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Abstract. In the context of classification using high-dimensional data such as

microarray gene expression data, it is often useful to perform preliminary variable

selection. For example, the k-nearest-neighbors classification procedure yields a

much higher accuracy when applied on variables with high discriminatory power.

Typical (univariate) variable selection methods for binary classification are, e.g.,

the two-sample t-statistic or the Mann-Whitney test.

In small sample settings, the classification error rate is often estimated using

cross-validation (CV) or related approaches. The variable selection procedure has

then to be applied for each considered training set anew, i.e. for each CV iteration

successively. Performing variable selection based on the whole sample before the

CV procedure would yield a downwardly biased error rate estimate. CV may also

be used to tune parameters involved in a classification method. For instance, the

penalty parameter in penalized regression or the cost in support vector machines

are most often selected using CV. This type of CV is usually denoted as ”internal

CV” in contrast to the ”external CV” performed to estimate the error rate, while

the term ”nested CV” refers to the whole procedure embedding two CV loops.

While variable selection and parameter tuning via internal CV have been widely

investigated in the context of high-dimensional classification, it is still unclear how

they should be combined if a classification method involves both variable selec-

tion and parameter tuning. For example, the k-nearest-neighbors method usually

requires variable selection and involves a tuning parameter: the number k of neigh-

bors. It is well-known that variable selection should be repeated for each external

CV iteration. But should we also repeat variable selection for each internal CV

iteration or rather perform tuning based on fixed subset of variables? While the

first variant seems more natural, it implies a huge computational expense and its

benefit in terms of error rate remains unknown.
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In this paper, we assess both variants quantitatively using real microarray data

sets. We focus on two representative examples: k-nearest-neighbors (with k as tun-

ing parameter) and Partial Least Squares dimension reduction followed by linear

discriminant analysis (with the number of components as tuning parameter). We

conclude that the more natural but computationally expensive variant with re-

peated variable selection does not necessarily lead to better accuracy and point out

the potential pitfalls of both variants.

Keywords: class prediction, variable selection, parameter tuning, nested cross-
validation, genomics

1 Background

In the context of classification using high-dimensional data such as microar-
ray gene expression data, it is often useful to perform preliminary variable
selection. For example, the k-nearest-neighbors classification procedure yields
a much higher accuracy when applied on variables with high discriminatory
power. Typical (univariate) variable selection methods for binary classifica-
tion are, e.g., the two-sample t-statistic or the Mann-Whitney test.

In small sample settings, the classification error rate is often estimated
using cross-validation (CV) or related approaches. From now on, we denote
the whole data sample as S, the CV folds as T1, . . . , TJ (with ∪J

j=1Tj = S and
Tj1∩Tj2 = ∅ for j1 6= j2), and the corresponding CV learning sets as Lj = S \
Tj , for j = 1, . . . , J . If the chosen classification method involves a preliminary
variable selection step, this step has to be applied for each CV iteration
anew, i.e. for each considered learning set Lj successively. Performing variable
selection based on the whole sample S before the CV procedure would yield
a downwardly biased error rate estimate.

CV may also be used to tune parameters involved in a classification
method. For instance, the penalty in penalized regression is most often se-
lected using CV. This type of CV is usually denoted as ”internal CV” in
contrast to the ”external CV” performed to estimate the error rate, while the
term ”nested CV” refers to the whole procedure embedding two CV loops.
Similarly to the external CV, we denote the internal fold for the jth exter-
nal CV iteration and ith internal CV iteration as Tij and the corresponding
learning sets as Lij = Lj \ Tij , for i = 1, . . . , I and j = 1, . . . , J .
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While variable selection and CV have been widely investigated in the con-
text of high-dimensional classification, it is still unclear how variable selection
and parameter tuning should be combined if a classification method involves
both variable selection and parameter tuning. For example, the k-nearest-
neighbors method usually requires variable selection and involves a tuning
parameter: the number k of neighbors. It is well-known that variable selec-
tion should be repeated for each external CV iteration based on Lj , yielding
a variable subset Vj . However, should we also repeat variable selection for
each internal CV iteration based on Lij or rather perform internal CV with
the fixed subset Vj?

In the latter variant, termed ”V1” from now on, variables are selected
based on the learning set Lj corresponding to the current external CV itera-
tion. Hence, the well-known rule that variable selection should be performed
without taking the test set into account is violated in the internal CV. This
is because the subset of variables Vj is derived from Lj = Lij ∪Tij that, from
the point of view of internal CV, includes both the learning data set Lij and
test data set Tij , for i = 1, . . . , I. As outlined above, variable selection can
also be repeated for each internal CV iteration based on Lij only, yielding
variant ”V2”. In this case, the variable subset varies in each internal CV
iteration. We denote the subset of variables selected in the ith internal CV
iteration and jth external CV iteration as Vij .

In variant V1, the error rates computed in the internal CV are expected
to be lower than 50% even if the class membership Y is random. That is
because the variable subset Vj is chosen to be associated with Y in Lj , for
each j = 1, . . . , J . In other words, V1 performs tuning based on downwardly
biased estimates of the error rate. The relative performance of parameter
values in internal CV - and thus the result of the tuning procedure - may
also be affected by the fact that the internal test data sets Tij were not
disregarded while selecting the subset Vj .

In this sense, variant V2 seems more natural and adequate. However,
it implies a higher computational expense and its benefit over V1 in terms
of error rate remains unknown. An additional potential pitfall is that the
variables that are used for tuning (i.e. that are selected at each internal CV
iteration) are different from those that are eventually used to construct the
classifier. For example, if we perform penalized regression based on variables
of different scale, it would obviously be wrong to use a penalty parameter that
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was chosen based on other variables. This example is probably exagerated and
in this case the problem can be simply solved through appropriate scaling,
but more subtle similar mechanisms may in general affect the accuracy of
V2.

To our knowledge, V1 and V2 are both used in practice – most often
rather implicitly and without much explanation. Their respective merits and
pitfalls remain largely unexplored in the literature, although tuning issues
are known to greatly affect accuracy in general. In this paper, we assess
both variants V1 and V2 quantitatively using real microarray data sets. We
focus on two representative examples: k-nearest-neighbors (with k as tuning
parameter) and Partial Least Squares dimension reduction followed by linear
discriminant analysis (with the number of components as tuning parameter).
More precisely, we address the following questions: 1) Do V1 and V2 select
the same parameter values? and, if yes, 2) Do the resulting classification
accuracies differ substantially?

2 Methods and design of the study

2.1 Classification and variable selection methods

In this paper, V1 and V2 are compared for two completely different standard
classification methods: the k-nearest-neighbors (kNN) algorithm with the
number k of neighbors as tuning parameter, and Partial Least Squares (PLS)
dimension reduction followed by linear discriminant analysis (PLS+LDA),
with the number ncomp of PLS components as a tuning parameter. We refer
to Boulesteix (2004) for details on PLS+LDA. For the purpose of repro-
ducibility, we use the standardized implementations provided by the ’CMA’
Bioconductor package (Slawski et al. (2008)). We consider the classical can-
didate parameter values k = 1, 3, 5, 7, 9 for kNN and ncomp = 1, 2, . . . , 10 for
PLS+LDA.

Tens of variable selection criteria have been proposed in the context of
microarray-based (binary) classification. In this study, we focus on two uni-
variate methods. The first one selects the p∗ genes with the highest absolute
value of the two-sample t-statistic. The second one is the criterion provided
by the Recursive Feature Elimination (RFE) approach by Guyon et al. (2002)
based on support vector machines. For computational reasons, the number



Variable Selection and Parameter Tuning 5

of ”iterations” is set to 1. These two procedures are implemented in the
’CMA’ package. In this study, the number of selected variables is fixed to
p∗ = 20, 50 successively for the kNN method, and p∗ = 100, 500 for the
PLS+LDA method, which are all common choices.

2.2 Design of the comparison study

The study is based on two well-known real-life cancer data sets: the leukemia
data set (Golub et al. (1999)) included in the ’CMA’ Bioconductor package
(Slawski et al. (2008)) yielding very good accuracies with most standard clas-
sification methods, and the colon cancer data sets included in the ’colonCA’
Bioconductor package (Alon et al. (1999)) usually yielding error rates be-
tween 10% and 20% (see, e.g., Boulesteix (2004)).

The CV procedure is replicated several times using different random par-
titions, both in internal and external CV, which means that error rates are
averaged over several random partitions instead of only one. This approach
is commonly recommended to make the results more stable. In our study, ex-
ternal CV consists of 100 replications of J-fold CV with J = 6, whereas five
replications of 3-fold internal CV are performed for tuning. In other words,
external CV error rates are obtained by averaging over 100× 6 = 600 folds,
while parameter values are selected based on the average error rate over three
replications of 5-fold CV, i.e. 3× 5 = 15 internal folds.

3 Results

3.1 Do V1 and V2 select the same tuning parameter values?

At first we examine the tuning parameter values that are selected in the
100 × J tuning runs by internal CV using both variants V1 and V2. Do V1
and V2 select the same parameter values?

In about half of the setups, V1 and V2 yield similar results. For example,
the barplot depicted in Figure 1 (right panel) shows the frequency of selec-
tion of each candidate number of PLS components with p∗ = 500 and RFE
variable selection based on the colon data. The frequencies of selection do not
differ substantially for V1 and V2. Clear differences between V1 and V2 are
observed in the other half of the settings, with V2 consistently selecting more
complex models. As illustrated in the left panel of Figure 1 for kNN with
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Fig. 1. Barplot of the frequency of selection of the candidate parameter values
(k = 1, 3, 5, 7, 9 for kNN and ncomp = 1, 2, . . . , 10 for PLS+LDA) for both variants
V1 and V2 in two different illustrative setups. Whereas the right panel (PLS+LDA,
RFE, p∗ = 500, colon data) shows similar frequencies of selection for each candidate
parameter value, obvious differences can be observed in the left panel (kNN, t-test,
p∗ = 50, Golub data). The barplots sum to 100× J = 600.

t-test variable selection and p∗ = 50 based on the Golub data, V2 notice-
ably selects smaller k values than V1 in kNN classification, i.e. more complex
models. This general tendency of V2 to more complex models is also observed
in several settings with PLS+LDA, where V2 selects higher numbers of PLS
components.

The tendency of V1 to less complex models may be artificially enhanced
by our convention that, if the lowest internal CV error rate is obtained with
several parameter values, the least complex model is selected. Indeed, V1 per-
forms tuning based on downwardly biased estimates of the error rate. With
well-separated data sets such as Golub, it often occurs that all parameter
values yield an error rate of 0%. In this case, the least complex model is se-
lected, hence artificially increasing the frequency of selection of less complex
parameter values (i.e. high k values or low ncomp values). However, this arti-
ficial mechanism resulting from our convention can only explain a moderate
part of the tendency of V2 to more complex models.

Roughly speaking, the higher complexity obtained with V2 can be partly
explained as follows. With V2, the set of variables Vij used in the jth external
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iteration and ith internal iteration is selected based on Lij only. Thus, in the
learning set Lij , they are more strongly associated to the response Y than
the variables Vj selected using the larger subsample Lj . As a consequence, a
complex model fitted on Lij based on variables Vij is likely to perform better
than a complex model fitted with the ”worse” variables Vj . This mechanism
can probably partly explain why V2 leads to the selection of more complex
models than V1. It is illustrated in Figure 2 which shows the prediction re-
gions of the kNN classifier (based on only p∗ = 2 for demonstration purposes)
together with a scatterplot of the p∗ = 2 selected variables. In this example,
complex models (k = 1) in combination with V1 obviously yield overcomplex
prediction regions leading to bad classification performance on the internal
test data set Tij .

3.2 Do the classification accuracies of V1 and V2 differ

substantially?

In this section, we examine the differences in performance of V1 and V2 in
external CV. On the whole, our conclusion is that both tuning variants yield
approximately equal accuracies, with differences in accuracies smaller than
2.5% in all settings. As an example, the error rates obtained with the kNN
method are summarized in Table 1. Similar differences are observed with
PLS+LDA, see Table 2.

In the cases where V1 outperforms V2, the difference in performance is
then largely due to the tendency of V1 to less complex models, as can be
seen from the example depicted in Figure 3 (kNN with RFE, colon data). In
this setup, the parameter value k = 1 (complex model) is not often selected
by V1, and yields higher error rates than the other k values, regardless of
whether it is chosen by V1 or V2. V1 thus seems to benefit from its tendency
to less complex models.
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Fig. 2. Prediction regions of kNN classifiers with p∗ = 2 variables for three internal
CV iterations based on variants V1 and V2. Each row corresponds to a particular
internal CV iteration. 1st column: V2 with k = 1 neighbor. 2nd column: V1
with k = 1 neighbor. 3rd column: V2 with k = 9 neighbors. Circles stand for
observations of class Y = 0, triangles stand for Y = 1. White symbols represent
internal test observations from Tij .
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Fig. 3. kNN, RFE, p∗ = 20, colon data. Top: Boxplots of the error rates in external
CV for different values of k with V1 (left) and V2 (right). Bottom: Barplots of
the frequencies of selection of the different k values with V1 (left) and V2 (right).

Golub data colon cancer data
t-test RFE t-test RFEkNN

V1 V2 V1 V2 V1 V2 V1 V2
mean MCR 7.8% 7.4% 5.8% 6.1% 16.8% 18.8% 21.6% 23.3%20 genes
std. dev. 2.6% 2.8% 2.5% 2.9% 1.9% 2.4% 3.3% 4.1%
mean MCR 5.9% 5.5% 1.9% 2.2% 16.4% 19.9% 16.9% 18.5%50 genes
std. dev. 2.4% 2.7% 1.8% 1.7% 1.6% 1.9% 3.3% 3.0%

Table 1. Mean error rates (and standard deviations) with kNN using V1 and V2.
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Golub data colon cancer data
t-test RFE t-test RFEPLS LDA

V1 V2 V1 V2 V1 V2 V1 V2
mean MCR 3.3% 4.0% 0.2% 1.2% 16.3% 14.3% 13.0% 12.3%100 genes
std. dev. 1.7% 2.3% 0.7% 1.6% 2.5% 1.4% 2.3% 1.3%
mean MCR 1.8% 2.3% 0.2% 1.1% 15.7% 15.1% 12.0% 12.1%500 genes
std. dev. 1.7% 2.0% 0.6% 1.5% 2.5% 1.8% 1.4% 1.4%

Table 2. Overall mean MCRs and standard deviations obtained using PLS+LDA
and various combinations of tuning variant, variable selection technique and data
set. Reported standard deviations are computed based on mean MCRs of the 100
CV iterations.

4 Discussion

Our study shows that the two investigated tuning variants sometimes lead to
clearly different tuning results. Variant V1 shows a general tendency to less
complex models using both investigated data sets. Similar results are also
obtained using further microarray data sets (data not shown). With regard
to prediction accuracy, V1 and V2 yield similar accuracies and, in some set-
tings, the seemingly inappropriate V1 approach even outperforms the more
natural V2. Although V1 performs tuning based on severely biased internal
CV error rates, the selected tuning parameter values yield acceptable accura-
cies in the settings considered in our study. Hence, the benefit of V2’s higher
computational expense in terms of prediction accuracy cannot be confirmed
through our study. Let us add a few concluding remarks on both approaches:

• In some setups, we see that overcomplex models, which are frequent with
V2, are associated with an increased error rate. This may be partly ex-
plained as follows. Since the Lij are smaller than the Lj , it is easier to
find variables that separate the two classes well in Lij than in Lj . For
these variables Vij , complex models perform well when fitted on Lij –
probably even better than when they are fitted on variables Vj in Lj and
using larger data sets. This may partly explain why the tendency of V2
to more complex models seems to be a disadvantage.

• The variables used by V2 to construct the classifier in external cross-
validation are not the same as those used for tuning in internal cross-
validation. Beyond the examples considered in our paper, this may yield
substantial problems in some cases, for instance when the tuning parame-
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ter controls the ”amount of non-linearity” of a classifier. If some variables
show linear relationships with Y while other substantially depart from
linearity, performing parameter tuning and classifier fitting using different
variables is obviously sub-optimal.

• Finally, we point out that V1 may show worse performance in data sets
with well-separated classes (like the Golub data) if all parameter values
yield an error rate of 0% in internal CV. This may often occur in practice,
since the internal CV error rates are strongly downwardly biased in V1.
In this case, no tuning is achieved by V1, while V2 often yields higher
error rates that can be compared to perform parameter tuning.

• In conclusion, let us mention that, from a theoretical point of view, both
variants V1 and V2 can be seen as imperfect approximations for a com-
putationally unfeasible task. The correct approach would be to select the
tuning parameter and the variable subset jointly from a multi-diensional
grid in internal CV. Of course, an exhaustive search is unfeasible in high-
dimensional data analysis. The development of simplified computation-
ally efficient algorithms could be addressed in further research.
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