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Abstract

This thesis deals with the effect of microaggregated data obtained by using
k–Ward–Algorithm on estimators of linear regression. Therefore, at first an
overview over the strategy of k–Ward–microaggregation is given in chapter 2,
describing the underlying idea. Further, improvements concerning disclosure
control and computing time are discussed.
The first section of chapter 3 focuses on estimators, in case the data set is
aggregated according to all regressors of the regression model. It is proposed
that the estimators of the slope and intercept coefficients remain unbiased in
this particular case. Furthermore, it is possible to obtain an unbiased estimator
of the underlying true error variance in case the response is sorted concomitantly
and an upper bound of it otherwise.
Not as obvious as before are the results in the second section of chapter 3, in
which the case of a regression is illustrated when the response, regressors and
other model–excluded variables are employed in the group forming process of
k–Ward–Algorithm. It proves to be difficult to give a consistent estimator of
any parameter as the assumption of a latent underlying sorting variable causes
problems. First in determining such a variable, and secondly if such one ex-
ists the covariance between the regressors itself and the response can only be
bounded allowing no clear bound of the least–square estimator for the slope
coefficients. Only in case the group–sizes are assumed as random it is possible
to determine a consistent estimator, requiring a known sorting variable.
In chapter 4 the theoretically achieved results are tested in simulations. The
outcome does not allow to refute the conclusions stated in the first section of
chapter 3.



Chapter 1

Introduction

A huge volume of data is produced by national and international organizations
in order to obtain information about a specific topic. These produced data can
be classified in two different categories, macrodata and microdata sets. While
the first are mainly statistical tables, created by aggregating microdata, the lat-
ter contain individual records. As these are usually critical personal information
they have to be kept safe to prevent both misuse and disclosure. Mostly these
data are used once and are deleted afterwards. However, there is an interest of
scientists in these data, as they usually provide a large number of observations
and appropriately drawn samples.

In order to use this data for scientific research they have to be anonymized,
guaranteeing that the individual records are not disclosable by the researchers.
However, as such an absolute anonymized microdata set would provide almost
the same amount of information as the according makrodata set, the concept of
factual anonymity is applied, meaning that ’an allocation of the individual data
is possible only with an excessive amount of time, expenses and manpower ’1.
A variety of anonymization methods holding that concept can be applied to a
microdata set ranging from information reduction to data perturbing methods.
To the latter one belongs the microaggregation technique which is appropriate
for continuous data. The main idea of this technique is to form groups of ob-
servations and afterwards replace the individual records by their group average
value. In the process of forming groups the data set is sorted according to
a predetermined criterion, but re–ordered afterwards in the same way, so that
in the end the microaggregated data set is in the same order as at the beginning.

This thesis concentrates on the microaggregation method k–Ward–microaggre-
gation, which was developed by Mateo-Sanz and Domingo-Ferrer in 1998. The
advantage of this method is the minimization of the information loss, i.e. the
variance within the groups and thus allowing precise estimators in regression
models in comparison to the estimators on the original data.

In chapter 2 the algorithm to microaggregate is presented and described. Fur-
thermore it is illustrated that the above presented advantage could be a dis-

1Law on Statistics for Federal Purposes §16 (6) (2007)
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advantage leading to severe disclosure risk. As a solution another algorithm,
implementing the original k–Ward–Algorithm, is roughly described.

The chapter 3 focuses on obtaining least–square estimators in linear regression
models in case of k–Ward–microaggregated data. The first section deals with
the case that all regressors are taken into account at the microaggregation pro-
cess. The following section deals with the more problematic case in which the
variables used for the microaggregation are various variables including response,
regressors and other variables, excluded from the regression model. Although
there is not a straightforward solution to obtain consistent estimators, it is
demonstrated that under some circumstances and assumptions it is still possi-
ble.

An overview of simulations is given in chapter 4, testing the hypotheses gener-
ated in the chapter 3.

Finally in chapter 5 a conclusion of this thesis and a prospect for further research
in this context are presented.

2



Chapter 2

k–Ward-Microaggregation

2.1 Concept of K–anonymity

In order to obtain a microaggregated data set a variety of methods can be ap-
plied to the original data whose final output holds the standard of K–anonymity.
K–anonymity means, that for each variable in the microaggregated data set ev-
ery value occurs at least k times per variable. This makes it more difficult for
an attacker to identify a single observation.

To achieve this, the original data set is partitioned into disjoint groups, con-
taining at least K values each, so called k–partition, and in a second step the
original values are replaced by their group average. In the process of forming
groups all methods aim to group only the most similar values together, though
holding the property of K–anonymity.

First of all, a universal notation is needed: Let X denote the original data set
containing n observation vectors, with each p continuous variables. The i–th
observation vector is written as xi. After the partition the original values are
assigned to g disjoint groups G1, . . . , Gg. The number of observations in Gk is
denoted by nk. The vector (length: p) with the aggregated means in the k–th
group is hereby x̄k.

Finding an optimal partition requires a measure of the information loss which
arises naturally in the process of forming groups, except for artificial cases.
Mateo-Sanz and Domingo-Ferrer (1998) proposed to use the within–groups sum
of squares

SSE :=
g∑
k=1

∑
xi∈Gk

(xi − x̄k)′ (xi − x̄k) (2.1)

as a measure for the information loss. The strategy in minimizing SSE seems
to be appropriate as the empirical covariance matrix Sxx can be divided into
the variance within (SSE) and between (SSA) the groups:

SST := nSxx =
g∑
k=1

nk (x̄k − x̄)′ (xi − x̄k)︸ ︷︷ ︸
SSA

+SSE , (2.2)
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where x̄ is the vector of the means computed from the original data set.
A standardized definition of the information loss L is as followed:

L :=
SSE

SST
, (2.3)

with 0 ≤ L ≤ 1. As SST is a fixed value for a given data set, minimizing SSE
assures that the most similar values are grouped together. Equivalent to the
above minimizing is a maximizing of SSA since L can also be written as

L =
SSE

SST
=
SST − SSA

SST
= 1− SSA

SST
. (2.4)

This can be summarized by the K–partition-problem

Definition 1 (K–partition–problem). Partition the observation in the original
data set into disjoint groups such that

1. each group consists of at least K observations (to assure K–anonymity),
and

2. the variance within the groups (measured by SSE) is minimized.

Definition 2 (Optimal K–partition). A partition solving the K–partition–
problem is called optimal K–partition.

Similar to finding a partition with minimal within group variance is the grouping
process in statistical cluster analysis. However, the constraint there is a fixed
number of groups in the obtained data set, whereas the K–partition–problem
requires a minimum group–size. Although these two approaches seem not to be
matchable, Mateo-Sanz and Domingo-Ferrer (1998) proposed a method striking
a balance between those: k–Ward–Algorithm.

This method is further explained in Section 2.2. Section 2.3 focuses on the
disclosure issue of the k–Ward–Algorithm, and describes an improved secure-k–
Ward–Algorithm by Li et al. (2002).

2.2 k–Ward–Algorithm

It is an heuristic method approximating an optimal K–partition, which adapts
the clustering technique, Ward’s hierarchical algorithm, with the requirements
of K–anonymity.

Before going into the details of this algorithm, a brief overview on Ward’s hier-
archical clustering method is given, using his notation.

2.2.1 Excursus: Ward’s clustering algorithm1

As objective function Z Ward proposed to use the within–groups sum of squares
(SSE), because it minimizes the variance within the groups, hence a lower value
is considered more desirable.

1cf. Ward (1963), page 239ff
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At the beginning, the whole data set U consists of n one–element subsets:
U = {e1, . . . , en}. The number of subsets is reduced to n−1 by uniting those two
subsets to a new subset, which minimize the change in the objective function’s
value. This results in optimal subsets at the step n− 1, denoted by S(pn−1, n),
where pn−1 is an identifier for the group in the n−1 subsets. Iterative applying
leads to a successive groups’ reduction.

To identify the optimal union the objective function has to be evaluated for
all n(n − 1)/2 possible unions in the first step. As Z[a, b] = Z[b, a] only those
are considered with the first index smaller then the second. The both groups
with the lowest value Z[pn−1, qn−1, n − 1] (with pn−1 < qn−1 used as indices)
are then grouped together. However, another approach measuring the distance
d(·, ·) between two subsets would be to evaluate only the increase in SSE when
joining them. This is easier to compute and here given in the case for two subsets
Gp (indexed by pn−1), Gq (indexed by qn−1) containing np and nq elements with
means x̄p and x̄q respectively2:

Z[pn−1, qn−1, n− 1] = d(Gp, Gq) =
np nq
np + nq

‖x̄p − x̄q‖2 3 (2.5)

After identifying the optimal union the new subset is formed:

S(pn−1, n− 1) = S(pn−1, n) ∪ S(qn−1, n) ,

All other subsets remain unaffected besides changing the index of the iterative
step, i.e. S(i, n− 1) = S(i, n) with i 6= pn−1 and i 6= qn−1. The group with the
index qn−1 is then deleted.

In the next iteration step the objective function is now evaluated for all (n −
1)(n − 2)/2 possible unions. However, in this step the distances between the
group merged in the previous step and the others have to be evaluated. The
new distance between two groups can be calculated with distances obtained in
the previous step4. Again the groups with the lowest value are united, giving
the next optimal set of subsets:

S(pn−2, n− 2) = S(pn−2, n− 1) ∪ S(qn−2, n− 1) ,

with pn−2 < qn−2 and for the rest S(i, n−2) = S(i, n−1) with i 6= pn−2, i 6= qn−2

and i 6= qn−1.

In the k–th iteration step the objective function has to be evaluated for (n −
k + 1)(n− k)/2 unions. The optimal value is then Z[pn−k, qn−k, n− k] leading
to a union

S(pn−k, n− k) = S(pn−k, n− k + 1) ∪ S(qn−k, n− k + 1) .

A flowchart of the complete algorithm can be found in the Appendix A (Figure
A) on page 25.

2The proof for the univariate case can be found in the Appendix B on page 26
3Fahrmeir et al. (1996), page 466
4A proof can be found in the Appendix B on page 26
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Now, after this excursus, the adaption of this algorithm fulfilling the restrictions
of K–anonymity will be explained.

First of all the objective function in Ward’s algorithm is the increase in SSE
measuring the distance between to subsets (see (2.5)). Secondly, the above
presented proceeding allows subsets with less than k and more than 2k elements,
even in late steps. To avoid this, there has to be a stricter rule for the process
of uniting subsets.

Algorithm 1 (k–Ward)

1. Form a group with the first (smallest) k elements of the data set and
another group with the last (largest) k elements of the data set.

2. Use Wards method until all elements in the data set belong to a group
containing k or more data elements; in the process of forming groups by
Wards method, never join two groups which have both a size greater than
or equal to k.

3. For each group in the final partition that contains 2k or more data ele-
ments, apply this algorithm recursively (the data set to be considered is
now restricted to the particular group containing 2k or more elements).

Proposition 1. The k–Ward–Algorithm terminates after a finite number of
recursion steps.

Proof.
The first step ensures that in each recursion step the active data set is split into
at least 2 groups, so the obtained partition is always finer than the initial. So
if there are only 2 groups formed in each recursion step it needs at most d n2k e
turns. The rule in the second step ensures that the in step 1 formed groups
are never united because of their size. At least the last step guarantees K–
anonymity by forcing a further recursion step for all groups with 2k or more
elements.

The only difficulty appears in the determination of the k smallest and largest
elements of the data set. One way could be to project the data onto a single-
axis and then those are easily obtained. Another approach could be to use
any distance measure, for example the Euclidean distance, in order to find the
most distant elements and then group the nearest around them, according to
the distant measure. However, there may be different results in the grouping
process ’depend[ing] on which extreme point is taken as first ’5.
As there may arise misunderstandings concerning the second step of the algo-
rithm, the underlying idea is now pointed out. Before the first step the data set
contains of n single element groups, i.e each observation is treated as a group.
In the first step the most distance observations are discovered and then the k
nearest observations are grouped around them. Thus after the first step there
are n − 2k + 2 groups. These groups are the basis of Ward’s algorithm in the

5Mateo-Sanz and Domingo-Ferrer (1998), page 520
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second step. The underlying recursion of Ward’s algorithm is applied until a
k-partition is obtained. To ensure that after the second step the data set is
partitioned into at least 2 groups the rule is not to merge two groups containing
more or equal than k elements. The rule has to be applied since it is possible
to merge the single–element groups continuously into one margin group. The
rule in the second step allows thereby groups with more than 2k elements after
the union. For each of those groups the algorithm has to be applied recursively
with the concerning group as data basis.

2.3 Disclosure Risk

Microaggregation requires a lot of resources, mostly computing time, so the
results should satisfy a certain level of anonymity. This seems to be guaranteed
by the property of K–anonymity, although some examples can be constructed
holding the property of K–anonymity, but are easily disclosurable. The risk
of identifying single observations from the microaggregated data set is called
disclosure risk. Consequently the key purpose of any microaggregation strategy
should decrease this risk.
This also applies for k–Ward–microaggregation, so it has to match this property.
As the strategy in k–Ward–microaggregation is to unite homogeneous groups,
the disclosure risk decreases with the inhomogeneity of the data set according
to the used variables. The maximal disclosure risk is when the original data
set is already a k–partition and the values in each group do not differ. In this
case there is no difference between the aggregated data set and the original one.
Generally a tendency between disclosure risk and heterogeneity of the data set
can be postulated, as an increase in heterogeneity implies an decrease of disclo-
sure risk.

To use the k–Ward–Algorithm even in the homogeneity case, Li et al. (2002)
developed a secure–k–Ward–Algorithm. The underlying idea is to compare the
original values with its substitutes and in case their difference is too small, it
is looked for a substitute that hold a given distance. In order to analyze the
aggregated data set for critical substitution values they defined the tolerance
level ε and the security ratio γ. With the tolerance level the minimal tolerable
difference between the original and the substitution value defined, and the se-
curity ratio gives the percentage of observations with their differences greater
than the tolerance level. Whereas the tolerance level has to be predefined by
the user and applies for all groups, the security ratio has to be computed for
every group. In the following the secure–k–Ward–Algorithm is presented6.

6Li et al. (2002), page 153
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Algorithm 2 (secure–k–Ward)

1 Initial phase: Apply k–Ward to the input data set. Assume that the data set
is partitioned into g groups with the i-th group consisting of ni individuals
xij(j = 1, . . . , ni), where ni ≥ k and

∑g
i=1 ni = n. Denote the average

over the i-th group x̄i(i = 1, . . . , g).

2 Checking phase: For each group i, compute the security ratio γ based on the
data and the tolerance level ε. If γ ≥ γ0, then use the average xi to
substitute the individual values in this group and continue this checking
phase for the next group; else, deliver the current group i to the intra–
group optimization phase.

3 Intra–group optimization phase: Compute two optimal values ←−xi and −→xi for
the current group i and use them respectively instead of xi in substitution
of individuals in group i such that the information loss of substitution
in this group is minimized with the constraints {γ ≥ γ0 ∧ ←−xi ≤ x̄i} and
{γ ≥ γ0 ∧ −→xi ≥ x̄i} respectively. Then go back to the checking phase for
the next group.

4 Inter–group optimization phase: For each group j that has been optimized by
phase 3, determine either ←−xi or −→xi to be x̂j and use x̂j in substitution of
values in this group such that the average over all substituted values of all
groups is as close as possible to the original average x̄i.

In their article Li et al. (2002) proposed to use any optimization method for
the intra–group optimization phase7 and developed a heuristic method for the
inter–group optimization phase, as this optimization proves to be NP–hard8.
The great advantage of this algorithm is the compatibility with k–Ward–Algorithm;
’that is, if the K–partition finished by k–Ward [–Algorithm] has no security prob-
lem in terms of the security ratio, then secure–k–Ward [–Algorithm] works ex-
actly the same way as k–Ward [–Algorithm]. In this case, secure–k–Ward [–
Algorithm] terminates once the checking phase is finished.’9

However, the output of the secure–k–Ward-Algorithm relies on the predefined
tolerance level ε and minimum security ratio γ0. Varying these constraints can
lead to quite different aggregated data sets, nevertheless the result is to be con-
sidered safe concerning the disclosure risk.

Besides the issue of disclosure control, the computing time is another aspect to
mention. The article ’On Optimizing the k–Ward Micro-aggregation Technique
for Secure Statistical Databases’ by Fayyoumi and Oommen10 describes how to
save computing time by pre–partitioning the data set. As this aspect is not as
important as disclosure control, it is not further evaluated in this thesis.

7cf. Li et al. (2002), page 154f
8cf. Li et al. (2002), page 155f
9Li et al. (2002), page 154

10Fayyoumi and Oommen (2006)
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Chapter 3

The Effect of
k–Ward–Algorithm on the
Estimation of a Linear
Regression Model

This chapter is dealing with the effect of microaggregated data — generated
by using k–Ward–Algorithm — on the estimators of a linear model. This will
be accomplished by a specialization of the general conclusions made by Schmid
(2007, chap. 4) in case of fixed–size microaggregation. In the microaggregation
process the data are sorted, leading to two different approaches in analyzing
a linear model: The sorting relies either on a function of the regressors or an
arbitrary variable.
As k–Ward–Algorithm sorts the data set implicitly, the concept of single–axis–
sorting is adapted, assuming that the group forming process is done according
to one latent sorting variable.

3.1 The sorting variable is a function of the re-
gressors

In this case, all variables which were microaggregated by the k–Ward–Algorithm
are in the linear model as regressors. Therefore the multivariate k–Ward–
Algorithm had to be used.
Let G denoted the number of disjoint groups formed in this process and Gj
the j–th group containing kj elements but at least k, j = 1, . . . r. The data
contains n observations, but it is not necessary that n is a multiple of k. The
microaggregated values are written with a tilde over the variable name, i.e. the
microaggregated values for x are denoted as x̃.
The classical linear model with its assumptions for mean and variance of the
error variable is used:

Y = β0 + β1X1 + . . .+ βpXp (3.1)
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E (ε|X1, . . . , Xp) = 0 (3.2)

V (ε|X1, . . . , Xp) = σ2
ε (3.3)

The estimator for β on the original data is denoted with b̂.

According to the results of Schmid (2007, chap. 4.2), it is possible to generate
a matrix D describing the structure of the microaggregation process. This
has to be adapted hence he assumed fixed–size microaggregation. Then the
microaggregated values can be written as 1:

X̃1 = D ·X1 , (3.4)
... (3.5)

X̃p = D ·Xp (3.6)

Remark: The response variable Y is not aggregated in this process.
The microaggregation matrix D has the following structure:

D = Π−1 ·K ·



1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
1 · · · 1 · · · 0 · · · 0

...
. . .

...
0 · · · 0 · · · 1 · · · 1
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · 1 · · · 1


·Π (3.7)

︸ ︷︷ ︸
k1

︸ ︷︷ ︸
kr

with the diagonal matrix K as

K = diag

(
1
k1
, . . . ,

1
k1
,

1
k2
, . . . ,

1
kr−1

,
1
kr
, . . . ,

1
kr

)
(3.8)︸ ︷︷ ︸

k1

︸ ︷︷ ︸
kr︸ ︷︷ ︸

n

Hereby Π has the function of ordering the data according to the result of the
k-Ward-Algorithm, whereas the 2 matrices in the middle perform the actual
aggregation. Finally by multiplying it with Π−1 the data is rearranged in their
initial order. Easily to be seen is that D is symmetric and idempotent2.

Theorem 1. Let X = (X1, . . . , Xp)′ k–Ward–microaggregated data, and a
linear regression according to (3.1) with assumptions (3.2), (3.3). Denote by
X̃ := (1, x̃1, . . . , x̃p) the design matrix of the aggregated data. If (X̃′X̃)−1 ex-
ists, then b̃ := (X̃′X̃)−1X̃′y is an unbiased LS estimator of β.

1cf. Schmid (2007), page 94
2It is proven in the Appendix B on page 28f
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Proof.
b̃ can be written with the original data.

b̃ = (X̃′X̃)−1X̃′y (3.9)

= (X′D′DX)−1X′D′y (3.10)

= (X′DX)−1X′Dy (3.11)

The vector containing the actual values of ε by e. So the mean of b̃ becomes

E
(
b̃|X

)
= (X̃′X̃)−1X̃′E (y|X)

= (X′DX)−1X′D (Xβ + E (e|X))

= (X′DX)−1X′DXβ + (X′DX)−1X′D0n
= β

(3.12)

The proof of this theorem follows mostly Schmid (2007) argumentation3.

Normally, not only the value of the estimators but also their variance is of
interest. It appears that microaggregation comes along with a loss of efficiency,
implying a greater variance of b̃. This was derived in the case of single–axis–
sorting and fixed–size microaggregation by Lechner and Pohlmeier (2003)4.

Theorem 2. Let X = (X1, . . . , Xp)′ k–Ward–microaggregated data, and a
linear regression according to (3.1) with assumptions (3.2), (3.3). Denote by
Cov

(
b̃|X

)
and Cov

(
b̂|X

)
the covariance matrices of b̃ and b̂ given X1, . . . , Xp,

respectively. Then b̃ has a greater variance than b̂, in the sense that the matrix
Cov

(
b̃|X

)
− Cov

(
b̂|X

)
is positive semidefinite.

Proof.

Cov
(
b̃|X

)
−Cov

(
b̂|X

)
is positive semidefinite if and only if

(
Cov

(
b̃|X

))−1

−(
Cov

(
b̂|X

))−1

is positive semidefinite. With Cov
(
b̂|X

)
= σ2

ε (X′X) and

Cov
(
b̃|X

)
= σ2

ε (X′DX), it follows:(
Cov

(
b̃|X

))−1

−
(

Cov
(
b̂|X

))−1

=
1
σ2
ε

(X′X−X′DX)

=
1
σ2
ε

X′ (In −D) X.
(3.13)

As (In −D) is an idempotent and symmetric matrix, it follows for any vector
v/neq0

v′X′ (In −D) Xv = v′X′ (In −D) (In −D) Xv = w′w ≤ 0, (3.14)

where w := (In −D) Xv.
3cf. Schmid (2007), page 95
4Lechner and Pohlmeier (2003), pages 3, 27
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Concerning an estimator for σ2
ε , it is possible to obtain a upper bound for an

unbiased estimator.

Theorem 3. Assume the sorting variable to be a function of X1, . . . , Xp. De-
note by X̃ := (1, x̃1, . . . , x̃p) the design matrix of the aggregated data and by
ε̃′ε̃ := (y − X̃b̃)′(y − X̃b̃) the estimator of the residual sum of squares based on
the aggregated data. Then ε̃′ε̃/(n − p − 1) is the upper bound for an unbiased
estimator of σ2

ε .

Proof.
The proof follows the same steps as made in Schmid (2007).

ε̃′ε̃ = (ỹ − X̃b̃)′(ỹ − X̃b̃)

= y′y −
(
(X′DX)−1X′Dy

)′
X′Dy − y′DX(X′DX)−1X′Dy

+ (X′DX)−1X′DDX(X′DX)−1X′Dy

= y′y − y′DX(X′DX)−1X′Dy − y′DX(X′DX)−1X′Dy

+ y′DX(X′DX)−1X′Dy

= y′(In −DX(X′DX)−1X′D)y
= y′Qy

(3.15)

where Q := In − DX(X′DX)−1X′D. It is easy to see that Q is a symmetric
and idempotent matrix5, and thus

ε̃′ε̃ = y′Qy

= (Xβ + ε)′(In −DX(X′DX)−1X′D)(Xβ + ε)

= (β′X′ − β′X′DX(X′DX)−1X′D + ε′ − ε′DX(X′DX)−1X′D)(Xβ + ε)

= β′X′Xβ − β′X′DXβ + ε′Xβ − ε′DX(X′DX)−1X′DXβ

+ β′X′ε− β′X′Dε+ ε′ε− ε′DX(X′DX)−1X′Dε

= β′X′(In −D)Xβ + ε′Xβ − ε′DXβ + β′X′ε− β′X′Dε
+ ε′(In −DX(X′DX)−1X′D)ε

= (Xβ(In −D))′ (Xβ(In −D)) + ε′Xβ − ε′DXβ + β′X′ε− β′X′Dε
+ ε′Qε

= (Xβ(In −D))′ (Xβ(In −D)) + ε′(Xβ −DXβ) + (β′X′ − β′X′D)ε+ tr (Q (εε′)) .
(3.16)

As

tr (Q) = tr
(
I −DX(X′DX)−1 ·X′D

)
= tr (I)− tr

(
X′D ·DX(X′DX)−1

)
= tr (I)− tr (Ip+1)
= n− (p+ 1)

(3.17)

5It is shown in the Appendix B on page 29
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it is obtained with (3.16) that

E (ε̃′ε̃) = E
(
(Xβ(In −D))′ (Xβ(In −D))

)︸ ︷︷ ︸
≥0

+ E (ε′(Xβ −DXβ))︸ ︷︷ ︸
=0

+ E ((β′X′ − β′X′D)ε)︸ ︷︷ ︸
=0

+E (tr (Q (εε′)))

≥ σ2
εtr (Q)

≥ σ2
ε (n− p− 1) .

(3.18)

This result provides a measure of the maximal residual variance. In the special
case that both the original design matrix X and the value of β is known, it is
possible to derive an unbiased estimator for σ2

ε .

However, an unbiased estimator for σ2
ε can be developed if the response variable

is aggregated concomitantly, meaning that it is not used in the forming and
sorting process of the k–Ward–Algorithm.

Theorem 4. Let X = (X1, . . . , Xp) be microaggregated by k–Ward–Algorithm
and y concomitantly aggregated but not employed in the group forming process
and denote the design matrix of the aggregated data by X̃ := (1, x̃1, . . . , x̃p) and
ε̃′ε̃ := (y − X̃b̃)′(y − X̃b̃) the estimator of the residual sum of squares based on
the aggregated data, then ε̃′ε̃/(G−p−1) is an unbiased estimator of σ2

ε , whereas
G is the number of groups, formed by the algorithm.

The proof follows mostly the steps of the previous, but with the stronger as-
sumption it becomes less complicated.

Proof.

ε̃′ε̃ = (ỹ − X̃b̃)′(ỹ − X̃b̃)

= y′(D −DX(X′DX)−1X′D)y
= y′Q∗y

(3.19)

whereQ∗ := D−DX(X′DX)−1X′D. Q∗ is a symmetric and idempotent matrix.
Moreover, Q∗X = 0 6, and thus

ε̃′ε̃ = y′Q∗y

= (Xβ + ε)′Q∗Q∗(Xβ + ε)
= (Xβ + ε)′Q∗′(Q∗Xβ +Q∗ε)
= (Xβ + ε)′Q∗′Q∗ε
= (Xβ)′Q∗′Q∗ε+ ε′Q∗′Q∗ε

= β′X′Q∗′Q∗ε+ ε′Q∗Q∗ε

= β′(Q∗X)′Q∗ε+ ε′Q∗ε

= ε′Q∗ε

= tr (Q∗ (εε′)) .

(3.20)

6It is shown in the Appendix B on page 29
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As

tr (Q∗) = tr
(
D −DX(X′DX)−1 ·X′D

)
= tr (D)− tr

(
X′D ·DX(X′DX)−1

)
= tr (D)− tr (Ip+1)
= G− (p+ 1)

(3.21)

it is obtained with (3.20) that

E (ε̃′ε̃) = σ2
εtr (Q∗)

= σ2
ε (G− p− 1) .

(3.22)

This results provides useful information: First of all it is possible to obtain an
unbiased estimator of the true residual error variance σ2

ε by multiplying the
”naive” variance estimator

s̃2ε :=
1

n− p− 1
(ỹ − X̃b̃)′(ỹ − X̃b̃) (3.23)

with (n− p− 1)/(G− p− 1).
Secondly, by not knowing of any microaggregation and thus using the naive
variance estimator of σ2

ε one would overestimate the true error variance.

3.2 The sorting variable is an artificial and ar-
bitrary variable

In this section the consequences of k–Ward–microaggregation on estimators are
described, in case the concomitantly sorting of the data set is not only a function
of the model variables, but relies on response, regressors and the error term. This
assumption allows a generalization of the above results, however, in this part
an asymptotic theory is considered. The sorting variable further denoted as H
is a function of the model variable and an arbitrary term:7

H = cyY + c1X1 + c2X2 + . . .+ cpXp + ϕ . (3.24)

The vector c = (cy, c1, . . . , cp) determines the coefficients, i.e the weights, for
each variable on H whereas ϕ is an model arbitrary error term, agglomerating
the effect of the not included variables. This general construct can be used for
the case of k–Ward–microaggregation, whereas all coefficients do not equal 0,
because all variables in the dataset are used for the microaggregation process.
However, it is not clear how to derive the coefficients, as the grouping and
sorting is done implicitly. Nevertheless, it is clear that the result of the previous
chapter cannot be used, as the value of response depends also on the value of
the regressors and even more on excluded variables.
As to the assumptions concerning the linear regression model the original co-
efficient vector β∗ = (β0, β1, . . . , βp)′ is redefined to the slope coefficients β =
(β1, . . . , βp)′. After a consistent estimation of β, it becomes obvious how to

7cf. Schmid (2007), page 98
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derive β0 and σ2
ε . Since this section aims at an asymptotic theory the assump-

tions of E (ε|X1, . . . , Xp) = 0 and V (ε|X1, . . . , Xp) = σ2
ε are weakened to the

uncorrelation between (X1, . . . , Xp) and ε.
Thus an estimator for the slope coefficients can be obtained by

b̃ = S̃−1
xx s̃xy (3.25)

To explore how and if it is possible to obtain consistent estimators the following
lemma is needed8. The inverse regressions are needed to correct the correlations
between the response and the regressors over the sorting variable H.

Lemma 1. Consider the set of inverse linear regressions

Xi = αi + γiH + δi , i = 1, . . . , p (3.26)
Y = αy + γyH + δy , (3.27)

with E (δi) = 0, i = y, 1, . . . , p, and assume (δy, δ1, . . . , δp) to be independent of
H. Then the following probability limits exist:

a) plim
n→∞

s̃hh = σhh

b) plim
n→∞

s̃xh = σxh

c) plim
n→∞

s̃yh = σyh

d) plim
n→∞

S̃xx = Σ̃xx(
1− 1

2k − 1

)
σxhσ

′
xh

σhh
+

1
2k − 1

Σxx ≤ Σ̃xx ≤
(

1− 1
k

)
σxhσ

′
xh

σhh
+

1
k

Σxx

e) plim
n→∞

s̃xy = σ̃xy(
1− 1

2k − 1

)
σyh
σhh

σxh +
1

2k − 1
σxy ≤ σ̃xy ≤

(
1− 1

k

)
σyh
σhh

σxh +
1
k
σxy

Proof. See Appendix B, page 30 ff.

Concerning the parts d) and e) of the above lemma, which allows only the
construction of bounds for the true covariance between the regressors and the
response, then it is not obvious how to derive neither a consistent estimator nor
bounds of such one. Hence the relations do not longer hold when multiplied in
order to obtain the probability limit of b̃. As example for the upper bound with
group–size kg ≡ k, g = 1, . . . , r:

8cf. Schmid (2007), page 99f
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plim
n→∞

S̃xx ≤
(

1− 1
k

)
σxhσ

′
xh

σhh
+

1
k

Σxx (3.28)

plim
n→∞

s̃xy ≤
(

1− 1
k

)
σyh
σhh

σxh +
1
k
σxy (3.29)

; plim
n→∞

b̃ = plim
n→∞

S̃−1
xx s̃xy ≤

((
1− 1

k

)
σxhσ

′
xh

σhh
+

1
k

Σxx

)−1

·

·
((

1− 1
k

)
σyh
σhh

σxh +
1
k
σxy

) (3.30)

Since this approach does not lead to a bounded estimator, one might think of k
as an random variable (denoted with upper case letter K), having a distribution
function, and its expected value E (K). As in Lemma 1 e) and f) the probability
limit is used for determination of the covariance matrix, the above is useful in
evaluating a fixed estimator for the covariance matrices.

Lemma 2. Under the assumptions made in Lemma 1 and considering the
group–size k as random variable K with its expected value E (K) := µk, then
the probability limits in Lemma 1 e) and f) can be written as

e) plim
n→∞

S̃xx = Σ̃xx =
(

1− 1
µK

)
σxhσ

′
xh

σhh
+

1
µK

Σxx

e) plim
n→∞

s̃xy = σ̃xy =
(

1− 1
µK

)
σyh
σhh

σxh +
1
µK

σxy

Proof. See Appendix B, page 33 ff.

Remark: As this uses an asymptotic theory, the estimator k̄ can be used for
E (K) due to the law of large numbers.
With Lemma 2 it should be possible to obtain a consistent estimator by strictly
following Schmid’s theorem 3 and 49. However, as easily to obtain consistent
estimators might seen, it bears one major problem: The artificial sorting vari-
able can only be evaluated in some special cases. As the sorting in k–Ward–
Algorithm is done implicitly, is difficult to extract a single sorting variable.
Furthermore, with the two different distance measures, in the first step the Eu-
clidean and in the second the increase in SSE, the criterion values for joining
2 groups cannot be used for such a variable even more as there are non–single
element groups merged. The same problem arises in case recursion steps are
needed, as the merging criterion’s value is initially set to zero at each recursion
start.

A naive sorting variable is after the data set is grouped to sort the groups and
the within observations randomly. Then assign each observation in the ordered
data set a number between 1 and n in the way that all observations in one group
are connected and then taking the assignment as sorting variable.
The problem of this naive sorting variable is the fact that it does not pro-
vide an actual distance between observations as all distances are equidistant by

9see Schmid (2007), page 100ff
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construction. Furthermore, the variance of this variable does not provide an
information gain.

Another problem arises in determining the actual coefficients cy, c1, . . . , cp, as
the effect of each variable in the process of grouping/sorting on an artificial
sorting variable is not obvious. As the weighted squared distances between two
observations are used, the sorting variable might even rely on squared variable
impact as in

H = cyY
2 + c1X

2
1 + c2X

2
2 + . . .+ cpX

2
p + ϕ .

However, finding an appropriate sorting variable this would lead to another re-
search thesis or article.

As a conclusion of this chapter can be said that in case the model–response is
not involved in the process of k–Ward–Algorithm, the estimators for the slope
coefficients remain unbiased, though less precise, but the estimator of the error
variance becomes greater. This can be bounded in case the response is not mi-
croaggregated, and exactly given if the response is sorted and microaggregated
concomitantly.
The worse case is that the response is included in the microaggregation process.
With the theory of an artificial sorting variable it is theoretically possible to
show that under some assumptions it is possible to obtain an unbiased estimator.
However, the actual evaluation remains tricky, as the optimal sorting variable
has not been identified yet.
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Chapter 4

Simulations

In order to check the theoretically developed propositions, various regression
models have been evaluated. This was done with the software R1, whereby the
methods used for k–Ward microaggregation are done via the R–script kward.r.
This routine uses the precompiled shared object kward.so, which is able to run
on most 32–bit Unix machines. However, to elude any problems it should be
compiled by the user, before executing the code2.
The data of the first regressor was generated by the addition of normal distri-
butions with both σ2 = 16 and means −2 and 2. The second regressor data
was drawn from an uniform distribution over [−8, 8]. The number of observa-
tions was 500 and the minimum group–size constraint 3. For simplicity reasons,
the second slope coefficient was set fixed to 2 while the first was varying from
−3 to 3 by steps of 0.1. The response was created as an addition of the re-
gressor values and its slope coefficients and a normal distributed, zero–mean
error term with a variance of 16. In order to explore the differences between
a non/microaggregated response and a response, microaggregated but not used
for group forming, two categories of linear models were chosen. For each of this
category and beta coefficient 30 models were fitted. The resulting models can
be described in the following way. The notation of chapter 3 is used, βf means
that it has been kept fixed, ˜̃y that y is only microaggregated but not involved
in grouping process.

1. y = β1 · x̃1 + β2f · x̃2 + ε

2. ˜̃y = β1 · x̃1 + β2f · x̃2 + ε̃

Figure 4.1 illustrates the differences between the original coefficients and its
estimators for the 2 models concerning variable β1.

1R Development Core Team (2008)
2This is done by navigating into the directory containing the file kward.f and then running

R CMD SHLIB kward.f on the command line. For more details see R Development Core
Team (2009d)
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Figure 4.1: Bias of the slope estimator beta1 in case the regressors are used in
grouping process

As it can be seen, there is no difference in the estimator whether y is microag-
gregated concomitantly or not. This result was proposed in the first theorem.
As the result of the estimators is the expected one, the figure 4.2 shows the
results concerning the error variance. In the models, where the response was
microaggregated concomitantly the estimated error variance is around 16 —
the original error variance — and in the other case it is greater than 16. The
quadratic form is due to the term (Xβ(In −D))′ (Xβ(In −D)) which has to
be subtracted of the naive variance estimator to obtain the unbiased one. The
smaller the absolute value of β the smaller the difference between the estimated
and the true error variance.
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Figure 4.2: Variance of the error term in case the regressors are used in grouping
process

The simulations concerning the microaggregation of the regressors have demon-
strated the expected results. Although these simulations were done with a small
number of repetitions and observations, the theorems 1 to 3 still hold, so a larger
number of one or both will change the result only negligibly.

The simulations described below deal with the effect of k–Ward–microaggregation
on the slope estimators of linear regression, in which the response is included
in the grouping process. The generation of the data set is the same as in
the previous simulations, but now both responses and regressors are k–Ward–
microaggregated altogether, simulating that the sorting variable relies on the
response, the regressors and a model–excluded variable. Here the varying β
ranges also from −3 to 3 but in steps of 0.5 as the only purpose of this simula-
tion is getting a general idea of the effect of k–Ward–microaggregation on the
estimators.
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Figure 4.3: Bias of the slope estimators in case the response, regressors and a
model–excluded term are used in grouping process

A tendency for both estimators can be explored in figure 4.3 as the greater the
absolute value of beta, the greater the absolute value of the bias. Furthermore
it tends that the bias has the same sign as β. The differences between the
bias of the two estimators seems to be negligible. The same effect was noticed
by Schmid (2007); Schmid et al. (2007), in their simulation study on normal
distributed data, using single–axis–sorting and fixed–size microaggregation, in
case the sorting variable was the response3.

The estimators of the error variance the naive estimator (sum of squared resid-
uals divided by n− p− 1 , here n− 3) are compared with the obtained unbiased
estimator of the previous situation (sum of squared residuals divided by G−p−1,
here G−3) in figure 4.4. It appears that the naive estimator underestimates the
error variance whereas the group–adjusted overestimates it. The fact that the
naive underestimates the true error variance is clear, as the process of microag-
gregation absorbs parts of it by making the error terms more homogeneous.

3Schmid (2007), page 139f; Schmid et al. (2007), page 417
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Figure 4.4: Variance of the error term in case the response, regressors and a
model–excluded term are used in grouping process

The peaks at −2 and 2 may result from the first variable which was constructed
by addition of normal distributions with means at −2 and 2. The naive esti-
mator smooths this effect. If the group–adjusted constantly overestimates the
underlying true error variance then this estimator proves to be an upper bound
it. However, more simulations have to be made in order to empirically verify or
falsify this statement.
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Chapter 5

Conclusion and further
Research

As demonstrated in the previous chapters, the case of only k–Ward–microaggregated
regressors does not cause any difficulty as it is possible to obtain unbiased esti-
mator for the intercept and slope coefficients easily. Furthermore, the underlying
error variance can also be estimated unbiased in case the response is aggregated
concomitantly. Therefore only the vector of the group–sizes for each observa-
tion is mandatory, which the data user should easily extract in case the data
holder does not provide it. More challenging is the determination of the first
assumption that the response is not used in the grouping process as the data
user cannot examine this on its own.
If the regressors, the response and model–excluded variables are employed in
the k–Ward–Algorithm, it is generally not thinkable to determine a consistent
estimator. The results, described in the paragraph above, are hardly to be
used here, as the aggregated values of the response and the regressors depend
not only on their original values but also on model–excluded ones, and thus the
error term. To specify these dependencies the idea of an latent sorting variable is
assumed. Even with this assumption it is not conceiveable to obtain a consistent
estimator as the covariances between the regressors itself and the response is
not uniformly the same but rather depends on the considered group and its
size. Thus in considering the minimal and maximal group–sizes an upper and
lower bound of the covariance can be given. Nevertheless, with a more strict
assumption, the group–size is a random variable with a finite support and an
existing expected value, the covariances can be estimated consistently. That
assumption is quite firm, especially for small data sets this is not given, as the
group–sizes are not allowed to vary widely (For example: if one observation
belongs to a group with 4 others, then at least these four observation also have
a value of the group–size of 5 ).
More challenging is the exact specification of the latent sorting variable. A naive
approach would be to sort the data set according to the groups an then assigning
each observation of the sorting variable the number of the ordered one. It seems
to be that it does not allow to interpret the differences in the values of the sorting
variable and the explanation of the different group–sizes. In a more sophisticated
approaches the values of the objective function in Ward’s algorithm are used as
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a sorting variable. This may work well in case no recursion step was needed,
although it is not clear which values are to assign for the observation which were
grouped in the first step of k–Ward–Algorithm. If a recursion step is applied it
becomes complicated as the value of the objective function is always lower than
the one of the last merge, as the within–group variance of the initial step (SSE),
becomes now the total variance (SST). This side–effect collides with the idea of
using the value of the objective function as a sorting variable.
This topic of generating a appropriate sorting variable needs further research
as this is conditional for the results of the second section in the third chapter.
If this proves to be beyond the bounds of possibility then a different idea to
describe the dependence structure between the response, regressors and error
term is needed.
Along with it goes the question of an unbiased or even bounded estimator of
the error variance. However, this is only secondly of interest as it is only needed
for testing the estimated parameters.
Most articles and theses focus on the aspect of generating secure and fast to
compute microaggregated data sets. Only a few consider the scientific data
users’ needs of obtaining consistent and/or unbiased regression estimators for
microaggregated data, however with the less complicated cases of fixed–size
microaggregation.
Overall this thesis may be seen as fundamental research of this topic, which
might give some impulses for further reserch.
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Appendix A

Ward’s clustering algorithm

Figure A.1: Flowchart for hierarchical grouping procedure (Ward (1963), p.242)
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Appendix B

Proofs

Distant measure using difference in SSE before
and after uniting groups (Page 5)

d (G1, G2) = SSEG1∪ G2 − (SSEG1 + SSEG2)

=
∑

k∈G1∪G2

(xk)2 − (n1 + n2) (n1x̄1 + n2x̄2)
2
−
∑
i∈G1

(xi)
2 + n1x̄

2
1 −

∑
j∈G2

(xj)
2 + n2x̄

2
2

As G1 and G2 are disjoint groups,
∑

k∈G1∪G2

(xk)2 =
∑
i∈G1

(xi)
2 +

∑
j∈G2

(xj)
2, thus

= −(n1 + n2)
(n1x̄1 + n2x̄2)2

(n1 + n2)2
+ n1x̄

2
1 + n2x̄

2
2

=
−1

n1 + n2

(
n2

1x̄
2
1 + 2n1n2x̄1x̄2 + n2

2x̄
2
2

)
+ n1x̄

2
1 + n2x̄

2
2

=
1

n1 + n2

(
−n2

1x̄
2
1 − 2n1n2x̄1x̄2 − n2

2x̄
2
2 + n2

1x̄
2
1 + n1n2x̄

2
1 + n2

2x̄
2
2 + n2n1x̄

2
2

)
=

n1n2

n1 + n2

(
x̄2

1 − 2x̄1x̄2 + barx2
2

)
=

n1n2

n1 + n2
(x̄1 − x̄2)2

Distance measure for previously united and single
group (Page 5)

For simplicity reason only the univariate case of x, y and z is considered, al-
though the proof is straightforward for multivariate data. X, y and z are groups
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containing nx, ny and nz elements, respectively. nk := nx + ny + nz

d ((x ∪ y), z) =
(nx + ny) · nz

(nx + ny) + nz)

(
nxx+ nyy

nx + ny
− z
)2

=
(nx + ny) · nz
nx + ny + nz

(
(nxx+ nyy)2

(nx + ny)2
− 2z

nxx+ nyy

nx + ny
+ z2

)
=

1
nk

(
nz(n2

xx
2 + 2nxnyxy + n2

yy
2)

nx + ny
− 2nzz(nxx+ nyy) +

nz(nx + ny)2z2

nx + ny

)

=
1

nk(nx + ny)
(
n2
xnzx

2 + 2nxnynzxy + n2
ynzy

2 + (nx + ny)(−2nxnzxz − 2nynzyz)

+n2
xnzz

2 + 2nxnynzz2 + n2
ynzz

2
)

=
1

nk(nx + ny)
(
n2
xnzx

2 + 2nxnynzxy + n2
ynzy

2 − 2n2
xnzxz − 2nxnynzyz − 2nxnynzxz

−2n2
ynzyz + n2

xnzz
2 + nxnynzz

2 + nxnynzz
2 + n2

ynzz
2
)

=
1

nk(nx + ny)
(
n2
xnzx

2 + nxnynzx
2 − 2n2

xnzxz − 2nxnynzxz + n2
xnzz

2 + nxnynzz
2

+ nxnynzy
2 + n2

ynzy
2 − 2nxnynzyz − 2n2

ynzyz + nxnynzz
2 + n2

ynzz
2

+
(
−nxnynzx2

)
+ 2nxnynzxy +

(
−nxnynzy2

))
=

1
nk

(
(nx + ny)

(
nx2nzx2 − 2nxnzxz + nxnzz

2
)

nx + ny

+
(nx + ny)

(
nynzy

2 − 2nynzyz + nynzz
2
)

nx + ny

− nxnynz
nx + ny

(
x2 + 2xy + y2

))
=

1
nk

(
nxnz(x− z)2 + nynz(y − z)2 −

nxnynz
nx + ny

(x− y)2
)

=
1
nk

(
nx + nz
nx + nz

nxnz(x− z)2 +
ny + nz
ny + nz

nynz(y − z)2 − nz
nxny
nx + ny

(x− y)2
)

=
1
nk

(
(nx + nz)

nxnz
nx + nz

(x− z)2 + (ny + nz)
nynz
ny + nz

(y − z)2 − nz
nxny
nx + ny

(x− y)2
)

=
1

nx + ny + nz
((nx + nz) · d(x, z) + (ny + nz) · d(y, z)− nz · d(x, y))
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D is idempotent (Page 10)

DD =

= Π−1K



1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
1 · · · 1 · · · 0 · · · 0

...
. . .

...
0 · · · 0 · · · 1 · · · 1
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · 1 · · · 1


Π ·Π−1K



1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
1 · · · 1 · · · 0 · · · 0

...
. . .

...
0 · · · 0 · · · 1 · · · 1
... · · ·

... · · ·
... · · ·

...
0 · · · 0 · · · 1 · · · 1


Π

= Π−1K



1 · · · 1 · · · 0 · · · 0
... · · ·

... · · ·
... · · ·

...
1 · · · 1 · · · 0 · · · 0

...
. . .

...
0 · · · 0 · · · 1 · · · 1
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Q is idempotent (Page 13)

QQ =
(
In −DX(X′DX)−1X′D

) (
In −DX(X′DX)−1X′D

)
= InIn − InDX(X′DX)−1X′D −DX(X′DX)−1X′DIn

+DX(X′DX)−1X′DDX(X′DX)−1X′D

= In −DX(X′DX)−1X′D −DX(X′DX)−1X′D

+DX(X′DX)−1X′D

= In −DX(X′DX)−1X′D = Q

Q∗ is idempotent (Page 13)

Q∗Q∗ =
(
D −DX(X′DX)−1X′D

) (
D −DX(X′DX)−1X′D

)
= DD −DDX(X′DX)−1X′D −DX(X′DX)−1X′DD +

+DX(X′DX)−1X′DDX(X′DX)−1X′D

= D −DX(X′DX)−1X′D −DX(X′DX)−1X′D

+DX(X′DX)−1X′D

= D −DX(X′DX)−1X′D = Q∗
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Q∗X = 0 (Page 13)

Q∗X =
(
D −DX(X′DX)−1X′D

)
X

= DX−DX(X′DX)−1X′DX

= DX−DX = 0

Proof of Lemma 1 (Page 15)

The proofs of parts a), b) and c) follow the same steps as in Schmid (2007) on
pages 213ff so it is just referred to these explanations there.

Parts d) and e) can be proven together. The major part is analogous to the proof
of Schmid (2007) second lemma (page 216f). However, for better understanding
of the differing steps the complete proof is given. In order to obtain a probability
limit of s̃ij , i, j = y, x1, . . . , xp the inverse regressions of (3.26) and (3.27) are
needed, implying inverse regressions for the aggregated data values

x̃i = αi + γih̃+ δ̃i, i = 1, . . . , p (B.1)

ỹ = αy + γyh̃+ δ̃y , (B.2)

with δ̃i and δ̃y containing the aggregated values of δi and δi, respectively. Those
relationships in (B.1) and (B.2) imply

s̃ij = γiγj s̃hh + s̃δiδj + γis̃hγj + γj s̃hγi , i, j = y, x1, . . . xp (B.3)

’By part a) of the lemma, plimn→∞ s̃hh = σhh. Moreover, from the proof of
parts a), b) and c), taking W = γi, [ plimn→∞ s̃hγi becomes ] plimn→∞ s̃hγi =
σhγi = 0, i = y, x1, . . . xp.’ 1 The probability limit of s̃δiδj is bounded by

1
2k
σδiδj

≤ plim
n→∞

s̃δiδj
≤ 1
k
σδiδj

(B.4)

This becomes clear as the sorted variables δ[1]i, . . . , δ[n]i are i.i.d. with the same
distribution as δi. Secondly, the empirical covariance between δi and δj can be
written as

Cov
(
δ̃i, δ̃j

)
=

1
n− 1

n∑
r=1

(δ̃ir − ¯̃
δi)(δ̃jr − ¯̃

δj). (B.5)

Applying the computational formula for the covariance and with ¯̃
δj = δ̄j ,∀j =

y, x1, . . . , xp, follows

Cov
(
δ̃i, δ̃j

)
=

1
n− 1

(
n∑
r=1

(
δ̃ir δ̃jr

)
− nδ̄iδ̄j

)
. (B.6)

1Schmid (2007), page 216
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As each δ̃ir and δ̃jr can be written as the sum of its original elements divided
by their group–size,

δ̃ir δ̃jr =

(
1
kr

kr∑
s=1

δis

)(
1
kr

kr∑
s=1

δjs

)
(B.7)

= δ̄ig δ̄jg, (B.8)

with g as an identifier for the group. Because in each group g are kg elements,
the sums in (B.6) can be rewritten as the sum over all groups

Cov
(
δ̃i, δ̃j

)
=

1
n− 1

(
G∑
g=1

(
kg δ̄ig δ̄jg

)
− nδ̄iδ̄j

)
. (B.9)

With a zero-sum supplement it follows

=
1

n− 1

 G∑
g=1

− kg∑
r=1

δigrδjgr + kg δ̄ig δ̄jg +
kg∑
r=1

δigrδjgr

− nδ̄iδ̄j


(B.10)

=
1

n− 1

− G∑
g=1

(kg − 1)Cov (δig, δjg) +
G∑
g=1

kg∑
r=1

(δigrδjgr)− nδ̄iδ̄j


(B.11)

=
1

n− 1

(
−

G∑
g=1

(kg − 1)Cov (δig, δjg) +
n∑
s=1

(δisδjs)− nδ̄iδ̄j

)
(B.12)

=
1

n− 1

(
−

G∑
g=1

(kg − 1)Cov (δig, δjg) + (n− 1)Cov (δi, δj)

)
(B.13)

= Cov (δi, δj)−
1

n− 1

(
G∑
g=1

(kg − 1)Cov (δig, δjg)

)
. (B.14)
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As δig is i.i.d like δi, (B.14) simplifies to

Cov
(
δ̃i, δ̃j

)
= Cov (δi, δj)−

1
n− 1

(
G∑
g=1

(kg − 1)Cov (δi, δj)

)
(B.15)

= Cov (δi, δj)−
1

n− 1

(
Cov (δi, δj)

G∑
g=1

(kg − 1)

)
(B.16)

= Cov (δi, δj)−
1

n− 1

Cov (δi, δj)


G∑
g=1

kg︸ ︷︷ ︸
=n

−
G∑
g=1

1︸ ︷︷ ︸
G


 (B.17)

= Cov (δi, δj)−
n

n− 1
Cov (δi, δj) +

G

n− 1
Cov (δi, δj) (B.18)

=
G− 1
n− 1

Cov (δi, δj) . (B.19)

With s̃δiδj
= Cov

(
δ̃i, δ̃j

)
and its probability limit and plim

n→∞
Cov (δi, δj) = σδiδj

,

σ̃δiδj
= plim
n→∞

s̃δiδj
= plim
n→∞

G− 1
n− 1

Cov (δi, δj) (B.20)

is obtained. As G increases with n in the same manner it is not possible to obtain
the exact limit. However, from the definition of the k–Ward–Algorithm with
its minimal and maximal group–size, a bounding is achievable. The minimal
group–size is k, so the aggregated data implies n

k groups if each group consists
of k elements, and n

2k−1 groups in the maximum case of every group–size 2k−1.
The lower bound of (B.20) is then

1
2k − 1

σδiδj
= plim
n→∞

n− 2k − 1
(2k − 1)(n− 1)

Cov (δi, δj) ≤ plim
n→∞

G− 1
n− 1

Cov (δi, δj) = σ̃δiδj

(B.21)

and the upper bound of (B.20) is similarly

1
k
σδiδj

= plim
n→∞

n− k
k(n− 1)

Cov (δi, δj) ≥ plim
n→∞

G− 1
n− 1

Cov (δi, δj) = σ̃δiδj
. (B.22)

Now with (B.3) and (B.4) an upper bound of σij can be constructed

σ̃ij = plim
n→∞

s̃ij ≤ γiγjσhh +
1
k
σδiδj . (B.23)

’As σij = γiγjσhh + σδiδj
and γi = σih/σhh, i = y, x1, . . . , xp, [it is] finally

obtain[ed] ’2

σ̃ij ≤ γiγjσhh +
1
k
σδiδj

≤ σihσjh
σhh

+
1
k

(si1ij − γiγjσhh)

≤
(

1− 1
k

)
σihσjh
σhh

+
1
k
σij .

(B.24)

2Schmid (2007), page 216
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The lower bound is constructed similarly. With both follow parts d) and e) of
the lemma.

Proof of Lemma 2 (Page 16)

This proof follows mostly the previous one. The only difference is in the evalu-
ation of plim

n→∞
s̃δiδj

.

Let K be independent of δi, i = y, x1, . . . , xp as the groups rely on the data but
not on their actual values. As K is a random variable, the number of groups G
is random as well. Furthermore assume that K follows a discrete distribution
function with an expected value E (K) = µk and its support from k to 2k − 1.
This seems plausible as before the grouping process all possible group–sizes are
probable. Besides the fact that the last few group–sizes are not absolutely ran-
dom, as the minimal group–size criterion and the finite number of observations
has to be taken into account. Then the expected value of Cov

(
δ̃i, δ̃j

)
relative

to K has to be evaluated.

EK
(
s̃δiδj

)
= EK

(
Cov

(
δ̃i, δ̃j

))
= EK

(
G− 1
n− 1

Cov (δi, δj)
)

= Cov (δi, δj) EK
(
G− 1
n− 1

)
= Cov (δi, δj)

EK (G)− 1
n− 1

(B.25)

The above statement relies on the expected value of G. In case of a fixed–size
microaggregation the number of groups can easily be denoted by n

k . This idea
is ported to variable–size microaggregation by considering the expected value of
K and then the expected number of groups (G) can be expressed by a function
of the expected value of K:

E (G) =
n

E (K)
.

With the above and (B.25) follows

EK
(

Cov
(
δ̃i, δ̃j

))
= Cov (δi, δj)

n
E(K) − 1

n− 1

= Cov (δi, δj)
n− E (K)

(n− 1)E (K)
.

(B.26)

Now concerning the probability limit, it results in:
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plim
n→∞

s̃δiδj
= plim
n→∞

(
Cov (δi, δj)

n− E (K)
(n− 1)E (K)

)
= plim
n→∞

Cov (δi, δj) · plim
n→∞

(
n− E (K)
n− 1

· 1
E (K)

)
= σδiδj

· 1
E (K)

plim
n→∞

n− E (K)
n− 1︸ ︷︷ ︸

=1

=
1

E (K)
σδiδj

=
1
µk
σδiδj

.

(B.27)

The rest of the proof is done in analogy to the creation of the lower bound (See
(B.23) and (B.24)) by substituting the term k with µk. The final result is then

σ̃ij =
(

1− 1
µk

)
σihσjh
σhh

+
1
µk
σij ,

from which the proof of parts e) and f) of Lemma 2 follows.
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Appendix C

R– and FORTRAN77–Code

Along with this thesis a CD is shipped containing the R– and FORTRAN77–
scripts. They also contain the generated graphics and saved estimators of the
simulations.

R–Code

File kward.r

In this section the R–code for the main function kwm is given. The function aims
at microaggregating a data.frame object by using Mateo-Sanz and Domingo-
Ferrer (1998) k–Ward–Algorithm. The output is a R object of class data.frame,
with the same variables and row.names; a vector giving the group belongings
for each observation and a second vector giving the number of observation in
each group for each observation. This method should be applied to a data set
containing only continual numeric variables. This function is constructed as a
container for the actual grouping and sorting function kwm algorithm.

#######################################################
# kwm: K-Ward-Microaggregation #
# #
# @params k: minimum group size. #
# @params data: Data set to be microaggregated, #
# has to be of type ’data.frame’. #
# #
# @return data: data.frame object containing #
# the microaggregated data set. #
# @return order: vector containing the group- #
# belongings. #
# @return groupsize: vector containing the groupsize #
# for each observation. #
#######################################################

kwm <- function (data , k = 3) {

# validating the input variables
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mf <- match.call()
if (missing ( data )) stop ( "There must be a data set to be microaggregated" )
if (!is.data.frame ( data )) stop ( cat("’", substitute( data ),
"’must be of type ’data.frame’", sep="") )

n <- nrow ( data )
if ( n/k < 2 ) stop ( "data contains too less observations" )
if ( as.integer(k)-k!=0 || k == 1 ) stop ( "k has to be an integer greater than 1" )

# initializing variables
# gk: vector containing the group-size for each row in the data.frame object
# istogroup: logical vector, if the row is heading of its group (TRUE)
# or bounded to another (FALSE)
# order: vector containing the group belonging of each row
gk <- rep.int ( 1 , n)
istogroup <- rep ( TRUE , n )
order <- c(1:n)

# calling the function which does the real group forming
kwm_body <- kwm_algorithm ( data = data, k = k, n = n, gk = gk,
istogroup = istogroup, order = order)

# finally microaggregate the complete data set according to order and groupcount
datam <- microaggregate(data, kwm_body$orderv, kwm_body$groupcount)

# ensure thats it is a data.frame and update row.names as the ones at
# this point are no longer usable
datam <- as.data.frame(datam)
row.names(datam) <- c(1:NROW(datam))

# return microaggregated data.frame
return(list(data=datam, order=kwm_body$orderv, groupsize=kwm_body$groupcount))

}

The function kwm recursive is used as a kind of interface to kwm algorithm.
This was necessary as kwm does aggregation at the end, which is not needed
for a recursion and furthermore the recursion requires the ’group belongings’ as
input.

#######################################################
# kwm_recursive: K-Ward-Microaggregation #
# #
# @params k: minimum group size. #
# @params data: Data set to be microaggregated, #
# has to be of type ’data.frame’. #
# @params ordered: vector containing group #
# belongings. #
# #
# @return order: vector containing the group- #
# belongings. #
# @return groupsize: vector containing the groupsize #
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# for each observation. #
#######################################################

kwm_recursive <- function (data , k , ordered) {

# initializing variables
# n: observation/rows of data
# gk: vector containing the group-size for each row in the data.frame object
# istogroup: logical vector, if the row is heading of its group (TRUE)
# or bounded to another (FALSE)
n <- nrow ( data )
gk <- rep.int ( 1 , n)
istogroup <- rep ( TRUE , n )

# calling the function which does the real group forming
kwm_body <- kwm_algorithm ( data = data, k = k, n = n, gk = gk,
istogroup = istogroup, order = ordered)

# returning vectors for group belongings and element-count per group
return( list( kwm_body$orderv, kwm_body$groupcount ))

}

Kwm algorithm is the complete calculation process of k–Ward–Algorithm. It
requires the shared object kward.so on Unix and kward.dll on Windows ma-
chines1. It uses low level function as step1 and dist ward.

#######################################################################
# kwm_algorithm: This is the body of the k-Ward-Algorithm #
# #
# @params data: data.frame object with n rows/observations. #
# @params k: integer giving minimum group size. #
# @params n: integer giving number of rows in ’data’. #
# @params gk: vector containing the elements in each. #
# group per row (1xn). #
# @params istogroup: logical vector (1xn), if the row is heading of #
# its group (TRUE) or bounded to another (FALSE). #
# @params order: vector containing the group belongings (1xn). #
# #
# @return orderv: Updated group belonging. #
# @return groupcount: Updated elements in group. #
#######################################################################

kwm_algorithm <- function (data, k, n, gk, istogroup, order) {

#####################
# k-Ward First Step #
#####################
# creating a distance matrix between all rows with the diagonal
# containing -1 as elements

1R Development Core Team (2009d,a); Ligges (2008)
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dist1 <- as.matrix ( dist ( data ))
dist1 <- dist1 + diag(rep (-1, n))

# finding the maximum distance between two rows, saving the coordinates
# of these in maxdist (only the first found maximum distance is used)
maxdist <- which(dist1==max(dist1),arr.ind=T)

# grouping each k-1 nearest rows around those rows identified in the last
# step by using function ’step1’
vs1 <- step1(dist1, order, gk, istogroup, n, k, maxdist[1,1])
vs2 <- step1(vs1[[1]], vs1[[2]], vs1[[3]], vs1[[4]], n, k, maxdist[1,2])
dist1 <- vs2[[1]]
order <- vs2[[2]]
gk <- vs2[[3]]
istogroup <- vs2[[4]]

# de-allocate memory in case the distance matrix is quite large
# thus twice a call of garbage collector
rm(dist1)
gc()
gc()

# in case there a some single groups left, performing step 2 of k-Ward-Algorithm
if (min(gk) < k) {

######################
# k-Ward Second Step #
######################
# virtually aggregating the data to get the mean of the groups formed
# before (important for ward’s distance calculation)
data1 <- microaggregate(data, order , gk)

# initializing the matrix which is going to be filled with the distances
# between the groups (only lower the diagonal)
dist <- matrix(0, nrow=n, ncol=n)

# actual calculating the distance matrix (only the pairs lower than the
# diagonal are evaluated) by call to function ’dist_ward’
for (i in 2:n) {
if (!istogroup[i]) next
for (j in 1:(i-1)) {
if (!istogroup[j]) next
dist[i,j] <- dist_ward(data1[i,], data1[j,], gk[i], gk[j])

}
}

# setting the distance between the groups identified in ’k-Ward First step’
# to a high value thus it’s highly improbable that they are merged afterwards
if (maxdist[1,1]>maxdist[1,2]) {
dist[maxdist[1,1], maxdist[1,2]] <- 100000000000
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} else {
dist[maxdist[1,2], maxdist[1,1]] <- 100000000000

}

# creating distance object to save memory and get a list
ddist <- as.dist(dist)

# de-allocating memory by removing virtually aggregated data set and
# the distance matrix, afterwards call of garbage collector twice
rm(data1, dist)
gc()
gc()

# preparation to Fortran-function call
m <- as.integer(attr(ddist, "Size"))
len <- as.integer(m * (m - 1)/2)
if (length(ddist) != len)
(if (length(ddist) < len)
stop

else warning)("dissimilarities of improper length")

# call of the external FORTRAN77 function kWard
# (for details see its documentation in kward.f)
fkwd <- .Fortran("kward", n = m, len = len, members = as.integer(gk),

nn = integer(m), disnn = double(m), flag = as.logical(istogroup),
diss = as.double(ddist), order = as.integer(order), minsize = as.integer(k))

# assigning the returned variables to its original ones
istogroup <- fkwd$flag
order <- fkwd$order
gk <- fkwd$members

# again de-allocation of memory by removing the not longer
# used distance matrix dist and calling gc() twice
rm(ddist)
gc()
gc()

}

# determining if there has to be a step 3 of k-Ward-Algorithm
# by checking the group-counts of the group heads
for (i in 1:n) {

# if no head continue loop
if (!istogroup[i]) next

# if groupcount is less than 2*k then k-Ward step 3
# is not needed, so continue loop
if (gk[i] < (2*k)) {
next
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} else {

#####################
# k-Ward Third Step #
#####################
# get the highest value of order so the group specific
# order vector does not mess up with the original vector
m1 <- max(order)

# initializing variables
# orders: same function as ’order’
# original: vector to store the positions of the extracted
# row in the original data set
# datas: data.frame/matrix containing the extracted data rows
# r: index of the row
orders <- numeric(gk[i])
original <- numeric(gk[i])
datas <- matrix(0, ncol=ncol(data), nrow=gk[i])
r <- 1

# extracting the elements of the group and writing
# its values to the vectors and matrix
for (j in 1:n) {
if (order[j]==order[i]) {
datas[r,] <- as.matrix(data[r,])
orders[r] <- m1 + r
original[r] <- j
r <- r + 1

} else {
next

}
}

# transform data matrix to data.frame
datas <- as.data.frame(datas)

# Perform recursion step by calling function ’kwm_recursive’.
# The decision to use an external function was made as there
# has to be another parameter given (order),
# and the validation of input parameter is obsolete, as it
# is checked before calling the function.
rkwm <- kwm_recursive (data=datas, k=k, ordered=orders)

# putting the resulted variables back to its original
# position in the order and groupcount vector
for (h in 1:gk[i]) {
indo <- original[h]
order[indo] <- rkwm[[1]][h]
gk[indo] <- rkwm[[2]][h]

}
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# running garbage collector
gc()
gc()

}
}

# returning vectors for group belongings and element-count per group
return( list( orderv = order, groupcount = gk ))

}

The only purpose of step1 is to perform the first step in the k–Ward–Algorithm.

#######################################################################
# step1: Helpful function to first step of k-Ward-Algorithm #
# #
# @param distamt: distance matrix (NxN). #
# @param longorder: vector containing the group belongings (1xN). #
# @param groupsizes: vector containing the elements in each. #
# group per row (1xN). #
# @param groups: logical vector (1xN), if the row is heading of #
# its group (TRUE) or bounded to another (FALSE). #
# @param obs: integer giving number of N. #
# @param minsize: integer giving the minimum group-size so #
# (minsize-1) iterations needed. #
# @param index: integer of the row-, column-index in the matrix #
# to be considered for Nearest-Neighbor-search. #
# #
# @return distmat: updated distance matrix ’distmat’. #
# @return longorder: updated vector ’longorder’. #
# @return groupsizes: updated vector ’groupsizes’. #
# @return groups: updated vector ’groups’. #
#######################################################################

step1 <- function (distmat, longorder, groupsizes, groups, obs, minsize, index) {

# looking for k-1 nearest distances to index
for (kk in 1:(minsize-1)) {

# getting index with smallest distance > -1
ind <- 0
ind <- which(distmat[index,]>-1)
ind <- ind[which(distmat[index,ind]==min(distmat[index,ind]))]

# in case there are more than one with smallest distance, use first
if(length(ind)>1) ind <- ind[1]

# sets group and groupcount of found index same with given index
longorder[ind] <- longorder[index]
groupsizes[ind] <- groupsizes[index]
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# updating groupcount of all groups with given index as order
for (o in 1:obs) {
if (longorder[o] == longorder[index]) {
groupsizes[o] <- groupsizes[o] + 1

}
}

# removing row and column of found index from
# distance search path by setting to -1
distmat[ind,] <- -1
distmat[,ind] <- -1

# setting unbound value of found index to false
groups[ind] <- FALSE

}

# returning vectors for group belongings and element-count per group
return(list(distmat, longorder, groupsizes, groups))

}

Dist ward calculates the distance between two groups, by given elements per
group.

##########################################################
# Small function to calculate Ward’s distance #
# #
# @param x: vector containing either one #
# observation or aggregated group #
# values (group1). #
# @param y: vector containing either one #
# observation or aggregated group #
# values (group2). #
# @param nx: number of elements in group1. #
# @param ny: number of elements in group2. #
# #
# @return distance_ward: distance between group1 and #
# group2 according to increase #
# in SSE. #
##########################################################

dist_ward <- function (x , y , nx , ny) {

# distance measure according to Ward’s method (only needed for initial step)
distance_ward <- ((nx*ny)/(nx+ny))*((dist(rbind(x,y))[1])^2)
return(distance_ward)

}

Whereas the previous function make only sense in this context, the function
microaggregate may be generally used for microaggregating a data.frame object
by a given group belonging and group–size vector.
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####################################################
# microaggregate: Microaggregate a data set #
# #
# @param dataset: A data.frame object, with #
# each row an observation. #
# @param ordering: A vector with same length #
# as rows in dataset; contains #
# the group belongings. #
# @param groupcount: A vector with same length #
# as rows in dataset; contains #
# the elements in the group. #
# #
# @return x: A data.frame object with same #
# order as dataset but with #
# microaggregated values. #
####################################################

microaggregate <- function (dataset, ordering, groupcount) {

# looking if input is appropriate
if (missing ( dataset )) stop ( "There must be a data set to be microaggregated" )
if (!is.data.frame(dataset)) dataset <- as.data.frame(dataset)
n <- nrow ( dataset )
if (missing ( ordering ) || (length(ordering) != n)) stop ( cat(
"There must be a definition of group belonging for each observation in ’",
substitute(dataset), "’\n", sep="" ))

if (missing ( groupcount ) || (length(groupcount) != n)) stop ( cat("There must
be a definition of elements in the group for each observation in ’",
substitute(dataset), "’\n", sep="" ))

# initializing vector of original order of data set
trues <- c(1:n)

# building data.frame with original data.frame, order, groupcount and initial order
dataset <- cbind(dataset, cbind(ordering, cbind(groupcount, trues)))

# ordering data.frame according to order to get groups together
dataset <- dataset[ order(dataset$ordering) ,]

# saving new ordering in extra variable and then deleting it from the data.frame
trues <- dataset$trues
dataset <- dataset[, -ncol(dataset)]

# aggregating over groups with function FUN
dataset <- lapply(split(dataset, dataset$ordering), mean)

# initializing a matrix with one row and n+2 columns
x <- matrix(0, ncol=length(unlist(dataset[[1]])), nrow=1)

# forming matrix where each group is replicated according
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# to its value in groupcount
for (i in 1:(NROW(dataset))) {
xu <- unlist(dataset[[i]])
if (i==1) {
x[1,] <- xu
gk <- (x[1,ncol(x)])-1

} else {
gk <- (xu[length(xu)])

}
if (gk==0) next
for (r in 1:gk) {
x<-rbind(x, xu)

}
}

# transforming matrix with variable new ordering
# to data.frame, updating row.names
x <- as.data.frame(cbind(x,trues), row.names=c(1:length(trues)))

# sorting the data.frame according to the new ordering variable.
# The data.frame has now the same order as the original one.
x <- x[ do.call("order", list(x$trues)) ,]

# removing the bounded help-variables from the data.frame
x <- x[, -c((ncol(x)-2):ncol(x))]

# returning the microaggregated data.frame
return(x)

}

File kwardmicroaggregation.r

This file sources the code of kward.r and automatically loads the shared object
created by kward.f if existing.

File simulation.r

The following code was used to created the data for the simulations. As the
generation of the 900 microaggregated data sets in the first simulation and 390
in the second require a lot of computation time, the results of these are given
in the files simulation1.Rdata and simulation2.Rdata. Re–running this code
will lead to different values of the estimators as the data sets were generated
randomly, but the conclusions remain the same.

File graphics.r

This routine creates the graphics of estimators, based on the simulations.
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File validation.r

The purpose of this script is to validate the programming and compiling of the
code as it compares two user–generate data.frames with predefined ones.

FORTRAN77–Code

The following function is based on the ’hclust’ function used in the R-package
stats2 in source–file hclust.f. Its authors and the year of contribution are

• F. Murtagh, ESA/ESO/STECF, Garching, February 1986

• Ross Ihaka, Dec 1996 (Modifications for R)

• Fritz Leisch, Jun 2000 (Modifications for R)

• Martin Maechler, Apr 2001 (all vars declared) .

The idea of Nearest–Neighbor–Search in order to identify a minimum in a dis-
tance matrix is left unchanged, hence this kind of search algorithm is computing
time optimal. Its computing time is of O(n2) whereas a naive search in each
step over all elements in the matrix would lead to O(n3). Domingo-Ferrer and
Mateo-Sanz (2002) stated the same result for the here used stored matrix ap-
proach3. The used algorithm is based on Algorithm D proposed by Murtagh4

The difference between the algorithm and the one in hclust is the updating
of the distance, as the distance between two groups, each containing k or more
elements has to be set to the highest value, to ensure that they never get merged.
Another major change is the implementation of a exiting rule: The algorithm
is exited if the minimum of the group–size–vector is k.
The following pages give the outline of the code.

2R Development Core Team (2008)
3Domingo-Ferrer and Mateo-Sanz (2002), page 193f
4Murtagh (1985), pages 71ff, 86
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C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++C
C C
C WARDS HIERARCHICAL CLUSTERING method adapted for kWARD C
C C
C Parameters: C
C C
C N the number of elements being clustered. C
C DISS(LEN) dissimilarities in lower half diagonal C
C storage; LEN = N.N-1/2. C
C MEMBR, NN, DISNN vectors of length N, used to store C
C cluster cardinalities, current nearest C
C neighbour, and the dissimilarity assoc. C
C with the latter. C
C (MEMBR must be initialized by R to the C
C default of rep(1, N) ) C
C FLAG boolean indicator of agglomerable obj./ C
C clusters. C
C ORDER vector of length N, used to store the C
C cluster numbers. C
C MINSIZE minimal cardinality for the result C
C clusters. C
C C
C------------------------------------------------------------C

SUBROUTINE KWARD(N,LEN,MEMBR,NN,DISNN,
X FLAG,DISS,ORDER,MINSIZE)

c Args
INTEGER N, LEN, MINSIZE
INTEGER NN(N), MEMBR(N), ORDER(N)
LOGICAL FLAG(N)
DOUBLE PRECISION DISS(LEN), DISNN(N)

c Var
INTEGER IM, JJ, JM, I, J, IND, I2, J2, K, IND1,
X IND2, IND3, KI, KJ, KK, IO, JO
DOUBLE PRECISION INF, DMIN, D12, GMIN

c External function
INTEGER IOFFST

c
DATA INF/1.D+300/

c
c unnecessary initialization of im jj jm to keep g77 -Wall happy
c

IM = 0
JJ = 0
JM = 0

C
C Carry out an agglomeration - first create list of NNs
C Note NN and DISNN are the nearest neighbour and its distance
C TO THE RIGHT of I.
C

DO 20 I=1,N-1
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IF (.NOT.FLAG(I)) GOTO 20
DMIN=INF
DO 10 J=I+1,N

IF (.NOT.FLAG(J)) GOTO 10
IND=IOFFST(N,I,J)
IF (DISS(IND).GE.DMIN) GOTO 10

DMIN=DISS(IND)
JM=J

10 CONTINUE
NN(I)=JM
DISNN(I)=DMIN

20 CONTINUE
C
100 CONTINUE

C Next, determine least diss. using list of NNs
DMIN=INF
DO 30 I=1,N-1

IF (.NOT.FLAG(I)) GOTO 30
IF (DISNN(I).GE.DMIN) GOTO 30
DMIN=DISNN(I)
IM=I
JM=NN(I)

30 CONTINUE
C
C This allows an agglomeration to be carried out.
C

I2=MIN0(IM,JM)
J2=MAX0(IM,JM)

C
C Update dissimilarities from new cluster.
C

DMIN=INF
KI=MEMBR(I2)
KJ=MEMBR(J2)
IO=ORDER(I2)
JO=ORDER(J2)
DO 40 K=1,N

KK=MEMBR(K)
IF (ORDER(K).EQ.IO) THEN

MEMBR(K)=KK+KJ
ELSEIF (ORDER(K).EQ.JO) THEN

MEMBR(K)=KK+KI
ORDER(K)=IO
FLAG(K)=.FALSE.

ELSE
MEMBR(K)=KK

ENDIF
IF (.NOT.FLAG(K)) GOTO 40
IF (K.EQ.I2) GOTO 40
IF (I2.LT.K) THEN
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IND1=IOFFST(N,I2,K)
ELSE

IND1=IOFFST(N,K,I2)
ENDIF
IF (J2.LT.K) THEN

IND2=IOFFST(N,J2,K)
ELSE
IND2=IOFFST(N,K,J2)

ENDIF
C Setting distance to INF in case both group-sizes are greater or equal to minsize

IF ((KI.GE.MINSIZE).AND.(KK.GE.MINSIZE)) THEN
DISS(IND1)=INF

ELSE
IND3=IOFFST(N,I2,J2)
D12=DISS(IND3)
DISS(IND1)=(KI+KK)*DISS(IND1)+

X (KJ+KK)*DISS(IND2) - KK*D12
DISS(IND1)=DISS(IND1) / (KI+KJ+KK)

ENDIF
40 CONTINUE

C
C Update list of NNs
C

DO 50 I=1,N-1
IF (.NOT.FLAG(I)) GOTO 50

C (Redetermine NN of I:)
DMIN=INF
DO 60 J=I+1,N

IF (.NOT.FLAG(J)) GOTO 60
IND=IOFFST(N,I,J)
IF (DISS(IND).GE.DMIN) GOTO 60
DMIN=DISS(IND)
JJ=J

60 CONTINUE
NN(I)=JJ
DISNN(I)=DMIN

50 CONTINUE
C
C Find the minimal group-size in order array to determine whether
C a new step has to be carried out
C

GMIN=MEMBR(1)
DO 70 I=1,N

IF (MEMBR(I).LT.GMIN) THEN
GMIN=MEMBR(I)

ENDIF
70 CONTINUE

C
C Repeat previous steps until minimal group-size is minsize.
C
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IF (GMIN.LT.MINSIZE) GOTO 100
C

RETURN
END

C
INTEGER FUNCTION IOFFST(N,I,J)

C Map row I and column J of upper half diagonal symmetric matrix
C onto vector.

INTEGER N,I,J
IOFFST=J+(I-1)*N-(I*(I+1))/2
RETURN
END
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