the
characteristic with the strongest instability, and
use the cutpoint with the highest improvement of
the model fit.

4. Repeat steps 1–3 recursively in the resulting nodes
until there are no more significant instabilities (or
the number of data sets left in a node falls below a
given stopping value).
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Figure 4: Parameter instability in the strength of a can-
didate algorithm (simplified illustration).
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Figure 5: Partitioned paired comparison model.

The statistical framework employed for testing the
significance of instabilities in the model parameters is
described in detail in [19] and [24]. The rationale of
the underlying tests for parameter instability is that
the individual deviations from a joint model are consid-
ered over the range of each potential splitting variable:
As illustrated in Figure 4, the strength parameter for
algorithm ak may show a systematic change when con-
sidered over the range of the characteristic cj – such
as the first canonical correlation, that indicates linear

separability – while over the range of other characteris-
tics the parameter may vary only randomly. Statistical
tests are available to detect such systematic parameter
instabilities and select the splitting variable or charac-
teristic inducing the strongest instability [19, 24].

When the model-based partitioning approach of [19]
is employed to detect groups of data sets with certain
characteristics for which the performance-rankings of
the candidate algorithms differ, the resulting partition
can be displayed as a tree, as illustrated for the artificial
toy example in Figure 5: From all available character-
istics in Table 1, the first canonical correlation i2r.fcc –
that indicates whether the data set is linearly separable
– is correctly identified as the characteristic that induces
a significant change in the performance-ranking of the
algorithms. For the 100 samples from data set ds1, that
is not linearly separable, the values of the characteris-
tic i2r.fcc are low and lda performs poorly (left node
in Figure 5), while for the 100 samples from data set
ds2, that is linearly separable, the values of the charac-
teristic i2r.fcc are high and lda performs well (whereas
svm performs slightly worse when compared to the other
algorithms, as displayed in the right node in Figure 5).

3 Application example

This section demonstrates the framework by means of
well-known problems from the UCI Machine Learning
Repository [1] and common learning algorithms. Com-
putational details of the application example are de-
scribed in Section 5.

The application example consists of M = 13 data
sets, that are all binary classification problems but cover
a wide area of data set characteristics. Figure 6 names
all data sets and shows the relative variation of their
characteristics (again the characteristics listed in Ta-
ble 1 are used, i.e. J = 16). The K = 6 algorithms of
interest are linear discriminant analysis (lda), k-nearest
neighbor classifier (knn), classification trees (rpart),
support vector machines (svm), neural networks (nnet)
and random forests (rf) (see, e.g. [10]). The perfor-
mance measure p is the misclassification error and we
draw B = 100 samples using 2/3-subsampling without
replacement.

The results of [18] and our preliminary experiments
have shown that subsampling – rather than bootstrap
sampling – is the resampling method of choice for this
kind of benchmark experiments. The reason for this
is that bootstrap sampling with replacement can in-
duce artifacts in measures of the association between
attributes, such as the entropy or the χ2-statistic [18].

On each data set the benchmark experiment is com-
puted and the result is a 1300 × 15 table with paired
comparisons of the algorithms and the corresponding
1300 × 16 table with data set characteristics. To fit the
recursively partitioned Bradley-Terry model, categor-
ical and ordinal characteristics are employed directly,
while continuous characteristics are discretized based
on their quantiles. (This discretization discards the or-
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der information, but allows to treat missing values as
an extra category in a straightforward way – and if the
order is important the model will find it nevertheless).
We require a minimum of 200 observations per node;
here the idea is to create nodes that contain in average
the samples of at least two data set, so that the result-
ing partition is well interpretable. Based on this setup,
Figure 7 shows the resulting tree.

Focusing first on the rightmost node (Node 11) in Fig-
ure 7, it becomes clear that the performance-rankings of
the 6 algorithms is conditional on the domain specified
by the data sets: Node 11 consists of big (obs.n > 667)
and linearly well separable (i2r.fcc > 0.520) data sets.
On these data sets, all algorithms perform well ex-
cept classification trees. This is plausible from the
method of operating of classification trees, where a lin-
ear separation can only be roughly approximated by
means of stepwise binary partitioning. Another exam-
ple where one algorithm is clearly inferior is displayed
in Node 9, where the data sets are hardly linearly sep-
arable (i2r.fcc ≤ 0.520) and the dimensionality is low
(var.n ≤ 2). In this case, linear discriminant analysis
performs poor for obvious reasons, while the remaining
algorithms perform well. With increasing dimensional-
ity (var.n > 2, Node 10) it appears that support vector
machines perform best, followed by random forests and
neural networks; k-nearest neighbor classifiers perform
equal to classification trees and again linear discrimi-
nant analysis comes last.

The data sets that are grouped in the remaining three
nodes on the left hand side of the tree (Nodes 4, 6 and 6)
based on their smaller samples sizes (obs.n ≤ 667) also
show clear differences in the performance-rankings, but
here the tree provides no reasonable explanation: the
only characteristic used for splitting in this part of the
tree is the number of observations obs.n. However, this
characteristic may only serve as a proxy for other dif-
ferences between the data sets, that are not yet covered
by our list of characteristics.

This application example nicely illustrates the main
challenge of the proposed method: the selection of the
“right” data set characteristics. However, the benefit of
the proposed method is that – at least from the set of
characteristics provided – the relevant ones are selected
for splitting automatically. In further consequence this
allows to compute a huge set of characteristics, (e.g.
join all characteristics available in the three papers cited
in the introduction); the relevant ones are chosen auto-
matically.

4 Summary and outlook

This paper proposes a formal framework to determine
the influence of data set characteristics on the per-
formance of learning algorithms. The framework is a
combination of the three methods, benchmark experi-
ments, data set characterization and recursively parti-
tioning Bradley-Terry models. Benchmark experiments
are used to generate performance information for algo-

rithms and relevant data set characteristics on various
data sets. The recursively partitioning Bradley-Terry
model then employs splits in characteristics which in-
duce a significant change in the performance-ranking of
the algorithms. Advantages of the resulting trees are
that (1) they are easy to interpret by means of visual-
ization and (2) from a potentially large number of data
set characteristics those that correspond to a significant
change in the performances of the algorithms are auto-
matically detected.

The approach can be used both for exploring the im-
pact of characteristics of a given sample of data sets,
like the ones from UCI Machine Learning Repository
[1] used in our example, and for analyzing the results of
simulation experiments, where certain characteristics of
data sets are systematically varied and the aim is to test
their effect on the performance of candidate algorithms.

In either case, it is important to note that – due to the
fact that the number of boostrap- or subsamples drawn
form given data sets, and the number of samples drawn
from a data generating process in a simulation study
is arbitrary – one can detect very small performance
differences with very high power when the number of
learning samples B is large (see also [11]).

Future work will also include investigations on the
stopping criteria for the recursive partitioning algo-
rithm. For example, the number of minimum obser-
vations per node can be chosen greater than B as in
our example, but it could also be chosen smaller than
B, which would result in more than one node for a data
set and could uncover different performance-rankings
on sub-samples from one data set with different char-
acteristics.

5 Computational details

All computations and graphics have been done using R
2.10.1 [17] and the package ggplot2 0.8.5 [23].

The proposed method is implemented in the pack-
age benchmark 0.1 [8]; it relies on the package psy-
chotree 0.9-1 [19] for recursively partitioning Bradley-
Terry models.

In case of the application example the following func-
tions and packages are used: Function lda (package
MASS [21]) for linear discriminant analysis. Func-
tion knn (package class [21]) for k-nearest neighbor
classifiers; the hyperparameter k (the number of neigh-
bors) is determined between 1 and

√
N , N the number

of observations, using 10-fold cross-validation (function
tune.knn, package e1071 [7]). Function nnet (package
nnet [21]) for neural networks; the number of hidden
units is determined between 1 and log(N) using 10-fold
cross-validation (function tune.nnet, package e1071).
Function rpart(package rpart [20]) for classification
trees; the 1-SE rule is used to prune the trees. Func-
tion svm (package e1071) for C-classification support
vector machines; the two hyperparameters γ (the cost of
constraints violation) and C (the kernel parameter) are
determined using a grid search over the two-dimensional
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parameter space (γ, C) with γ ∈ [2−5, 212] and C ∈
[2−10, 25] (function tune.svm, package e1071). Func-
tion randomForest (package randomForest [14] for
random forests.

R itself and all packages used are freely avail-
able under the terms of the General Public License
from the Comprehensive R Archive Network at
http://CRAN.R-project.org. Code and precalcu-
lated results for replicating our analysis is available
from the first author’s website at
http://www.statistik.lmu.de/~eugster/benchmark/.
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