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Two subsets of human alphoid repetitive DNA show 
distinet preferential localization in the pericentric regions of 
chromosomes 13, 18, and 21 
P. Devilee,1 T. Cremer,2 P. Slagboom,1 E. Bakker,1 H.P. Scholl,2 H .D. Hager,2 A .F .G . Stevenson,2 
C.J. Cornelisse,3 and P.L. Pearson1 
1 Department of Human Genetics, University Medical Center, Leiden, 2 Institut für Anthropologie und Humangenetik, Ruprecht-
Karls-Universität, Heidelberg, and 3 Department of Pathology, University Medical Center, Leiden 

Abstract. We have isolated and characterized two human middle repetitive alphoid DNA fragments, LI.26 
and LI.84, which localize to two different sets of chromosomes. In situ hybridization revealed both repeats to 
have major and minor binding sites on the pericentric regions of several chromosomes. Probe LI.26 maps 
predominantly to chromosomes 13 and 21. Probe LI.84 locates to chromosome 18. Minor hybridization sites 
for both probes include chromosomes 2, 8, 9, and 20; in addition, LI.26 revealed minor sites on chromosomes 
18 and 22. The binding to these sites strongly depends on hybridization conditions. In Southern blot hybridiza-
tions to total human DNA, both LI.26 and L1.84 give the same ladder pattern, with a Step size of 170 bp, 
indicating their presence as tandem repeats, but with different band intensities for each probe. The chro-
mosome-speeifie nature of particular multimers was confirmed by Southern blot analyses of a human-rodent 
hybrid cell panel. We conclude that LI.26 and LI.84, with their related sequences, constitute subfamilies of 
alphoid DNA that are specific for subsets of chromosomes and, in some cases, possibly even for Single 
chromosomes. 

The DNA sequences adjacent to the centromeres of 
human chromosomes have been shown to consist of 
repeated DNA sequences of varying complexity, Or­
ganization, and abundancy (Gosden et al., 1975; 
Mitchell et al., 1979). Some of these have been defined 
as satellite DNAs on the basis of different isopyenotie 
centrifugation techniques (Mitchell et al., 1979). Part 
of the sequences have been shown to be simple se­
quences consisting of long, uninterrupted arrays of 
tandemly arranged units of 6-12 bp, whereas others 
are longer and organized in a more complex manner. 
Restriction endonuclease digestions of total human 
DNA also revealed the presence of satellite DNAs. 

Supported by a grant (A83.21) from the Netherlands Cancer 
Foundation (Koningin Wilhelmina Fonds) and by the Deutsche 
Forschungsgemeinschaft (G 59/5-2). 

Regnest reprints from: Dr. P. Devilee, Department of Human 
Genetics, Instituut voor Anthropogenetica, P.O. Box 9503, 2300 
RA Leiden (The Netherlands). 

One of these displays a basic repeating unit of 170 bp 
(Manuelidis, 1976) and is referred to as alphoid DNA 
because of its homology to the alpha component iso­
lated from the African green monkey (Manuelidis and 
Wu, 1978). Restriction of genomic DNA with the 
endonuclease EcoRl reveals this family as pronounced 
340-bp and 680-bp fragments in ethidium bromide-
stained gels (Darling et al., 1982). 

It has become apparent that some alphoid DNA 
sequences can be enriched on specific chromosomes. 
Using the gel-purified uncloned EcoRl 340-bp frag-
ment as a probe, Manuelidis (1978) demonstrated in 
situ hybridization to the centromeres of all human 
autosomes, but especially to those of chromosomes 1, 
3, 7, 10, and 19. An alphoid 2.0-kb BamUl restriction 
fragment characterizes the centromere of the X chro­
mosome (Yang et al., 1982; Willard et al. 1983), while 
Jabs et a l (1984) have identified a 3.0-kb BamHl 
fragment, prominently enriched on chromosome 6, 
although the alphoid nature of this fragment still 
remains to be established. 
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Because chromosome-specific repetitive DNA may 
be useful in the diagnosis of chromosomal rearrange-
ments (Burk et al., 1983), our objective was to identify 
new repetitive sequences with different chromosome 
specificities than those already described. In this 
study, we show that the pericentric regions of chro­
mosomes 13, 18, and 21 can each be characterized by 
the presence of two middle repetitive alphoid DNA 
sequences. Furthermore, other chromosomes are 
shown to harbor related sequences, as they appear as 
minor binding sites upon in situ hybridization or seg-
regate as specific multimers within a human-rodent 
hybrid cell panel in Southern blot hybridizations. 

Materials and methods 
Materials 
Restriction endonucleases and Kornberg DNA Polymerase were 

obtained from Boehringer Mannheim. Nylon Gene Screen Alters, 
[a-32P]dCTP (3,000 Ci/mM in Tricine-bufTer), and 3H-dTTP 
(100 Ci/mM) were obtained from New England Nuclear. 

The recombinants LI.26 and LI.84 were picked from a library 
containing 1- to 2-kb fragments of totally Ea;RI-digested placental 
DNA. They were cloned in the plasmid pAT153 (Pearson et al., 
1982). The human-rodent hybrid cell panel was constructed using 
Standard fusion protocols (Herbschieb-Voogt et al., 1981). From 
the various hybrid cell lines, high-molecular-weight genomic DNA 
was prepared as described by Hofker et al. (1985). DNA isolated 
from human female spieen tissue served as a control. 

Reagents used for the chromosomal i n situ hybridization in-
cluded Denhardt's S o l u t i o n (0.02% Ficoll, m o l e c u l a r weight 
400,000, from Pharmacia, Sweden; 0.02% polyvinylpyrrolidone, 
molecular weight 360,000; and 0.02% bovine serum albumin from 
Serva, Heidelberg), dextran sulfate (Pharmacia, Sweden), form-
amide (Merck, Darmstadt), and salmon sperm DNA (Serva, 
Heidelberg). 

Southern blotting and hybridization 
Restriction enzyme digestion was done under conditions pre-

scribed by the supplier. To ensure complete digestion, a 3-fold 
excess of enzyme per microgram of DNA was used, and digestion 
was allowed to proceed for 3 h. Digests were separated in a 0.8% 
agarose gel in Tris-acetate buffer (22.5mM Tris-acetate [pH 8.3], 
10 mM sodium acetate, and 1 mM EDTA), transferred to Gene 
Screen filters (Southern, 1975), and treated as recommended by the 
supplier. Hybridization and subsequent washing of the filters were 
performed at 65 °C as d e s c r i b e d by Jeffreys and Flavell (1977). The 
hybridization mixture c o n t a i n e d 20 mM Tris-HCl (pH 7.5), 2 mM 
EDTA, 3 x S S C (1 x S S C = 0.15M NaCl and 0.015 M s o d i u m 

citrate), 0.1 mg/ml s a l m o n sperm DNA, 10 x Denhardt's S o l u t i o n , 

0 .1% SDS, 5% dextran sulfate, and 25-50 ng 32P-nick-translated 
probe (Rigby et al., 1977) in a final volume of 10-15 ml. Filters were 
i n c u b a t e d overnight, followed by several washing Steps with de-
creasing concentrations of SSC (Jeffreys and Flavell, 1977). Auto-
radiography was performed at — 70 °C for 1-3 days using Sakura 
film in conjunction with an intensifying screen. 

In situ hybridization 
For i n situ hybridization we used 72-h phytohemagglutinin 

(PHA)-stimulated human peripheral blood lymphocyte cultures 
from healthy male donors. Probes LI.26 and LI.84 were nick-trans-
lated using 3H-dTTP as described previously (Rappold et al., 
1984a). Hybridization to metaphase chromosomes was performed 
according to published protocols (Gerhardt et al., 1981; Rappold 
et al., 1984b), with some modifications. Metaphase spreads were 
prepared on slides which had been pretreated with 10 x Denhardt 's 
S o l u t i o n . The h y b r i d i z a t i o n mixture contained 0.2-0.5 ug/ml of t h e 

r a d i o a c t i v e p r o b e t o g e t h e r w i t h an excess (500-1,000 x ) of s a l m o n 

sperm DNA, 2 x SSC, 1 x Denhardt's S o l u t i o n , 50% f o r m a m i d e , 

and 10% dextran s u l f a t e . The p r o b e and s a l m o n sperm D N A were 
denatured for 5 min at 100 °C, followed by rapid cooling on ice, 
before they were added to the mixture. Hybridization was carried 
out overnight at 40-42 C i n a humidified C h a m b e r . Slides were then 
washed according to either of two procedures: 

1. Three changes of 2 x SSC at 65-68 C, followed by three 
changes of 0.1 x SSC at room temperature, allowing 30 min for 
each change (Gerhardt et al., 1981). 

2. Three changes of 1 x SSC, 50% formamide (pH 7.0) at 40 C, 
followed by three changes of 0.1 x SSC at room temperature, with 
20 min for each change (Harper and Saunders, 1981). 

Washed slides were dehydrated in ethanol and air dried. Auto-
radiography was performed as described by Rappold et al. (1984a). 
The exposure time was 5 6 days at 4°C. 

Chromosome Identification 
In some experiments, routine G-banding was performed prior 

to in situ hybridization. Microphotographs of the same metaphase 
plates were taken before and after hybridization and scored to 
identify individual chromosomes and localize silver grains. Cells 
were restained with Giemsa after autoradiography. In other experi­
ments, bromodeoxyuridine (BrdU) and fluorodeoxyuridine (FdU) 
were added to lymphocyte cultures after 65 h ineubalion in a final 
concentration of 10 ug/ml and 0.5 ug/ml, respectively. Six hours 
later, Colcemid (0.05 ug/ml) was added for 30 min, and chro­
mosome preparations were made (Schempp and Meer, 1983). After 
autoradiography, the chromosomes were stained using the Hoechst 
33258-Giemsa technique introduced by Wolff(1974), with minor 
modifications (Schempp and Meer, 1983). This procedure results in 
an R-type chromosome replication pattern, with the BrdU-
substituted chromosomal Segments colored pale blue and the dT-
substituted regions stained dark red. 

Results 
Alphoid DNA characteristics of LI.26 and LI.84 
A dot-blot experiment revealed the repetitive na­

ture of LI.26 and LI.84 (not shown here). They were 
found to occur about 2,000 times per haploid genome 
and were remarkable in that they produced a "ladder" 
of bands when hybridized to EcoRl digested genomic 
DNA in Southern blot hybridizations (Fig. 1, panels 
A and B, lanes 11). The lengths of these roughly 
correspond to multiples of 170 bp, which is a strong 
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Fig. 1. Hybridization of probe LI.26 (panel A) and LI.84 (panel B) to a series of human-rodent hybrid cell lines. DNA was digested 
with E c ö R I . Numbers between the panels indicate multiples of 170 bp. After hybridization with LI.26 (panel A), filters were stripped and 
rehybridized to LI .84 (panel B). For both panels: lane 1: ADA 1; lane 2: ADA 6; lane 3: ADA 10; lane 4: ADA 13; lane 5: ADA 14; lane 
6: A3/G1; lane 7: A3/G12; lane 8: A3/G14; lane 9: 34-2-3; lane 10: PGME4; lane 11: 46,XX. See Table I , top, for chromosome Constitution 
of the hybrids. 

Fig. 2. Hybridization of probe LI.26 to two hybrid cell lines with either chromosome 21 (SSC 16-5, lane 2) or chromosome 13 (34-2-3 
B3, lane 3) as their only retained human material. Lane 1 is 46,XX total genomic DNA. Digestion was performed with EcoRl. 

indication that both DNA sequences are members of 
the alphoid repetitive DNA family (Darling et al., 
1982). Both LI.26 and LI.84 appear to hybridize to 
the same "ladder", but with different intensities per 
repeat length for each probe. LI.26 itself is 0.85 kb in 
length, whereas LI.84 is 0.69 kb long. Notably, these 
particular fragment lengths appear most prominently 
in hybridizations to £o?RI-digested DNA for each 
probe respectively (Fig. 1, lanes 11, both panels). This 
implies that each probe is a true representative of its 
major repetitive component. 

Segregation of alphoid multimers within a hybrid 
cell panel 
When hybridized to £cöRI-digested DNA from a 

human-rodent hybrid cell panel (Table I, top), the 
repeat lengths can be shown to segregate within the 
panel (Fig. 1, panel A for LI.26, panel B for LI.84, 
lanes 1 —10 for both panels). For LI.84, this segrega­
tion is particularly conspicuous for multimers 4 and 
8. These multimers are absent from or only weakly 

present in hybrids ADA1, ADA 13, ADA 14, 34-2-3, 
and PG/ME4 (Fig. 1, panel B, lanes 1, 4, 5, 9, and 10, 
respectively), whereas other cell lines produce strong 
Signals at these positions. For LI.26, a similar 
phenomenon is seen for multimers 4, 5 to 9, and 16. 
No hybridization occurs at the 5-, 7-, and 9-mer in 
hybrids A3/G1 and A3/G12 (Fig. 1, panel A, lanes 6 
and 7, respectively), showing that these particular 
multimers are not abundantly present on the set of 
human chromosomes present in these hybrids. Con-
versely, the 8-mer shows up brightly in these hybrids, 
as well as in three others (ADA6, ADA 10, and A3/ 
Gl4 ; lanes 2, 3, and 8, respectively). 

It appears, therefore, that various multimers of 
both LI .26 and LI .84 may be assigned to different sets 
of chromosomes, which, in certain cases, may be re-
duced to individual chromosomes. Compare, for ex-
ample, Signals obtained with both probes in hybrids 
ADA1, ADA3, ADA 14, and PG/ME4 (lanes 1, 4, 5, 
and 10, respectively). Because of the repetitive nature 
of both probes, however, conventional concordance 



Table I. Listing of chromosomes in the hybrid cell panel and intensity of hybridization signals obtained with LI.26 and LI.84 
Chr. Total Hybrid 
No. obs. 

ADA1 ADA6 ADA10 ADA 13 ADA14 A3G1 A3G12 A3G14 34-2-3 PGME4 34-2-3 B3 SCC16-5 
1 6 + + + + 9a 

2 0 
3 5 + ?a + + + 4 6 + + + + + + 5 6 + + + + + 6 4 + + + 7 3 + + + 8 9 + + + + + + + + 9 4 + -f + 10 3 + ?a + 11 6 + + + + + 12 7 + + + + + + 13 8 + + + + + + + + 14 6 + + + + + + 15 5 + + + + + 16 1 + 17 6 + + + + + + 18 5 + + ± b + + 19 6 + + + + + + 20 4 ?a + 

21 8 + + + + + + + 22 7 + + + + + + + X 4 + + + + Y 4 + + + + 

Total 15 15 13 10 14 11 10 18 2 12 1 1 
Multimer (LI.26) Intensity of signalc 

4 3 3 2 3 3 1 1 2 4 3 3 3 
5 4 4 3 4 4 0 0 2 4 3 3 3 
6 4 4 2 3 4 2 2 1 4 1 3 0 
7 3 3 3 4 3 0 0 1 4 1 3 1 
8 1 3 2 0 1 3 3 3 1 0 1 0 
9 3 1 1 1 2 0 0 0 4 4 4 0 

10 3 3 3 5 3 2 3 0 0 0 0 0 
12 0 3 0 0 2 3 0 0 0 0 0 0 
13 4 3 3 1 3 3 0 0 1 1 1 0 
14 0 2 2 0 0 2 1 0 1 4 1 0 
16 1 3 2 0 l 4 2 1 3 4 0 0 
Multimer (LI.84) Intensity of signalc 

4 0 2 2 0 0 2 4 2 0 0 0 0 
5 4 3 2 4 4 0 0 0 4 3 2 2 
6 0 1 1 0 0 2 3 1 0 0 0 0 
8 0 2 2 0 0 2 3 2 0 0 0 0 
9 0 1 0 0 0 1 2 1 0 0 0 0 

10 0 1 1 0 0 2 2 1 0 0 0 0 
12 0 1 1 0 0 2 2 1 0 0 0 0 
14 0 1 1 0 0 1 2 I 1 1 0 0 
16 1 2 1 0 1 3 1 1 1 2 0 0 
a Chromosome not identified unambiguously. 
b Chromosome scored negative, but enzyme marker present. 
c Intensity of signals given as a percentage of relative strength in total human DNA: 0 = absent or very weak; 1 = 2 5 % ; 2 = 50%; 3 = 100%; 
4 = 200%; 5 = 400%. 
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Fig. 3. (a, c) Trypsin-Giemsa banded meta­
phase spreads from a male human lymphocyte 
culture. (b , d) The same metaphase spreads 
after in situ hybridization and autoradio­
graphy with probe LI.84 following different 
washing procedures (see text). Large arrows 
point to silver grains over the pericentric re-
gion of chromosome 18, indicating a con-
sistent major hybridization site of LI.84. 
Small arrows (b) indicate minor hybridization 
sites of LI.84 at the pericentric regions of 
chromosomes 2 and 20, which are not ap-
parenl under more stringent hybridization 
conditions (d). 

analysis, as used for mapping Single copy sequences, 
is not easily applicable. We have therefore resorted to 
a modified procedure. In each hybrid, the obtained 
signal per multimer was represented by a number 
corresponding to its intensity compared to the relative 
intensity of that multimer in total human DNA (see 
legend of Table I). This is shown in the middle portion 
of Table I for LI.26 and in the bottom portion of 
Table I for LI.84. When the data for a particular 
multimer are compared with the chromosome Con­
stitution of the hybrids (Table I, top), one can deter-
mine which chromosome gives the best fit for these 
signals. A chromosome was specifically excluded 
when a cell line contained it but failed to produce a 
signal. The absence of both signal and chromosome 
was regarded as indecisive, as was the absence of 
chromosome and presence of signal. The latter cate-

gory is created by the propensity of somatic cell hy­
brids to undergo chromosome breakage with reten-
tion of a cytogenetically unidentifiable fragment. 
Thus, the highest values for multimer 6 of LI.26 can 
be seen to cosegregate with chromosome 13 in the 
panel. Multimers 7 and 9, although less clear, also 
principally cosegregate with chromosome 13. Data for 
multimers 4 and 5 fit equally well to both chro­
mosomes 13 and 21. The mapping of the latter two, 
which make up at least 50% of the L1.26-related 
sequences, to chromosomes 13 and 21 was confirmed 
by Southern blot hybridization experiments with two 
hybrid cell lines, each containing one of these chro­
mosomes as their only retained human material. The 
results (Fig. 2) show that both multimers hybridize 
equally well to both hybrids (lane 2, chromosome 21; 
lane 3, chromosome 13), as well as to total DNA (lane 
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4 ^ * * ̂  ^ Fig. 4 . (a) Trypsin-Giemsa banded meta-
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| ^ ^1 * ' .* ' culture. (b) The same metaphase spread after 
^ ' ** in situ hybridization and autoradiography 
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m ^ *.+*000' 0 * grains over the pericentric regions of chro-

,^" ^ mosomes 13 and 21. (c) Metaphase spread 
* * ^ with R-type banding pattern obtained from 

y ^ male human lymphocyte culture after in situ 
hybridization with LI.26. Arrows indicate the 
pericentric regions of both chromosomes 13 
and one chromosome 21. 

1), indicating that these particular multimers are lo-
cated on these chromosomes in about the same abun-
dancy. For LI.84, the data for multimers 4, 6, 8, 10, 
and 12 fit best to chromosome 18 (Fig. 1; Table I). 
Other multimers of both L1.26 and L1.84 do not show 
clear cosegregation patterns and, therefore, probably 
map to a more complex set of chromosomes. 

In situ hybridization 
Figure 3 shows two representative G-banded meta­

phase plates before (a, c) and after (b, d) in situ 
hybridization with probe LI.84. Metaphase plates 
shown in Fig. 3a and b were obtained using procedure 
1 for relaxed washing of the slides after hybridization 
(see the materials and methods section), whereas 
procedure 2 (stringent washing) was applied to the 
metaphase plates shown in Fig. 3c and d. In both 

experiments, the pericentric region of chromosome 18 
was heavily labeled (large arrows in Fig. 3). Results 
obtained with LI.26 are illustrated in Fig. 4. It shows 
a representative metaphase plate with an R-type band­
ing pattern after in situ hybridization using washing 
procedure 1. Silver grains are present over the cen-
tromeric regions of chromosomes 13 and 21 (arrows). 

A quantitative evaluation of several experiments 
performed with LI.84 and LI.26 using the two dif­
ferent washing procedures is presented in Fig. 5. This 
analysis confirms the major localizations of LI.84 to 
chromosome 18 and of LI.26 to chromosomes 13 and 
21. However, consistent minor binding sites become 
apparent at the pericentric DNA of several other auto­
somes in experiments using washing procedure 1 (e.g., 
the small arrows in Fig. 3). Notably, minor hybridiza­
tion sites at the pericentric DNA of chromosomes 2, 
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Fig. 5. Schematic representation of tryp-
sin-Giemsa banded mid-metaphase chro­
mosomes, illustrating positions of silver grains 
in metaphase spreads from male human lym­
phocyte cultures after in situ hybridization 
with probes LI.84 and LI.26 and autoradio-
graphic exposure for 5-6 days. Each dot repre-
sents the chromosomal localization of one sil­
ver grain. (a) Distribution of silver grains in 
8 metaphase spreads after in situ hybridization 
with LI.84 (washing procedure 1). The peri­
centric region of chromosome 18 was so heavily 
labeled that individual silver grains could not 
be distinguished. (b) The same as a, using 
washing procedure 2; 21 metaphases were 
scored. (c) Distribution of silver grains in 
6 metaphase spreads after in situ hybridization 
with LI .26 (washing procedure 1). Because of 
heavy labeling, no individual grains could be 
distinguished on the pericentric regions of 
chromosomes 13 and 21. (d) The same as c, 
using washing procedure 2; 15 metaphases 
were scored. 

CJXlTtCjTTTDii 
j ! 

.1 jni • i i ^ - r a V i r D ü a i x T n i t i i r o j - r i r t f r u t u n u r a i r i i l t j v f • i k f i r c f t i D 

6 8 9 

(DKM 1 MlV.i» j C M 5 i ! iro j}.* JDCCxrjrmdtD 

10 11 12 13 14 15 16 17 1819 20 2122 X Y 

1 1 2 3 4 5 6 7 8 9 

10 11 12 13 14 15 16 17 1819 20 2122 X Y 



200 Devilee/Cremer/Slagboom/Bakker/Scholl/Hager/Stevenson/Cornelisse/Pearson 

8, 9, and 20 are seen with both probes. Other weak 
hybridization sites include similar regions on chro­
mosomes 4, 14, 15, 16, and 17. Furthermore, probe 
LI.26 shows a small, but significant, degree of binding 
to the pericentric DNA of chromosome 18, where the 
most prominent signal is observed with LI.84. 

Discussion 
The results show that the pericentric regions of 

some human chromosomes can be distinguished by 
specific fractions of middle repetitive alphoid DNA 
sequences, with LI.26 for chromosomes 13 and 21 and 
LI.84 for chromosome 18. 

In Southern blotting hybridization experiments, 
both sequences produce a ladder of bands as a result 
of the specific spacing of endonuclease restriction sites 
within the tandem Organization. The lengths of these 
bands correspond to multiples of 170 bp for both 
LI.26 and LI.84 (Fig. 1), indicating that both probes 
are members of the repetitive alphoid satellite DNA 
family (Manuelidis, 1976; Darling et al., 1982). We 
have subsequently sequenced both LI.26 and LI.84 
and found them to contain respectively five and four 
tandemly organized copies of this 170-bp alphoid 
monomer unit (Devilee et al., 1986). The units are 
74 + 7% homologous to the reported 170-bp consen-
sus sequence (Wu and Manuelidis, 1980) and also to 
each other. Furthermore, the mean cross-homology 
between LI.26 and LI.84 is 75%. It appears, 
therefore, that they represent two divergent subfami-
lies of alphoid DNA. Hence, while the entire alphoid 
DNA family is believed to be present in the cen­
tromeres of all human chromosomes, our data, and 
those of others (Manuelidis, 1978; Willard et al., 1983; 
Wolfe et al., 1985), suggest that specific variants of the 
170-bp unit may be highly enriched on certain chro­
mosomes. lf so, it may be possible to clone a specific 
alphoid satellite member for each of the 24 human 
chromosomes. As such, LI.84 represents a chro­
mosome 18-specific member, whereas LI.26 dem-
onstrates a strong cross-homology with alphoid DNA 
sequences principally located on chromosomes 13 
and 21. 

The weak cross-homologies observed in hybrid 
cells are compatible with in situ hybridization of both 
L1.26 and LI.84 to chromosomes 2, 4, 8, 9, 14 to 17, 
and 20. The size of the in situ hybridization binding 

site and degree of homology may explain the variable 
appearance of these sites when treated with various 
washing procedures. Other parameters, such as the 
quality of the chromosome preparations or small 
variations in the denaturing of chromosomal D N A or 
in the hybridization conditions, may also be impor-
tant. Since these parameters are difficult to control 
precisely, we cannot exclude that some chromosomes 
which did not reveal in situ hybridization with the two 
probes so far might do so under alternative hybridiza­
tion conditions. Of interest is that LI.26 hybridizes 
weakly to chromosome 18 in situ, whereas LI.84 does 
not hybridize to chromosomes 13 and 21, indicating 
that either the cross-homologies between LI.26 and 
LI.84 are insufficient to produce consistent signals 
under the conditions used or, and more likely, other 
subsets of alphoid D N A are present on chromosome 
18 which are more closely related to LI.26 than 
are LI.84 sequences, illustrating the heterogeneity of 
alphoid DNA sequences on one chromosome. 

Some special considerations should be taken into 
account when using a hybrid cell panel to map a 
repetitive probe. First, the complex distribution of the 
probe hampers conventional concordance analysis. 
However, in the case of LI.26 and LI.84, which ap­
pear to be enriched on one or two chromosomes, a 
"best fit" analysis, as presented here, can prove useful. 
The mapping (Fig. 1, Table I) of the prominent repeat 
lengths of both LI.26 and LI.84, which represent 
either the most homologous or the most abundant 
sequences, are in agreement with the results obtained 
from in situ hybridization. Clearly, subclones of hy­
brids differing only in the presence of a single chro­
mosome are extremely informative, especially if the 
repetitive sequence is more dispersed. Second, within 
a hybrid cell line, only a fraction of the cells may 
contain a particular chromosome. As a consequence, 
signals for a repeat length putatively located on this 
chromosome will be relatively weaker, thereby inter-
fering with its correct mapping. Furthermore, un-
detected translocations can misguide the unwary cyto-
geneticist, leading to faulty conclusions about the 
chromosome Constitution of the cell line. In situ hy­
bridization identifies the chromosomes directly and, 
simultaneously localizes the DNA sequences to spe­
cific regions on these chromosomes. Southern blotting 
of a hybrid cell panel, on the other hand, reveals 
interesting aspects about the Organization of repetitive 
probes on the various chromosomes which would not 
be apparent from in situ hybridization, such as which 
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multimer is located on which chromosome. Our re-
sults clearly show that both techniques complement 
each other. 

The availability of chromosome-specific probes will 
be useful in the study of hypotheses on alleged func-
tions of alphoid DNA (Manuelidis, 1982). Further-
more. when one considers their location to chro-
mosomes 13, 18, and 21, LI.26 and LI.84 will become 
valuable tools for the detection in undividing cells of 
the three most common trisomies in man (Cremer et 
al., in preparation). 
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