

Founded 1955 by Peter A. Narath and Heinrich Heusser Continued 1968–1987 by G. Mayor

Editorial Board

- K.H. Bichler, Tübingen F. Eisenberger, Stuttgart H. Frohmüller, Würzburg R. Hartung, München R. Hohenfellner, Mainz
- H. Klosterhalfen, Hamburg
- W. Lutzeyer, AachenS. Orikasa, SendaiT. Sonoda, OsakaS. Steg, Paris
- E. Zingg, Bern

Scientific Board

Anatomy: W. Lierse, Hamburg

Andrology: K. Bandhauer, St. Gallen; C. Bollack, Strasbourg

Clinical Chemistry: R. Asper, Zürich

Gynecology: S.L. Stanton, London

Imaging Technics: U. Mödder, Düsseldorf

Immunology: J.R. Kalden, Erlangen; R. Zinkernagel, Zürich

Lithiasis: W.G. Robertson, Riyadh; G.A. Rose, London; O. Schmucki, Luzern

Microbiology: F. Kayser, Zürich

Nephrology: Ph. Jaeger, Bern

Neurourology and Urodynamics: J. Nordling, Herlev; A. Rossier, Zürich; E.A. Tanagho, San Francisco, Calif.

Oncology: D. Oliver, London; C.G. Schmidt, Essen

Pathology: A. Elbadawi, New York, N.Y.; Ph. Heitz, Zürich

Pediatric Surgery: H. Mildenberger, Hannover

Physiology: P. Deetjen, Innsbruck

Radiotherapy: M. Bagshaw, Stanford, Calif.

Renal Transplantation: K. Dreikorn, Bremen

Virology: H. zur Hausen, Heidelberg

Vol. 44, 1989

Editor D. Hauri, Zürich

Assistant Editors

R. Ackermann, Düsseldorf Y. Aso, Tokyo G. Bartsch, Innsbruck F.M.J. Debruyne, Nijmegen P. Graber, Genève H. Huland, Berlin F. Schröder, Rotterdam

🏵 KARGER

Universitäts-Bibliothek München

S. Karger \cdot Medical and Scientific Publishers Basel \cdot München \cdot Paris \cdot London \cdot New York \cdot New Delhi \cdot Bangkok \cdot Singapore \cdot Tokyo \cdot Sydney

Drug Dosage

The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved.

No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center (see 'Information for Readers and Subscribers').

© Copyright 1989 by S. Karger AG, P.O. Box, CH-4009 Basel (Switzerland) Printed in Switzerland by Thür AG Offsetdruck, Pratteln

No. 1

Original Papers

Immunetheren of Meterlesining Banal Call Consingura Ba	
sults of a Multicentered Trial	
Schörfe T: Müller S: Diadmiller U: Jacobi G: U: Hoben	
follows P	1
Immunohistochemical Detection of Tissue Infiltrating Lym	•
nhoutes in Bladder Tumors	
Teuijhachi H: Ilaijma S: Akiyama T: Kurita T	5
Combination of Hyperthermia and Cytostatics in the Treat-	2
ment of Bladder Cancer	
Richler K. H. Flüchter S. H. Steimann, L. Strohmaier W.L.	10
Tumor Volume CT Scan, Lymphography, Sonography, Intra	10
venous Pyelography, and Tumor Markers in Testis Tu-	
more	
Wilhert DM · Klose K I · Alken P · Jacobi GH · Hohen-	
fellner R	15
Germ Cell Tumors of the Testicle or 'Orchidomata'	15
Haddad, F.S.: Sorini, P.: Somsin, A.A.: Nathan, H.	20
Does Medical Therapy Cure Female Stress Incontinence?	
Lose. G.: Diernæs. E.: Rix. P.	25
Norfenefrine in the Treatment of Female Urinary Stress In-	
continence Assessed by One-Hour Pad Weighing Test	
Diernæs, E.; Rix P.; Sørensen, T.; Alexander, N.	28
Ureterorenoscopy in the Management of Renal and Ureteric	
Calculi	
Olsen, J.B.; Pedersen, F.M.; Wamberg, P.A.; Nielsen, H.V.	32
Effects of Extracorporeal Shock Wave Lithotripsy on Urinary	
Exretion of N-Acetyl-Beta-D-Glucosamidase	
Kitada, S.; Kuramoto, H.; Kumazawa, J.; Yamaguchi, A.;	
Nakasu, H.; Hara, S.	35
Second-Generation Lithotripsy: A Safe, Noninvasive, Ambu-	
latory Procedure	
Baert, L.; Claes, H.; Billiet, I.; D'Hallewin, M.; Vandeursen,	
H.; Van Poppel, H.	38
Induction of Anesthesia with Propofol in Urological Out-	
patient Surgery	
Katz, Y.; Rozenberg, B.; Moskovitz, B.; Greenberg, Z.;	
Birkhan, J	41

Case Reports

Azoospermic Male with a Balanced Y-Autosome Transloca- tion	
Matsuda, T.; Hayashi, K.; Nonomura, M.; Yamamoto, S.; Yoshida, O.	43
Polyorchidism: Preoperative Diagnosis by Ultrasonography Yoshida, T.; Yabumoto, H.; Shima, H.; Ikoma, F.; Nono-	
mura, N.; Okuyama, A.	47
Paraepididymal Relapse of Follicular Small Cleaved Cell Lym- phoma	
Wishnow, K.I.; Ro, J.Y.; McLaughlin, P.	50
Adrenal Myelolipoma Simulating Virilizing Adrenal Tumor Moskovitz, B.; Bolkier, M.; Katz, Y.; Ben Arieh, Y.;	
Richter Levin, D.	53
Case Report: Secondary Penile Carcinoma (With 1 color plate) Hashimoto, H.; Saga, Y.; Watabe, Y.; Sasaki, M.; Toku-	
naka, S.; Yachiku, S.	56
Pheochromocytoma Presenting as Shock and Followed by Spontaneous Remission	
Terai, A.; Terachi, T.; Yoshida, S.; Kadota, K.	58

No. 2

Original Papers

Effects of Experimental Obstructive Hydronephrosis on the	
Immature Nephrons in Newborn Rats	
Josephson, S.; Robertson, B.; Rodensjö, M	61
Diagnostic and Prognostic Relevance of Morphometric Struc-	
tural Analyses of the Organs of the Urogenital Tract	
Nafe, R.; Frohneberg, D	66
Androgen Receptor-Mediated Growth and Epidermal Growth	
Factor Receptor Induction in the Human Prostate Cell	
Line LNCaP	
Schuurmans, A.L.G.; Bolt, J.; Mulder, E	71
Variation of the Immunosystem by Ciclosporin and Keyhole-	
Limpet Hemocyanin - Are There Effects on Chemically	
Induced Bladder Carcinoma?	
Recker, F.; Rübben, H	77

Bladder Carcinoma in Patients Less than 40 Years of Age	
Witjes, J.A.; Debruyne, F.M.J.	81
Significance of Salvage Lymphadenectomy in the Therapeuti-	
cal Concept of Advanced Nonseminomatous Germ Cell	
Tumors	
Staehler, G.; Wiesel, M.; Clemm, C.; Gokel, J.M.; March- ner, M.	84
Effect of Kallikrein on the Sertoli Cell Function	
Saito, S.; Mikuma, N.; Kumamoto, Y.	87
Long-Term Electrostimulation of the Pelvic Floor: Primary Therapy in Female Stress Incontinence?	
Eriksen, B.C.; Eik-Nes, S.H.	90
Ultrasonic Determination of the Residual Bladder Volume	
Hendrikx, A.J.M.; Doesburg, W.H.; Stappen, W. v.d.; Hof-	
mans, P.A.E.M.; Debruyne, F.M.J.	96
The Value of Renal Scan in Acute Renal Colic - A Clinical	
Viewpoint	
Matzkin, H.; Greenstein, A.; Braf, Z	103
Case Reports	
Case History of a Prune-Belly Syndrome with Extracorporeal	
Shock Wave Lithotripsy Treatment of Allograft Nephro-	
lithiasis	
Stenzl, A.; Fuchs, G.J.	106
Parathyroid Carcinoma in a Case of Chronic Renal Failure on	
Dialysis	
Kodama, M.; Ikegami, M.; Imanishi, M.; Uemura, T.;	
Takada, M.; Kohri, K.; Kurita, T	110

Safak, M.; Baltaci, S.; Akyar, S.; Beduk, Y. Inverted Y-Ureteral Duplication with an Uterine Ectopy as

Perirenal Urinary Extravasation Complicating Burch Colpo-

Giant Median Raphe Cyst of the Penis with Diffuse Melanosis

rasonic Determination of the Residual Bladder Volume Hendrikx, A.J.M.; Doesburg, W.H.; Stappen, W. v.d.; Hof-	04	Forming Subjects: Significant Disturbance in Recurrent Stone Formers	157
value of Renal Scan in Acute Renal Colic – A Clinical Viewpoint	90	Comparison of Chemical Compositions of Multiple or Recur- rent Urinary Stones	157
Matzkin, H.; Greenstein, A.; Braf, Z	103	Takasaki, E	160
Case Reports		vention	
e History of a Prune-Belly Syndrome with Extracorporeal		Glikman, L.; Glicksman, A.; Pevsner, J.; Levin, I.	166
Shock Wave Lithotripsy Treatment of Allograft Nephro- lithiasis		Case Reports	
Stenzl, A.; Fuchs, G.J	106	Retroperitoneal Castleman's Disease: A Case Report and Brief Review of Tumors of the Pararenal Area	
Dialysis		Ebisuno, S.; Yamauchi, T.; Fukatani, T.; Ohkawa, T.	169
Kodama, M.; Ikegami, M.; Imanishi, M.; Uemura, T.;		Renal Cell Carcinoma Presenting as Budd-Chiari Syndrome	
Takada, M.; Kohri, K.; Kurita, T.	110	Nakajima, Y.; Baba, S.; Nagahama, T.; Tazaki, H.	173
rarenal Lipoma: Report of a Case		Neurolibromatosis Associated with Renovascular Hyperten-	
Salak, M.; Ballaci, S.; Akyar, S.; Beduk, Y.	113	mental Artery: Report of a Case	
Cause of Ureteric Enuresis		Kuo I-Y: Okada Y: Takeuchi H: Yoshida O: Suzuki	
Foke M · Klatte D	116	H.: Kim. Y.C.	177
irenal Urinary Extravasation Complicating Burch Colpo- suspension	•••	Signet Ring Cell Carcinoma in a Schistosoma-Infested Blad- der: Case Report and Histochemical Study	-
Delaere, K.P.J.; Strijbos, W.E.M.; Zandvoort, J.A.	119	Bianco, P.; Crescenzi, A.; Savioli, L.	181
Int Median Raphe Cyst of the Penis with Diffuse Melanosis of Its Epithelial Lining		Diverticulum of the Male Urethra with a Giant Stone and Multiple Calculi	
Hitti, I.F.; Vuletin, J.C.; Rapuano, J.	121	Melekos, M.D.; Veronikis, D.K.; Siamplis, D.; Kalfarent-	
		zos, F	184
		Parameatal Urethral Cyst	

Nuclear DNA Analysis of Prostate Tissues: Correlation with

brate Dog as Determined by Urodynamic Evaluation Nishizawa, O.; Ebina, K.; Sugaya, K.; Noto, H.; Satoh, K.; Kohama, T.; Harada, T.; Tsuchida, S.

Urinary Glycosaminoglycan Excretion in Normal and Stone-

Neill, W.A.; Norval, M.; Habib, F.K. Effects of Caffeine on the Vascular Smooth Muscles Isolated from Two-Kidney, One-Clip Renovascular Hypertension

Yoshida, M.; Ueda, S.; Machida, J.; Ikegami, K. Effect of Cerebellectomy on Reflex Micturition in the Decere-

Stage and Grade of Tumour

in Rabbits

No. 3

Original Papers

Intrarenal Lipoma: Report of a Case

Multivariate Evaluation of Determinants Affecting Regional	
Lymph Node Metastasis and Survival in Bladder Cancer	
Patients Who Underwent Radical Cystectomy	
Takashi, M.; Nagai, T.; Murase, T.; Miyake, K.; Hama-	
jima, N.; Mizuno, S	125
Evaluation of the T Stage of Carcinoma of the Bladder by	
Transurethral Ultrasonography	
Grups, J.W.; Gruss, A.; Frohmüller, H.G.W.	132
Multiple Marker Evaluation in Prostatic Cancer Using Pros-	
tatic Specific Antigen, Gamma-Seminoprotein and Pros-	
tatic Acid Phosphatase	
Arai, Y.; Yoshiki, T.; Okada, KI.; Yoshida, O.	135

No. 4

Original Papers

Interstitial Cystitis: Review of the Literature	
Jensen, H.; Nielsen, K.; Frimodt-Møller, C.	189
Cytogenetic Survey of Subfertile Males in Japan	
Matsuda, T.; Nonomura, M.; Okada, K.; Hayashi, K.;	
Yoshida, O.	194
Antigenic Relationship between Streptococcal Preparation	
OK-432 and Tumours and Its Effect on Immunotherapy	
with OK-432 in Patients with Superficial Bladder Tumor	
Fujioka, T.; Aoki, H.; Yoshida, M.; Ohhori, T.; Kubo, T.	198

T-Zone Histiocytes and Recurrence of Papillary Urothelial	
Lopez-Beltran, A.; Morales, C.; Reymundo, C.; Toro, M. Morphological Lesions of the Rat Urinary Tract Induced by	205
Inoculation of Mycoplasmas and Other Urinary Tract	
Larsson, P.A.; Cano, M.; Grenabo, L.; Brorson, JE.; Hede-	
lin, H.; Pettersson, S.; Johansson, S.L.	210
nary Concentration of Glycosaminoglycans in Patients of	
Calcium Oxalate Nephrolithiasis and in Healthy Adults	
Sidhu, H.; Thind, S.K.; Nath, R.; Vaidyanathan, S.; Hemal, A.K.: Mandal, A.K.: Krishan, K.	218
Formation of Bobierrite (Magnesium Phosphate) Crystal Ag-	
gregates by Bacteria from Human Urine and Renal Cal-	
Moral, A. del; Rivadeneyra, M.A.; Roldán, E.; Perez-	
García, I.; Ramos-Cormenzana, A.; García-Cervigón, A.†	222
Wave Lithotripsy. 3 Years of Experience	
Recker, F.; Jaeger, P.; Alund, G.; Konstantinidis, K.; Knoenagel H : Hauri D	227
Effects of the pH and the Urine Infected by Escherichia coli	227
and <i>Proteus mirabilis</i> on Chromic Catgut, Polyglycolic	
Hering, F.L.O.; Rosenberg, D.; Chade, J.	231
Core Benerto	
Case Reports	
Report	
Terachi, T.; Terai, A.; Yoshida, S.; Yokota, K.; Fukunaga, M.	235
Stone in G Syndrome	
Saha, P.K.; Ura, T.; Suzu, H.; Yamashita, S.; Kanetake, H.; Shinda, K.; Sakai, T.; Saita, Y.	220
Fracture of Double-J Ureteric Stents: A Report of Two	238
Cases	241
Postpyelolithotomy Renal Artery Pseudo-Aneurysm	241
Indudhara, R.; Malik, N.; Sharma, G.P.; Vaidyanathan, S.	244
Mireku-Boateng, A.; Jackson, A.G.	247
Barium Granuloma Involving Urinary Bladder	• • •
Yanagi, S.; Ishii, T.; Tsuji, Y.; Ariyoshi, A.	249

Announcements													252

No. 5

Original Papers

Actin as a Component of Cytoskeleton in the Collecting Tu-	
bule System of the Mouse Kidney	
Bickeböller, R.; Bickeböller, C.; Hanke, P.; Jonas, D.	253
Effects of the α_2 -Adrenoceptor Antagonists Yohimbine and	
Idazoxan on Kidney Function in Intact and Diabetes insi-	
pidus Rats	
Farjam, A.; Greven, J.	255

Expression of ras P21 Oncogene Product on Human Bladder	
Tumors (With 1 color plate)	
Moriyama, N.; Umeda, T.; Akaza, H.; Taniguchi, J.; Kita-	
mura, T.; Murakami, T.; Kawabe, K.; Aso, Y.	260
Antigenic Detection and Prognosis of Patients with Transi-	
tional Cell Carcinoma of the Urinary Bladder	
Tan, LB.; Lin, LM.; Huang, CH.; Chiang, CP.; Chien,	
CH.; Pan, CC.	264
Radical Prostatectomy in Cases of Prostatic Carcinoma: The	
Problem concerning Erectile Impotence (With 1 color	
plate)	
Haurı, D.; Knönagel, H.; Konstantinidis, K	272
Experimental Chlamydial Epididymitis	
Jantos, C.; Krauss, H.; Altmannsberger, M.; Thiele, D.;	
Weidner, W.; Schiefer, H.G.	279
The Value of Magnetic Resonance Imaging at 1.5 T in the	
Evaluation of the Scrotal Content	
Sohn, M.; Neuerburg, J.; Bohndorf, K.; Sikora, R.; Daus,	
H.J	284
Slightly Radiopaque Uric Acid Calculi: Impact upon Thera-	
peutic Considerations?	
Schärfe, T.; Alken, P.; Klose, K.J.; Hohenfellner, R	292
Comparison of Methods and Guaranteeing Quality of Analy-	
ses of Urinary Calculi – 5th International Ring Test	
Rebentisch, G.; Berg, W.	298
Human Penile Erection and Organic Impotence: Normal His-	
tology and Histopathology (With 5 color plates)	
Conti, G.; Virag, R	303
Iranscutaneous Nitroglycerin Therapy in the Treatment of	
Impotence	• • •
Claes, H.; Baert, L.	309

Case Reports

Primary Renal Hodgkin's Lymphoma: Case Report	
Sharma, S.K.; Hemal, A.K.; Goswami, A.K.; Radotra,	
B.D.; Garg, K.; Garg, S.K.	313
Is Magnetic Resonance Imaging Insufficient in Diagnosing	
Preoperatively Renal Angiomyolipoma? A Case Report	
Cranidis, A.; Anezinis, P.; Constantinides, C.; Recker, F.;	
Deliveliotis, Ch.; Dimopoulos, C.	316
Retroperitoneal Varicose Veins Simulating Lymph Nodes	
Krogh, J.; Bergmann, I.; Jensen, P.K.	319

No. 6

Original Papers

Neuropathological Examination of the Alterations of the In-	
trinsic Innervation in Multiple Sclerosis Cystopathy (With	
1 color plate)	
Van Poppel, H.; Stessens, R.; Lazarides, M.; Van Damme,	
B.; Carton, H.; Baert, L	321
Pathology and Pathophysiology of Painful Bladder Diseases	
Holm-Bentzen, M.	327
Neoadjuvant Therapy for Locally Invasive Bladder Cancer	
Okajima, E.; Ozono, S.; Hirao, Y.; Babaya, K.; Aoyama,	
H.: Maruvama, Y.: Samma, S.: Iwai, A.: Momose, H.	332

Failure of Cytotoxic Chemotherapy, 1983–1988, and the Emerging Role of Monoclonal Antibodies for Renal Cancer Yagoda, A.; Bander, N.H.	338
Fine-Needle Aspiration Biopsy Sampling in Renal Transplan- tation: Interstitial Cellular Infiltrates and Major Histocom- patibility Complex Class-II Antigen Expression in Renal Tubular Cells	
Miller, S.M.; Belitsky, P.; Gupta, R.	346
gic Nerves in Human Prostate	
Jungblut, T.; Aumüller, G.; Malek, B.; Melchior, H.	352
Possible Role for Acetylcholine as a Neurotransmitter in Ca- nine Penile Erection	
Stief, C.; Diederichs, W.; Benard, F.; Bosch, R.; Aboseif, S.;	
Lue, T.F.; Tanagho, E.A	357
Experimental Investigations on Dissolution of Incrustations	
on the Surface of Catheters (With 1 color plate)	
Hesse, A.; Schreyger, F.; Tuschewitzki, G.J.; Classen, A.;	
Bach, D	364

vī

Case Reports

Subject Index

Spontaneous Peripelvic Extravasation due to Squamous Cell	
Carcinoma of the Ureter	
Murai, M.; Matsuzaki, S.; Aihara, M.; Nakamura, H.	370
Large-Bowel Perforation. A Rare Complication of Intravesical	
Nd-YAG Laser Irradiation of Bladder Tumors	
D'Hallewin, MA.; Clays, K.; Persoons, A.; Baert, L.	373
Structural Studies on Milk of Calcium in Calyceal Diverticu- lum	
Sasagawa, I.; Nakada, T.; Katayama, T.	375
Robertsonian Translocation Associated with Azoospermia	
Sasagawa, I.; Nakada, T.; Terada, T.; Katayama, T.	379
Author Index	381

Possible Role for Acetylcholine as a Neurotransmitter in Canine Penile Erection

Christian Stief¹, Wolfgang Diederichs, Francois Benard, Ruud Bosch, Sherif Aboseif, Tom F. Lue, Emil A. Tanagho

Department of Urology, University of California School of Medicine, San Francisco, Calif., USA

Key Words. Penile erection · Acetylcholine · Muscarinic · Nicotinic · Acetylcholinesterase · Neurotransmitter · Neurostimulation

Abstract. In 15 adult dogs, the possible role of acetylcholine as a parasympathetic neurotransmitter in canine penile erection was investigated. Intracavernous injection of increasing dosages of acetylcholine $(0.1-100 \ \mu g)$ induced a dose-dependent erectile response with increased arterial flow, cavernous smooth muscle relaxation, and venous occlusion. This erectile response was completely abolished after muscarinic blockade by intracavernous injection of 0.1 mg atropine. After cavernous nerve stimulation, atropine injection significantly reduced the pudendal arterial flow (by 25%) and likewise caused a significant reduction in cavernous outflow restriction. Histologic staining showed acetylcholinesterase-positive fibers around the cavernous arteries and within the cavernous erectile tissue.

By means of descriptive anatomy, Kölliker [18] postulated in 1852 that penile erection is due to arterial relaxation with subsequently increased arterial flow, cavernous smooth muscle relaxation and restriction of venous drainage. In 1863, Eckard [10] was the first to examine the phenomenon of canine penile erection functionally by galvanic stimulation of the nervi erigentes. He showed these nerves to be parasympathetic, emerging from S1 to S3. Since then, these findings have been reproduced in different species [1, 2, 7, 9, 14, 19, 20, 22, 24].

According to the classic theory of autonomic parasympathetic neurotransmission [11], acetylcholine (ACh) has been postulated as the neurotransmitter for penile erection. Over a century ago, Anrep and Cybulsky [3] reported that erection is atropine-resistant and Nikolsky [22] found that erection induced by stimulation of the nervi erigentes could be abolished by atropine. Nevertheless, the question of the atropine-sensitivity of erection remains, with in vivo studies yielding results that are both contradictory [5, 7, 14, 27] and confirmatory [9, 24]. In vitro findings have also been conflicting: no effect [4, 8]; relaxation [6, 13] or contraction [17] of the cavernous smooth muscle, and inconsistent effects [1].

The aim of this study was to elucidate the role of ACh in canine penile erection in vivo.

Materials and Methods

In 15 adult male mongrel dogs (21-34.5 kg), anesthesia was induced by subcutaneous injection of acepromazine (5 mg/kg body weight) and ketamine (0.5 mg/kg body weight) and maintained by intravenous infusion of sodium pentobarbital (approximately 1 mg/kg body weight/h). Systemic blood pressure was monitored via a cannula in the femoral artery.

With the animal in the supine position, the abdominal cavity was exposed via a mid-line incision. An ultrasonic flow probe (Transsonic Systems Inc., N.Y.) was placed around the right internal pudendal artery to measure the arterial blood flow to the penis. In 9 dogs (No. 7–15), the cavernous nerves were identified by neurostimulation with a prick electrode (Avery Laboratories), caudal to their branching from the pelvic nerve. A bipolar cuff electrode (Avery Laboratories) was placed around the cavernous nerve bundles bilaterally. Penile erection was induced with an Avery Stimulator (0.6–1.2 V, 20 Hz; pulse duration 1 ms; stimulation time 1 min).

The penis was dissected in all dogs, exposing both corpora cavernosa from the pubic bone to the prepuce. For intracavernous pressure recording (Grass Polygraph, Model 7), a 21-gauge scalp-vein

¹ Dr. Stief was sponsored by a grant from the Deutsche Forschungsgemeinschaft.

Fig. 1. Apparatus for protocol. Erection was induced by cavernous nerve stimulation or intracavernous injection of ACh. Arterial response was measured by Doppler analysis of the distal pudendal artery. Venous occlusion was measured by cavernous perfusion with clamped aorta, and intracavernous pressure was recorded via a needle inserted into the cavernous body.

Table 1. Canine erectile response to intracavernous injection of accetylcholine (ACh)

ACh µg	Pudendal arterial flow	1	Intracavernous pressure ²	
	maximum increase ml/min	duration of increase ³ s	maximum increase cm H ₂ O	duration of increase s
0.1	2-4 (2.8)	55-90 (77)	28-60 (49)	50-120 (96)
1	3.5-7 (4.4)	90-300 (141))	45-112 (72)	90-310 (169)
10	4-7 (5.8)	165-310 (229))	52-124 (91)	180-360 (245)
100	5-13 (11)	385-610 (452))	104–144 (127)	360-540 (443)

All values depict the range, with the mean in parentheses.

¹ Baseline pudendal arterial flow = 6.4 ml/min (4-10 ml/min).

² Baseline intracavernous pressure = $20 \text{ cm } H_2O (12-32 \text{ cm } H_2O)$.

³ Values represent entire duration of increase, both maximal and moderate elevations, before return to baseline.

needle was inserted proximally into each cavernous body and connected to a Statham transducer (Model P23). To evaluate the cavernous outflow system without the influence of arterial flow, the aorta was dissected for occlusion with a Satinsky clamp proximally to the branching of the external iliac arteries. For continuous cavernous perfusion, a 19-gauge scalp-vein needle was inserted distally into each cavernous body and connected to a Harvard perfusion pump. Anticoagulation was achieved by 1,000 U sodium heparin intravenously and maintained with 50 U/h (fig. 1).

Intracavernous Injection of ACh

Increasing dosages of ACh (0.1, 1 [5×10^{-9} mol], 10 and 100 µg; Miocholine, Cooper Vision, Puerto Rico) were injected into the right cavernous body, with an interval of 15 min between each injection. To verify reproducibility, the injection protocol was then repeated on the left cavernous body.

Venous Study after Intracavernous Injection of ACh

To study the cavernous outflow, the aorta was clamped and saline solution $(37 \,^{\circ}\text{C})$ was perfused intracavernously at constant rates of 3.8, 7.6, 15.3 and 26.6 ml/min. Each perfusion was delivered at 1, 3 and 5 min after clamping the aorta, with a 15-min interwal allowed before increasing the perfusion rate. Perfusions lasted for 1 min or until the intracavernous pressure surpassed 180 cm H_2O (out of scale). The perfusion study was then repeated with the intracavernous injection of 100 µg ACh 30 s after clamping the aorta.

Intracavernous Injection of ACh after Muscarinic Blockade

After intracavernous injection of 0.1 mg atropine $(1.44 \times 10^{-7} \text{ mol})$, increasing dosages of ACh (0.1, 1, 10 and 100 µg) were injected intracavernously with an interval of 3 min between each injection.

Fig. 2. Erectile responses to intracavernous injection of ACh at different doses $(0.1-100 \ \mu g)$. For 1 μg , the flow response is also shown.

Effect of Muscarinic Blockade on Neurostimulation-Induced Erection

To study the effect of muscarinic blockade on neurostimulated erection, 0.1 mg atropine was injected in dogs 7-12 after five control stimulations with recordings of internal pudendal arterial and intracavernous pressure. One minute after the injection of atropine, five more erections were induced by neurostimulation. The interval between each neurostimulation was 5 min.

Effect of Muscarinic Blockade on Neurostimulation-Induced Cavernous Outflow Occlusion

To study the influence of muscarinic blockade on the cavernous outflow in neurostimulated erections, a venous study was performed in dogs 13–15. After clamping the aorta, the cavernous nerve was stimulated at 30 s; at 50 s, the cavernous body was perfused with saline solution (37 °C) at the rate of 3.8 ml/min until the intracavernous pressure reached 180 cm H₂O. This control study was repeated four times. It was then performed five times after intracavernous injection of 0.1 mg atropine.

Histologic Staining for Acetylcholinesterase

At the end of the study, the aorta was clamped in 7 dogs (No. 1-7) and the distal aorta was perfused with 2 liters of saline to wash

out the erythrocytes from the cavernous spaces. The cavernous bodies were then removed, frozen in liquid nitrogen and processed for acetylcholinesterase (AChE) staining [12].

Analysis of Data

Statistical analysis was performed with the Student's t test.

Results

Intracavernous Injection of ACh

The intracavernous injection of ACh into the right cavernous body led to an immediate increase in flow in the right pudendal artery, followed by a moderate elevation in flow throughout erection. The rise in cavernous pressure followed the arterial flow increase after a delay of 8–14 s. The initial strong increase in intracavernous pressure had a dose-dependent duration (from a mean of 14 s after 0.1 μ g ACh to a mean of 84 s after 100 μ g ACh; table 1) and then rebounded to moderately elevated levels (fig. 2). The intracavernous injection of ACh into the left cavernous body induced comparable responses in the intracavernous pressure, but no significant changes in arterial flow within the right pudendal artery.

Injections of ACh ($\leq 10 \,\mu$ g) had no effect on systemic blood pressure. In 5 of 6 dogs, the injection of 100 μ g lowered the blood pressure from a mean of 160/130 to 120/70 mm Hg for 15-20 s.

Venous Study after Intracavernous Injection of ACh

After clamping the aorta, saline perfusion alone of the cavernous body induced a rise in intracavernous pressure that plateaued after 11-16 s (fig. 3). The mean pressure at this plateau was 32 cm H₂O at a flow rate of 3.8 ml/min, 45 cm H₂O at 7.6 ml/min, 65 cm H₂O at 15.3 ml/min and 87 cm H₂O at 26.6 ml/min.

After intracavernous injection of 100 μ g ACh, the first perfusion (1 min after clamping the aorta) increased the intracavernous pressure to above 180 cm H₂O at all flow rates in all dogs, indicating cavernous outflow occlusion by ACh. At the second perfusion (min 3), venous occlusion (intracavernous pressure > 180 cm H₂O within 60 s of perfusion) occurred in all dogs with perfusion rates of 15.3 and 26.6. ml/min. At the third perfusion (min 5), venous occlusion was found only in 1 dog in response to the perfusion rate of 26.6 ml/min.

Intracavernous Injection of ACh after Muscarinic Blockade

After the intracavernous injection of 0.1 mg atropine, ACh had no effect on pudendal arterial flow or intracavernous pressure, regardless of the dosage.

Effect of Muscarinic Blockade on Neurostimulation-Induced Erection

Control neurostimulation of the right cavernous nerve induced a full erection in all 6 dogs, with a mean maximal intracavernous pressure increase of 117.9 cm H_2O (range 88–140) above baseline (table 2). A pressure increase of 60 cm H_2O was reached after a mean of 18.5 s (range 10–22) after the beginning of stimulation; an increase of 80 cm H_2O required a mean of 31.2 s (range 14–76). The mean maximal flow increase after neurostimulation was 33.5 ml/min (range 30–38).

After muscarinic blockade, the mean maximal intracavernous pressure increase was $117.9 \text{ cm } H_2O$ (range 100-128) above baseline. A pressure increase of 60 cm H_2O was reached after a mean of 27.3 s (range 16-36) from the beginning of stimulation. At the end of the study (i.e. at the fifth stimulation), the time required to attain this level was 39.2 s (range 24-72). The mean

Fig. 3. Top: With the aorta clamped, saline perfusion showed no venous occlusion. Middle: After 100 μ g ACh intracavernously, venous occlusion was found 1 min after injection of a perfusion rate of 3.8 ml/min. Bottom: 3 min after intracavernous injection of 100 μ g ACh, venous occlusion could be induced by perfusion rates of 15.3 ml/min and greater.

maximal flow increase after neurostimulation was 24.9 ml/min (range 21-32).

The reduction of the maximal flow increase by 25% after atropine was statistically significant (p < 0.001), as was the prolongation after atropine of the time required for the intracavernous pressure to attain a landmark level (40, 60, 80 cm H₂O). The maximal intracavernous pressure levels were not significantly different before and after atropine (p = 0.99). Likewise, there were no significant differences between the times required for the intracavernous pressure to drop back to landmark levels before and after atropine.

Effect of Muscarinic Blockade on Neurostimulation-Induced Cavernous Outflow Occlusion

After clamping the aorta, neurostimulation and subsequent cavernous perfusion of 3.8 ml/min, the intracavernous pressure reached 180 cm H₂O after a mean perfusion time of 24.5 \pm 1.9 s. After muscarinic blockade, this time increased to 34.4 \pm 3.9 s (p < 0.001).

Fig. 4. Histologic staining revealed fibers positive for AChE around the cavernous artery (a) and within the cavernous smooth muscle (b). Magnification \times 400 and \times 100, respectively, before reduction.

Table 2. Effect of intracavernous injection of 0.1 mg atropine on neurostimulation-induced canine penile erection

	Pudendal arterial flow ml/min	Time (s) needed to reach intracavernous pressure increase			Maximal
		+ 40 cm H ₂ O	+60 cm H ₂ O	+80 cm H ₂ O	pressure cm H_2O
Before atropine After atropine	33.5 ± 3.9 24.9 ± 2.8*	15.4 ± 3.0 $22.5 \pm 4.3*$	18.5 ± 4.0 27.3 ± 5.4*	22.6±4.9 31.3±6.1*	117.9 ± 12.4 $117.9 \pm 6.7**$

* p < 0.001; ** p > 0.05.

Histologic Staining for AChE

Fibers positive for AChE were found in all dogs around the cavernous artery, within nerve bundles near the cavernous arteries, and within the cavernous erectile tissue (fig. 4).

Discussion

Our findings show that intracavernous injection of ACh in the canine induces a dose-dependent erectile response (e.g. increased arterial flow, relaxation of the cavernous smooth muscles, and venous occlusion). This response was completely abolished after muscarinic blockade by intracavernous atropine. Thus, the induction of erection by intracavernous ACh represents a muscarinic effect in the canine model; in contrast, in men and monkeys intracavernous ACh also has a nicotinic (ganglionic) effect both in vitro [1] and in vivo [25]. In the present study, the neurostimulation-induced erection was only modulated, but was not abolished, by the intracavernous injection of atropine. A significant reduction in arterial flow delayed the time required for the intracavernous pressure to attain maximal levels. The venous study during neurostimulation showed reduced cavernous outflow restriction after atropine, indicating less complete cavernous smooth muscle relaxation [15] than during neurostimulation without previous muscarinic blockade.

The above findings suggest that the role of ACh in canine penile erection resides in its effect on the cavernous artery and cavernous smooth muscle. This is supported by the histologic studies showing AChE-positive staining around the cavernous artery and within the cavernous erectile tissue.

Our results are in accordance with those of other in vivo studies; Valji and Bookstein [26] have described penile erection in the dog after intracavernous injection of ACh; Dorr and Brody [9] and Andersson et al. [2] have shown that atropine significantly reduces the canine erectile response to neurostimulation; and McConnell et al. [21] and Shirai et al. [23] have reported AChE-positive fibers around the cavernous artery and within the cavernous erectile tissue in men, monkeys, cats, rabbits and dogs.

In contrast, no erectile response has been observed after intra-aortic injection of ACh [14]. This may be due to the immediate inactivation of ACh by AChE in the blood, to the pronounced lowering of the systemic blood pressure in response to high doses of ACh, or to the fact that these investigators recorded the pressure in the glands rather than in the cavernous bodies. In another study, Carati et al. [7] administered high doses of atropine (1 mg/kg body weight), but found no effect on the erectile response to pelvic nerve stimulation. We think that this may be due to the systemic application of atropine. The muscarinic blockade for erection may be more complete, even after much smaller doses, when atropine is injected directly into the cavernous body instead of into the systemic circulation.

The canine cavernous erectile tissue is reportedly relaxed by ACh [6], as are human cavernous tissue strips [13]. These two in vitro studies supporting our in vivo findings are at variance with the in vitro results of other investigators, who have reported both no effect of ACh on human cavernous smooth muscle strips [4, 21] and inconsistent effects [1]. In muscle strips of different species, about a third showed contraction after application of ACh [17]. These differences may have several explanations: to prove a relaxing effect, the smooth muscle must first be contracted by electrical or pharmacologic means. In those studies where this was done before the application of ACh, a relaxing effect was shown. Inconsistent effects may be due to simultaneous nicotinic and muscarinic stimulation in the cavernous tissue of monkeys and men. Finally, the action of ACh may depend on the integrity of the cavernous endothelium, releasing the endothelium-releasing factor that is responsible for the effect of ACh on erection [Goldstein I., personal commun.]. A destruction of the cavernous endothelium during tissue preparation could prevent any subsequent effect of ACh on the smooth muscle. In conclusion, our in vivo results, together with the histologic findings, suggest a possible role for ACh in canine penile erection. Further studies are needed to reveal additional neurotransmitters responsible for the erectile response to neurostimulation after muscarinic blockade.

References

- Adaikan, P.G.; Karim, S.M.M.; Kottegoda, S.R.; Ratnam, S.S.: Cholinoreceptors in the corpus cavernosum muscle of the human penis. J. Auton. Pharmac. 3: 107-111 (1983).
- 2 Andersson, P.-O.; Bloom, S.R.; Mellander, S.: Haemodynamics of pelvic nerve induced penil erection in the dog: possible mediation by vasoactive intestinal polypeptide. J. Physiol., Lond. 350: 209-224 (1984).
- 3 Anrep, B.; Cybulsky, N.: Zur Physiologie der gefässerweiternden und gefässverengenden Nerven. St. Petersb. med. Wschr. 20: 215-221 (1884).
- 4 Benson G.S.; McConnnell, J.; Lipshultz, L.I.; Corriere, J.N., Jr.;

Wood, J.: Neuromorphology and neuropharmacology of the human penis: an in vitro study. J. clin. Invest. 65: 506-513 (1980).

- 5 Brindley, G.S.: Pilot experiments on the actions of drugs injected into the human corpus cavernosum penis. Br. J. Pharmacol. 87: 495-500 (1986).
- 6 Carati, C.J.; Goldie, R.G.; Warton, A.; Henry, P.J.; Keogh, E.J.: Pharmacology of the erectile tissue of the canine penis. Pharmacol. Res. Commun. 17: 951-966 (1985).
- 7 Carati, C.J.; Creed, K.E.; Keogh, E.J.: Autonomic control of penile erection in the dog. J. Physiol., Lond. 384: 525-538 (1987).
- 8 Domer, F.R.; Wessler, G.; Brown, R.L.; Charles, H.C.: Involvement of the sympathetic nervous system in the urinary bladder internal sphincter and in penile erection in the anesthetized cat. Investve Urol. 15: 404-407 (1978).
- 9 Dorr, L.D.; Brody, M.J.: Hemodynamic mechanisms of erection in the canine penis. Am. J. Physiol. 213: 1526-1531 (1967).
- 10 Eckhard, C.: Untersuchungen über die Erektion des Hundes. Beitr. Anat. Physiol. 3: 123-166 (1863).
- 11 Goodman Gilman, A.; Goodman, L.; Gilman, A.: The pharmacological basis of therapeutics (Macmillan, New York 1980).
- 12 Goto, S.; Ikeda, K.; Toyohara, T.: An improved staining technique for acetylcholinesterase activity using rubeanic acid in the diagnosis of Hirschsprung's disease. Jap. J. Surg. 14: 135-138 (1984).
- 13 Hedlund, H.; Andersson, K.-E.: Contraction and relaxation induced by some prostanoids in isolated human penile erectile tissue and cavernous artery. J. Urol. 134: 1245-1250 (1985).
- 14 Henderson, V.E.; Roepke, M.H.: On the mechanism of erection. Am. J. Physiol. 106: 441-448 (1933).
- 15 Juenemann, K.P.; Luo, J.A.; Lue, T.F.; Tanagho, E.A.: Further evidence of venous outflow restriction during erection. Br. J. Urol. 58: 320-324 (1986).
- 16 Klinge, E.; Penttilä, O.: Distribution of noradrenaline and acetylcholinesterase in bull and rabbit penile erectile tissue. Annls Med. exp. Biol. Fenn. 47: 17-21 (1969).
- 17 Klinge, E.; Sjöstrand, N.O.: Comparative study of some isolated mammalian smooth muscle effectors of penile erection. Acta physiol. scand. 100: 354-367 (1977).
- 18 Kölliker, A.: Das anatomische und physiologische Verhalten der cavernösen Körper der Sexualorgane. Verh. phys.-med. Ges. Würzb. 2: 118-133 (1852).

- 19 Langley, J.N.; Anderson, H.K.: The innervation of the pelvic and adjoining viscera. III. The external generative organs. J. Physiol., Lond. 19: 72-129 (1895-96).
- 20 Lue, T.J.; Takamura, T.; Schmidt, R.A.; Palubkinskas, A.J.; Tanagho, E.A.: Hemodynamics of erection in the monkey. J. Urol. 130: 1237-1241 (1983).
- 21 McConnell, J.A.; Benson, G.S.; Wood, J.: Autonomic Innervation of the mammalian Penis: A histochemical and physiological study. J. neural Transm. 45: 227-238 (1979).
- 22 Nikolsky, W.: Ein Beitrag zur Physiologie der Nervi Erigentes. Arch. Anat. Physiol., pp. 209-221 (1879).
- 23 Shirai, M.; Sasaki, K.; Rikimaru, A.: Histochemical investigation on the distribution of adrenergic and cholinergic nerves in human penis. Tohoku J. exp. Med. 107: 403-404 (1972).
- 24 Sjöstrand, N.O.; Klinge, E.: Principal mechanisms controlling penile retraction and protrusion in rabbits. Acta physiol. scand. 106: 199-214 (1979).
- 25 Stief, C.G.; Benard, F.; Bosch, R.; Aboseif, S.; Nunes, L.; Lue, T.F.; Tanagho, E.A.: Acetylcholine as a possible neurotransmitter in penile erection in monkeys. Proc. Wld Meet on Impotence Research, Boston 1988, p. 40.
- 26 Valji, K.; Bookstein, J.J.: The veno-occlusive mechanisms of the canine corpus cavernosum: angiographic and pharmacologic studies. J. Urol. 138: 1467-1469 (1987).
- 27 Wagner, G.; Brindley, G.S.: The effect of atropine, and alpha and beta blockers on human penile erection: a controlled pilot study; in: Zorgniotti, Rossi, Vasculogenic Impotence, pp. 77-81 (Thomas, Springfield, 1978).

Received: January 5, 1989 Accepted: January 23, 1989

Dr. C.G. Stief Department of Urology University Clinics Hugstetterstrasse 55 D-7800 Freiburg (FRG)