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Abstract

Ordinal categorial variables are a common case in regression modeling. Al-
though the case of ordinal response variables has been well investigated, less work
has been done concerning ordinal predictors. This article deals with the selection
of ordinally scaled independent variables in the classical linear model, where the
ordinal structure is taken into account by use of a difference penalty on adjacent
dummy coefficients. It is shown how the Group Lasso can be used for the se-
lection of ordinal predictors, and an alternative blockwise Boosting procedure is
proposed. Emphasis is placed on the application of the presented methods to the
(Comprehensive) ICF Core Set for chronic widespread pain.

Keywords: Boosting, ICF Core Sets, Lasso, Ordinal Predictors, Ridge, Vari-
able Selection

1 Introduction
Categorial variables which have more than two categories are often measured on
ordinal scale level, so that the events described by the category numbers or class
labels, lets say 0, . . . , K, can be considered as ordered but not as equally-spaced.
The case of ordinal response variables has been well investigated. Starting with
McCullagh’s (1980) seminal paper various modeling approaches have been sug-
gested, see for example Armstrong and Sloan (1989), Peterson and Harrell (1990),
Cox (1995) for frequentist approaches, or Albert and Chib (2001) for a Bayesian
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modeling approach. A more recent overview on ordered categorical response
models has been given by Liu and Agresti (2005).

Less work has been done concerning ordinal predictors, although ordinal in-
dependent variables are often found in regression modeling. In this article a
subset of the ICF - the International Classification of Functioning, Disability and
Health (WHO, 2001) is considered as a set of potential regressors in a standard
regression model. The ICF consists of about 1400 ordinally scaled factors, also
called categories, which should not be confused with the categories of a categorial
variable. In WHO-terminology category denotes the whole factor. For example,
category "walking" from the component "activities and participation" has levels
0 (no difficulty), 1 (mild difficulty), . . . , 4 (complete difficulty), and environ-
mental factor "social norms, practices and ideologies" is coded by −4 (complete
barrier), . . . , 0 (no barrier/facilitator), . . . , +4 (complete facilitator).

If ordinal variables serve as predictors in regression models it is often seen
that factor labels are directly treated as metric covariates, or scores are assigned.
Alternatively, simple dummy coding is used as for unordered factors, possibly
with monotonicity constraints. The latter is also known under the name isotonic
regression, see Barlow (1978) for an overview, or Bacchetti (1989) for generaliza-
tions to non-normal outcomes. We will focus on the selection of ordinal predictors
while incorporating the ordinal scale level via a difference penalty approach.

For the representation of ordinal predictors xj we use the well known dummy
coding. That means, with Kj + 1 denoting the number of factor levels of xj, for
each xj we have dummy variables xj0, . . . , xjKj

; i.e.

xjk =

{
1 xj = k,
0 otherwise.

Given a normal response y, we assume the classical linear model

y = α +

p∑
j=1

Kj∑

k=0

βjkxjk + ε,

with ε ∼ N(0, σ2). For means of identifiability, we specify reference category
k = 0, so that βj0 = 0 for all j.

In matrix notation, y = (y1, . . . , yn)T denotes the vector of response val-
ues, X = (1|X1| . . . |Xp) is the design matrix with Xj containing observed (non-
redundant) dummies xj1, . . . , xjKj

. With β = (α, βT
1 , . . . , βT

p )T and βj = (βj1, . . .
. . . , βjKj

)T , as usual, the model is

y = Xβ + ε.

Variable selection now refers to the selection of whole groups of dummy variables
xj1, . . . , xjKj

, or to groupwise exclusion. The latter means that coefficient sub-
vectors βj are set to zero. Such groupwise selection/exclusion is for example

2



performed by the so-called Group Lasso (Yuan and Lin, 2006) and blockwise
Boosting (Luan and Li, 2008; Tutz and Gertheiss, 2009), which however do not
take the ordinal scale level into account. Therefore we present new versions
of Group Lasso and blockwise Boosting which are especially suited for ordinal
predictors. The paper is organized as follows: In Section 2 and 3 the modified
Group Lasso and blockwise Boosting approaches are introduced. Then it is shown
what can be done when the focus is on the identification of relevant differences
between two adjacent dummy coefficients. In Section 5 the different methods are
applied to the (Comprehensive) ICF Core Set for chronic widespread pain. For
all computations we used the statistical program R (R Development Core Team,
2009).

2 The Group Lasso
The Group Lasso (Yuan and Lin, 2006) is a modification of the original Lasso
(Tibshirani, 1996) which is designed for the selection of grouped variables, as
dummy coded factors. One uses a Lasso penalty at the factor level, and a Ridge
type penalty within groups of (dummy) coefficients, i.e. the estimated coefficient
vector is

β̂∗ = argminβ{Qp(β)}, (1)

for the penalized least squares criterion

Qp(β) = (y −Xβ)T (y −Xβ) + λJ(β), (2)

with penalty

J(β) =

p∑
j=1

√
βT

j Ωjβj. (3)

Via the L1-penalty imposed by the square root, the Group Lasso encourages
sparsity at the factor level; see Yuan and Lin (2006) for details. Typically, the
identity matrix is used for the penalty matrices Ωj, possibly multiplied by a factor
(Yuan and Lin, 2006; Similä and Tikka, 2007; Xie et al., 2008; Wang and Leng,
2008; Meier et al., 2008).

2.1 Specifications for Ordinal Predictors

The identity matrix, which has been used for the Group Lasso so far, is ap-
plicable to categorial predictors in general. Ordinal covariates, however, provide
more information than nominal ones, since the labels’ ordering is meaningful.
In Gertheiss and Tutz (2009a) a difference penalty for ordinal predictors is pro-
posed. Since categories of covariates are ordered, the response is assumed to
change slowly between two adjacent categories of predictor xj (if all other pre-
dictors are held constant). In other words, we try to avoid high jumps and prefer
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smoother coefficient sub-vectors βj. So differences between coefficients of ad-
jacent levels are penalized. The corresponding penalty is J(β) =

∑p
j=1 Jj(βj),

with

Jj(βj) ∝

√√√√
Kj∑

k=1

(βjk − βj,k−1)2,

and βj0 = 0 for all j. That means for Ωj in (3) we choose

Ωj = Kj(U
T
j Uj), (4)

with Kj ×Kj matrix

Uj =




1 0 · · · 0
−1 1 · · · 0

0
. . . . . . 0

0 · · · −1 1


 . (5)

The factor Kj ensures that the penalty is of the same order as the number of
(free) parameters of βj. The analogue scaling was also used in Yuan and Lin
(2006) and Meier et al. (2008).

2.2 Computation of Estimates

For the computation of Group Lasso estimates there is the R add-on package
grplasso (Meier et al., 2008) available, which however only allows for (scaled)
identity matrices as penalty. For the incorporation of within-group difference
penalties, some data transformations are necessary. We use the transformed
criterion

Qp(β) = (y −Xβ)T (y −Xβ) + λJ(β) = (y − X̃β̃)T (y − X̃β̃) + λJ̃(β̃) = Q̃p(β̃),

with X̃ = (1|X̃1| . . . |X̃p), β̃ = (α, β̃T
1 , . . . , β̃T

p )T , and

X̃j = XjU
−1
j , β̃j = Ujβj,

J̃(β̃) =

p∑
j=1

√
β̃T

j Ijβ̃j, Ij = KjI.

Sub-matrix Xj contains dummies corresponding to factor xj; transformation ma-
trix Uj is taken from (5). Simple matrix multiplication shows that the inverse is
given by

U−1
j =




1 0 · · · 0

1 1
. . . ...

... . . . 0
1 · · · · · · 1


 .
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By multiplying Xj and U−1
j split-coding (Walter et al., 1987) of predictor xj is

obtained. Split-coding means that dummies x̃jk are defined by splits at categories
k = 1, . . . , Kj, i.e.

x̃jk =

{
1 if xj ≥ k,
0 otherwise.

Now the model is parameterized by coefficients β̃jk = βjk − βj,k−1, k = 1, . . . , Kj.
Thus transitions between category k and k − 1 of predictor xj are expressed by
coefficient β̃jk. Original dummy coefficients are obtained by back-transformation
βjk =

∑k
s=1 β̃js, resp. βj = U−1

j β̃j. Note that for correct computation of smoothed
estimates, in the R grplasso function argument standardize = F must be cho-
sen.

3 Blockwise Boosting
L1-penalization as used so far is not the only possibility to obtain variable selec-
tion. In order to check reliability and performance of the proposed Group Lasso
modification, and for having alternatives available, we develop an alternative se-
lection procedure which is able to specifically select ordinally scaled explanatory
variables, too. As before, the ordinal scale level is taken into account via the pre-
sented difference penalty. For variable selection, however, Boosting techniques
are applied.

3.1 Basic Concept

The Boosting concept has been developed in the machine-learning community
with a focus on classification problems (Schapire, 1990; or Freund and Schapire,
1996). More recently, based on work by Breiman (1998) or Breiman (1999), it
has been extended to regression problems in articles by Friedman et al. (2000),
Bühlmann and Yu (2003), Bühlmann (2006). In the following, consideration is
restricted to a version of so-called L2-Boosting which is essentially repeated least
squares fitting of residuals. In common componentwise L2-Boosting in every it-
eration just one regression coefficient is updated. Therefore, in addition to the
fitting of the coefficient, a selection step is included which selects the predictor
that produces minimum quadratic loss based on the current residuals. Since all
coefficients start with value zero, predictors that are never selected are implicitly
excluded from the model. See for example Bühlmann (2006) for details.

Luan and Li (2008) and Tutz and Gertheiss (2009) proposed to simultane-
ously update whole groups - or blocks - of coefficients, instead of single ones.
Therefore the procedure is called blockwise Boosting in the following. In the
paper by Luan and Li (2008) groups are defined by genes which are linked for
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biological reasons, whereas in Tutz and Gertheiss (2009) blocks of adjacent mea-
surement points in signal regression are considered. In the regression problems
considered in this article groups are naturally defined by groups of dummy co-
efficients belonging to the same categorial predictor. To incorporate the ordinal
structure, in every Boosting iteration actual residuals are regressed on each of
the corresponding groups in a penalized way, while employing penalty matrices
Ωj from (4). But only the block producing minimum loss is updated. In sum-
mary, for fixed tuning parameter λ, the proposed boosting algorithm is as follows.

BlockBoost

Step 1 (Initialization)

For j = 1, . . . , p fit a linear model to data (y,Xj) by using generalized Ridge
regression. From the resulting estimates b̂j = (XT

j Xj + λΩj)
−1XT

j y, select the
best by minimizing the residual sum of squares, i.e. ĵ0 = arg min1≤j≤p ‖y−Xj b̂j‖2.

Let β̂(0) = (β̂
(0)
1 , . . . , β̂

(0)
p )T be defined by components:

β̂
(0)
j =

{
b̂j j = ĵ0

0 otherwise

Step 2 (Residual Fit)

For r = 1, 2, . . . , M compute residuals ui = yi − xT
i β̂(r−1), i = 1, . . . , n and fit for

j = 1, . . . , p a linear model to data (u,Xj) where uT = (u1, . . . , un). From the
resulting Ridge type estimates b̂j = (XT

j Xj + λΩj)
−1XT

j u, choose ĵr such that
the residual sum of squares is minimized, i.e.

ĵr = arg min
1≤j≤p

‖u−Xj b̂j‖2.

Let β̂(r) be defined by components:

β̂
(r)
j =

{
β̂

(r−1)
j + b̂j j = ĵr

β̂
(r−1)
j otherwise

If every predictor is just binary we have Kj = 1 for all j, and common
componentwise Boosting is obtained. A common approach for selecting penalty
parameter λ and the number of Boosting iterations M is K-fold cross validation.
Alternatively, Boosting iterations may be stopped via a corrected version of the
AIC (Hurvich et al., 1998) as proposed by Bühlmann (2006). This criterion is
based on the boosting hat matrix, which maps the response vector y into the
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space of fitted values. With convention "
∏0

m=1(·) = I", in the rth iteration the
boosting hat matrix Br is defined by (see Bühlmann and Yu, 2003)

Br =
r∑

l=0

Hĵl

l∏
m=1

(I −Hĵl−m
),

with Ridge type hat matrix Hj = Xj(X
T
j Xj + λΩj)

−1XT
j and jl denoting the

variable block / factor that has been selected in the lth boosting iteration. It is
simple to show that

Br = I −
r∏

m=0

(I −Hĵr−m
) = I − (I −Hĵr

)(I −Hĵr−1
) · · · (I −Hĵ0

).

The (corrected) AIC in the rth iteration is defined by (Hurvich et al., 1998)

AICc(r) = log

(
1

n

n∑
i=1

(yi − (Bry)i)
2

)
+

1 + trace(Br)/n

1− (trace(Br) + 2)/n
.

Given an upper bound R∗ for the candidate number of boosting iterations, the
optimum iteration number M can be estimated by (Bühlmann, 2006) M̂ =
argmin0≤r≤R∗AICc(r). For selecting penalty parameter λ the AIC can be min-
imized, too. Of course, also the simple least squares based selection criterion
applied within the Boosting algorithm may be replaced by the AIC or a cross
validation criterion.

3.2 Relations to Isotonic Regression

Sometimes a monotonic relationship between one or more explanatory variables
and the response can be assumed, for example in dose-response-analysis. One
advantage of (blockwise) Boosting over the Group Lasso is that monotonicity
constraints can be easily incorporated. Leitenstorfer and Tutz (2007), for exam-
ple, dealt with monotonicity in generalized additive models based on B-splines
and estimation by Boosting techniques.

Without loss of generality we assume that a nondecreasing relationship be-
tween (ordinal) predictor xj and response y can be supposed. To ensure that
corresponding restrictions on the dummy coefficients are satisfied, in every Boost-
ing iteration optimization needs to be carried out with restrictions. In the first
iteration (Step 1 in the algorithm on page 6) we have

b̂j = arg min
b∈Bj

{
(y −Xjb)

T (y −Xjb) + λbT Ωjb
}

,

with
Bj = {b : b1 ≤ . . . ≤ bKj

}.
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In the following iterations (Step 2 on page 6) the restrictions become

Bj =
{

b : b2 − b1 ≥ β̂
(r−1)
j1 − β̂

(r−1)
j2 , . . . , bKj

− bKj−1 ≥ β̂
(r−1)
j,Kj−1 − β̂

(r−1)
jKj

}
.

For practical optimization quadratic programming methods can be used. In R,
for example, there are the add-on packages quadprog (Turlach, 2007) or kernlab
(Karatzoglou et al., 2004) available.

4 Clustering Categories
If many differences of adjacent dummy coefficients βjk and βj,k−1 are assumed to
be zero, coefficient (sub-)vectors βj should not be modeled as a smooth function
as done so far, but as a step function. The effect is that some (adjacent) cat-
egories are clustered, since the predictor’s influence on the response is modeled
as piecewise constant over categories. Such clustering - or fusion - of class levels
can be easily obtained by changing the penalty in (2), as described in detail in
Gertheiss and Tutz (2009b). One employs

Qp(β) = (y −Xβ)T (y −Xβ) + λJ(β),

with penalty

J(β) =

p∑
j=1

Kj∑

k=1

|βjk − βj,k−1|.

The used penalty is a version of so-called Variable Fusion (Land and Friedman,
1997) for ordinal predictors. Given ordered metric predictors, the same type of
penalty has also been used for the Fused Lasso (Tibshirani et al., 2005). In the
latter case, beside the given difference penalty, an additional L1-penalty is put
on the regression coefficients to ensure variable selection. Since in the situation
considered here βj0 = 0 for all j by definition, selection on the factor level is
implicitly included with a penalty as given above. If for a certain predictor xj

estimated coefficients β̂jk = β̂j,k−1 for all k = 1, . . . , Kj, then xj is excluded
from the model. In general, due to Lasso (Tibshirani, 1996) typical selection
characteristics, only for some j and k, β̂jk 6= β̂j,k−1 will hold. That means, not
the whole ordinal predictor xj is selected, but only relevant transitions between
adjacent categories. Practical estimation can be done via split-coding of the
ordinal predictors (see Section 2), and applying standard Lasso methodology, for
example the famous lars-algorithm (Efron et al., 2004), also available as a R
add-on package.

It is clear that after split-coding not only the Lasso but every estimation
procedure with implicit variable selection may be applied in order to select jumps
between levels of xj; for example L2-Boosting with componentwise least squares
(Bühlmann, 2006). Walter et al. (1987) intended the use of classical tests for
such identification of substantial "between-strata differences".
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5 Application to ICF Core Sets for Chronic Wide-
spread Pain

ICF Core Sets constitute an approach to make the International Classification
of Functioning, Disability and Health (ICF) (WHO, 2001) applicable in clinical
practice. The ICF was officially endorsed by the Fifty-fourth World Health As-
sembly in 2001. Its overall aim is to provide a unified and standard language and
framework for the description of functioning and disability (WHO, 2001). The
ICF consists of about 1400 so-called ICF categories, each of which refers to a
health or a health-related domain. ICF categories can be used by health profes-
sionals, i.e. physicians, nurses, physiotherapists, occupational therapists, etc., to
document the health and functioning of patients by using an ordinal scale, rang-
ing from no problem/limitation to complete problem/limitation. However, since
the ICF is a very comprehensive classification, its application in clinical practice
is a major challenge. Therefore, ICF Core Sets, which represent a selection of
ICF categories relevant to persons with specific health conditions or treated in
specific settings, are being developed.

ICF Core Sets are defined within the scope of international consensus confer-
ences, in which evidence from preliminary studies is presented and serves as basis
for a decision-making and consensus process. The preliminary studies include an
expert survey, a systematic review, an empirical and a qualitative study (Cieza,
Ewert et al., 2004). For each health condition two different Core Sets are devel-
oped: A Comprehensive and a Brief ICF Core Set. The Comprehensive ICF Core
Set is intended to serve as standard for multi-professional assessment, while the
Brief ICF Core Set is intended to serve as minimal standard for the assessment
and reporting of functioning and health for clinical studies (Stucki and Grimby,
2004). One of the health conditions for which ICF Core Sets have been devel-
oped is chronic widespread pain (CWP). Though there is no universally accepted
definition of CWP, it may be characterized by pain involving several regions of
the body, which causes problems in functioning, psychological distress, poor sleep
quality, or difficulties in daily life (Cieza, Stucki et al., 2004).

The Comprehensive ICF Core Set for CWP consists of 67 and the Brief ICF
Core Set for CWP of 26 ICF categories; see Cieza, Stucki et al. (2004) for details.
These first versions of ICF Core Sets are undergoing extensive validation from
different perspectives and in different settings. Within these validation studies a
multicenter, international study has been performed in which health professionals
rated the level of impairment/limitation of persons with CWP in each of the ICF
categories contained in the Comprehensive ICF Core Set.

In the following we deal with the Comprehensive ICF Core Set for CWP and
the data collected in the multicenter, international study, including the data of
the well established SF-36 questionnaire (Ware and Sherbourne, 1992), which
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Figure 1: Paths of Group Lasso estimates of dummy coefficients as functions of penalty para-
meter λ; considered are environmental factor "social norms, practices and ideologies" (left) as
well as ICF category "walking" (right).

is answered by the patients. Based on the SF-36 a physical health component
summary (PCS) can be computed (McHorney et al., 1993); the higher this score
the better the patient’s subjective physical health condition.

The objective is to identify those ICF categories that contribute to the expla-
nation of PCS. Therefore, the PCS is regressed on the Comprehensive ICF Core
Set for CWP. That means we are faced with a regression problem with ordinal
predictors. Moreover, it is tried to identify a set of relevant ICF categories, i.e.
variable selection is intended. Ordinary least squares estimation (without vari-
able selection) is quite unstable since "only" n = 420 observations are given for
more than 300 dummy coefficients. A detailed summary of all categories from
the Comprehensive ICF Core Set is given in the Appendix, Table 1, 2 and 3.

In the considered application it can be assumed that the predictors’ influence
on the response varies continuously over categories, and that there are not just
a few distinct jumps. Hence, the smooth modeling using the Group Lasso or
blockwise Boosting (Sections 2 and 3) is preferred over the ordinal Fused Lasso
outlined in Section 4.

After some preprocessing of the data, which primarily means imputation of
some missing values using R add-on package Amelia (Honaker et al., 2009), the
Group Lasso and blockwise Boosting are applied as described before. Estimation
is done without any monotonicity constraints, and selection within the Boosting
algorithm is based on the AIC. Figure 1 shows some paths of Group Lasso es-
timates of dummy coefficients. It shows the factors "walking" (right panel) and
"social norms, practices and ideologies" (left panel). With increasing penalty λ
coefficients are shrunken more and more towards zero, until at a certain point the
whole group of coefficients is simultaneously set to zero, which means that the
corresponding factor is excluded from the model. In the case of "walking" this
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Figure 2: Group Lasso estimates of dummy coefficients as functions of class labels for different
choices of λ; considered are environmental factor "social norms, practices and ideologies" (λ ∈
{40, 50, . . .}, left) as well as ICF category "walking" (λ ∈ {100, 300, . . .}, right).

happens much later than for "social norms,. . ."; i.e. even for very high penalty
parameter λ, factor "walking" is still selected, whereas "social norms,. . ." is ex-
cluded from the model. Figure 2 offers another perspective: dummy coefficients
as functions of class labels, for some distinct λ values. In addition to shrinkage
and selection also smoothing behavior is clearly seen. The plot of factor "social
norms, practices and ideologies" (Figure 2, left) makes clear that monotonicity
constraints may be counterproductive in the considered application. Although
ICF category "walking" has four free dummy coefficients, in the right panel of
Figure 1 only three paths are plotted. The reason is that class 4 is not observed in
the data. Nevertheless, a corresponding coefficient is fitted (see Figure 2, right),
but due to the difference penalty, coefficients of class 3 and 4 are set equal, with
the effect that corresponding paths cannot be distinguished.

The feature that coefficients are fitted even if corresponding levels are not
observed in the data has some advantages, in particular if (K-fold) cross validation
is carried out. If some classes are rarely observed (in the extreme case they are
observed only once) it may happen that all these observations are found in the
same fold. The penalty, however, ensures that a coefficient is always fitted, and
test set prediction remains possible. Moreover, if the fitted model is to be used
for prediction on future data, it may occur that classes which are not observed
in the training data, may be observed in future data sets.

For selection of the adequate penalty for the Group Lasso and the adequate
smoothing and number of iterations of the BlockBoost we employed 5-fold cross
validation. Corresponding scores are shown in Figure 3. In both cases the optimal
penalty is λ = 80. For the BlockBoost, minimization must be done over a two-
dimensional grid of λ and M values. It turns out that M = 29 Boosting iterations
seem enough. The behavior of the cross validation score for the Group Lasso
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Figure 3: 5-fold cross validation scores for Group Lasso (left) and blockwise Boosting (right)
as functions of penalty parameter λ and number of Boosting iterations (if applicable).

(Figure 3, left) indicates that penalization distinctly improves the ordinary least
squares fit which is obtained for λ = 0.

In Figure 4 some fitted coefficients are shown for ICF categories which were
selected by both blockwise Boosting and the Group Lasso. Qualitatively, results
are similar. Also fitted constants are almost equal. In case of the Group Lasso
α̂ = 36.16 is obtained, and α̂ = 36.65 for blockwise Boosting. With respect
to fitted regression coefficients, predictor d450 ("walking") seems to have the
largest effect on the response; d450 is also the covariate which was selected first.
In the case of blockwise Boosting that means it was selected in the first iteration,
and with highest penalty λ if the Group Lasso is applied. This finding is not
surprising, since in the SF-36 questionnaire (where the response is based on) three
items are related to "walking". The shape of the coefficient curve is monotone
descreasing, which means that a patient feels better if he/she has less difficulties
(with walking). An interesting ICF category is e450: If "individual attitudes of
health professionals" are seen as a barrier (negative class labels) this has almost
no effect on the patient’s well-being, if they are seen as a facilitator (positive class
labels), however, there is a clear positive relationship. But it should be kept in
mind that the questions from the ICF are answered by the doctor, i.e. a health
professional. In Table 1, 2 and 3 in the Appendix it is reported in detail which
ICF categories are selected by the used methods for the chosen tuning parameters
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Figure 4: Coefficients of some predictors selected by the Group Lasso (black) and blockwise
Boosting (red); for a description of all potential predictors see Table 1, 2 and 3.

λ = 80 and M = 29. The Group Lasso selects much more predictors (30) than
blockwise Boosting (18). However, all ICF categories which are selected by the
BlockBoost are among those chosen by the Group Lasso. That means the overlap
(18) is highly significant. The p-value which results from the hypergeometric
distribution is about 10−8.

6 Summary and Discussion
We considered selection of ordinally scaled explanatory variables in the classical
linear model. Factors were dummy coded and the ordinal structure was taken
into account via a difference penalty on adjacent dummy coefficients. For se-
lection purposes two different approaches were presented: a modification of the
Group Lasso where L1-penalization on the factor level is employed, and a block-
wise Boosting procedure. In the latter case a whole block of dummy coefficients
is selected and updated in each Boosting iteration - as a generalization of com-
ponentwise Boosting, which just selects single coefficients.
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The proposed methods were applied to the Comprehensive ICF Core Set for
chronic widespread pain, and showed a significant overlap with respect to factor
selection, while blockwise Boosting resulted in a much sparser model. Fitted
coefficient curves seemed quite similar, at least if factors were selected by both
methods. An advantage of the Group Lasso over blockwise Boosting is that in
the first case only one tuning parameter is needed, whereas blockwise Boosting
requires specification of two parameters - the extent of smoothing within each
iteration, and the total number of iterations. But also the Group Lasso can be
used with two parameters. If the method is generalized to a Group-Lasso-Ridge
Hybrid (Meier et al., 2008) the (first) tuning parameter λ is just used for variable
selection. In a second step, the selected model is refitted using another parame-
ter κ. When analyzing the Comprehensive ICF Core Set for CWP, however, this
modification improved the fit just slightly.

Beside smooth modeling of predictor-specific coefficient vectors via quadratic
penalization, it was also outlined how (ordered) class levels can be clustered using
L1-penalization. A similar technique for fusion of nominal categories is presented
in Bondell and Reich (2009) and Gertheiss and Tutz (2009b).

Since there are only a few approaches available which are especially designed
for both ordinal predictors and variable selection (but many applications of that
type) the proposed methods have high potential for the future. For example,
there are ICF Core Sets under development for many kinds of diseases, not just
CWP. A possible alternative to the presented approaches within the (generalized)
linear model is isotonic regression, where a monotone relationship is assumed
between predictors and (transformed mean of the) response. As shown, however,
the blockwise Boosting approach can be easily modified, such that certain linear
restrictions are satisfied. Generalizations to non-normal outcomes are possible via
e.g. likelihood-based Boosting; see for example Tutz and Binder (2006) or Tutz
and Leitenstorfer (2007). Also the Group Lasso can be generalized, as shown by
Meier et al. (2008).

Within nonparametric methods, regression trees (see e.g. Hastie et al., 2001;
Hothorn et al., 2006) are able to exploit the additional information which is
provided by the categories’ ordinal structure. Since trees suffer from instability,
however, Random Forests (Breiman, 2001) are often used instead. Though some
measures of variable importance are provided, Forests are like "black boxes".
Hence, results are hard to interpret, and common (linear) regression models are
preferred by many analysts.
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Appendix: Composition of the Comprehensive ICF
Core Set for CWP
In the following a short summary of the Comprehensive ICF Core Set for chronic
widespread pain is given, see Cieza, Stucki et al. (2004) for details. For a more de-
tailed description of the ICF categories in general, such as information concerning
inclusion and exclusion criteria for the single categories, see WHO (2001).

ICF code ICF category title Selected by
GL BB

b122 Global psychosocial functions
b126 Temperament and personality functions
b130 Energy and drive functions
b134 Sleep functions
b140 Attention functions X X
b147 Psychomotor functions
b152 Emotional functions X
b1602 Content of thought
b164 Higher-level cognitive functions
b180 Experience of self and time functions
b260 Proprioceptive function
b265 Touch function
b270 Sensory functions related to temperature

and other stimuli
b280 Sensation of pain X X
b430 Haematological system functions
b455 Exercise tolerance functions X X
b640 Sexual functions
b710 Mobility of joint functions X
b730 Muscle power functions X
b735 Muscle tone functions X
b740 Muscle endurance functions X X
b760 Control of voluntary movement functions
b780 Sensations related to muscles

and movement functions X X
s770 Additional musculoskeletal structures

related to movement

Table 1: ICF categories of the components "body functions" and "body structures" included
in the Comprehensive ICF Core Set for CWP (cf. Cieza, Stucki et al., 2004), and selection
results of Group Lasso (GL) and BlockBoost (BB); possible levels are 0 (no impairment), 1
(mild impairment), . . . , 4 (complete impairment), see WHO (2001).
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ICF code ICF category title Selected by
GL BB

d160 Focusing attention X
d175 Solving problems
d220 Undertaking multiple tasks
d230 Carrying out daily routine
d240 Handling stress and other psychological demands
d410 Changing basic body position X X
d415 Maintaining a body position
d430 Lifting and carrying objects X
d450 Walking X X
d455 Moving around X X
d470 Using transportation
d475 Driving
d510 Washing oneself
d540 Dressing X
d570 Looking after one’s health
d620 Acquisition of goods and services
d640 Doing housework X X
d650 Caring for household objects X
d660 Assisting others X
d720 Complex interpersonal interactions X X
d760 Family relationships
d770 Intimate relationships
d845 Acquiring, keeping and terminating a job X X
d850 Remunerative employment X
d855 Non-remunerative employment X X
d910 Community life X X
d920 Recreation and leisure

Table 2: ICF categories of the component "activities and participation" included in the Com-
prehensive ICF Core Set for CWP (cf. Cieza, Stucki et al., 2004), and selection results of Group
Lasso (GL) and BlockBoost (BB); possible levels are 0 (no difficulty), 1 (mild difficulty), . . . ,
4 (complete difficulty), see WHO (2001).
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ICF code ICF category title Selected by
GL BB

e1101 Drugs X X
e310 Immediate family
e325 Acquaintances, peers, colleagues, neighbours

and community members
e355 Health professionals X
e410 Individual attitudes of immediate family members
e420 Individual attitudes of friends X
e425 Individual attitudes of acquaintances, peers, colleagues,

neighbours and community members
e430 Individual attitudes of people in positions of authority
e450 Individual attitudes of health professionals X X
e455 Individual attitudes of health-related professionals
e460 Societal attitudes
e465 Social norms, practices and ideologies
e570 Social security services, systems and policies X X
e575 General social support services, systems and policies X X
e580 Health services, systems and policies X X
e590 Labour and employment services, systems and policies

Table 3: ICF categories of the component "environmental facors" included in the Compre-
hensive ICF Core Set for CWP (cf. Cieza, Stucki et al., 2004), and selection results of Group
Lasso (GL) and BlockBoost (BB); possible levels are −4 (complete barrier), . . . , 0 (no bar-
rier/facilitator), . . . , +4 (complete facilitator), see WHO (2001).
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