Progress in CLINICAL ENZYMOLOGY Volume 2

Editors-in-Chief

David M. Goldberg, M.D., Ph.D.

Professor and Chairman Department of Clinical Biochemistry The University of Toronto

Biochemist-in-Chief The Hospital for Sick Children Toronto, Ontario, Canada

Mario Werner, M.D.

Professor of Pathology Division of Laboratory Medicine The George Washington University Medical Center Washington, D.C. Associate Editors

Erich Kaiser, M.D.

Professor and Chairman Department of Medical Chemistry University of Vienna Medical School Vienna, Austria

Hans-Jörg Gibitz, M.D.

Director Zentrallaboratorium Landeskrankenanstalten Salzburg, Austria

MASSON Publishing USA, Inc. New York • Paris • Barcelona • Milan • Mexico City • Rio de Janeiro (-198 Proceedings of the Third International Congress of Clinical Enzymology, Salzberg, Austria, 1981

Akz Nr QR 721

Copyright © 1983, by Masson Publishing USA, Inc.

All rights reserved. No part of this book may be reproduced in any form, by photostat, microform, retrieval system, or any other means, without the prior written permission of the publisher.

ISBN 0-89352-206-6

Printed in the United States of America

Senior Contributors

- J. M. Gatell Artigas, M.D., Assistant Professor of Internal Medicine, Hospital Clinico y Provincial, Faculty of Medicine, Casanovas, 143, Barcelona-36, Spain
- K. Birath, Pharmacia Diagnostics AB, Research Department, S-751, Uppsala, Sweden

Angelo Burlina, M.D., Centro Ospitalieri de Borgo, Trento 1-37100, Verona, Italy

- S. Cambiaghi, M.D., Farmitalia-Carlo Erba, Divisione Analitica 20090 Rodano, Milan, Italy
- **R. Deana**, Institute of Biological Chemistry, University of Padova, Padova 35100, Italy
- L. Galzigna, Institute of Biological Chemistry, University of Padova, Padova 35100, Italy
- Hans J. Gibitz, M.D., Chemisches Zentrallaboratorium der Landeskrankenanstalten, A-5020 Salzburg, Austria
- **David M. Goldberg, M.D., Ph.D.,** Biochemist-in-Chief, The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada; and Chairman, Department of Clinical Biochemistry, University of Toronto
- John C. Griffiths, M.D., Tek-Pharma Inc., San Diego, California 92121
- G. Gundlach, Biochemisches Institut, D-63 Giessen, West Germany
- Heinz Hackenberg, Ph.D., Biochemical Research Institute, E. Merck, D-6100 Darmstadt, West Germany
- Otto Hockwin, Professor, Institute for Experimental Ophthalmology, University of Bonn, D-53 Bonn, 1-Venusberg, West Germany
- W. Hohenwallner, Zentrallaboratorium des Krankenhauses der Barmherzigen Schwestern, A-4020 Linz, Austria
- M. Hørder, Professor of Clinical Chemistry, University of Odense, and Head, Department of Clinical Chemistry, Odense University Hospital, Odense, Denmark
- Anton Horn, M.D., Institute of Physiological Chemistry, Friedrich-Schiller University, 6900 Jena, East Germany
- Csaba G. Horvath, M.S., Ph.D., Professor of Chemical Engineering, Yale University, New Haven, Connecticut
- Y. Kasahara, M.D., Div. Clinical Chemistry, Research Labs, Fujirebio Inc. Co., Ltd., Hachioyi, Tokyo 192, Japan
- Herbert Keller, M.D., Institut für Klinische Chemie und Haematologie des Kantons St. Gallen, Ch-9000 St. Gallen, Switzerland
- Patricia R. N. Kind, M.Sc., M.C.B., Principal Biochemist, Department Chemical Pathology and Metabolic Diseases, St. Thomas's Hospital, London SE1 7EH, England
- **O. Koldjaer, M.D.,** Department of Clinical Chemistry, Odense University Hospital, DK-5000 Odense, Denmark
- Kaisa Lalu, M.D., Department of Anatomy, University of Kuopio, SF-70101, Kuopio 10, Finland
- Dieter Maruhn, M.D., Privatdozent, Zentrales Klinisch-Chemisches Lab, Medizinische Klinik und Poliklinik der Universität (GHS) Essen, D-4300 Essen, West Germany
- Donald W. Moss, M.A., M.Sc., Ph.D., D.Sc., Professor of Clinical Enzymology, Royal Postgraduate Medical School, University of London; and Honorary Biochemist, Hammersmith Hospital, London, W12 0HS, England
- L. P. Nelles, Ph.D., Meloy Laboratories, Inc., Springfield, Virginia 22151
- E. Nemesánszky, Postgraduate Medical School, 1389 Budapest, Hungary
- Siegfried Neumann, Ph.D., Biochemical Research Institute, E. Merk, D-6100 Darmstadt, West Germany

- W. S. Ostrowski, Institute of Medical Biochemistry, N. Copernicus Academy of Medicine, 31-034 Krakow, Poland
- **R. Penn,** Department of Clinical Chemistry, Queen Elizabeth Medical Centre, Edgbaston, Birmingham B15 2TH, England
- Fritz Pittner, Ph.D., Lektor, University Assoc., Institut für Allgemeine Biochemie der Universität Wien, Und. L. Boltzmann Forschungstelle für Biochemie, A-1090 Vienna, Austria
- S. C. Rastogi, Ph.D., The Neurochemical Institute, The Danish Multiple Sclerosis Society, DK-220 Copenhagen, Denmark
- **Robert Rej, Ph.D.,** Director of Clinical Chemistry, Laboratory Medicine Institute, Center for Laboratories and Research, New York State Department of Health, Albany, New York 12201
- H. Rinderknecht, Ph.D., D.Sc., Chief, Medical Biochemistry Research, V.A. Medical Center, Sepulveda, California; and Professor of Medicine, UCLA School of Medicine, Los Angeles, California
- S. B. Rosalki, Department of Chemical Pathology, Royal Free Hospital and School of Medicine, London NW3, England
- Gerard T. B. Sanders, Ph.D., University Hospital of University of Amsterdam, Academic Medical Center, Department of Clinical Biochemistry, 1105 AZ Amsterdam, The Netherlands
- Francoise Schiele, M.D., Laboratoire de Centre de Médecine Préventive, 54500 Vandoeuvre-Les-Nancy, France
- **Franz Schmalzl, M.D.**, Department of Internal Medicine, University of Innsbruck, A6020 Innsbruck, Austria
- Ellen Schmidt, M.D., Medizinische Hochschule Hannover, Dept. für Innere Medizin, 3000 Hannover 61, West Germany
- F. W. Schmidt, M.D., Medizinische Hochschule Hannover, Dept. für Innere Medizin, 3000 Hannover 61, West Germany
- **R. Schubert, Ph.D.,** Institute of Clinical Chemistry, Department of Laboratory Medicine, Hannover Medical School, D-3000 Hannover, West Germany
- **G. Simon, Ph.D.,** Semmelweis University Medical School, Institute of Pathophysiology, Budapest H-1089, Hungary
- Gunnar Skude, M.D., Ph.D., Department of Clinical Chemistry, Central Hospital, S-391, 85 Kalmar, Sweden
- Milos Stastny, Research and Development Division, Corning Glass Works, Corning, New York 14831
- P. Vadgama, M.B., B.Sc., Senior Registrar, Department of Clinical Biochemistry and Metabolic Medicine, Royal Victoria Infirmary, Newcastle Upon Tyne, NE1 4LP, England
- T. Vanha-Perttula, M.D., Dr. Med Sci., Chairman, Department of Anatomy, University of Kuopio, Kuopio, Finland
- Pirkko T. Vihko, M.D., Ph.D., Senior Lecturer, Applied Enzymology, Department of Clinical Chemistry, University of Oulu, SF-90220 Oulu 22, Finland
- **A. Voller,** Department of Clinical Tropical Medicine, London School of Hygiene and Tropical Medicine, London WCI, England
- J. M. Wallach, Laboratoire de Chimie Biologique, Université Lyon, 69622 Villeurbanne Cedex, France
- Mario Werner, M.D., Division of Laboratory Medicine, George Washington University Medical Center, Washington, D.C. 20037
- D. J. Worthington, B.Sc., Ph.D., Department of Clinical Chemistry, Queen Elizabeth Medical Centre, Edgbaston, Birmingham B15 2TH, England

Contents

Prefa		iii
Cont	tributors	v
	Part I. INTERPRETATION AND STANDARDIZATION	
1.	A Path for the Future of Clinical Enzymology A. BURLINA	1
2.	Modern Diagnostic Strategies in Clinical Enzymology H. KELLER and U. GESSNER	5
3.	Diagnostic Enzyme Tests: New Approaches to Their Evaluation D. M. GOLDBERG and G. ELLIS	17
4.	Interlaboratory Comparability of Enzyme Measurements R. REJ, JP. BRETAUDIERE, and M. HØRDER	25
5.	Requirements and Functions of Reference Materials for Enzymes M. HØRDER and R. REJ	29
6.	A Three-Year Documentation of Enzyme Accuracy Controls H. J. GIBITZ and D. HAUCH	35
7.	Use of Patient Samples to Provide Additional Quality Assurance in Enzyme Analysis H. J. GIBITZ and J. SCHWANINGER	39
	Part II. LIVER AND PANCREAS	
8.	Enzyme Patterns in Liver and Serum of Rats During Growth and Aging E. SCHMIDT, F. W. SCHMIDT, R. BOTH, S. OHLENDORF, R. RAUPACH, and U. STARR	43
9.	Effect of Diet and Cell Damage on Enzyme Activities in Different Hepatic Cells	53
10	E. SCHMIDT, F. W. SCHMIDT, S. OHLENDORF, and R. RAUPACH	
10.	Effect of Heterotopic Pancreas Transplantation on Hepatic Enzymes in Streptozotocin Diabetic Rats E. SCHMIDT, F. W. SCHMIDT, S. OHLENDORF, R. RAUPACH, and I. B. BREKKE	63
11.	N-Acetyl-β-D-glucosaminidase Isoenzymes in Liver Disease and Cancer P. R. N. KIND	69
12.	Diagnostic Value of Serum Trypsin Levels J. M. GATELL ARTIGAS, S. NAVARRO COLAS, R. M. AUSED FAURE, M. ELENA, and A. M. BALLESTA	73
13.	Diagnosis of Pancreatic Disease by Fluorometric Determination of Plasma Trypsin	77
14.	H. RINDERKNECHT, N. F. ADHAM, I. G. RENNER, and S. B. ABRAMSON Application of an Amylase Inhibitor to a Kinetic Amylase Assay K. BIRATH	85
15.	Purification of Human Mitochondrial Aspartate Aminotransferase Using Ion- Exchange and Affinity Chromatography O. KOLDKJAER	89

viii contents

16.	Purified Gamma-glutamyltransferase as an Enzyme Reference Material	95
	F. SCHIELE, J. MARÉCHAL, and MM. GALTEAU	
17.	Gamma-glutamyltransferase: Identification of the Multiple Forms	99
	R. PENN and D. J. WORTHINGTON	
18.	Gamma-Glutamyltransferase Isoenzyme Patterns in Hepatobiliary Disease	
	Using a New Fluorescence Method	107
	E. NEMESÁNSZKY, S. B. ROSALKI, A. Y. FOO, W. JENKINS, and S. SHERLOCK	

Part III. ACID PHOSPHATASE

Acid Phosphatase: An Archetype of the Role of Isoenzyme Analysis in Clinical Enzymology	113
D. W. MOSS	
Determination of Acid Phosphatase; Problems and Analytic Advances W. HOHENWALLNER	125
Enzymatic Methods of Acid Phosphatase Measurement G. GUNDLACH	131
Isozymes of Acid Phosphatase W. S. OSTROWSKI	141
Immunological Methods in Acid Phosphatase Measurement P. VIHKO	157
Prostate-Specific Acid Phosphatase: A Comparative Evaluation of Three Techniques (RIA, ELISA, EIA) in Prostate Disease J. GRIFFITHS	165
Direct Immunoassay for Prostatic Acid Phosphatase: Development and Clinical Results G. T. B. SANDERS, G. P. DE VRIES, and N. F. DABHOIWALA	171
A Solid-Phase Immunosorbent Assay for Prostatic Acid Phosphatase H. HACKENBERG, G. GUNZER, N. HENNRICH, and S. NEUMANN	175
Histochemical and Cytochemical Use of Acid Phosphatase F. SCHMALZL and C. WIEDERMANN	181
Comparison of Testicular Acid Phosphatases in Man, Miniature Pig, and Blue and Hybrid Foxes T. VANHA-PERTTULA, R. RYTÖLUÖTO-KARKKAINEN, and K. GUHA	191
	 Clinical Enzymology D. W. MOSS Determination of Acid Phosphatase; Problems and Analytic Advances W. HOHENWALLNER Enzymatic Methods of Acid Phosphatase Measurement G. GUNDLACH Isozymes of Acid Phosphatase W. S. OSTROWSKI Immunological Methods in Acid Phosphatase Measurement P. VIHKO Prostate-Specific Acid Phosphatase: A Comparative Evaluation of Three Techniques (RIA, ELISA, EIA) in Prostate Disease J. GRIFFITHS Direct Immunoassay for Prostatic Acid Phosphatase: Development and Clinical Results G. T. B. SANDERS, G. P. DE VRIES, and N. F. DABHOIWALA A Solid-Phase Immunosorbent Assay for Prostatic Acid Phosphatase H. HACKENBERG, G. GUNZER, N. HENNRICH, and S. NEUMANN Histochemical and Cytochemical Use of Acid Phosphatase F. SCHMALZL and C. WIEDERMANN Comparison of Testicular Acid Phosphatases in Man, Miniature Pig, and Blue and Hybrid Foxes

Part IV. IMMOBILIZED ENZYMES

29.	Enzyme Attachment and Immobilization in Biology	199
	M. WERNER, C. GARRETT, A. CHIU, and L. KLEMPNER	
30.	Changes in Specific Enzyme Characteristics upon Binding onto Surfaces	209
	M. STASTNY and H. H. WEETALL	
31.	Immobilized Enzymes in Continuous-Flow Analysis	219
	C. HORVÁTH	
32.	Immobilized Creatinase in Analytical Continuous-Flow Systems	231
	S. CAMBIAGHI, D. BASSI, E. MURODOR, G. AIMO, A. CAROPRESO, and C. ROSSO	
33.	ELISA in Infectious Diseases	241
	A. VOLLER and D. E. BIDWELL	

ix CONTENTS

34.	An Enzyme Electrode for the Determination of Urine Oxalate P. VADGAMA, J. M. FUY, M. F. LAKER, and A. K. COVINGTON	247
35.	Immobilization of Alkaline Phosphatase by Various Procedures to the Same Carrier—A Comparison F. PITTNER	251
36.	Purification of Alkaline Phosphatase from Calf Intestine by Immunosorbent Affinity Chromatography A. HORN, R. BUBLITZ, M. SCHULZE, and H. EHLE	255
	Part V. MISCELLANEOUS	
37.	Clinical Enzymology of the Eye O. HOCKWIN, CH. OHRLOFF, N. J. VAN HAERINGEN, K. HOFFMANN, M. REIM, and U. WURSTER	261
38.	Urinary Enzyme Excretion in Protein-Overload Proteinuria D. MARUHN, D. PAAR, H. G. HARTMANN, K. D. BOCK, E. BOMBHARD, and D. LORKE	273
39.	Isoamylases in the Diagnosis of Acute Salpingitis G. SKUDE	277
40.	Degradation of Major Proteins of Human Central Nervous System Myelin by Soluble Enzymes of Human Peripheral Polymorphonuclear Leucocytes S. C. RASTOGI and J. CLAUSEN	281
41.	Increased Levels of Two Distinct Elastase-Like Hydrolases in Plasma During Septicemia L. P. NELLES, H. P. SCHNEBLI, M. HOCHUM, and K. H. DUSWALD	289
42.	Enzyme-Linked Immunoassay for Human Granulocyte Elastase/ α_1 -Proteinase Inhibitor Complex	293
43.	S. NEUMANN, N. HENNRICH, G. GUNZER, and H. LANG Purification and Comparison of Aminopeptidases from Human Maternal Serum and Placental Particle Preparation K. LALU, S. LAMPELO, and T. VANHA-PERTTULA	299
44.	Enzymatic Reactions Involving 3-Hydroxy-3-Methylglutarate R. DEANA, F. RIGONI, G. QUADRO, and L. GALZIGNA	311
45.	Conductimetric Measurement of Enzymatic Activities J. M. WALLACH	317
46.	Determination of Pseudocholinesterase Activity Using <i>p</i> - Hydroxybenzoate Hydroxylase as a Linked Enzyme Y. KASAHARA, Y. ASHIHARA, M. SUGIYAMA, and T. HARADA	321
47.	Biochemical Properties of Human Serum Cholinesterases (EC 3.1.1.8) from Patients with Elevated Enzyme Activity R. SCHUBERT, J. SASSMANNSHAUSEN, and A. DELBRUCK	323
48.	The Diagnostic Value of the Choline Ester-Splitting Enzymes in Cerebrospinal Fluid G. SIMON, G. CONSTANTINOVITS, E. NAGY, Z. NYÁRY, and A. BRASCH	329
Inde		333

CHAPTER 41

Increased Levels of Two Distinct Elastase-Like Hydrolases in Plasma During Septicemia

L.P. NELLES and H.P. SCHNEBLI

Ciba-Geigy, Pharma Research, Basel, Switzerland

M. JOCHUM

Abt. Klinische Chemie und Biochemie der Chirurg. Klinik Innenstadt, Universität München, München, Federal Republic of Germany

K.H. DUSWALD

Chirurgische Klinik Innenstadt, Universität München, München, Federal Republic of Germany

Introduction

Many of the complications of septicemia are believed to be initiated by endotoxin, resulting in activation of the complement system and, through Hageman factor, in massive activation of the kinin, coagulation, and fibrinolytic systems. Furthermore, endotoxin has been shown to stimulate polymorphonuclear leukocytes to release large amounts of neutral proteinases, particularly elastase.1.2 Activation of the plasma proteolytic systems together with the release of enzymes from the phagocytic cells may overwhelm the proteinase inhibitors, and therfore allow the proteinases to cause local tissue and organ damage.² In addition, granulocyte elastase may also contribute directly to "intravascular turmoil" through kinin formation,³ activation and degradation of coagulation factor XIII,⁴ as well as inactivation of antithrombin III,⁵ a key coagulation system regulator.

The present experiments were undertaken to measure and characterize elastase(s) and other proteinases released into the plasma during septicemia. Earlier reports of immunreactive α_1 -antitrypsin elastase complexes in serum of septic patients¹ and endotoxin-treated dogs² suggested that $\alpha_2 M(\alpha_2$ -macroglobin)-proteinase complexes would also be present under these conditions. The methods used in the present study are based on the fact that $\alpha_2 M$ -bound proteinases retain hydrolytic activity toward small molecular weight synthetic substrates, but are unable to attack large (protein substrates.)⁸

Materials and Methods

Plasma samples were obtained from six patients who had undergone major abdominal surgery and later developed septicemia. The samples were taken at irregular intervals for approximately 48 hours following signs of generalized infection. Control plasma was obtained from six healthy donors.

Plasma proteinase levels were quantified⁶ by measuring the release of p-nitroaniline from the following chromogenic substrates: Succ-Ala₃-p-NA* (Bachem, Bubendorf, CH), MeO-Succ-Ala2-Pro-Val-p-NAt (CIBA-GEIGY, Basle), substrates for elastaselike enzymes; Bz-Arg-p-NA;‡ (Sigma, St. Louis, Mo.), a substrate for trypsinlike enzymes; and Succ-Phe-p-Na§ (Sigma), a substrate for chymotrypsinlike enzymes. In the assay, 0.2 ml of plasma was diluted with 0.2 ml of 0.1 M Tris-Cl buffer, pH 7.5, containing 1 mM substrate (except for Succ-Ala₃-NA, which was 5 mM). The mixture was incubated at 37° C for 1-6 hours and the reaction was stopped by the addition of 1 ml of 7.5% trichloroacetic acid. The protein was removed by centrifugation, and the nitroaniline released was reacted to form a purple azo-dye by addition of 25 μ l each of sodium nitrite (1.8%), ammonium sulfamate (9%), and N-1-naphthyl-ethylenediamine di-HCl (1.8%, Sigma). The absorbance of the colored product was measured at 550 nm. Alpha₂-macroglobuquantified according lin was to a modification⁶ of the method of Gantrot.⁸

Separation of elastaselike enzymes from plasma was accomplished by applying a 2.75-ml sample to a column (2.6 \times 94 cm) of Sephacryl S-300 superfine (Pharmacia, Uppsala), previously equilibrated with 0.02 M sodium citrate buffer, pH 6.5, with 0.15 M NaCl and 0.04% NaN₃. The column was eluted with the same buffer at a flow rate of 13.5 ml/hr.

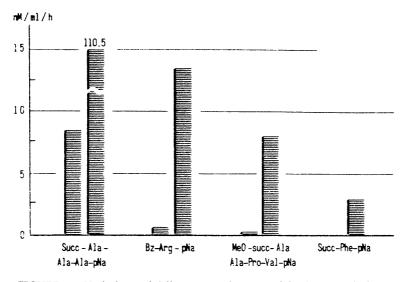
Results and Discussion

Plasma samples taken at several times within a 2-day period from six patients suffering from severe septicemia were analyzed for their content of peptide hydrolases and compared to samples taken from

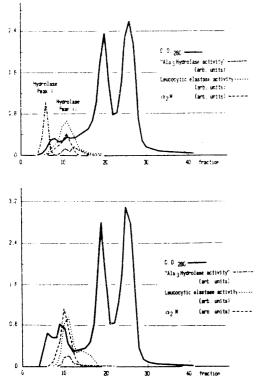
‡N-benzoyl-L-arginyl-p-nitroanilide.

six normal volunteers. Plamsa from all six patients had markedly elevated levels of hydrolases cleaving the four substrates. The degree of elevation is illustrated Figure 1, where the hydrolase levels in pooled plasma from the normal individuals (N) and from the septic patients (S) are compared.

In order to examine more closely the elastase-like hydrolase activities in septic plasma, a sample with high activities was fractionated on a column of Sephacryl S-300 superfine (Fig. 2, top). The hydrolase activity of the elastaselike enzymes showed two main peaks. The First peak (Peak I) had a molecular weight $> 10^6$ daltons and cleaved the Succ-Ala₃-p-NA substrate, but was nearly devoid of MeO-Succ-Ala2-Pro-Val-p-NA hydrolase activity. As shown in Table 1, this enzyme was completely inactivated by 1,10 phenanthroline, an inhibitor of metalloenzymes, but was insensitive to phenyl-methyl-sulfonyl-fluoride (Pms-F), a small molecular weight inhibitor of serine proteinases, as well as to Eglin C and the Bowman-Birk soybean, both inhibitors of leukocyte elastase. In addition, it was sensitive to EDTA but unaffected by the sulfhydryl reagents, dithiothreitol βmercaptoethanol.


The second peak eluted together with $\alpha_2 M$ (Mw ~ 8 × 10⁵ daltons) and hydrolyzed both the MeO-Succ-Ala₂-Pro-Val-p-NA and the Succ-Ala₃-p-NA substrates, the former being hydrolyzed about six times faster. This enzyme activity (Table 1) was insensitive to 1,10 phenanthroline, but it was sensitive toward Pms-F, as well as toward Elgin C, which has previously been shown to inhibit leukocyte elastase complexed with $\alpha_2 M$ (M.J., unpublished observation). A significant degree of inhibition is also observed with the relatively small molecular weight Bowman-Birk soybean inhibitor.

Based on the molecular weight, substrate specificity, and inhibitor pattern, we conclude that the second peak of peptide hydrolase activity corresponds to α_2 M-leukocyte elastase complex. This is further


 $[\]label{eq:holocorrelation} $$ N-succinyl-L-alanyl-L-alanyl-L-analyl-p-nitroanilide. $$ In the second seco$

tMethoxy-succinyl-L-alanyl-L-alanyl-L-prolyl-L-valyl-p-nitroanilide.

Succinyl-phenylalanyl-p-nitroanilide.

FIGURE 1. Hydrolysis of different peptide nitroanilides by normal plasma and plasma from septic shock patients (pool of six).

FIGURE 2. Top: separation of plasma proteins from a septic shock patient on Sephacryl 5300. Bottom: calibration of Sephacryl 5300 with normal human plasma to which purified human leukocyte elastase was added.

supported by another experiment, where isolated purified leukocyte elastase was added to normal plasma and fractionated on the same Sephacryl column: the artificial α_2 M-elastase complexes eluted at the same place (Fig. 2, bottom) and showed an identical inhibition pattern. Peak I activity on the other hand is clearly unrelated to leukocyte elastase; it is a metalloenzyme, very highly specific for Succ-Ala2-p-NA, and has a molecular weight which is so large as to suggest aggregates or association with small particles. Similar metal-dependent peptide hydrolase activities have been described previously in patients with liver disease. 9, 10

Septicemia and septic shock is apparently associated with a raise in serum leukocyte elastase levels, shown here as $\alpha_2 M$ complexes and in agreement with the occurence of α_1 -AT complexes demonstrable by immunological means.^{1,2,12} In addition, there occurs a massive increase of a metalloenzyme hydrolyzing Succ-Ala₃-p-NA. This latter activity may reflect an involvement of the liver—a general feature of endotoxemia and septic shock.¹¹

		Substrate	
Inhibitors		Peak I: Succ-Ala- Ala-Ala- pNA	Peak II: MeO-succ-Ala- Ala-Pro-Val- pNA
1,10 Phenanthrolin	1 mM	96%	2%
Phenylmethyl-sulfonyl fluorid	1 mM	7%	91%
Eglin	10 µg/ml	1%	9 6%
Bowman-Birk soybean inhibitor	10 µg/ml	0%	44%
Bowman-Birk soybean inhibitor	50 µg/ml	14%	75%

TABLE 1. Inhibition of partially purified peptide hydrolases from plasma of spetic shock patients

REFERENCES

- Ebring R, Schmidt W, Fuchs G, Havemann K: Demonstration of granulocytic proteases in plasma of patients with acute leukemia and septicaemia with coagulation defects. Blood 49:219–231, 1977.
- Aasen AO, Ohlsson K: Release of granulocyte elastase in lethal canine endotoxin shock. Hoppe Seylers Z Physiol Chem 359:683–690, 1978.
- Movat HZ, Habal FM, Macinoline DL: Generation of vasoactive peptide by a neutral protease of human neutrophil leucocytes. Agents Actions 6:183-190, 1976.
- Henriksson P, Nilsson IM, Ohlsson K, Stanber P: Granulocyte elastase activation and degradation of factor XIII. Thromb Res 18:343–351, 1980.
- Jochum M, Lander S, Heimburger N, Fritz H: Effect of human granulocytic elastase on isolated antithrombin III. Hoppe Seylers Z Physiol Chem 362:103–112, 1981.
- Schnebli HP: Adjuvant-induced inflammatory disease in the rat: plasma levels of peptide hydrolases and protease inhibitors reflect disease activity. Agents Actions 9:497–501, 1979.

- Seemüller U, Meier M, Ohlsson K, Müller HP, Fritz H: Isolation and characterization of a low molecular weight inhibitor (of chymotrypsin and human granulocyte elastase and cathepsin G) from leeches. Z Physiol Chem 358:1105–1117, 1977.
- Ganrot A: Determination of α₂-macroglobulin as trypsin-protein esterase. Clin Chim Acta 14:493–497, 1966.
- Yoshiba M, Sakai T, Fujiwara K, Toda G, Miyake K, Oka H, Oda T: Isolation and characterization of a novel so-called biliary-tract enzyme. Proc Symp Chem Physiol Pathol 19:17–22, 1979.
- Sasaki M, Yoshikane K, Nobata E, Katagiri K, Takeuchi T: Succinyl-trialanine-p-nitroanilide-hydrolytic enzymes in human serum. Partial purification and characterization. J Biochem 89:609-614, 1981.
- Trautschold I, Fritz H, Werle E: Kininogenase, kininases and their inhibitors. In Hypotensive Peptides, EG Erdös, N Back, and F Sicuter, eds. Springer Verlag, New York, 1966, p. 221.
 Jochum M, Duswald KH, Hiller E, Fritz H: Plasma
- Jochum M, Duswald KH, Hiller E, Fritz H: Plasma levels of human granulocyte elastase-α₁-proteinase inhibitor complex (E-α₁PI) in patients with septicaemia and acute leukemia. (In press.)