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Abstract

Myocardial perfusion MRI provides valuable insight into how coro-
nary artery and microvascular diseases affect myocardial tissue. Steno-
sis in a coronary vessel leads to reduced maximum blood flow (MBF),
but collaterals may secure the blood supply of the myocardium but
with altered tracer kinetics. To date, quantitative analysis of my-
ocardial perfusion MRI has only been performed on a local level,
largely ignoring the contextual information inherent in different my-
ocardial segments. This paper proposes to quantify the spatial depen-
dencies between the local kinetics via a Hierarchical Bayesian Model
(HBM). In the proposed framework, all local systems are modeled
simultaneously along with their dependencies, thus allowing more ro-
bust context-driven estimation of local kinetics. Detailed validation
on both simulated and patient data is provided.

1 Introduction

Contrast enhanced myocardial perfusion Magnetic Resonance Imaging (MRI)
is a promising technique for providing insight into how reduced coronary flow
affects the myocardial tissue. It also allows the understanding of microcir-
culation in the myocardial tissue and myocardial angiogenesis [1]. Clinically,
myocardial perfusion MRI plays a major role in the evaluation of ischaemic
heart disease beyond situations where there have already been gross myocar-
dial damages such as acute infarction or scarring [2]. It is commonly used
with drug-induced stress to identify tissue with restricted Myocardial Blood
Flow (MBF) due to obstructive coronary lesions. Intra-coronary collater-
als, i.e., arteries and arterioles, which interconnect major coronary artery
branches, can function as natural bypass vessels in the myocardium. In ar-
eas partially supplied by collaterals, the maximum blood flow may appear to
be normal, but the arrival of contrast agent is delayed [3].

Analysis of myocardial perfusion MRI is typically performed via decon-
volution of the myocardial signal response with an Arterial Input Function
(AIF) measured in the blood pool, typically in the left ventricle. In the
approach by Jerosch-Herold et al. [4], a penalty spline (P-Spline) is used
to impose a priori smoothness constraints on the impulse response func-
tion in order to improve the numerical stability of the deconvolution pro-
cess [5,6]. The optimal value of the parameters can be determined using the
L-curve method [7]. As an alternative method for estimating the smoothness
of B-splines, Bayesian based frameworks have also been proposed [8]. As
an advantage, Bayesian models allow adaptive, i.e., time-varying smooth-
ness parameters for the deconvolution process. For this reason, Bayesian
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P-Spline models have received attention in both Dynamic contrast-enhanced
MRI (DCE-MRI) [9] and myocardial perfusion MRI due to its flexibility in
dealing with rapid changes in the response function [10].

To date, quantitative analysis of myocardial perfusion MRI has mainly
been performed on data aggregated in pre-defined segment. A standardized
definition of segments was given by the Cardiac Imaging Committee of the
Council on Clinical Cardiology of the American Heart Association [11]. Anal-
ysis is done on segments rather than on voxels, as myocardial perfusion data
has a low signal to noise ratio (SNR) which can be enhanced via aggregating
over segments. However, by aggregating one loses the spatial and contextual
information inherent in the images.

For analysis of collateral perfusion, contextual information can be impor-
tant as it implicitly reflects the structure of microcirculation. Contextual
information is frequently used in traditional image processing tasks, e.g. im-
age de-noising or feature extraction. Two- and three-dimensional contextual
information has also been used in medical image segmentation [12,13]. More
recently spatial priors have been widely used in functional MRI [14–16], dif-
fusion tensor imaging (DTI) [17] and DCE-MRI [18]. In these studies, the
regression models in the “local” pixels are enhanced by contextual informa-
tion from neighboring pixels using Markov random fields (MRF). MRFs are
defined by specifying local neighborhoods, from which a global network of
dependency is derived. A major challenge with this approach is to develop
structural-preserving models, i.e., models that do not smooth across struc-
tural boundaries or distinct features in the tissue. To this end, the set of
neighbours have to be estimated adaptively from the data [8, 18]. Recently,
spatio-temporal methods have attracted increasing attentions in medical im-
age computing and the most challenging problems remain when spatial and
temporal structures are not independent, but influenced by each other [19].

The purpose of this paper is to propose a spatio-temporal model for ana-
lyzing myocardial perfusion MRI. In normal myocardium, the blood flow in
neighboring segments is largely similar. In the case of collateral flow under
coronary obstruction, the response function is expected to be significantly
different between segments. The focus of the proposed model is to quantify
the dependencies between local kinetic systems. In the proposed framework,
all local systems are modeled simultaneously along with their dependencies.
It thus allows more robust context-driven estimation of local kinetics, a con-
cept we call “contextual kinetics”.
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2 Theory and Methods

For modeling the signal intensity in the myocardial tissue, a Hierarchical
Bayesian Model (HBM) is used. A HBM assumes the existence of unknown,
latent variables, which cannot be observed [20]. In the context of myocar-
dial perfusion, the spatial dependencies between different areas of the my-
ocardium are such latent variables.

2.1 Local B-Spline model

In each voxel i, the observed signal intensity Yit at time t is the unknown true
signal intensity Si(t) plus an observation error εit. We assume a Gaussian
observation error with unknown variance σ2.

εit ∼ N(0, σ2
i ) for all i, t. (1)

In the Bayesian framework, we use a relatively flat prior for the variance of
the obsevation error, σ2 ∼ IG(a, b), with a = 1, b = 10−3.

In general, the true signal intensity is the convolution of the arterial input
function A(t), i.e., the signal intensity in the LV blood pool, and a response
function f(t) [1]

Sn(t) =

∫ t

0

A(t− u)fn(u)du. (2)

After discretization at time points t1, . . . , tT ,

Sitj =
T∑

l=1

A(tj − tl)fi(tl)∆t =
T∑

l=1

Ajlfi(tl), (3)

where ∆t represents the sampling interval of the dynamic series and the
matrix A is a convolution operator [4].

If we assume the response to be a smooth function, we can use a B-spline
representation [4] for fi(t),

fi(tj) =
P∑

p=1

βipBpj, (4)

where B is a T × P design matrix of 4th order B-splines, and βi represent
the spline regression parameters for voxel i. In vector notation, Eqn. 3 and
Eqn. 4 reduces to

Si = Af i = ABβi = Dβi, (5)

where D = AB is the discrete convolution of the AIF with the B-Spline
polynomials.
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2.2 Temporal constraints

A typical constraint on β is a first or second order difference in the temporal
dimension [4, 9]. In a Bayesian framework, this constraint is expressed as a
priori distribution

βip ∼ N
(
2βi,p−1 − βi,p−2, τ 2p

)
for all p = 1, . . . , P − 1 (6)

This is also known as “random walk” prior [21], and the joint a priori dis-
tribution can be expressed as multivariate distribution

βi• ∼ NP (0,R−1), (7)

where NP is the multivariate Gaussian distribution of dimension P , and R
denotes the “precision matrix” (pseudo-inverse of a covariance matrix) of
the random walk, including the temporal smoothness parameters τ 2p , cf. [21].
As a priori distribution for the temporal smoothness parameters we use a
Inverse Gamma distribution τ 2p ∼ IG(c, d) with parameters c = d = 1, which
implies a smooth, but flexible shape of the response function.

This model is similar to the model proposed by Jerosch-Herold et al.
[4], however, formulated in a Bayesian framework. Estimates are identical
whether the penalty is formulated as constraint as in [4] or as prior distribu-
tion as in Eqn. 6, cf. [22]. However, instead of first-order differences penalties
used in [4] we use second-order differences, which implies smoother curves.

2.3 Spatio-temporal constraints

So far, the analysis is independent for each voxel. To account for the spatial
structures of the image, we include contextual information and assume that
spatially adjacent voxels share similar properties, i.e., the shape of the re-
sponse functions in neighboring voxels are similar. The shape of the response
function is determined by the first order differences of the spline regression
parameters. We therefore impose a stochastic constraint on the spline re-
gression parameters,

βip ∼ N



∑

j∼i ν{ij}βj∑
j∼i ν{ij}

,

(∑

j∼i
ν{ij}

)−1
 for each i, p (8)

where i ∼ j denotes that pixels segments i and j are adjacent. Due to the
relatively large gaps between slices in myocardial perfusion MRI we discard
neighbours in Z-dimension. Adjacent pixels are therefore defined by sharing a
border in 2D, i.e., we only use direct neighbourships. The spatial smoothing
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parameter ν is defined for each pair {ij} of adjacent pixels and describes
the similarity between the shapes of the response functions in both pixels.
For the spatial smoothing parameter, we use a Gamma prior distribution
ν{ij} ∼ Ga(e, f) with e = f = 1.

The joint a priori distribution of the spatial constraint per knot p can be
expressed by [23]

β•p ∼ NN

(
0,Q−1

)
, (9)

where, Q is the precision matrix of a Markov random field (MRF) [24] incor-
porating the spatial distribution parameters ν{nm}. We combine the a priori
constraints in Eqn. 7 and Eqn. 9 [23] in

β ∼ NN ·P
(
0, (Q⊗ S) + (IN ⊗R)−1

)
(10)

where IN is the identity matrix with dimension N ×N .

2.4 Simulation study and in vivo data acquisition

For numerical validation, a set of myocardial perfusion images was simulated.
To gain realistic simulations, we extracted response and input function from
one scan from the in-vivo study below and, using these parameters, simulated
signal voxel-wise from myocardial perfusion images. We used two simulation
approaches: In simulation A, we smoothed the parameters derived from the
in-vivo scans in order to suppress noise and simulated the signal per voxel.
In simulation B, we applied standard segmentation and used the voxel with
median MBF to simulate one signal for the whole segment. Afterwards noise
was added per voxel. Fig. 1 shows true MBF values for both types of simu-
lation.

In simulation A we assume that the MBF is spatially smooth, which is
what the spatial approach proposes – so here we check whether the spatial
approach can estimate spatial smooth MBF maps and what happens if we
segment such data. In simulation B we use the assumption that the signal
is identical in each voxel of a particular segment. Hence, we check whether
the spatial approach can retain the borders between segments. White noise
was added to the simulated signal per voxel to derive a signal-to-noise ratio
per voxel of 3. Each simulation was repeated 50 times to evalute reliability
of the proposed approach.

For in-vivo evaluation, MRI perfusion data from six patients with coro-
nary artery disease was used [25]. The images were acquired with a 0.1
mmol/kg injection of a Gadolinium-based contrast agent on a 1.5-T Siemens
Sonata scanner with single-shot FLASH with 48 × 64 pixel resolution on a
30× 40 cm field of view (FOV) with a short saturation recovery time of 3.4
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Figure 1: MBF values used in simulation

msec, TE= 0.5msec, TR= 1 msec for measurement of the LV blood pool,
followed by measurement in the same cardiac cycles with a 108 × 256 pixel
resolution on the same FOV with a longer saturation recovery time of 63.4
msec, TE = 1.2 msec, TR = 1.86 msec for measurement of the LV my-
ocardium. Each subject was scanned once under rest, followed by a scan
after injection of 140 µg/minute/kg of adenosine for four minutes, i.e., under
stress [1].

2.5 Bayesian results

For parameter estimation, we use a full Bayesian framework. That is, we
draw conclusions only from the posterior probability density function (pos-
terior pdf) p(θ|Y ) with θ the vector of all unknown model parameter and Y
the data, given by the Bayes formula

p(θ|Y )
`(Y |θ)p(θ)∫
`(Y |θ)p(θ)dθ (11)

where `Y |θ is the likelihood of the data given the model parameters, see
Eqn. 1 and p(θ) is the prior pdf of the model parameters as specified in
Eqns. 6 to 10.

Parameter inference is based on a Markov chain Monte Carlo (MCMC)
algorithm [20]. The MCMC algorithm produces a random sample which
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distribution is similar to the posterior pdf. From these samples, we can
compute point estimates along with intervals to evaluate the uncertainty of
the estimates. Here, we use the median of the sampled posterior pdf as point
estimates and the quartile range (QR) of the computed sample in order to
quantify the uncertainty of parameter estimation.

3 Results

3.1 Simulation study

To evaluate the simulation studies, we compare true and estimated maximum
blood flow (MBF) derived with the approaches mentioned above. Table 1 lists
bias, variance and mean squared error (MSE) between true MBF values and
estimated values using the segmentation approach, the voxel wise approach
and the proposed spatial approach. MSE can be decomposed in

MSE = Bias2 + V ariance.

For both simulations the MSE for the spatial approach is clearly smaller
than the MSE of the segmentation and the voxel-wise approach. However,
not only is the variance between true and estimated MBF values larger for
segmentation approach and voxel-wise approach, there is also a noticeable
bias, i.e., MBF values are underestimated with voxel-wise and with segmen-
tation approach. This is espacially true for segments and voxel with high
(true) MBF, as we can see in the following figures.

Fig. 2 (a) depicts MBF values estimated using the segmentation approach
for one of the per-voxel simulations. Naturally, this approach can depict

Table 1: Mean and standard deviation (in brackets) across sample of bias,
variance and mean squared error between simulated and estimated MBF
values for Simulation A (simulated voxel) and Simulation B (simulated seg-
ments)
Simulation A Bias Variance MSE

voxel-wise 0.425 (0.0093) 0.359 (0.0255) 0.0528 (0.0139)
segment-wise 0.518 (0.0679) 0.237 (0.0560) 0.511 (0.0872)
spatial 0.071 (0.0148) 0.0481 (0.0032) 0.054 (0.0041)

Simulation B Bias Variance MSE

voxel-wise 0.379 (0.0095) 0.497 (0.0232) 0.644 (0.0187)
segment-wise 0.549 (0.0647) 0.401 (0.0560) 0.712 (0.0757)
spatial 0.060 (0.0138) 0.018 ( 0.024) 0.022 (0.0027)
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Figure 2: Left: Estimated MBF values for one run of the per-voxel-simulation
A with segmentation approach in bulls eye representation. Right: QR of
MBF estimation with segmentation approach for the same run.

the generally reduced MBF in the left circumflex artery (LCX). In the mid
segment it also finds a reduced MBF in the right coronary artery (RCA),
which is not visible in the true MBF values. Fig. 3 shows MBF values
estimated using the proposed spatial approach. As we have seen from Table
1, estimated values are very similar to the true values. Local differences in
MBF in a segment, for example in segment 5, are clearly restored. Fig. 4
depicts estimated values using a voxel-wise approach. As one can expect, the
MBF “surface” is much more rougher compared to the spatial approach. Also
we gain voxel-wise estimates, the localization of reduced microcirculation is
much harder with this approach.

Fig. 2 (b) depicts the quantile range QR for the segmentation approach,
Fig. 3 shows the QR for the spatial approach and Fig. 4 depicts the QR
for the voxel-wise approach. Evidently, for segmentation approach and for
voxel-wise approach the QR is dependent on the MBF values. In general, the
QR is relatively low for both segmentation approach and spatial approach
compared to the voxel-wise approach. This is due to the fact, that estima-
tion in the voxel-wise approach is based on a lower amount of information,
whereas the segmentation approach aggregates information in a segment and
the spatial approach “borrows information” from neighbouring voxels. For
the segmentation approach QR is only increased for a few segments with high
MBF, hence the reliability for the segmentation and the spatial approach is
similar.

Simulation B assumes that in each voxel of a particular segment the MBF
is equal. Hence, the estimated MBF for the segmentation approach, shown
in Fig. 7 is much more in accordance with the true values; this fact can also
be seen in Table 1. Fig. 5 shows the estimated MBF values for the spatial
approach. The segmental structure apparent in the simulated data is clearly

8



0

1

2

3

4

0.0

0.2

0.4

0.6

0.8

Figure 3: Top: MBF values for one run of the per-voxel-simulation A esti-
mated with spatial approach. Bottom: QR of MBF estimation with spatial
approach for the same run.
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Figure 4: Top: MBF values for one run of the per-voxel-simulation A es-
timated with voxel-wise approach. Bottom: QR of MBF estimation with
voxel-wise approach for the same run.
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Figure 5: MBF values for one run of the per-segment-simulation B estimated
with spatial approach.
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Figure 6: MBF values for one run of the per-segment-simulation B estimated
with voxel-wise approach.
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Figure 7: Left: Estimated MBF values for one run of the per-segment-
simulation B with segmentation approach in bulls eye representation. Right:
QR of MBF estimation with segmentation approach for the same run.
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visible in this figure. However, for the voxel-wise approach depicted in Fig. 6
estimated values vary noticeable in each segment. Hence, by using spatial
information we can retain the smooth structure of the MBF surface, however,
due to the adaptive characteristics of the proposed approach, sharp feature
– here the borders between segments – are retained.

In order to explore the causes for the under estimation of MBF values with
the per segment approach, we take a look at the fits per voxel in segment 5 in
one of the spatial simulations. Fig. 8 depicts simulated data along with fits
from the spatial and the segmentation approach. Here, voxel in can basically
be split into two cluster. Voxel in cluster 1 – depicted in black – have a
fast upslope, whereas for voxel in cluster 2 – depicted in grey – the signal
is dispersed, resulting in a lower MBF. Cluster 1 has a mean true MBF of
2.81 and cluster 2 has a mean true MBF of 1.68, resulting in a median true
MBF for the whole segment of 2.05. The spatial approach gives a median
MBF of 2.04 with two clusters of MBFs with means 2.71 and 1.64. For
the segmentation approach, data are averaged in the segment. Fig. 8 shows
the fit for the average signal in the segment. However, the average signal
loses information as the fast upslope in cluster 1 is averaged out with the
dispersion in cluster 2. Hence, the MBF is estimated as 1.50, even below the
MBF of cluster 2.

3.2 In-vivo study

The proposed approaches were tested on six patients with different types of
stenosis for clinical evaluation. Fig. 9 depicts estimated MBF values along
with QR for the scans at rest and under stress for one of the patients using
the segmentation approach. Fig. 10 depicts estimated MBF values along for
with QR for the same scans with the spatial approach. In segment 1 and 6
both approaches show reduced blood flow at rest and under stress. Blood
flow is also reduced at the apical slice, however, MBF values are typically
lower with the segmentation approach compared to the spatial approach. In
the mid slice at rest, the spatial approach picks up reduced MBF in segments
8 and 9, but the segmentation approach shows differences in MBF between
these segments. However, the QR plots show that the estimates with the
segmentation approach are rather unreliable here.

Table 2 lists the median difference between MBF values estimated with
segmentation and spatial approach over all patients. In nearly all scans the
estimates with the segmentation approach is considerable lower with the
segmentation approach compared to the spatial approach. Table 2 also lists
the median variance of MBF with the spatial approach per segment, i.e., an
estimate for the amount of variation of blood flow per segment. Typically this
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Figure 8: Simulated data (points) and fits with spatial approach (solid lines)
in segment 5 of one run of simulation A. Fit with segmentation approach
(dashed line). Data and fits are colored in grey and black according to true
MBF.
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Figure 9: MBF for one patient estimated with segmentation approach. a)
MBF at rest, b) QR of MBF at rest, c) MBF under stress, d) QR of MBF
under stress.
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Figure 10: MBF for one patient estimated with spatial approach. a) MBF
at rest, b) QR of MBF at rest, c) MBF under stress, d) QR of MBF under
stress.
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Table 2: Median and variance (in brackets) of differences between MBF
values estimated with segmentation and spatial approach at rest and under
stress for six patients in the in-vivo study
patient 1 2 3 4 5 6

at rest 0.497 0.305 0.242 0.448 0.740 0.933
(0.098) (0.038) (0.023) (0.080) (0.030) (0.008)

under stress 0.743 0.208 0.763 0.699 0.717 1.132
(0.220) (0.114) (0.180) (0.129) (0.141) (0.054)

number is higher for scans under stress due to higher values of MBF. In some
patients, e.g. #6, the variation per segment is quite low, in others, e.g. #1,
variation per segment is high, which indicates varying microcirculation per
segment.

4 Discussion and Conclusion

In this paper, we have presented a spatio-temporal model for the analysis of
myocardial first-pass perfusion MRI scans. The proposed model includes con-
textual information to describe the dependencies of the data in the individual
segments. Validation with simulated data show that diseased areas can be
detected by depicting the spatial distribution parameter between segments.
By taking the complete shape of the response into account, the model high-
lights differences in delayed enhancement and altered kinetics. Differences
in blood flow can result from reduced MBF, and hence stenosis in one of
the segments, or from delayed arrival of tracer, hence due to the effect of
collateral perfusion.

Simulation results indicate that by averaging the signal per segment, one
not only loses information on local microcirculation, but also abets under
estimation of blood flow. This is obviously even more important in cases
where the blood flow varies in segments. When blood flow is identical over
the segment, inaccurate segmentation may disturb the result. Small errors in
the segmentation process can “contaminate” the average signal per segment
and lead to wrong estimates. The spatial approach does not suffer from seg-
mentation problems, even voxels which belong to the blood pool or to tissue
surrounding the heart can be identified by the approach, as smoothing is lo-
cally adaptive. Local addictiveness is an important property of the proposed
approach. It allows to retain sharp features and borders of the myocardial
tissue and between segments.

Due to the high number of local smoothing parameters, the Bayesian ap-

14



proach, which estimates those “hyperparameters” along with other param-
eters, is more appropriate than an approach using penalties, which would
require to choose the local smoothing parameters arbitrarily or via cross
validation. However, the Bayesian approach has the disadvantage of long
computation time. Estimation for a single slice can take up to an hour. As
advantage, the Bayesian not only gives point estimates, but also information
on the uncertainty of those estimates. In this paper, we used the quartile
range of the posterior samples to evaluate the uncertainty.

In this paper, we only estimated the maximum blood flow (MBF) at rest
and under stress. Many studies also look at the myocardial perfusion reserve
(MPR). The MPR is given as MBF under stress divided through MBF at rest
and, hence, can easily be computed from the results per segment. From the
results of the spatial approach it is not as easy to compute the MPR. However,
one can register scans at rest and under stress and, using the registration,
compute the MPR. In summary, the proposed method provides additional
information to the standard myocardial perfusion imaging analysis used in
cardiovascular MRI, which can further enhance its clinical value.
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