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Abstract

Segmentation results derived using cluster analysis depend on (1) the structure of the data
and (2) algorithm parameters. Typically neither the data structure is assessed in advance of
clustering nor is the sensitivity of the analysis to changes in algorithm parameters. We propose
a benchmarking framework based on bootstrapping techniques that accounts for sample and
algorithm randomness. This provides much needed guidance both to data analysts and users
of clustering solutions regarding the choice of the final clusters from computations which are
exploratory in nature.

Keywords: cluster analysis, mixture models, bootstrap

1 Introduction

Market segmentation aims at “dividing a market into smaller groups of buyers with distinct
needs, characteristics or behaviors who might require separate products or marketing mixes”
(Kotler and Armstrong, 2006). A good market segmentation strategy can lead to substantial
competitive advantages for an organization. But the quality of the market segmentation strategy
depends on the quality of the segmentation solution informing it.

A wide range of general quality criteria, such as measurability, accessibility, substantiality, dif-
ferentiability and actionability, have been proposed to assess segmentation solutions (Kotler, 1997;
Kotler and Armstrong, 2006; Wedel and Kamakura, 1998; Evans and Berman, 1997; Morritt,
2007). Yet, very little practical guidance is available to help users to choose the best segmen-
tation solution. This lack of guidance is particularly concerning because (1) the sample and the
algorithm used introduce a significant amount of randomness into the final segmentation solution,
(2) no clear distinction is currently made between solutions that reveal naturally existing clusters
(density clusters) and solutions that construct clusters, and (3) managers have significant knowl-
edge gaps in relation to segmentation methodology and cannot be expected to make an informed
decision about the final market segmentation solution that should be used as a basis for strategic
decisions (Dolnicar and Lazarevski, 2009).

1.1 Sample and algorithm randomness

Two sources of randomness affect the final segmentation solution: the sample - which is a ran-
dom subset of the population - and the algorithm - which is known to impose structure on data
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Figure 1: Artificial data for the mobile phone example: two clearly separated circles (left) and one
big elliptical cluster (right). Both will be used as running examples to demonstrate theory and
methods for evaluating cluster stability.

(Aldenderfer and Blashfield, 1984), especially if the data are not well structured. Using one single
segmentation solution that results from one single computation of one single algorithm therefore
puts the manager in danger of using a random solution, rather than a reliable solution. Let us
assume we cluster a sample with 500 respondents. If we survey another 500 people and cluster
the data, we can either get a very similar or a very different solution, depending on the variability
of answers in the (unknown) total population. This is sample randomness. Another source of
randomness is that many cluster algorithms are stochastic in nature, e.g., by using random start-
ing points. This algorithm randomness can be reduced by repeatedly starting the algorithm and
keeping only the best solution, but it usually remains unknown whether the global optimum has
actually been found.

1.2 Natural, reproducible or constructive clustering

Optimally, density clusters exist in consumer data. If this is the case, the clustering algorithm has
to reveal these density clusters correctly and reliably over repeated computations. This is the way
market segmentation has been originally conceptualized by the pioneers of market segmentation
(Frank et al., 1972; Myers and Tauber, 1977). We refer to this situation as (natural clustering /
segmentation

Density clusters rarely exist in consumer data. In the worst case, data are entirely unstructured.
Although it may technically seem “foolish to impose a clustering structure on data known to be
random” (Dubes and Jain, 1979, p.42) it is now acknowledged that market segmentation is still
of managerial value in such situations. While the cluster algorithm cannot reveal true groups of
consumers, it can still help to create managerially useful subgroups of customers (Mazanec et al.,
1997; Wedel and Kamakura, 1998). Artificially creating segments and customizing products to
parts of the market is often managerially preferable to accepting that no natural segments exist
and pursuing a mass marketing strategy. We refer to the situation where market segments are
created on the basis of an unstructured data set as constructive clustering / segmentation.

Typically, consumer data contain some structure, but not density clusters. For an example
see the right hand plot in Figure 1. In such situations true density clusters cannot be revealed
but data structure can be used to derive stable, reproducible market segments. We refer to this
situation as (reproducible clustering / segmentation.

Imagine a two dimensional data set resulting from customers of mobile phones being asked
about their aspiration level concerning the feature sophistication of the phone and the price (see
Figure 1). The data set collected could take one of three forms: (1) true natural clusters exist



in the data set (left chart), (2) structure exists in the data, but the structure does not represent
true, natural clusters (right chart), or (3) there is no structure in the data at all. An example for
the latter is shown in Figure 6 and will be explained in detail below. Natural clusters or segments
are strongly homogeneous internally and distinctly different from other segments. In our example
they could consist of consumers who prefer the maximum feature sophistication and are willing to
pay a high price for such a hi-tech mobile phone (segment 1). If such a segment existed, it would
obviously represent a highly attractive target market. Not only because customers in this group
are willing to pay a lot of money. A naturally existing segment of consumers not requiring many
technical-features but wanting the price to be low (segment 2) would also represent an interesting
target segment as long as the members of this group are homogeneous in their preferences. If the
natural segments are clearly separated as in the left panel of Figure 1, probably any appropriate
clustering technique will correctly identify the true number and nature of segments.

This is not, however, the case if the data does not form two distinct groups but rather a
continuum between the low-end and high-end segments as shown in the right panel of Figure 1. The
“statistically correct” solution in this case is to identify one big segment. Such a solution would,
however, not be of much managerial use; it has to be split into several segments. In this case the
clustering method chosen will have major structure-imposing effects and, consequently, will have
to be selected very carefully in order to arrive to the managerially most useful solution. Yet, such a
data situation enables clustering algorithms to repeatedly identify similar segmentation solutions
(reproducible segmentation), whereas a total lack of structure in the data requires constructive
clustering. In the case of constructive clustering the algorithm chosen and the sample of the
population has the highest impact on the final solution. Or, as Aldenderfer and Blashfield (1984,
p-16) put it: 7Although the strategy of clustering may be structure-seeking, its operation is one
that is structure-imposing. ... The key to using cluster analysis is knowing when these groups are
‘real’ and not merely imposed on the data by the method.”

1.3 Managers’ need for methodological guidance

Managers are struggling to fully understand market segmentation solutions. A survey we con-
ducted among 198 marketing managers in 2007 indicates that more than two thirds believe that
clustering of survey data only leads to segments if clear, distinct segments exist in the data, that
”market segmentation reveals naturally occurring segments”. Futhermore managars expressed that
the way segmentation solutions presented to them are derived is like a black box to them (data
goes in and the solution comes out, it is not clear what happens in between). Sixty-five percent
admit to having difficulties interpreting segmentation solutions. Similar conclusions emerged from
earlier conceptual and qualitative studies (e.g., Greenberg and McDonald, 1989; Dibb and Simkin,
1997). These findings confirm that there is not only a need for more guidance regarding the choice
of segmentation solutions among academic researchers, but that users of segmentation solutions
in industry suffer from a knowledge deficit, which makes it even more important to provide them
with guidance to avoid the use of random and sup-optimal market segmentation solutions as the
basis of their strategic decisions.

In this paper we propose a benchmarking framework that will inform data analysts and users
of market segmentation solutions about (1) the data structure they are facing and consequently
whether natural or reproducible clustering is possible or constructive clustering is required, and
(2) how critical methodological decisions (such as the choice of the algorithm, the number of clus-
ters etc.) are given this data situation. This will be achieved through the use of bootstrapping,
a method that accounts for the two sources of randomness in clustering solutions: randomness
of samples and randomness of algorithms. The remainder of this paper is organized as follows:
Section 2 introduces a general framework for bootstrapping cluster algorithms, Section 3 demon-
strates the framework using the simple artificial example from above, and Section 4 gives two
case studies on real world data. All examples are taken from the context of market segmentation,
however the underlying principles can be applied in any field of application where clustering or
related techniques are used.



2 Bootstrapping Segmentation Algorithms

In the following we extend the benchmarking framework by Hothorn et al. (2005) for regression
and classification problems (“supervised learning”) to the case of cluster analysis (“unsupervised
learning”). Let X = {z1,...2n} denote a data set of size N. A partition of this data set into K
segments assigns each x,, a vector C(x,,) = (Pn1,---,Pnk)’, where ppr > 0, Zle Pk < 1, and ppp
measures the “membership” of x,, in segment k. For partitioning algorithms like k-means, where
each observation is assigned to one class, exactly one of the p,; = 1¥n. For finite mixture models
the memberships are the posterior probabilities of the respective components; for fuzzy clustering
these are fuzzy logic memberships. In the following we will refer to all of those as segmentation
algorithms.

As segmentation algorithms are unsupervised learning methods, membership values are iden-
tified only up to permutations of the labels. If IT denotes any permutation of the numbers
{1,2,..., K}, then IIC(-) is equivalent to C(-), only the segment labels have changed. Most
segmentation algorithms use random starting values and/or stochastic optimization techniques
resulting in a local minimum of their respective optimization problem. Running the same segmen-
tation algorithm twice on the same data set we obtain two membership functions C(+) and Cy(+).
These may be almost equivalent up to label permutations II such that P {C;(z) = HICy(z)} = 1—e¢
with € small and the probability measure P is with respect to new observations z. However, es-
pecially in higher-dimensional spaces or if the data contains no natural cluster structure, C; and
C5 may belong to different local minima.

In order to avoid “obvious” local minima it is recommended to run the segmentation algorithm
several times with different starting conditions and use the best solution. Below we assume this
procedure as part of model fitting. Nevertheless several local minima can remain, as demonstrated
with artificial data in Section 3. E.g., “fitting a mixture model with the EM algorithm” assumes
that the EM algorithm is run several times and the solution with the maximum likelihood is
returned.

An additional source of randomness, which is ignored in many applications, is the actual
sample Xy of observations. Any partition C(-) = C(-|X) is a random variable (in function space)
depending on the learning sample X'y, and stochastic components of the segmentation algorithm.
If we use one realization, i.e., one particular segmentation of the data, it is interesting to know
how much variation this distribution has. If replications of the algorithm on different samples X'
from the same data generating process (DGP) return similar results, we call the corresponding
partitions reproducible, otherwise non-reproducible. This is closely connected to the main idea
behind cluster ensembles, where many partitions are combined into average (or meta-)partitions
(Strehl and Gosh, 2002; Dudoit and Fridlyand, 2003; Dolnicar and Leisch, 2000).

2.1 Evaluating Reproducibility

In order to evaluate the reproducibility of a segmentation algorithm we need to integrate out all
sources of randomness in the partition, hence we need independent

e replications of the sample X, and
e replications of the algorithm.

It is easy to get replications of the algorithm, but usually we are given only one sample Xy of
fixed size N. If N is very large, we can split it randomly into several smaller sets and use those,
cf. function clara in Kaufman and Rousseeuw (1990). If N is not very large such that we cannot
afford to split it into several independent samples, we have to rely on approximations. The simplest
and most widely used approximation of the unknown distribution F' of the DGP is the empirical
distribution Fiy of Xy. Drawing samples from F'y is the same as sampling with replacement from
XN, i.e., bootstrapping (Efron and Tibshirani, 1993). Note that it is the usual convention to draw
bootstrap samples which have the same size IV as the original data set.



Running the segmentation algorithm on B bootstrap samples X% (b = 1,..., B) gives us B
replications C1,...,Cpg of C(-) which are independent random variables in function space, where
independence is with respect to training sample and segmentation algorithm. To assess how often
we obtain the “same” solution we have to define a similarity (or distance) measure s(Cy(-), Ca(+))
on partitions. Possible measures include

e Kullback-Leibler divergence between the mixture densities for model-based clustering,
e Euclidean distance between centers for centroid-based cluster algorithms like k-means, and

e agreement measures for partitions like the Rand index or adjusted Rand index
(Hubert and Arabie, 1985).

In the following we will use the Rand index adjusted for agreement by chance as it makes no further
assumptions about the segmentation algorithm, see, e.g., Brusco et al. (2003) for an example of
evaluating market segmentation algorithms. However, all analyzes could as well be done using any
other measure for similarity or distance of partitions.

Given two clusterings C7 and Cy of two different bootstrap samples, we first predict cluster
membership in these two partitions for all observations in the original data set by assigning each
to the closest centroid in each partition, respectively. For model-based clustering, observations are
assigned to the cluster with the highest a-posteriori probability. Given these two partitions of the
original data set, we then compute the Rand index, which is defined as the percentage of pairs of
points which are either assigned to the same cluster twice, or assigned to different clusters twice
(both cases suggest agreement of partitions).

Using 2B bootstrap partitions of the original data set we get B independent and identically
distributed (iid) replications

s1=5(C1,Cs), ... sp=s(Cap_1,C2B) (1)

of partition similarity. Note that we could compute all 2B(2B—1)/2 pairwise similarity coefficients,
however those would no longer be independent. As we will use standard statistical techniques on
the sample & = {s1,...,sp}, independence is of great importance, see Hothorn et al. (2005).
Many questions about stability of the segmentation algorithm can now be formulated in terms of
standard statistical inference on S as demonstrated below on several examples.

2.2 The Benchmarking Framework

Does the data set contain natural clusters? This question is similar to the typical “number
of clusters” question (Thorndike, 1953). A huge number of indices has been proposed in the litera-
ture for assessing the number of clusters (see, e.g., Milligan and Cooper, 1985; Dimitriadou et al.,
2002). For model-based clustering information criteria like the AIC or BIC can be used (e.g.,
Fraley and Raftery, 1998). The modification to common practice we propose is to compute
the index of choice (or several of them) on all bootstrap replicates, not only on the original
data (or one single split into two halves) to assess stability of the index estimate, see also
Tibshirani and Walther (2005).

Does the data set allow reproduction of similar segmentation solutions? This question
has received considerably less attention in the literature. Given the framework described above, we
have several iid samples S¥ of algorithm stability. In many cases exploratory analysis of these data
sets, e.g., using kernel density estimates as shown in the examples below, gives sufficient insight to
answer the question. If the (adjusted) Rand index is used, then “reproducibility” is equivalent to
the fact that the distribution of the s¥ should have most mass close to 1. If exploratory analysis
does not give sufficient insight, then standard significance tests can be used (e.g., that the mean
or median is above a certain threshold).
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Figure 2: Both two cluster (left) and three cluster (middle) partitions are stable for the ellipse
data; while seven cluster partitions (right) are mostly random, only the extreme low-end and
high-end segments are stable.
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Figure 3: Boxplots of the Calinski-Harabas index for the two circles and the ellipse data for 200
partitions each.

3 Demonstration Using Artificial Data

3.1 Natural structure versus reproducible structure

Figure 2 shows the partitions induced by running the k-means algorithm repeatedly on new data
sets from the data generating process of the simple example used in Section 1. The exact choice
of the segmentation algorithm is not critical in the case of this simple data set. Experiments using
model-based clustering gave almost the same results and are omitted for brevity. Note that in our
simulations “running k-means” is equivalent to running the algorithm five times and using only
the best solution (smallest within-cluster sum of squares).

It can clearly be seen that the data set — although consisting only of one big cluster — can
reliably be split into two or three clusters, whereas a seven cluster solution will split the data
rather randomly (with respect to reproducibility). Note that for the two-dimensional data the
maximum number of stable groups can be inferred from plots of the data, for real data with more
than two dimensions this is not an option. Consequently, indices need to be used to indicate
the most appropriate number of segments in a data. We compute the Calinski-Harabas index
(variance between cluster centers divided by sum of within cluster variances). Other indices can
be used. We chose Calinski-Harabas because it is widely used and the best performing index in
the classic paper by Milligan and Cooper (1985).

Figure 3 shows the Calinski-Harabas index values for two to seven clusters, indicating that
two segments represent the best solution for the two circle data and that three segment should be
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Figure 4: Kernel density estimates of 100 bootstrapped adjusted Rand indices for the two circles

data with two to seven clusters each.
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Figure 5: Kernel density estimates of 100 bootstrapped adjusted Rand indices for the ellipse data
with two to seven clusters each.

chosen for the ellipse data. Note that, not surprisingly, the recommendation for the three segment
solution for the ellipse data is weaker than the two segment recommendation for the two circle
data. This reflects the difference between a natural and a reproducible segmentation solution.

Even more informative diagnostics of segment stability can be obtained by looking at the
bootstrapped Rand indices s;, as shown in Figures 4 and 5. The kernel density estimates can be
seen as smoothed versions of histograms, e.g., see Silverman (1986) for details. Like a histogram,
the density estimate is high in regions with many observations, and low else. The two circle
data is always correctly split into two groups, hence the strong peak at one for the two cluster
solution. When looking for three clusters the peak moves to 0.5 because one segment is always
split randomly into two segments. There is still a lot of density mass above 0.75 which corresponds
to s, where the same circle got split into two segments. In summary: the data cannot be split
into more than two segments in a stable reproducible manner.

Although the ellipse data consists of only one natural segment, the data can be split into up
to four segments in a stable manner. We refer to this as pseudo cluster structure: although no
natural clusters exist in the data, segmenting the data several times repeatedly leads to the same
results. Data containing pseudo cluster structure enables stable segmentation (consumer segments
can be reproduced with different algorithms over multiple repeated computations), which gives
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Figure 6: A four cluster partition is stable on a square, but completely unstable on a circle.

management more confidence in their target segments than if constructed and not reproducible
segments are selected. Managerially it makes a lot of sense to treat consumers located in the top
right hand corner (price-inelastic techno buffs) differently than consumers in the bottom left hand
corner (basic mobile bargain hunters). Management may even consider a third segment in the
middle as a potentially useful target market.

3.2 Reproducible structure versus constructive structure

As another example consider the square and circle data shown in Figure 6. The dotted lines
indicate the partitions derived from simple k-means clustering. It is obvious, that the square data
set leads to the detection of a reproducible structure for four segments, while the solutions for the
circle are completely random, depending on the starting points of the algorithm rather than data
structure. This can also be seen from the density plots of the bootstrapped Rand indices s; for
four segments. High Rand-Index values are repeatedly achieved for the square data, whereas the
compliance of repeated runs of the partitioning algorithm varies between 0.3 and 1, depending on
the partitions compared, thus not indicating any structure in the data that would enable either
natural or reproducible segmentation.

To continue the marketing management interpretation of the artificial example, we would
suggest the following consequences for the two data sets: the square data would be classified as
stable segmentation case with four market segments. In addition to the two segments mentioned
above, this data set would include also highly price-elastic techno buffs and — every manager’s
dream segment — the modest price-inelastic mobile phone users in the top right-hand corner who
seemingly do not mind to pay a lot of money for a basic mobile phone with few features only.
In the case of the circular data set, management has to be informed that natural segments do
not exist and that the data set does not enable the researcher to determine stable segments of
consumers. In this constructive segmentation case a number of solutions have to be computed,
visualized, described and presented to management for comparative evaluation.

Bootstrapping the partition similarity (or any other measure of interest) not only allows for
exploratory analysis of partition stability, but gives iid samples that can be analyzed using infer-
ential statistics. Consider we want to select the most stable number of clusters for the ellipse data.
Sloppily speaking we want to select the sample in Figure 5 which has most density mass towards
the right side (Rand index very often close to 1, high agreement between partitions). If we assume
that stability decreases with an increasing number of clusters (as the density plots strongly suggest
for this example), we want to test whether a shift to the left is significant between neighboring
numbers of clusters.

The simplest method would be to do pairwise t-tests comparing the solutions with two and
three clusters, three and four clusters, four and five clusters, etc. and look for significant changes.



# clusters ‘ Estimate ‘ Std. Error ‘ t-value ‘ p-value

3-2 -0.0040 0.0154 | -0.264 0.999
4-3 -0.0386 0.0154 | -2.501 0.057
5-4 -0.1775 0.0154 | -11.504 | <0.001
6-5 0.0152 0.0154 0.989 0.808
7-6 0.0004 0.0154 0.026 1.000

Table 1: Multiple comparison test for successive differences of bootstrapped Rand index values
for the ellipse data. The significant jump in stability is between four and five clusters.

However, the tests are not independent from each other, such that correction for multiple testing
is not straightforward. A better approach is to do an ANOVA-type analysis controlling the family-
wise error rates of the tests. Table 1 shows sequential t-tests corrected for multiple comparisons
(e.g., Searle, 1971), also known as Tukey’s “honest significant difference” method. The two and
three segment solutions do not differ significantly with respect to stability, while the four segment
solution is slightly less stable. A large gap in stability is detected between the four and five segment
solution (the Rand index of the five segment solution is on average 0.178 smaller, p < 0.001), but
the five, six and seven segment solutions do not differ significantly in stability. Similarly, we can
compare different cluster algorithms on the same data set, see Section 4.1.

4 Case Studies Using Empirical Data

4.1 Guest Survey Data

We use guest survey data collected by the Austria National Tourism Organization in the summer
seasons of 1994 and 1997 as our first empirical example. We choose this data because the sample
size is large (14,571 respondents), which is a pre-requisite for market segmentation based on a high-
dimensional segmentation base. We will investigate which segmentation concept is appropriate if
destination management is interested in targeting behavioral segments. The behavioral informa-
tion available consists of 22 vacation activities. Each respondent was asked to state whether he or
she undertook each one of the activities during the stay or not. We included 12,273 respondents
with complete answer profiles. The average participation rate in those activities ranged between
3% percent (horse riding) and 93% (going for walks). In addition to this segmentation base, a
number of descriptive pieces of information of demographic, socioeconomic, psychographic, attitu-
dinal or behavioral nature were available for each respondent, see, e.g., Dolnicar and Leisch (2000)
for a more detailed description and analysis of the data.

We compare the k-means and neural gas (Martinetz and Schulten, 1994) clustering algorithms,
and a binomial mixture model estimated using the EM algorithm, on the guest survey data. See,
e.g., Brusco (2004), Wedel and Kamakura (1998) and references therein for market segmentation
using binary data. The boxplots of the Calinski-Harabas index — the traditional way of assessing
the optimal number of clusters in a data set — indicate no natural segment structure (not shown).
The kernel density plot, however, clearly identifies that only the two segment solution emerges as
really stable (Figure 7).

Unfortunately, the two segment solution is not managerially useful as it merely splits respon-
dents in people who tend to agree and those who tedn to disagree with survey questions. Managers
require more differentiated profiles of segments than that. We therefore are looking for a more
differentiated grouping which still provides a relatively high level of stability or reproducibility.

For three and four segments two alternative segmentation solutions are recommended. If the
data is split into five or more segments, all resulting solutions are created through data analysis
and can be used in the sense of constructive segmentation only.

The neural gas algorithm generally results in more stable solutions. Pseudo cluster struc-
ture is identified for up to five segments, enabling stable segmentation. The binomial mixture
model is not necessarily identified as we have no repeated measurements per respondent (e.g.,
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Figure 7: Kernel density estimates of 100 bootstrapped adjusted Rand indices for the GSA data
clustered by k-means (top panel), the neural gas algorithm (middle panel) and a binomial mixture
model (bottom panel).
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Algorithms ‘ Estimate ‘ Std. Error ‘ t-value ‘ p-value

kmeans - binmix -0.0431 0.0254 | -1.694 0.209
neuralgas - binmix 0.3070 0.0254 | 12.061 | <0.0001
neuralgas - kmeans 0.3501 0.0254 | 13.755 | <0.0001

Table 2: Multiple comparison test for pairwise comparisons of bootstrapped Rand index values
for the GSA data. The significant jump in stability is between four and five clusters.

Titterington et al., 1985). Stability results are similar to the stability results for the k-means al-
gorithm on this particular data set. Table 2 shows pairwise comparisons of the stability (measured
again by the corrected Rand index) of the three algorithms for a five segment solution. There is
no significant difference between k-means and a binary mixture model (p-value 0.209), but neural
gas clearly outperforms the other two (both p-values < 0.0001).

From this analysis we have to conclude that no natural behavioral market segments exist
among tourists visiting Austria. Based on the results depicted in Table 2 we can, however, take
a reproducible segmentation approach in segmenting this data set, in which case the five segment
solution computed with the neural gas algorithm should be used.

4.2 Cake Conjoint Data

The second real world example is a conjoint data set used as test file in the Glimmix software
package (Wedel and Boer, 2002). The data are from a study conducted for a bakery using the
following four explanatory variables: price (F1 1.5, 2.0, 2.5, 3.0), taste (neutral, raisins, ananas,
mixed), number of pieces per package (4, 6), and label (bakery, luxury). A fractional factorial
design with 16 combinations of the explanatory variables was used, and each combination was
rated by 68 customers on a 9-point scale (1=low, 9=high). The data analyst has the choice of
using a metric or an ordinal version of the price variable.

The Glimmix user manual (Wedel and Boer, 2002, p. 94) recommends the following latent
class mixture regression model for the data: “Thus one may specify a normal distribution, and
an identity link. Running the analysis from one to eight segments may reveal that around seven
segments provides the best description of the data as indicated by the information criteria, but one
may wish to use a lower number of segments.” We will use the proposed benchmarking framework
to answer the following two questions: 1. How many segments should the selected solution contain?
2. Should price be entered into the model as a metric or ordinal variable?

We first fit mixture models with two to nine components by running the EM algorithm ten
times for each number of components and keeping the best solution with respect to model likeli-
hood. If price is entered as a categorical variable, three coefficients are estimated for price alone in
each mixture component, while only one coefficient is needed for a metric variable. The AIC rec-
ommends eight or nine segment solutions, while the BIC recommends six segments when the metric
price variable is used and four if the ordinal price variable is used. The BIC penalizes stronger
than the AIC for additional parameters, hence the preference to more parsimonious models. The
two different recommendation of four and six clusters, however, poses the serious managerial ques-
tion on how many segments to use. More diagnostic information about the structure and stability
of alternative segmentation solutions is required to make a final decision on which segmentation
solution to retain.

To get a better picture of the stability of the model selection criteria with respect to changes
in the data set, we bootstrap the whole procedure B = 100 times, and compare AIC, BIC and
corrected Rand indices as above. The recommendations resulting from the AIC do not change,
and results are therefore not shown here. Boxplots of the bootstrap replica of the BIC are shown
in Figure 8. Taking the variability of the BIC with respect to changes in the data set into account,
the minimum median BIC is obtained for six segments, independent from the question whether
the price is used as a metric or ordinal variable. Using the bootstrap makes a difference when
evaluating the BIC.
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Figure 8: Bootstrap replica of the BIC of latent class regression models for the cakes conjoint data
with two to nine components.

price metric price ordinal
# clusters || Estimate ‘ Std. Error | t-value | p-value || Estimate ‘ Std. Error | t-value | p-value
3-2 0.0310 0.0179 1.735 0.407 0.0058 0.0181 0.321 1.000
4-3 -0.1973 0.0179 | -11.020 | <0.001 -0.1504 0.0181 | -8.299 | <0.001
5-4 -0.0027 0.0179 | -0.152 1.000 -0.0068 0.0181 | -0.376 0.999
6-5 0.0221 0.0179 1.238 0.759 -0.0105 0.0181 | -0.580 0.993
7-6 0.0074 0.0179 0.415 0.999 -0.0052 0.0181 | -0.289 1.000
8-7 -0.0263 0.0179 | -1.471 0.595 -0.0132 0.0181 | -0.729 0.975
9-8 -0.0002 0.0179 | -0.016 1.000 -0.0097 0.0181 | -0.536 0.995

Table 3: Multiple comparison for successive differences of bootstrapped Rand index values for the
cakes data.

To assess if stable segmentation can be undertaken for this data set, we conduct multiple
sequential comparisons of corrected Rand indices for two to nine segments (see Table 3). Significant
drops in stability can be identified between three and four segments, but the differences in all other
comparisons are insignificant. We can conclude that the data set can either be split into two or
three segments with the same high level of stability, or into between four and nine segments at a
significantly lower constant level of stability.

In fact, the partitions of the maximum likelihood models for three to six segments using price
either as metric or ordinal variable are exactly the same, this is not the case for lower or higher
numbers of clusters. Using the bootstrap, we know that both BIC and stability also behave
similarly in both cases. Summing up, question 1 (how many segments to choose) can be answered
independently from the more technical question 2 (which measurement scale to use for the price
variable).

The data analyst benefits from this analysis because she or he can be confident that the scale
of the price variable will not affect the segmentation solution. Furthermore it is clear that some
structure exists in the data. The data analyst has the choice of either preferring a reproducible
segmentation approach (in which case the reproducibility of segment across repeated computations
is the main quality criterion) or opting for constructive segmentation. For reproducible segmen-
tation the three cluster solution is recommended. If, however, constructive clustering is preferred
because three clusters possibly to not deliver small enough market niches, the six cluster solution
is recommended by the model based criteria.
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5 Conclusions and Future Research

In this paper we demonstrate how bootstrap techniques can be used to assess whether clusters in
any given data set represent the natural data structure of the data or whether they are constructed
groupings of entities, based on either pseudo-structure or no structure in the data. The funda-
mental idea is to conduct large numbers of repeated computations with any chosen segmentation
algorithm and to assess the similarity of the resulting cluster solutions. If the resulting clusters
are the same across repeated computations using many bootstrap samples it can be assumed that
natural clusters exist in the data. If, however, repeated computations do not lead to reproducible
cluster results, clusters can be assumed to be constructed.

All computations in this paper have been done using the open source statistical computing
environment R (R Development Core Team, 2008) using extension packages flexmix (Leisch, 2004)
and flexclust (Leisch, 2006). Function bootFlexclust() automates the bootstrapping and can
be used to easily create plots like the ones shown throughhout the manuscript. Runtimes for the
experiments shown above are between 5 and 60 minutes on a current laptop (Intel 2.2 GHz CPU)
running Debian Linux, making them feasible for everyday usage. Using the bootstrap approach
enables the data analyst to assess segmentation solutions without the risk of over-interpreting
a single random computation which is affected both by the sample at hand and the random
determinants of the algorithm (such as randomly picked starting points).

We recommend the following set of steps:

e Draw bootstrap samples of the sample of respondents including as many cases as there
were respondents in the original survey (200 bootstrap samples worked well in the examples
reported in this paper).

e Compute the Rand index or other cluster indices across all replications.

e Inspect box plots or kernel density estimates to assess the reproducability of clustering solu-
tions. For the Rand index, many replications close to 1 indicates the existence of reproducible
clusters, while many replications close to 0 indicate no structure in the data, consequently
requiring the construction of clusters.

e If the inspection of plots does not provide sufficient clarification, conduct standard signifi-
cance tests.

e Describe resulting segments and report on the nature of the segments (natural, reproducible
or constructive)

The proposed procedure provides guidance to users of cluster analytic and related techniques
with respect to the choice of the clustering algorithm and the number of clusters. If natural clusters
exist in the data, the choice of the clustering algorithm is less critical and a reliable recommendation
regarding the true number of clusters emerges from the bootstrapping procedure. If clusters are
constructed, the choice of the clustering algorithms is critical, because each algorithm will impose
structure on the data in a different way and, in so doing, affect the resulting cluster solution.
Also, the optimal number of clusters cannot easily be determined. In such a situation nothing can
safeguard a manager from interpreting an arbitrary segmentation solution because every partition
of the unstructured data set will be different and therefore arbitrary if selected. In such a situation
the best protection from overinterpreting results is the awareness that one is working with one of
many possible splits of the data. It is important for managers to understand that this is probably
still preferable to treating the entire market as a homogeneous mass of consumers.

In many cases data structure (other than density clusters) can cause some number of clusters
to produce more reproducible results than others. Such comparative reproducibility information
can validly be used to guide the data analysts choice of the number of segments. This safeguards
managers from interpreting arbitrary segmentation solutions.
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