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Ecological data are highly complex, often with a 
large array of variables interacting and explaining 
different components of the dependent variable of 
interest. Because nature itself is very complex, most 
of the variables measured by ecologists do not 
operate independently, so that interactions and 
correlations between variables need to be accounted 
for.  Moreover, the number of variables 
influencing an ecological phenomenon may be very 
large, and the use of simplifying indices in ecology 
and wildlife management has been criticized for 
many years (Anderson et al. 2003). 
 Determining which variables have the 
greatest effect on a response variable can be a 
formidable challenge in many ecological data sets. 
Traditional linear regression models, which are 
widely used as tools to quantify and understand the 
ecological relationship between several explanatory 
variables and a dependent, reach their limitations 
when the number of predictor variables is large 
(Fielding 1999, Breiman 2001b, Burnham and 
Anderson 2002). 
 Despite the recognized shortcomings of 
generalized linear regression models (GLM), such 
approaches are still widely used and promoted in 
recent literature (Planque and Buffaz 2008, Yee et 
al. 2008, Bolker et al. 2009, Gompert and Buerkle 
2009, Koper and Manseau 2009). Many ecologists 
are hesitant to use Bayesian approaches (Cressie et 
al. 2009), or machine learning methods (Cutler et al. 
2007, Olden et al. 2008, Cutler et al. 2009), both of 
which have existed for several decades and have 
become popular among ecologists over the past 10 
years (Fielding 1999, De'ath and Fabricius 2000). 
Poor understanding of advanced techniques and an 

inherent reluctance to try novel approaches are 
likely causes for the slow adoption of Bayesian and 
machine learning techniques (Bolker 2009, Uriarte 
and Yackulic 2009). 
 Recently, in a paper published in Ecology 
(Murray and Conner 2009), the presentation of 
methods to quantify variable importance was 
limited to standard parametric methods and the 
results appeared to contradict the statistical 
literature. This paper prompted us to (i) remind 
ecologists of the great utility of machine learning 
methods, which can provide enhanced and reliable 
measures of variable importance even in situations 
with a large number of predictor variables 
containing potentially complex interactions, and (ii) 
emphasize the importance of using correct 
terminology when evaluating statistical approaches. 
Specifically, we clarify the identification and 
simulation of spurious variables. 
  
 
Alternative approaches to modeling high 
dimensional data 
 
For modeling high dimensional data containing 
potentially complex interactions, a variety of new 
methods adopted from machine learning have 
become popular in many disciplines such as 
genetics and, more recently, ecology. Some of these 
so called algorithmic models can incorporate many 
predictor variables, and methods exist to reliably 
identify the most important predictors (Strobl et al. 
2007, Archer and Kimes 2008, Strobl et al. 2008). 
Algorithmic models encompass a suite of analytical 
approaches (Elith et al. 2006); for simplicity and 
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brevity we here focus on a widespread ensemble 
method, the Random Forest (Breiman 2001a), to 
demonstrate that the concept of algorithmic models 
is easy to understand and implement with freely 
available software solutions for virtually any 
ecologist worldwide. 

In contrast to traditional data models like 
GLMs, algorithmic models do not require the a 
priori specification of a model to relate explanatory 
and dependent variables, but rather use an algorithm 
to learn the form of those relationships (Breiman 
2001b). The basic decision tree algorithm 
underlying many modern algorithmic models was 
developed in the 1980s (Breiman et al. 1984), and 
was introduced to ecologists more than a decade ago 
(O'Connor and Jones 1997, Fielding 1999, De'ath 
and Fabricius 2000). Since then, classification trees 
and more advanced techniques have increased in 
popularity among ecologists due to their high 
classification accuracy, ability to incorporate a large 
number of predictor variables, ability to handle 
missing data, ability to characterize complex 
interactions among variables, and comparatively 
easy application and interpretation (Cutler et al. 
2007, De'ath 2007, Hochachka et al. 2007, Elith et 
al. 2008, Olden et al. 2008, Elith and Graham 2009). 
 Algorithmic models have been used 
successfully in many ecological applications, such 
as analyses of species range shifts (Hill et al. 1998, 
Lawler et al. 2009), species richness patterns 
(Leathwick et al. 2006), species presence and 
distribution patterns (O'Connor et al. 2004, Peters et 
al. 2005, Elith et al. 2008, Elith and Graham 2009), 
identification of populations (Perdiguero-Alonso et 
al. 2008), and analyses of behavioral patterns 
(Grubb and King 1991, Low et al. 2006, Oppel et al. 
2009). When compared to traditional statistical 
models such as GLMs, algorithmic models provide 
convenience, speed, and most importantly superior 
model fit and prediction (Elith et al. 2006, Prasad et 
al. 2006, Peters et al. 2007). They require 
substantially less prior knowledge about the study 
system to achieve the same accuracy as, for 
example, logistic regression models (Hochachka et 
al. 2007, Ritter 2007).  

 To understand how algorithmic models 
determine the importance of a variable it is 
necessary to briefly review the structure of 
algorithmic models. We emphasize that our 
comment is not designed to serve as a manual for 
the successful application of algorithmic models; 
such introductions already exist in the ecological 
literature (Cutler et al. 2007, De'ath 2007, 
Hochachka et al. 2007, Elith et al. 2008, Olden et al. 
2008). Here we merely provide an exemplary, brief 
description of one particular algorithmic modeling 
technique, the Random Forest (Breiman 2001a, 
Cutler et al. 2007), and its extensions designed to 
reliably estimate variable importance in highly 
complex data sets (Hothorn et al. 2006, van der 
Laan 2006, Strobl et al. 2007). 
 
 
A brief overview of Random Forests 
 
The Random Forest algorithm is based on 
classification and regression tree analysis (Breiman 
et al. 1984, De'ath and Fabricius 2000). A 
classification or regression tree uses a series of rules 
to recursively split the data set into binary groups by 
identifying regions with the most homogenous set of 
a response to predictor variables. For each node the 
predictor variable and the split point are chosen to 
maximize the homogeneity of the data set along 
each of the two branches. Each branch can then be 
split again, either until a stopping criterion is 
reached, or until a user-specified number of terminal 
nodes is reached. The two main advantages of trees 
are that predictor variables can be both, categorical 
and continuous, and that irrelevant predictors are 
seldom selected for a split. Thus, there is no cost to 
including a large number of predictor variables. In 
contrast to GLMs, trees also incorporate, and benefit 
from, interactions due to the hierarchical structure 
within the tree. At each split the response depends 
not only on the value of the predictor at that split, 
but also on the predictors at all splits that occurred 
higher up in the tree. Further, trees are insensitive to 
outliers or missing values in a data set, which is a 
common occurrence in large spatial data sets (Craig 
and Huettmann 2008). 
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 A Random Forest is an assemblage of a 
large number of classification or regression trees 
using two levels of randomisation in the 
construction of every tree in the Random Forest 
(Breiman 2001a). First, each tree is constructed 
from a random subset of the original data, either 
taken with a bootstrap sample with replacement or 
sampled randomly to a specified proportion of the 
entire data set. The data not chosen to construct the 
tree (termed ‘out-of-bag’ data, oob) are used to 
assess the predictive ability of that tree. Each tree 
thus provides both an algorithm to classify the data 
and an error estimate of predictive ability based on 
the oob data. Second, at each split within each tree a 
random subset m of the available predictor variables 
is used to partition the data set into two groups with 
minimal heterogeneity. Each tree recursively 
partitions the data using a random subset of 
predictor variables until homogeneity of the data in 
each terminal node cannot be increased by a further 
subdivision. After a user-specified number of trees 
(100s – 1000s) have been constructed, each data 
point is run down every single tree in the Random 
Forest. Different trees may predict different 
outcomes for the same data point, and the most 
common classification across all trees is used to 
determine the predicted outcome of a data point. 
 
 
Variable importance estimation 
 
To estimate the importance of predictor variables, 
Random Forests use a specific permutation 
procedure. In this procedure, the values for a given 
variable are randomly permuted over the oob data 
set and the resulting reduction in model accuracy is 
assessed. Variable importance is inversely related to 
the reduction in model accuracy after permutation 
(Strobl et al. 2007). For easier interpretation, the 
variable importance can be standardized, with the 
most important variable being assigned a relative 
variable importance of 100%. A Random Forest 
provided a reliable method to identify the most 
important predictor variables in a large simulation 
study including 100 variables (Archer and Kimes 
2008). Hence, algorithmic models usually provide a 

simpler, more accurate and more widely applicable 
approach to determine variable importance in 
ecology than approaches that rely on correlations 
among variables or models with different subsets of 
the full suite of predictor variables (Burnham and 
Anderson 2002, Murray and Conner 2009). 
Advanced algorithms based on a conditional 
inference framework (Hothorn et al. 2006) are able 
to reliably identify the most important predictor 
variables even when continuous and categorical 
variables are used simultaneously (Strobl et al. 
2007), or when variables are correlated (Strobl et al. 
2008). 
 
 
Conclusion 
 
The continued use and promotion of simple linear 
techniques in ecology is troublesome because such 
models require a higher level of statistical 
knowledge to adequately describe the complexities 
of many large ecological data sets (Hochachka et al. 
2007). Despite many recent advances, such as 
information-theoretic approaches to model selection 
(Burnham and Anderson 2002), the use of Bayesian 
approaches (Stauffer 2008, Cressie et al. 2009), and 
attempts to overcome the problem of spurious and 
correlated variables (Murray and Conner 2009), 
traditional regression models will rarely be able to 
match algorithmic models in situations where a 
large number of explanatory variables need to be 
included in a model that is based on a limited 
number of observations (Breiman 2001b). We 
therefore recommend that ecologists that are 
challenged by large data sets, interactions, and 
correlated variables consider the application of 
algorithmic models to improve the explanatory 
power and robustness of their analysis. 
 We realize that the widespread adoption of 
algorithmic approaches faces similar challenges as 
the adoption of hierarchical Bayesian modeling 
techniques (Uriarte and Yackulic 2009): ecologists 
struggle to use new analysis tools that go beyond 
their original training and education. We encourage 
ecologists to broaden their analytical horizons with 
existing literature (Cutler et al. 2007, Hochachka et 
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al. 2007, Elith et al. 2008, Olden et al. 2008) and 
make use of powerful techniques that have been 
developed in fields outside of ecology in order to 
better understand ecological patterns and processes. 
 
 
A note about spurious vs. suppressor variables 
 
A spurious variable, for example in a multivariate 
regression problem with predictor variables x1 
through xp and response variable y, is a variable that 
has no effect on the response, but is highly 
correlated with another predictor variable that does 
have an effect on the response (Burnham and 
Anderson 2002, Brett 2004). Consider, for example, 
that the number of storks that occur in an area (x1) is 
correlated with the number of newborn infants in 
that area (y). However, stork abundance has no 
biological influence on the number of newborns; in 
fact, a third variable, for example a low degree of 
environmental pollution (x2), positively influences 
both the number of storks and the birthrate. As long 
as environmental pollution is not entered as 
predictor variable in a model of birthrate, the 
number of storks will act as a spurious variable that 
could be mistaken to explain birthrate. 
 Spurious correlations can affect inference 
from data, and it is important to detect them. Murray 
and Conner (2009) recognized this problem and 
offered a solution based on simulations with 
artificial data. Unfortunately, the simulation design 
used by Murray and Conner (2009: Ecological 
Archives E090-026-S1), where the response variable 
was simulated together with the predictor variables, 
generated a suppressor variable (Velicer 1978, 
Smith et al. 1992, Maassen and Bakker 2001), rather 
than a spurious variable. While a suppressor 
variable also leads to a spurious correlation, the 
difference between spurious and suppressor 
variables is that, when considering the parameter 
estimates in a linear model, the effect of a spurious 
variable only appears when the truly relevant 
correlated predictor is absent from the model 
(Prairie and Bird 1989, Brett 2004). For a 
suppressor variable, however, the effect appears 
only if another correlated variable is entered into the 

model (Conger 1974, Tzelgov and Stern 1978, 
Velicer 1978, Smith et al. 1992). 
 The distinction between suppressor and 
spurious variables is not formally recognized by 
many ecologists (see Juenger and Bergelson (2000) 
for a notable exception), and may arguably be 
inconsequential if spurious correlations are 
considered in general. However, we argue that the 
distinction is important to facilitate effective 
communication with statisticians to make use of 
approaches developed outside the field of ecology. 
For example, the simulation by Murray and Conner 
(2009) lead them to erroneously conclude that a 
spurious variable could be identified by means of 
simple zero-order correlations. In fact, however, a 
spurious variable cannot be revealed by means of a 
zero-order correlation (which would indicate a 
strong association between the number of storks and 
the birthrate), but only by means of a partial 
correlation for the number of storks and the birthrate 
given the degree of environmental pollution (which 
would reveal that, once the truly influential variable 
is incorporated, the spurious variable “number of 
storks” proves irrelevant for predicting the 
birthrate)(Simon 1954). Because Murray and 
Conner (2009) unknowingly generated suppressor 
rather than spurious variables in their simulation, 
they found that the zero-order correlation was zero, 
while the partial correlation was not zero. This 
result is correct and unsurprising for describing a 
suppressor effect, but is misleading and inconsistent 
with statistical literature due to the incorrect usage 
of the term “spurious variable”. 
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