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Abstract

Centroid-based partitioning cluster analysis is a
popular method for segmenting data into more
homogeneous subgroups. Visualization can help
tremendously to understand the positions of
these subgroups relative to each other in higher
dimensional spaces and to assess the quality of
partitions. In this paper we present several im-
provements on existing cluster displays using
neighborhood graphs with edge weights based
on cluster separation and convex hulls of inner
and outer cluster regions. A new display called
shadow-stars can be used to diagnose pairwise
cluster separation with respect to the distribu-
tion of the original data. Artificial data and two
case studies with real data are used to demon-
strate the techniques.

Key Words: cluster analysis, partition, cen-
troid, convex hull, R.

1 Introduction

The goal of cluster analysis is to either find ho-
mogeneous subgroups of the data, which in the
best of all cases in turn are as different as pos-
sible from each other; or to impose an artificial
grouping on the data. In any case we want to in-
crease our understanding of the data by a divide
& conquer approach which partitions a poten-
tially complex and large data set into segments
(i.e., clusters) that are easier to understand or
handle.

Data visualization can help a lot to under-
stand multivariate data structures, hence it is no
surprise that cluster analysis and data visualiza-
tion often go hand in hand. Standard textbooks
on cluster analysis like Gordon (1999) or Everitt
et al. (2001) are full of figures, see also Leisch
(2008) for a recent survey on cluster visualiza-
tion. Results from partitioning cluster analysis
can be visualized by projecting the data into
2-dimensional space (e.g., CLUSPLOT, Pison
et al., 1999). Cluster membership in the pro-
jection is usually represented by different colors
and glyphs, or by dividing clusters onto several
panels of a Trellis display (Becker et al., 1996).
In addition, silhouette plots (Rousseeuw, 1987)
are a popular tool for diagnosing the quality
of a partition. Parts of the popularity of self-
organizing feature maps (Kohonen, 1989) with
practitioners in various fields can be explained
by the fact that the results can be “easily” visu-
alized.

In this paper we introduce several improve-
ments and modifications of existing cluster vi-
sualization techniques, and propose a new diag-
nostic display we call shadow-stars. The exact
choice of distance measure or partitioning clus-
ter algorithm is not important. The only condi-
tion is that it is centroid-based, i.e., clusters are
represented by prototypes and data points are
assigned to the cluster corresponding to the clos-
est prototype. Many popular clustering algo-
rithms like k-means (MacQueen, 1967; Hartigan
and Wong, 1979), partitioning around medoids
(PAM, Kaufman and Rousseeuw, 1990) or neu-
ral gas (Martinetz and Schulten, 1994) fall into



this category.

All methods introduced in this paper have
been implemented in the statistical computing
environment R (R Development Core Team,
2008) and will be released as part of the R ex-
tension package flexclust (Leisch, 2006) on
the Comprehensive R Archive Network (CRAN,
http://cran.R-project.org) under the terms
of the GPL.

The rest of this paper is organized as follows:
Section 2 give a reminder of centroid-based clus-
ter analysis, neighborhood graphs and shadow
values, which form the basis for the following
sections. Sections 3— 6 introduce several new
ways to visualize and diagnose cluster solutions.
Stripes plots directly show the distance of data
points to cluster centroids, while shadow plots
relate the distance to the closest and second-
closest centroid. Shadow stars can be used to
assess which cluster’s are close to each other.
Convex cluster hulls allow to shade cluster re-
gions for non-elliptical cluster shapes. These
new graphical technices are demonstrated on
data from automobile marketing in Section 7
and data from German parliamentary elections
in Section 8.

2 Neighborhood Graphs
and Shadow Values

Assume we are given a data set Xy =
{X1,...,Xn}, X, € RP and a set of centroids
Ckg = {c1,...,¢k}, ¢t € RP which is the re-
sult of a centroid-based cluster analysis like K-
means. Let d(x,y) denote a distance measure
on R? (x and y € R?), let

c(x) = argmin d(x, c)
ceCk

denote the centroid closest to x, and
A ={xn € Xn|c(xs) = ci}

be the set of all points where ci is the clos-
est centroid. For simplicity of notation we as-
sume that all clusters are non-empty, such that
|Ag| > 0,Vk = 1,..., K (our software imple-
mentation automatically removes empty clus-
ters accordingly). Most cluster algorithms will
try to find a set of centroids Ck for fixed K such
that the average distance

N
1 .
D(Xn,Ck) = i Z d(xp, c(x,)) — min,
n=1

of each point to the closest centroid is mini-
mal. However, for the following it is not im-
portant whether such an optimum has actually
been reached.

Leisch (2006) introduces a neighborhood graph
of the centroids where each centroid forms a
node and two nodes are connected by an edge
if there exists at least one data point for which
those two are closest and second closest, see also
Martinetz and Schulten (1994). Let

argmin d(z,c)
c€Ck\{c(x)}

é(x) =

denote the second-closest centroid to x, further
let

Ay = {xn € Xy | c(xn) = i, 8(xp) = ¢;}

be the set of all points where c¢; is the closest
centroid and c; is second-closest. Now we define
for each observation x its shadow value s(x)
as
2d
o) (x,c(x))
G, () + dl, E(x)

The name “shadow” was chosen because the
shadow of an object is similar to its silhouette,
and the shadow plots constructed below are sim-
ilar both in spirit and interpretation to the well
known silhouette plots (Rousseeuw, 1987). If
s(x) is close to 0, then the point is close to its
cluster centroid. If s(x) is close to 1, it is al-
most equidistant to the two centroids. Thus, a
cluster that is well separated from all other clus-
ters should have many points with small shadow
values.

Another memory aid is that the shadow value
of a point gives the relative location of the
shadow the point casts upon the line connect-
ing ¢(x) and é(x). A cluster with large shadow
values “casts a large shadow on its neighbouring
clusters”, and hence is close to them.

The average shadow value of all points where
cluster ¢ is closest and j is second-closest can be
used as a simple measure of cluster similarity:

sip = A7 Y s(x)

€A

The denominator |A4;| rather than |A;;| is used
such that a small set A;; consisting only of badly
clustered points with large shadow values does
not induce large cluster similarity. If s;; > 0,
then at least one data point in segment 4 has c;
as second-closest centroid and segments ¢ and j



are neighbours. If s;; is close to |A;;|/]A;|, then
those points that are “between” segments i and
J are almost equidistant to the two centroids.
The graph with nodes c; and edge weights s;;
is a directed graph, to simplify matters we use
the corresponding undirected graph with aver-
age values of s;; and sj; as edge weights for the
moment.

Figure 1 shows neighborhood graphs for two
data sets with 5 Gaussian clusters each. The
graphs in panels above each other are identical,
the different cluster hulls will be explained in
Section 6. The centers of the original 5 clusters
are identical in both data sets, only the variance
changes. Both data sets have been clustered us-
ing K-means with 7 centers. The “wrong” num-
ber of clusters was intentional to show the effect
on the graph and get overlapping clusters.

Both graphs show the ring-like structure of
the data, the thickness of the lines is propor-
tional to the edge weights and clearly shows how
well the corresponding clusters are separated.
Triangular structures like in the left panel corre-
spond to regions with almost uniform data den-
sity that are split into several clusters. Centroid
pairs connected by one thick line and only thin
lines to the rest of the graph like 2/7 and 3/6
in the right panel correspond to a well-separated
data cluster that has wrongly been split into two
clusters.

3 Stripes Plots

A simple, yet very effective plot for visualiz-
ing the distance of each point from its closest
and second-closest cluster centroids is a stripes
plot as shown in Figure 2. For each cluster
k=1,...,K we have a rectangular area, which
we vertically divide into K smaller rectangles.
First we draw a horizontal line segment hat
height (x,,, ¢(x,,)) for each observation z,, € Ay.
In addition, we plot a horizontal line segment
for each observation z, € A, j =1,..., K,
® # k at height d(x,,ck). These are the points
which have cluster k as their second-best. The
horizontal position within the rectangular area
and the color (please use the online version of
this article for colored figures) always mark the
cluster ¢(x,,) of the observation.

E.g., have a look at cluster 1 in the top panel.
The leftmost stripe corresponds to points that
have been assigned to cluster 1. It is marked by
a slightly darker background and a box around

the stripe. Points in clusters 2 and 5 have clus-
ter 1 as second-best centroid. These observa-
tions form the other two stripes within the rect-
angular area for cluster 1. Points in cluster 2 are
farther away from cluster 1, while many points
in cluster 5 have a similar distance to centroid 1
as points which have actually been assigned to
cluster 1.

The overall impression of the top panel in Fig-
ure 2 is that no cluster is well separated from all
others. We can also infer which one of the other
clusters is close to it. The picture is different
for the bottom panel: clusters 1, 4, and 5 are
well separated from the rest (the lowest block of
stripes is far away from the rest), while clusters
2/7 and 3/6 are close to each other, respectively.

Of course all this information is easier to
see in Figure 1, however the stripes plot is
dimension-independent and works well even for
high-dimensional data where projections to 2d
may fail. The implementation of the stripes plot
in our software is very flexible. The user can
zoom into the bars to see only distances from the
closest cluster centroid of each point, or only see
distances to closest and second-closest centroid.
It is also possible to choose a categorical back-
ground variable for the color-coding. This gives
a quick overview of how the classes in the back-
ground variable are distributed over the clusters,
and if they are close to the centroid or far away
(see Section 8 below).

4 Shadow Plots

Another way to visualize the separation are clus-
ter silhouettes (Rousseeuw, 1987). The silhou-
ette value of x

b(x) — a(x)

1) = (@), b))

is defined as the scaled difference between the
average dissimilarity a(x) of x to all points in its
own cluster to the smallest average dissimilarity
b(x) to the points of a different cluster. For
shadow values we get

2d(x, ¢(x))
d(z,c(x)) + d(x, ¢(x))
d(x,é(x)) — d(x,¢(x))
d(z, c(x)) + d(x, é(x))
and a plot of 1—s(z) can be used to approximate

silhouettes. The main difference between silhou-
ette values and shadow values is that we replace

1-s(x) = 1-




Figure 1: The neighborhood graphs for 7-cluster partitions of 5 Gaussians with poor (left top and
bottom) and good (right top and bottom) separation.
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Figure 2: Stripes plots for the Gaussian data with poor (top) and good (bottom) separation. The
seven clusters are on the x-axis, distance from centroid is on the y-axis.



average dissimilarities to points in a cluster by
dissimilarities to point averages (=centroids).
One advantage of shadow values is that they
need O(NK) operations while silhouettes need
O(N?), and typically we have K << N. Pack-
age flexclust has implementations for both
traditional silhouttes, as well as our new shadow
plots which directly visualize the shadow values
s(z) (rather than 1 — s(z)).

Figure 3 shows shadow plots for both parti-
tions. The shadow values s(x) in each cluster are
sorted from high to low and plotted from left to
right. To decrease memory consumption the ac-
tual values are interpolated for larger data sets.
The width of the vertical stripe of each cluster
is proportional to the size of the cluster. Clus-
ters that are well separated should have many
points with small shadow values s(x), and the
filled area below the curve should be small. The
light rectangle behind the polygon marks the
average shadow value of the cluster, hence the
area of the rectangle in light color is the same as
the area under the shadow line filled with dark
color. This visual aid helps a lot to quickly com-
pare the areas under the polygon.

The upper panel of Figure 3 shows the shadow
plot for the Gaussian data with poor separa-
tion. Points are almost uniformly spread be-
tween the closest and second centroid, so the
curves in all stripes go almost linearly from 1 to
0. The lower panel has 4 clusters with poor sepa-
ration (2,3,6,7) looking similar to the shadows in
the upper panel. The 3 clusters with good sep-
aration (1,4,5) clearly have a different shadow.
The curve starts around 0.5 rather than one, the
filled area consequently is much smaller.

5 Shadow-Stars

The main reason for our definition of shadow
values is that they use the centroids as anchor
points and have a geometric interpretation with
respect to them. The distribution of the shadow
values of all points in A;; and A;; gives an im-
pression how connected or separated clusters ¢
and j are. Points with s(x) = 0 are close to the
centroid, while points with s(x) & 1 are equidis-
tant to ¢(x) and é(x). This can be visualized
in a new display, the shadow-stars: The cen-
troids again are used as nodes in a graph, which
are connected by stripe plots of shadow values.
If A;; is not empty, then a (virtual) line seg-
ment from c; to c¢; is drawn. The width of the

line segments is proportional to the size of A;j,
such that larger groups of data can be identified
more easily. On the half segment closer to c;
the shadow values in A;; are drawn as line seg-
ments similar to the stripes plot. On the other
half of the line segment the same is done with
the shadow values of the points in Aj;. If clus-
ter ¢ is well separated from cluster j, then the
shadow values will be small and the stripes will
be concentrated close to the centroid. On the
other hand, if the two clusters are not well sep-
arated, then the stripes of shadow values will
either have an almost uniform distribution or
be concentrated close to the middle of the edge.

Figure 4 shows shadow-stars for the Gaussian
data. The clusters in the left panel are not well
separated, the shadow values are distributed
over the line segments connecting neighboring
clusters. For the well separated clusters in the
right panel the shadow values concentrate their
mass close to the centroids. It can still be seen
from the plot which cluster is next to which
other cluster, but it is also obvious that they
are far away from each other in terms of cluster
separation.

Again, the software implementation is very
flexible, and the user can specify arbitrary func-
tions which are used to visualize the shadow
values on each half-edge of the graph. If we
use only the average shadow value as thickness
of the edge, we get an asymmetric graph we
call a shadow skeleton. If we use violin plots
(Hintze and Nelson, 1998) for the distribution
of the shadow values, we get shadow violins, see
Figure 5.

6 Convex Cluster Hulls

When clustering non-Gaussian data and/or us-
ing distances other than Euclidean distance,
spanning ellipses or confidence ellipses like in
the CLUSPLOT by Pison et al. (1999) can
be a misleading representation of cluster re-
gions, because clusters may have arbitrary con-
vex shapes, where the term convex is with re-
spect to the distance measure used. If clus-
ters are projected into 2-dimensional space, then
bagplots (Rousseeuw et al., 1999) can be used
as a nonparametric alternative to ellipses. The
main challenge in constructing the equivalent of
a box & whisker plot for 2 dimensions is that
R2 has no total ordering. Bagplots solve this by
imposing one possible ordering onto data, such



Figure 3: Shadow plots for the Gaussian data with poor (top) and good (bottom) separation.
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Figure 4: Shadow-stars for the Gaussian data with poor (left) and good (right) separation.



Figure 5: Shadow skeleton (left) and shadow violins (right) for the Gaussian data with poor

separation.

that the definition of the “inner 50%” of data
becomes feasible.

For data partitioned using a centroid-based
cluster algorithm there is a natural total order-
ing for each point in a cluster (Leisch, 2008):
The distance d(x,c(x)) of the point to its re-
spective cluster centroid. Let

my = median{d(x,, cx)|X, € A}

be the median distance of all points in cluster
k to c,. We visualize the inner area a cluster
occupies by the convex hull of all data points
where d(x,,cr) < myg, this corresponds to the
box in a boxplot. After some experimentation
we chose to define the outer area of a cluster
as the convex hull of all data points that are no
more than 2.5my, away from cg, this corresponds
to the whiskers in a boxplot. Points outside this
area are considered as outliers.

Figure 1 compares the convex hulls of the
clusters (bottom row) with 95% confidence el-
lipses (top row). As the data are a mixture
of bivariate Gaussians, confidence ellipses are a
“valid” visualization of the clusters, but only if
the true number of clusters is known and found.
As we have deliberately used a wrong number
of clusters, several clusters have a non-elliptical
shape, especially those splitting an underlying
true cluster into two. To make the inner area
more visible we use diagonal shading lines. As
a new feature we use an angle of kn/K for the
lines of cluster k, such that overlapping clus-
ters can be distinguished more easily, especially
when no colors are available. Obviously, this

could be improved upon by selecting orthogonal
directions for clusters which are close to each
other.

7 Example 1: Automobile
Customer Survey

As first example demonstrating the proposed vi-
sualization techniques we use data from an au-
tomobile customer survey from 1983. A Ger-
man car manufacturer sent a questionnaire to
2000 customers who had bought a new car ap-
proximately 3 months earlier, 793 of which re-
turned a form without missing values. The full
data set with 46 variables can be downloaded
from the Statistics Department of the University
of Munich at http://www.statistik.lmu.de/
service/datenarchiv/. In the following we
consider 21 binary variables on the characteris-
tics of the vehicle and manufacturer: clearness,
efficiency, driving properties, service, interior,
quality, technology, model stability, comfort, re-
liability, handling, reputation of manufacturer,
concept, character, power, resell value, styling,
safety, sport, fuel consumption, and space. Each
customer was asked to mark the most important
characteristics that led him to buy one of the
companies cars.

Figure 6 shows biplots of a principal com-
ponent (PC) analysis of the data. The
left panel gives a scatterplot of all data
points projected on PC1l and PC2. There
are 2 main directions in the plot, pointing
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Figure 6: Principal component biplots of the automobile data.

up & right are quality-oriented variables like
comfort /safety /reliability /etc, pointing up &
left are the power-oriented variables technol-
ogy/sport/handling/etc. Note that a lot of
points are in the lower half of the plot, which
basically is the negative direction for almost all
variables. This is due to the fact that each con-
sumer was asked to choose the most important
characteristics, hence there are much more zeros
than ones in the data set. The right panel of the
plot shows PC1 and PC3: the x-Axis with PC1
is still quality (right) versus power (left), the y-
axis with PC3 contrasts efficiency (top) versus
styling/comfort (bottom).

Both scatterplots do not indicate the pres-
ence of any “natural clusters”, any partition will
probably divide the data into “arbitrary clus-
ters” (Kruskal, 1977). Nevertheless it makes a
lot of sense from a marketing researcher’s point
of view to cluster the data in order to partition
the market into smaller subgroups of consumers
which subsequently can be addressed by mar-
keting actions tailored for the respective market
segment. E.g., Mazanec et al. (1997) do not as-
sume the existence of natural segments claiming
that distinct segments rarely exist in empirical
data sets and redefining market segmentation
to be a construction task rather than a search
mission for natural phenomena. Of course it is
still of interest whether any of the market seg-
ments is markedly different from the rest and
what their relations in 21-dimensional space are.

We present the results of a 5-cluster solution
using the “neural gas” algorithm by Martinetz
et al. (1993), because the resulting partition was
easiest to interpret after trying several partition-
ing cluster algorithms with varying number of
clusters. As the focus of this paper is on the
introduction of new cluster visualization tech-
niques, the exact choice of algorithm and num-
ber of clusters is not really important.

Neural gas is similar to k-means, but up-
dates in each iteration not only the closest cen-
troid, but also the second-closest: It repeatedly
chooses a random observation, moves the clos-
est centroid towards the observation, moves the
second-closest centroid a little bit less then the
closest etc. How many centroids are moved de-
pends on hyperparamters of the algorithm, see
the original publication for details.

Figure 7 shows the neighborhood graph corre-
sponding to the 5 cluster neural gas solution pro-
jected into the spaces spanned by PC1 & PC2,
and PC1 & PC3, respectively. Colors and plot-
ting symbols for the data points are different
for each cluster, yet no clear structure can be
seen for most parts of the plots. The only struc-
ture that can easily be seen is that cluster 2
is “on top” of the left panel. The remaining
four clusters all have regions with higher den-
sity, but this is not easily seen and the ellipses
have large overlapping regions. An obvious (yet
overhasty) conclusion would be that the princi-
pal component projection obscures the partition
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and a better projection is necessary to see the
data structure (if possible at all).

Figure 8 shows the same neighborhood graph
with convex hulls of the clusters and no point
symbols. The shaded areas correspond to the
convex hulls of the inner 50% of each cluster,
the dashed lines to the convex hull of all points
within 2.5 median distance from the centroid.
Again, the left panel basically differentiates be-
tween cluster 2 and the rest. In the right panel
the convex hull of cluster 2 has been omitted
because it is in the middle and overlaps with all
other clusters. It can clearly be seen that the re-
maining four clusters divide the space spanned
by PC1 and PC3 into 4 regions approximately
corresponding to high/low values on x- and y-
axis. There is overlap due to projection, but
there are also large “pure” regions. Together
with the projected axes of the original variables
from Figure 6 one could now proceed to con-
struct a perceptual map for marketing purposes.

Of course, the overlap of the ellipses in Fig-
ure 7 can be reduced by only using 50% confi-
dence regions, and not plotting point symbols
would also make for a “clearer picture”. How-
ever, Figure 8 shows that the confidence regions
of the clusters are not elliptical and that espe-
cially the centroids are nowhere near the “mid-
dle” of their clusters. So smaller ellipses would
have less overlap, but they would simply shade
the wrong region in the plot.

Figures 9 and 10 show stripes and shadow

10

PC1

Neighborhood graph for the automobile data with 95% confidence ellipses for the clusters.

plots for the automobile data, respectively. The
interpretation is the same in both cases, all
points are “far away” from their cluster cen-
troids, none of the clusters is well-separated
from the rest. All shadow values are large, the
points have similar distances to the closest and
second-closest centroid. The shadow star in Fig-
ure 11 can be used to identify which segments
are more similar to each other than others. All
together confirm once more that our grouping is
artificial, we have constructed market segments
rather than found naturally existing ones.

Note that how the high dimensional data are
projected into 2 dimensions is not a focus of this
work. We used principal component analysis in
this example, but other projection methods like
the asymmetric projections by Hennig (2004)
would work equally well.

8 Example 2: German Elec-
tions

As second example we use the German parlia-
mentary elections of September 18, 2005. The
data consist of the proportions of “second votes”
obtained by the five parties that got elected to
the Bundestag (the first chamber of the Ger-
man parliament) for each of the 299 electoral
districts. The data set is directly available in
R package flexclust. The “second votes” are
actually more important than the “first votes”
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Figure 8: Neighborhood graph for the automobile data with convex hulls for the clusters: data
points are omitted, the inner convex hull is shaded.
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Figure 9: Stripes plot for the automobile data, only distances to closest and second-closest centroid
are shown.

Figure 10: Shadow plot for the automobile data.
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Figure 11: Shadow-stars for the automobile data.

because they control the number of seats each
party has in parliament. Before election day,
the German government comprised a coalition
of Social Democrats (SPD) and the Green Party
(GRUENE); their main opposition consisted of
the conservative party (Christian Democrats,
UNION) and the Liberal Party (FDP). The lat-
ter two intended to form a coalition after the
election if they gained a joint majority, so the
two major “sides” during the campaign were
SPD+GRUENE versus UNION+FDP. In addi-
tion, a new “party of the left” (LINKE) can-
vassed for the first time; this new party con-
tained the descendents of the Communist Party
of the former East Germany and some left-wing
separatists from the SPD in the former West
Germany. A projection of the data onto the
first two principal components is shown in the
left plot of Figure 12. The point cloud in the
lower left corner mainly correspond to districts
in eastern Germany, where support for LINKE
was strong, while the upper diagonal cloud cor-
responds mainly to districts in western Germany
and contrasts the support for the two major par-
ties: SPD (up) versus UNION (down). The final
outcome of the election was UNION (226 seats
in parliament), SPD (220), FDP (61), LINKE
(54), and GRUENE (51). UNION and SPD
formed a “large coalition” (“groBe Koalition”),
because none of the above mentioned prefer-
ences had a majority.

The right panel of Figure 12 shows a four
cluster solution from the k-means algorithm.

12

Cluster 1 captures eastern Germany, while clus-
ters 2—4 break western Germany in three parts.
The principal component projection shows the
structure of the data rather accurate, which
makes it easier to relate the new plots intro-
duced in this paper to the real structure of the
data. The stripes plot in Figure 13 nicely shows
the relations between the clusters: cluster 1 is
far away from the rest, while cluster 3 is located
“between” clusters 2 and 4.

Figure 14 shows another variant of the stripes
plot. Here we are not interested in the rela-
tive locations of the clusters with respect to each
other, but in a categorical background variable.
In this case we have highlighted all 45 electoral
districts from Bavaria. These are mainly in clus-
ter 2, and approx. one quarter is in cluster 3. We
also see that the Bavarian districts in cluster 3
are not close to the centroid, but have medium
distance to it. Finally, Figure 15 shows shadow
violins. Again it can clearly be seen that clus-
ter 1 is well separated from the rest, while clus-
ters 2-4 form a continuum. It also shows that
cluster 1 is closer to 3 and 4 than to cluster 2.

Of course, most of the information contained
in Figures 13-15 can also be seen in the linear
projection in Figure 12 (which is the reason we
have chosen this particular example in the first
place). However, the stripes plot is independent
from the dimensionality of the input space and
works also when simple projections of the data
like PCA fail.
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Figure 12: Principal component biplot of the German election data (left), and a four cluster
solution (right).

0.4

0.3

distance from centroid
o
N
I

0.1

Figure 13: Stripes plot for the German election data, only distances to closest and second-closest
centroid are shown.
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Figure 14: Stripes plot for the German election data, only distances to closest centroid are shown,
districts from Bavaria are highlighted.

Figure 15: Shadow violins for the German election data.
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9 Conclusions

We have extended the CLUSPLOT display by
Pison et al. (1999) in two directions: Instead of
connecting each cluster centroid with all the oth-
ers, we connect only neighboring segments and
obtain a graph that is more informative about
the relative position of the clusters before pro-
jecting them into two dimensions. In addition
the line width of the edges are proportional to
the number of points that are in between the
two clusters, such that thick lines connect clus-
ters that are poorly separated from each other.

For non-elliptical clusters the convex hulls of
inner and outer data points can be used as a 2-
dimensional equivalent of a boxplot. Especially
for larger data sets and partitions that cannot
be easily projected into 2-d, plots can be easier
to read if the original data points are only in-
cluded in lighter colors or completely omitted.
While this complexity reduction step is routine
when comparing several samples using boxplots,
it is much less common for 2-dimensional visual-
izations, because one has to impose an ordering
onto R2. For clustered data a natural ordering
exists through the distance of each point from
its cluster centroid.

Shadow values can be used as a computation-
ally more efficient approximation to silhouette
values. Because shadow values are anchored at
the cluster centroids, they allow for the defini-
tion of a completely new cluster visualization
called shadow-stars. Compared with traditional
silhouette plots they give not only information
on how well a cluster is separated from the oth-
ers, but also to which clusters it is close, if any.
A natural question when the silhouette of a clus-
ter indicates poor separation is to ask which
other clusters are close; shadow-stars can help to
efficiently encode this information graphically.
A next step will be to investigate how these
graphical methods can be used to compare dif-
ferent clusterings of the same data set with each
other. Do different cluster algorithms and/or
distance measures produce solutions with more
or less overlap?
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