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Abstract

In multinomial logit models, the identifiability of parameter estimates is typically obtained

by side constraints that specify one of the response categories as reference category. When
parameters are penalized, shrinkage of estimates should not depend on the reference cat-
egory. In this paper we investigate ridge regression for the multinomial logit model with
symmetric side constraints, which yields parameter estimates that are independent of the
reference category. In simulation studies the results are compared with the usual maximum
likelihood estimates and an application to real data is given.

Key words: logistic regression, penalization, side constraints, ridge regression,
cross-validation, multinomial logit

1. Introduction

The multinomial logit model is the most widely used model in multi-categorical regres-
sion. It specifies the conditional probabilities of response categories through linear func-
tions of covariate vectox. When the number of predictors is large as compared to the
number of observations, the logit modefgus from problems such as complete separa-
tion, the estimates of parameters are not uniquely defined (some are infinite) toed
maximum of log-likelihood is achieved at The use of regularization methods can help
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to overcome such problems.

Regularization methods based on penalization typically maximize a penalized log-likelihood.
Ridge regression, one of the oldest penalization methods for linear models, was extended
to GLM type models by Nyquist (1991), although a definition of a ridge estimator for
the logistic regression model, which is a particular case of generalized linear models was
suggested by Schaefer et al. (1984) and Schaefer (1986). Segerstedt (1992) discussed a
generalization of ridge regression for ML estimation in GLM. Many alternative penaliza-
tion/shrinkage methods were proposed for univariate GLMs, among them the Lasso (Tib-
shirani (1996)), which was adapted to GLMs by Park and Hastie (2007), the Dantzig selec-
tor (James and Radchenko (2009)), SCAD (Fan and Li (2001)) and boosting approaches
(Buhlmann and Hothorn (2007), Tutz and Binder (2006)). However, few approaches have
been proposed for multicategory responses. Krishnapuram et al. (2005) consider multino-
mial logistic regression with lasso type estimates, Zhu and Hastie (2004) use ridge type
penalization and Friedman et al. (2008) use the penalties L1 (the lasso), L2(ridge regres-
sion) and mixture of the two (the elastic net).

In this paper we are defining the ridge regression (L2 penalty) for multicategory logit
models with symmetric constraints. Zhu and Hastie (2004) used this symmetric constraint
while using penalized logistic regression as an alternative to the SVM (support vector ma-
chine) for microarray cancer diagnostic problems. Friedman et al. (2008) also used the
symmetric multinomial logit model for defining paths for generalized linear models using
cyclical coordinate descent algorithm. In contrast to Zhu and Hastie (2004) and Friedman
et al. (2008), our approach is based on Fisher scoring that uses a transformed version of
the design matrix and a matrix other than the identity matrix in the ridge penalty.

In section 2 side constraints, interpretation of the parameters with symmetric side con-
straint, and the penalized model with L2-penalty is described. Section 3 compares the
ridge estimates based on symmetric side constraint with the usual MLE in terms of MSE
of andB in a simulation study. Multinomial logit model with symmetric constraint is
implemented on the real data in section 4. Section 5 concludes with some concluding
remarks.

2. Side Constraints and Regularization

The multinomial logit model is one of most oftenly used regression models when a cat-
egorical response variable has more than two (unordered) categories. Let the response
variableY € {1,...,k} havek possible values (categories). A generic form of the multino-



mial logit model is given by

eXF(XTﬂr) _ exyn)
Y1 expXBs) Y5 expns)
whereB! = (Bro, . ... Brp). It is obvious that one has to specify some additional constraints

since the parametegs, ..., B; are not identifiable. An often used side constraint is based
on choosing a reference category (RSC). When catdgrghosen, one sets

P(Y =rlx) = (1)

r=(0,...,0) vyielding 1n=0.

Of course any of the response categories can be chosen as reference. When sategory
is chosen one sef = (0,...,0) yieldingns = 0. Throughout the paper we will use
reference categorywhen a model with a reference category is fitted. The corresponding
model is

exfx'pr)
1+ X7, expx"Bs)
An alternative side constraint that is more appropriate when defining regularization terms
is the symmetric side constraint (SSC) given by

P(Y = r|x) =

forr=1,...,0. (2)

k
> Bi=0. 3)
s=1
With B; denoting the corresponding parameters, the multinomial logit model is
expx'B;)  _ expn)
TeiexpxX By XK, expny)

Although the models are equivalent parameters for symmetric side constrainffererdi
from parameters with a reference category and consequently Hésedt interpretation.

In the case of SSC, i.eL%_, 8% = 0, the "median” response can be viewed as the reference
category, and is defined by the geometric mean. Then one obtains from (4)

PY=1h) _ expl)
CME) e, pev = s

P(Y =r|x) = forr=1,...,q (4)

and PCY =rX)\ 1.
Iog(—) =X'Br.

GM(xX)
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ThereforeB; reflects the fects ofx on the logits wherP(Y = r|x) is compared to the
median responsd M(x).

It should be noted that whatever side constraint is used, the log-odds between two response
probabilities and the corresponding weights are easily computed by

o [P(Y = r|x)

m] = XT(ﬂ? - B9

which follows from (2) and (4) for any choice of response categariese {1,...,k}.

Let in the followingB™ = (B1,....By) andB" = (B;',....B;") denote the parameter
vectors for the multinomial logit model under the two situations i.e., reference category
side constraintgy = 0) and symmetric side constrainELl,B; = 0). For illustration

we consider the case of a response variable with three categories. With a model which
contains only the intercept, logits are given as

T Tt
|09(—1) = B0 |09(—2) = P20
T3 T3
with side constraingsy = 0, and

i o
Iog(ﬂ—i) = Bio— Bso = 2850+ Boos Iog(ﬂ—f) = B0~ Bio = Bio+ 285
3

3

with symmetric side ConstrairEﬁ;lﬁ’;O = 0. Equating the corresponding logits in both
situations, one obtains

B=TB. B=T'F, ()
Whereﬁ*T = (ﬁio ﬁ;o)’ ﬁT = (ﬂlo ,320), and
[2/3 -1/3 4 J2 1
T_[—l/S 2/3 |’ Tl_12'

For a model with an intercept anmicovariates, logits are given by
Iog(fr—;) =X r=12,
Iog(;’—i) =X'B; r=12
3

Equating the logits for these two cases, we gt 2(1) equations which can easily be
solved to get the result

B =(TB")" or B=(T'B"),
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whereT andT* are the 2 2 matrices from above ar8l= (8, B,), andB* = (8; B5)
are (p + 1) x 2 matrices composed of parameter vectors with RSC and SSC respectively.

In the general case I& = (ﬁ_lj,...,ﬁk,_lyj), ,3ij = By Biay) 1= 0....p,
collect parameter vectors for single variables with reference catégmrgymmetric side
constraints respectively. Then one obtains the transformation

B =TB;,  for j=0,1....p 6)
given as
r * 7 k—
il s e | e
P | |-k & “k k|| P
*. - N . ki N N
B e 1|
Bl 7k & % & Bk,
with the inverse transformation
Bij 2 1 - 1 4[58
Baj 12 .-.-11 ﬂ;i
Sl =y o Co : (7)
Bizj| |1 1 - 2 1)|Biy;
ko1 1 1. 1 2 18:;—1,}

i.e.B; = T‘lﬂj“j (for j =0,1,..., p), whereTtis a (g x g)-matrix with diagonal entries

2 and df-diagonal elements. IThe same transformation holds for ML estimates. Esti-
mates of the parameters with symmetric side constraint can be computed by transforming
(reparameterizing) estimates with reference category side contraint and vice versa.

With a7 = (mi1,...,7mq) (@ = k — 1) denoting the  x 1)-vector of probabilities with
mir = P(Y = r|x;), the multinomial logit model has the form

m = h(Xi B) = h(m), (8)
whereh is a vector-valued response functiofy,is a @ x (p+ 1))-design matrix composed
of x; (with first term 1 for the intercept) and given as

X/



andB’ = (B].....B;) is the vector of unknown parameters of length((p + 1)).
The multinomial logit model is given by

____ exdxIB) 1
"1+ 3 expxBy) S
which for side constraint with reference categkiyields
P(Y = r|x)] T 3
lo [P(Y:k|x) =xXB, r=1...,9 (9)

The log-odds comparg = P(Y = r|x) to the probabilityr, = P(Y = k|x) of the reference
categoryk. Theq logits logP(Y = 1|xX)/P(Y = kx)),...,log(P(Y = qix)/P(Y = kx))

given by (9) determine the response probabiliy¥ = 1|x),..., P(Y = Kk|x) uniquely

since the constrainE',‘:1 P(Y = r|x) = 1. holds. Therefore only] = k — 1 response
categories and parameter vectors have to be specified. The representation of the multino-
mial logit model in (8) and the corresponding response fundiiaepend distinctly on

the choice of the reference category. Since the param@tevgh SSC may be obtained

by reparameterization of the paramej@mgith RSC, the numerical computation of maxi-
mum likelihood estimates @ makes use of a transformation of the design ma{riX he
transformed design matrix for SSC has the form

X*=XT",
whereX is the total design matrix of ordeXn x (p + 1)) given as
X1
x = |
Xq
with Xj, ag x g(p + 1) matrix (composed ox%;) as defined earlierT* is aq((p + 1) x

(p + 1)) matrix composed of the elementsTof! in order to satisfy ; = T‘lﬂj*j (for j =
0,1,...,p). For example, wittk = 3 andp = 2, T*, one obtains

2 0 01 0 (@

020010(d

; _ 0 02 001
T = Tqi.q ® I(|D+1)X(FJ+1) 11 002 0 0
0100 24

0 01 0 0 7



whereg is the Kronecker matrix product. The corresponding score function

N B) N
W)= S = 2,56

has components
s(8") = X{"Di(B)EB)yi — hm)],

whereD;(8") = i is derivative ofh(y") evaluated ap; = X;8' andZ(8") = cou;) is
the covariance matrix ath observation oy given parameter vect@. In matrix notation
one has

s(B) = X" DBy — h(r")],
wherey andh(n*) are given by

y'=.--.¥n)  h@r)" = (ha)',.... harp)").

The matrices have block diagonal form
I(p) = diagE*(8)), W(B") = diag'(8), D(8") = diag(Di(8")).

Then Fisher scoring iteration, which can also be viewed as an iteratively reweighted least
square procedure, has the form

~ (k1)

B

~(K)

=B

~(K)

. (X*T W@ x*)_ls(ﬁ*(k)),

2.1. Regularization

Regularization methods using penalization are based on penalized log-likelihood

156) = Y 1(B) - 296,

i=1

wherel;(B) is the usual log-likelihood contribution of thia observationd is a tuning para-

meter andJ(B) is a functional which penalizes the size of parameter. In high dimensional
problems, which may also cause the non-existence of maximume-likelihood estimators,
the use of regularization methods is advantageous because penalized estimators will exist
and have better prediction error than the usual ML estimator. Ridge penalty, introduced
by Hoerl & Kennard (1970) for linear models and then extended to generalized linear



models by Nyquist (1991), is one of the oldest penalization methods. It uses the penalty
JB) = X1, B2 yielding for binary responses the penalized log-likelihood

n

p
o8 = D LB -5 D B

i=1

For multi-categorical response model, instead of one parameter vector one has the collec-
tion of parameter vectop, . . . , Bk, which are identifiable only under some side constraint.
A straightforward extension of the binary case is the penalty

q

p
IB) =), D B =) BB

P
r=1 j=1 =1

whereﬁ.Tj = (B1j,-- .. Bk-1j) andgy; = 0, which specifiek as reference category. However,
if a different reference category is chosen the corresponding ridge estimator would yield
different estimates, even after transformation.

A more natural choice for defining the multi-category ridge estimator is the use of sym-
metrically constrained parameters. Therefore we will use the definition

k P
W)=Y > 7 (10)
with Z'r‘zlﬁjj = 0. It can also be written as
p
B =) BPB; (11)
j=1

whereﬁj*jT = (B}, ---Byy;) andP = T-1. Transformation to parameters with side con-
straintBy = O yields

p
) =) BTPTR,; (12)
=1

The use of matrixI TPT instead of the identity matrik, will cause J(8) to penalize the
size of parameters for allcategories while working with thelogits under the constraint
given in (3). For the complete design one obtains

JB)=BTP B,
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whereB* has lengthg(p + 1) and matrixP* differs from matrixT* only by having the
zero rows corresponding to the intercepts(i.e., each of [(p + 1) + 1]th row is zero for
r=0,1,...,k-2), since intercept terms are not penalized.

A general form of the penalty term for multi-categorical responses has the additive form

q P

@) =) > Bl >0

r=1 j=1

Multi-categorical ridge and lasso are special cases with 2 andy = 1 respectively.

Since shrinkage should not depend on the reference category, the penalties should use the
symmetric constraints which transform tafdrent functions when reference categories

are used.

If we consider multinomial logit model with SSC described in (4) and the penalty term
given in (11), then the penalized log-likelihood is given by

o) = ) HB) - 29

n p
SHE) -5 BTPE;
i=1 j=1

The corresponding penalized score functsg(8*) is given by

Sp(BY)

Zn: X{TDi(B")Z By — h@)] - AP’
- XTOEIE @ - il - B
yielding the estimation equations
XTD@B)Z By - h(g)] - AP'B" =0

whereB* is a vector of parameters of lengfhx (p + 1), andP*isagx ((p+ 1) x (p+ 1))
diagonal matrix whose elements are themes repetition of diagonal &?. Fisher scoring
iteration provides

~o(ktl) ()
B

=B

s -1 ~x
+ (x*T w@™®) x: + /lP*) s,(8"%).



At convergence, |B* are the estimates (penalized) of true paranmgtdren for the covari-
ance matrix one obtains

cov@) = (X*T W@E) X* +/1P*)_1(X*T W@E) X*)(X*T W@ X +/lP*)_1

and the hat matrix
A g -1
H* = W*T/ZX*(X*T W(EB ) X" + /lP*) X T2

which we need in section 3 while deciding about the optimum value of the tuning parame-
ter 1 on the basis of generalized cross-validation.

3. Simulation Study

In a simulation study the results of penalization using the ridge penalty with symmetric
constraint were compared with its counterpart i.e., penalization with a reference category
and usual MLE. In this study, for multinomial logit models with three response categories
different number of continuous (independent and correlated) and categorical covariates
were considered for ffierent sample sizes (= 30,50, 70 and 100). The situations with
different number and type of covariates used for multinomial logit models in the simulation
study were:

Ik3: Independent covariates drawn from standard normal distribution,

Mk3: Covariates with moderate correlation of magnitude 0.3 between covariates,

Hk3: Covariates with high correlation of magnitude 0.9 between covariates.

The parameter values used for the veg@aif lengthq(p + 1) for situations Ik3, Mk3 and

Hk3 were:

p=5 BT =(L5/6,...,1/6,1/6,2/6,...,1),
p=10: BT =(1,10/11...,1/111/11,2/11,...,1),
p=20: BT =(1,19/20,...,1/20,1/20,2/20,...,1),

In addition, simulations with categorical covariates were performed:

ICk3: 10 independent standard normal covariates, one categorical covariate with three
categories, two binay and one covariate with four categories,

MCk3: 10 correlated covariates with correlation 0.3, one categorical covariate with three
categories, two binary and one covariate with four categories,

HCk3: 10 correlated covariates with correlation 0.9, one categorical covariate with three
categories, two binary and one covariate with four categories.
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TasLE 1: Simulation results for comparison of ridge and MLE with SSC in terms of MBE(
and MSER)

MLE SSC Ridge

situation  p n  MSE®) MSE@) MSE®)  IRwL(®) MSEB)  IRwL(B)
k3 5 30 01359 258665 00975 —0.3500 42130 -1.2507
50 00824 59079 00658 —0.2420 24656 —0.7061

70 Q0549 15856 00474 -0.1510 09373  -0.4328

100 Q0385 07731 00354 -0.0913 05924 -0.2516

10 30 02026 2167891 01504 -0.3437 1523266 —2.1192

50 01641 606962 01292 -0.2756 447314  -1.0421

70 01118 97789 00925 -0.2084 61794 -0.7286

100 Q0740 35824 Q0617 -0.1957 21672 -05316

20 30 - - 0.3377 - 266171 -

50 - - 0.2825 - 514760 -

70 02011 4856023 01794 -01511 4267621 -0.9383

100 Q1529 1044179 01415 —0.0950 947832  -0.4985

Mk3 10 30 02140 4089403 01464 -0.4080 1163031 -2.6988
50 Q1475 1681165 01076 -0.3844 1212961 -1.6518

70 01086 311482 00846 -0.2880 172707 -1.1140

100 Q0777 68345 00598 —0.2903 37639 07489

20 30 - - 0.2741 - 228738 -

50 - - 0.2065 - 415213 -

70 - - 0.1753 - 44,9323 -

100 Q1318 2226823 01130 -0.1846 1633361 -1.1780

Hk3 10 30 02068 8270594 01076 -0.8392 10084812 -35708
50 Q1521 4010319 00929 -0.6888 2324513 -2.3256

70 Q1098 288410 00546 -0.8251 137831 -2.7377

100 Q0791 134725 00391 -0.7781 70180 -2.3192

20 30 - - 0.1872 - 37.9161 -

50 - - 0.1555 - 555950 -

70 - - 0.1425 - 655167 -

100 Q1466 14026828 01131 -0.3869 1393544 -1.6206

ICk3 17 30 - - 0.2759 - 495630 -
50 - - 0.1854 - 524761 -

70 Q1633 3889480 01049 -05511  28%700 -2.1113

100 01195 1748915 00805 —0.4609 716874 -1.9694

MCk3 17 30 - - 0.2852 - 497037 -
50 - - 0.1769 - 461630 -

70 Q1650 5264872 01093 -04984 1716959 —2.5559

100 Q1308 2206468 00940 -0.3964 1991444 -17828

HCk3 17 30 - - 0.2154 - 532974 -
50 - - 0.1796 - 705122 -

70 01602 9073471 00894 -07270 6797028 -2.7218

100 Q1228 4114471 00646 —0.7030 168915 —3.0567

11



The parameter values used for situations ICk3, MCk3 and HCk3 were:

p=17: B7=((1L.10/11,....1/10,1,6/7,....1/7).(1/11,2/11,...,1,1/7.2/7,..

MSE(pi)

MSE(pi)

MSE(pi)
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Ficure 1: lllustration of the simulation study; Box plots for comparing ridge and MLE with
SSC forn = 30 in terms of MSEf) .

In the study, independent continuous covariates were drawn from a standard normal dis-
tribution and for each settin§ = 200 data sets were used. For computing the usual ML
estimatespul tinom function of librarynnet in R was used. The results of usual MLE

are not given in Table 1 if ML estimates were not converging/@ngroduced infinitely

large standard errors. The values of tuning parameter SSC-ridge were chosen by use
of generalized cross-validation (GCV). The results of ridge estimates with symmetric side

12



1k3, p=10, n=30 - Ik3, p=20, n=30 Mk3, p=10, n=30
. <] s S .
@© | : ’
© o (3] B °
- ©
© | o
. g —_ o] —_ ' °
& o e g 8 : H
] i 23 gel :
w ] i ] . °
] D o 0 8
Em ™ : % ] % ™ E ;
) — s} <} H
o . ‘ €5 | ° : i
| ' ™ | .
~N o : ;l © ~ o H —1
T o =
© T T T T © - T T
MLE SSC Ridge MLE SSC Ridge MLE SSC Ridge
o Mk3, p=20, n=30 Hk3, p=10, n=30 - Hk3, p=20, n=30
< B B ¢ B
o 8 ¥
-
8
T §
v | ® H o '
T o ) 1 i T ] |
19 [} 1] :
5 o —— 5 1
i} m i} -
(7] %] 0
o ™ o . o o ™ ;
« 4 i L
. I— o]
(\i 1 T T © - T T @ T T
MLE SSC Ridge MLE SSC Ridge MLE SSC Ridge
ICKk3, p=17, n=30 MCK3, p=17, n=30 HCK3, p=17, n=30
2] ‘ 2] i 21 —
. ) .
7 = .3 = % =
Ty ; g 9 : T '
g 3 | g - — 8 o —
g _— oo | o o
0 o 0 o n 94
S o] = s @
S 2 v | 8
< 5] oS £ o
N o
o o |
o ~N
N\ n
] - B o | B
T T T T — T T
MLE SSC Ridge MLE SSC Ridge MLE SSC Ridge

Fiure 2: lllustration of the simulation study; Box plots for comparing ridge and MLE with
SSC forn = 30 in terms of log(MSER)) .

constraint (SSC-ridge) and the ML estimates for SSC are compared on the basis of MSE
(mean squared error) afandB. MSEs were computed using the estimates okadigits
as:

MSE®) = £ X sMSE(®)  with  MSEs#) = & Z (74 — mi;)? for the sth sample

n k
i=1 r=1

and

MSE@) = £ 3118 - BIP

13



wherex is a vector of lengttn andg (vector of parameter estimates using SSC)@ace
of lengthk(p + 1).

Let MSE.and MSEy, represent the MSE’s df ( or 8) for ridge and the usual MLE using

the symmetric side constraint respectively. In Table 1 SSC-ridge estimates are compared
with ML estimates. Improvement of estimates of SSC-ridge over MLE for simulation

can be measured by M§EMSE,,, but because the distribution of these ratios is skewed,

we considered the mean across logarithms. In case of mean across logarithms we have
S1 3 10g(MSEss/ MSEy.) = log(([Ts MSEssd MSEy. )Y/S) which refers to the logarithm

of geometric mean.

In Table 1Ry, (7) andIRy. (B) represent the means of log(MSEMSEy, ). The negative

values ofIRy,_ indicate the improvement of the ridge method over usual MLE. Table 1
shows that usual MLEs do not exist for large number of covariates when samples size is
small, but ridge estimates do. As the number of covariates increases and also in the case of
collinearity ridge estimators definitely outperform MLEs in terms of MEnd MSEﬁ).

In Fig. 1 and Fig. 2, SSC-ridge is compared with MLE (if exists) in terms of box plots with
respect to MSE) and MSER) respectively for the most interested case of small samples
i.e.,n = 30. The solid circles within the boxes of each box plot represent the mean of 200
values for which the box plots are drawn.

4. Application

In this section usual ML estimates (with reference category and symmetric side constraint)
and the SSC-ridge estimates are computed for a data used by Agresti (2002) consisting of
the factors influencing the primary food choice of 219 alligators captured in Florida lakes.
Agresti (2002) fitted the baseline-category logit model using 'primary food choice’ with
five categories: Fish (F), Invertebrate (1), Reptile (R), Bird (B), and Others (O) as the
response variable with 'Fish’ as the reference category. The covariates usedlaielL

of capture (Hancock, Oklawaha, Tiard, George), Ggender (male, female) and-Size

(<= 2.3 meters long> 2.3 meters long. While comparingfterent models on the basis

of G2-values, the best fitted model is the+8) fitted on the data after grouping them
over gender. We fit this model to get ML estimates (with RSC and SSC). The SSC-ridge
estimates and their standard errors for this model are computed to compare them with
the ML estimates. In Table 2 the estimates and their standard errors (within brackets)
are shown for MLE with RSC (each of four logits is compared to the reference category
"F") and SSC, and SSC-ridge (each logit is compared to the median response given by the
geometric mean). The optimum value of the tuning parameter for SSC-ridge 1s9.

14



TasLE 2: Estimates and standard errors for "Primary Food Choice of Alligator” data

Logit Method of Estimation Intercept size=2.3 Hancock Oklawaha Tfeord
IvsF MLE with RSC —1.549(3 14581 -1.6581 Q9372 11220
(0.4249 (03959) 06128) (04719) (04905)
| vs median MLE with SSC 2232 12966 —1.879% 03875 —0.210%
(0.3906)  (03159) (05384 (04595) (04107
| vs median SSC-Ridge 0170 09982 —1.120% 04489 00553
(0.2478)  (02391) (02863 (02581) (02521)
RvsF MLE with RSC -33145  -0.3513 12428 24589 29353
(1.0531) (05800)  (11854) (11181) (11164)
R vs median MLE with SSC ~ -15423  -0.5128 10216 19092 16030
0.8427)  (04509)  (09513) (09089) (08788)
R vs median SSC-Ridge -0.6189  -0.4913 00201 06573 05386
(0.2774)  (02917)  (Q3044) (02891) (02851)
BvsF MLE with RSC —2.0934 —0.630(3 06954 —0.652? 10881
(0.6623) (06425 (07813)  (12020) (08417)
B vs median MLE with SSC —0.320% -0.7922 Q4740 —1.202% —0.244?
(0.5597 (05088)  (06555) (09733 06731
B vs median SSC-Ridge —0.7121 —0.442(3 Q4290 —0.422% Q0414
(0.3042) (03066 (03021) (03086) (03023)
OvsF MLE with RSC —1.9043 03316 08263 00058 15165
0.5258)  (04483)  (05575) (Q7766) (06214)
O vs median MLE with SSC —0.1321 Q01700 Q6050  -0.5441 01841
(0.4595)  (03551)  (04975) (06604) (05039)
O vs median SSC-Ridge -0,2307 Q1157 06056 -0.3643 02464
(0.2655)  (02624)  (02/18) (Q3022) (Q2744)

Moreover, ridge estimates are compared with ML estimates in terms of MSPE (mean
squared prediction error). For this purpose 50 random permutations of the 219 obser-
vations were taken and each was divided into two parts: the training data set with 169
observations and the parameter estimates obtained from these observations are used to
get the squared prediction error from the test data set of other 50 observations using the

formula )
1 < .
SPE= 1 ) > @ -xy
i=1 r=1

wherern’s are the observed responses in the form of dummy variables OTorelMSPE
for 50 random permutations computed as

1 50
MSPE= = ' SPE.
S SO;S E
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The mean squared prediction error for MEE3.9568 and for SSC-ridge33.89551 Be-

cause the sample size isfBciently large, the asymptotic theory supports the results of
usual MLE and we do not see a significant improvement of ridge estimates over ML esti-
mates. The results however show a little improvement of SSC-ridge over the MLE.

To compare the MLE and ridge estimates with respect to their existence and performance
in small samples, we drew 50 random samples for each of size 30 and 50 from the original
data of 219 observations and computed MLE as well as ridge estimates for each sample.
The results (not shown here) indicated that MLE fails to exist in all samples ofi $iZ&0

andn = 50 but ridge estimates do exist in every case.

5. Concluding Remarks

In multinomial logit models, the identifiability of parameter estimates calls for some side
constraint, which typically means that some response category is chosen as the reference
category, so that the parameter estimates can describéfélne & x on the logits when

PY =r|x), (r=1,...,k-1)is compared to the pre-defined reference category. The
penalized estimates should be independent of the choice of the reference category. The
use of symmetric side constraint given in (3) leads us to the use of "median” response
given by the geometric mean of all responses as the reference category rather than using
a particular category as reference. The use of "median” response as reference makes the
penalization independent of reference category choice. This objective can be achieved for
L2-penalty using the Fisher scoring in a very simple way, just by making a transformation

of the actual design matrix and then using a matrix other than the identity matrix in the
ridge penalty (as defined in (11)). In case of multicategory response, using symmetric
side constraint is appropriate than to work with a reference category side constraint but
one should be careful while interpreting the parameter estimates for each logit as these
estimates are now subject to the "median” response category as the reference rather than
a particular response category of the data. However once these estimates with SSC are
computed, one can transform these estimates back to the reference category scale by using
the inverse transformation given in (7).
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