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Abstract: The general linear model y = XS + ¢ with correlated error variables can be trans-
formed by means of the generalized singular value decomposition to a very simple model (ca-
nonical form) where the least squares solution is obvious. The method works also if X and the
covariance matrix of the error variables do not have full rank or are nearly rank deficient (rank-k
approximation). By backtransformation one obtains the solution for the original model. In this
paper we demonstrate the method with some examples.
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Introduction and summary
The general linear model is given by

y=XB+e, E(e)=0, var(e) = o2 W, X=(mxp), W=(nxn), n>p.
oW is the covariance matrix of ¢ and we assume that the matrix W is given (symmetric and positive
semidefinite) while o? is unknown. If W =1 , we have the simple linear model with uncorrelated error
variables e,...,c, . If 7k(W)=k W can be written as W = FF' where F = (nx k). The random error
€ can now be given in the form € = Fu with u ~ (0,02[k) i.e. with E(u) =0, var(u) = 021k as
E(e) = E(Fu) =0 and var(¢) =E(ec') = FE(uu' )F' = o2 FFT =W . So the general linear model is
equivalent to

y= X0+ Fu, where X =(nxp), F=(nxk) and u ~(0,02[k).
In Kniisel (2008, 2009) the solution of the problem by means of the simple and generalized singular
value decomposition is treated and in this paper we give nine examples that deal in particular with the
case of rank deficient and nearly rank deficient matrices X and W (multicollinearity, weak multi-

collinearity). The following table gives an overview of the examples.

Example Title Page
1 Simple linear model, regular case 2
2 Simple linear model with strict multicollinearity 4
3 Simple linear model with weak multicollinearity 7
4 General linear model, regular case 11
5 General linear model with strict multicollinearity 17
6 General linear model with rank deficient covariance matrix W 22
7 General linear model with rank deficient X and W 26
8 General linear model with rank deficient X, W7, and (X | F) 31
9 General linear model with nearly rank deficient X, W, and (X | F) 36
10 General linear model with linear restrictions, regular case 41

The computations in the examples are done with Matlab (2008) and Maple (2006). Matlab offers a
procedure gsvd (general singular value decomposition) that includes a subfunction csd (CS-
decomposition), and this subfunction is used for computing the CS-decomposition of an orthogonal
matrix (see Golub — Van Loan, 1996).
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Example 1: Simple linear model, regular case

In this example we consider the simple linear model
(1) y=XpB+e¢, where X =(nx p) and€~(0,crz[n).
Let

2) X=(5x3)=

A PB —Ww
AN = O N
DN O bk~ ooWw

We obtain the singular values

op) (16.560
oy |=1]7.612,
03 2.795

and this means that the matrix X has full rank 3.

a) Classical solution

The classical least squares estimator of the parameter vector (3 is given by
B=XTX)""xTy

3)  var(B)=o* (X x)"!
62 = p ! . e"e,where e=y— X3=(I,—P)y with P=X(X"X)"'xT

and we obtain

100 63 58 0.014658 —0.005525 —0.002 030
X"x=|x* 126 112], (X"x) = x  0.064720 —0.060773|,
* * 114 * * 0.069512

0.026835 —0.051302  0.044988  0.091555  0.029992
@) (X X)"'XT=|-0.069455 0.090766 —0.200474  0.090766  0.056827|,
0.080900  0.007103  0.209155 —0.135754 —0.027 230

0.184294 0.048934 0361484  0.048934 0.121942
0.822415 —-0.086030 —0.177585 0.323599

*

P=XxX"X)"'x"=

* * 0.816101 —0.086030 0.067877|.
* * * 0.822415 0.323599
* * * * 0.354775

b) Solution with singular value decomposition
The singular value decomposition of X is given by X =UDV ", where U = (5x5) and V = (3x3)
are orthogonal and D = (5x3) = diag(cy,0,,03):

—0270  0.148 —0299 —0.744 —0.512
—0.679 —0.578  0.165 0281 —0.314 —0.441  0.897 —0.021
U=[-0295 0264 —0812 0417 0.100|, ¥ =|—0.653 —0305 0.694|,
—0265 0745 0444 0281 —0314 —0.616 —0.320 —0.720
. —0.556  0.139  0.163 —0337  0.729
©) o 0 0) (15560 0 0
0 o, 0 0 7612 0
D=|0 0 o3|=| 0 0 2.795|.
0 0 0 0 0 0
0 0 0 0 0 0




From
y=XB+e=UDV'3+¢
we obtain the canonical form of the linear model (1)
(6) y=DB+¢&, where y=U"y, 5=V"8, é=U"e,
and as U is orthogonal we have ¢ ~ (0,021 ,) l.e. the error variables £;,...,¢, are again uncorrelated

each with variance o> . The canonical model (6) explicitly written has the form

I =016 +4,

Jr =0 +8,
(1) F3=0303+53,

Vs =¢4,

V5 =¢s.

The least squares estimator of (3 is given by Bi = J;/o;,i=1,...,3 or in matrix notation
B=D"y where D' = (pxn)=(3x5)=diag(l/ay, /0, 1/03),
® var()=0*(D'D)",

= e e= 5 (ug +uz)
n—p
D™ is the Moore-Penrose inverse of D and we obtain
1/01 0 0 00 0.060 386 0 0 0 0
D =| 0 1/02 0 0 0|= 0 0.131366 0 0 0f,
0 0 1/03 00 0 0 0.357751 0 O
) 2
1o 0 0 0.003 646 0 0
DD '=] 0 1/e3 0 |=| o0 0.017 257 0o |
0 0 1/0_32 0 0 0.127 986

By backtransformation we find the least squares estimators of the original parameters 5=V
B=VB=VD'j=X*y where X* = (pxn)=(3x5) =V DU,
(10) var(3)= oV (D'D)" W7,
6% = ! éle= ! e'ewhere e=y—X3=y—XXTy=(I,— XXT)y.
n—p n—p

X" =V D UT is the Moore-Penrose inverse of X, and as

XX 'xT=xt
1) X' x) "= D)y v’
P:X(XTX)leT :XX+

we obtain the same results as with the classical solution.
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Example 2: Simple linear model with strict multicollinearity
We consider again the simple linear model
(1) y=X0B+e, where X =(nx p) and€~(0,azln),

but this time

32 4
1 9 -7
X:(XI,XZ,X3):(5X3): 4 1 7].
7 2 12
5 6 4

We have x3 =2x; —x,, i.e. the third column of X is a linear combination of the first two columns, and

so the matrix X has the rank rk(X)=ry =2.As X TX has the same rank as X the inverse (X' X )_1

does not exist and the classical procedure breaks down.

Solution with singular value decomposition
The singular value decomposition of X is given by X =UDV ", where U = (5x5) and V = (3x3)
are orthogonal and D = (5x3) = diag(cy,0,,03):

-0.276 —-0.118 0.790  0.223 —-0.486

0.227 —-0.878 —0.238 —0.081 —0.340 —0.497 —-0.294 0.816
U=|-0432 0.011 0.027 —-0.893 —-0.123|, =|-0.138 —0.902 —-0.408|,
—-0.746 —-0.006 —-0.503 0376 -0.219 —0.857 0315 —-0.408

—0358 —0.464 0256 0.070  0.765
o, 0 0) (18802 0 0

0 o, 0 0 12103 0
D=[0 0 o3|=| O 0 ol

0 0 0 0 0 0

0 0 0 0 0 0

Note that o3 =0 which means that 7k(X)=2. From
y=XB+e=UDV'3+¢
we obtain the canonical form of the linear model (1)
(2) y=DB+¢&, where 3=U"y, =V"8, é=U"e,
and as U is orthogonal we have & ~ (0,021 ,,) 1.e. the error variables £;,...,€, are again uncorrelated

each with variance o . The canonical model (2) explicitly written has the form

Ji =010 +4,

Fy =020 +8,,
(3)  »m=¢s,

V4 =¢4,

Vs =E&s.

The least squares estimator of (3 is given by ﬁ:i = J;/o;,i=1,2; the parameter 33 is not to be found
in the canonical model as o3 =0, it can have arbitrary values, and it cannot be estimated. From
X =UDV" wederive XV =UD,
and as the third column of UD is zero the same is true for the third column of XV . Let
V =(v,v,,v3), then Xv3 =0.816x; —0.408x, —0.408x3 = 0, and this is equivalent to
2x] —xp —x3=0 as (2,—1,— 1)/\/6 =(0.816,—0.408,—0.408) . Now there are three ways how to

proceed.



A)  Eliminate one of the original parameters

As 2x; —xp —x3 =0 we can eliminate one of the columns x;, x5, x3. We have e.g.

Bixy + Baxy + Baxs = Bix) + Baxy + B3(2x%) — xp) = (B) +263)x + (8 — B3)x, .

We can introduce the new parameters
By =0 +255
By =B, — 5

and the new matrix X = (x;,x,). Then model (1) is equivalent to
y=X0(+e, Wheref:(nxrx):(5x2) and 5~(O,021n).

As X has full rank two, we can now apply the methods of example 1, and we find the covariance
matrix

var(3) =

0.014599 —0.007 299
* 0.011586)"

B)  Introduce the canonical parameters

We have
Bl (B
XV = (Xv;, Xvy, Xvy) and V'3=|vi3|=|5,|=2
viB] |53
and so

XB=XVV"B=XVB=[BXv +BrXvy + G5 Xv3.
As Xvy =0 the parameter 33 can possess arbitrary values and it does not appear in the canonical
model (3). So we are interested only in the two remaining parameters

By =vB=—0.4973, —0.1383, —0.8573;

By =vi3=—0.2943 —0.9020, +0.3153;

The least squares estimators are given by
B=n/or,
By =32/02,

and if denote the vector of estimable parameters as

- 4, sy oo 0 [0.002 829 0
B, = x1)=|"."|, then var = = 5
e =(rx x1) [32] (Be)=0 [ 0 1/o? 0 0.006826

where 07,09 are the singular values of X and % denotes the unknown variance in model (1). So the

2

least squares estimators are uncorrelated. The unknown variance ¢ can be estimated from (3) by

~2 ~2 =2 2
o) :%(y3 + y4 +y5); note that n—ry =3.

C)  Minimum length solution

The parameter 53 does not appear in the canonical model (3) and so it can have arbitrary values. We
set this parameter to zero. This way it is defined such that 373 =3 sz —min.Now S=V"3 and V
is orthogonal. So 373 = 874, and all parameters in our linear model become identifiable by the re-

quirement 3" = min ; this parameter definition is called the minimum length definition:



B, =-0.4973, —0.1383, —0.8573;,
B, =—0.2945, —0.9023, 4+ 0.3150;,
B3 =0.8164, —0.4083, —0.4083; = 0.

The least squares estimators are now given by

By =)oy,
By =32]07,
63:0.
and we have
/o2 0 0
. 1 0.002 829 0 0
Var(ﬁ):az 0 1/05 o|=0*] 0 0.006826 0.
0 0 0 0 0 0

In matrix notation we can write
B=D"y where D = (pxn)=(3x5)=diag(l/oy,1/05,0),
var(3)=o>(D'D)",
) 1

Ts 12 22 2 22 2
o Zn_2€T€=%(“3 +ag +us) =1 (73 + 35 +55),

where e =y — DB . D" is the Moore-Penrose inverse of D and we obtain

/oy 0 0 0 0) (0.053186 0 0 00

D'=l0 1o, 0 0 0|=] 0 0082622 0 0 0|,
0 0 000 0 0 00 0
2
/o 0 0.002 829 0 0
(DD =| 0 1/63 0|=| 0 0006826 0|
0 0 0 0 0 0

By backtransformation we find the least squares estimator of the original parameters (with minimum
length definition):

B=V3=VD'5=VD'UTy=X"y where X" =(pxn)=(3x5)=VDUT,

var(3) =2V (D'D) VT,

A 1 1. 1 A

62 = ele= e' e where e=y—XB=y—XX"y=,—XX")y,

n—ry n—ry

and where 7y =2 denotes the rank of X. X™ =V DU’ is the Moore-Penrose inverse of X =UDV".
We obtain

0.010157  0.015294 0.011 161 0.019890 0.020 739
X7 =[0.010794 0.063782 0.002356 0.005928 0.037249|,
0.009520 —-0.033194 0.019967 0.033851 0.004 229

0.001287 0.002002  0.000573
V(D'DYVT = « 0.005613 —0.001609],
* x 0.002755

0.090140 0.040 667 0.118036  0.206929 0.153632

0.821689 —0.107404 —0.163712 0.326382
* 0.186769  0.322442 0.149809/|.
* *  0.557293 0.270421
* * * 0.344108

*

XXt =

* % X
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Example 3: Simple linear model with weak multicollinearity
We consider again the simple linear model

(1) y=X0B+e, where X =(nx p) and€~(0,02[n),

but this time

3
1

4) (4243 2828  5.657
—7| [1.414 12.728 —9.899
X = (x,50,x3) = (5x3) =~/2|4 7|~|5.657 1414 9.899| = X .
7 12| [9.899 2.828 16.971
5 6 4] (7071 8485 5.657

N — O N

We have x3 =2x) —x, as in Example 2, and so the original matrix X,; has rank 2 whereas for the

ori

matrix X (= X,,; rounded to 3 decimal places) we obtain the singular values
o 26.590
oy |=| 17.116 |,
03 0.000 748

and this means that the rounded matrix X has full rank 3.

a) Classical solution
The classical least squares estimator of the parameter vector § is given by
B=xTX)""xTy
var(8) = o2 (X" X) !
62 = - ! peTe, where e:y—XB:(In — P)y with P:X(XTX)leT
and we obtain

1190235 —595091 —595127
XTx) = « 297532 297550],
X « 297568

618.561 —163.829  541.697 —675912 174.596
2) X"X)"'xT=|-309.256  81.962 —270.831 337.952 —87.261,
~309.275  81.898 —270.835  337.992 —87.289

0.411600 —0.044486 0.399576 —0.144337 0.244 361
*  0.844241 —-0.181951 —-0.070678 0.302354

P:X(XTX)_IXT = * x*  0.433286 0.014814 0.229265|.
* * * 0941155 0.171272
* * * * 0369718

b)  Solution with singular value decomposition
The singular value decomposition of X is given by X =UDV ", where U = (5x5) and V = (3x3)
are orthogonal and D = (5x3) =diag(oy,0,,03):
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—-0.276 —0.118 —0.567 —0.596 —0.483
0.227 —0.878 0.150 0.201 —0.340 —0.497 —-0.294 —-0.817
U=|-0432 0.011 —0.497 0.747 —-0.095|, V=|—-0.138 —0.902 0.408|,
—0.747 —-0.006 0.620 —0.050 -—-0.237 —0.857 0.315 0.408
; —0.358 —0.464 —-0.160 —0.210 0.766
®) op 0 0 26.590 0 0
0 oo O 0 17.116 0
D=0 0 o3|= 0 0 0.000 748 |.
0o 0 O 0 0 0
0o 0 O 0 0 0
From

y=XB+e=UDV'3+¢
we obtain the canonical form of the linear model (1)
(4) j=DB+¢&, where 3=U"y, 3=V"8, é=U"¢,
and as U is orthogonal we have ¢ ~ (0,021 ,) 1.e. the error variables &;,...,¢, are again uncorrelated
each with variance . The least squares estimator of G is given by ﬂ:i =J;/o;,i=1,...,3 or in ma-
trix notation

G=D"5 where D" = (pxn)=(3x5) = diag(l/0,, /5, 1/o3),
() var(p)=o*(D"D)"",

. 1 . .2
62 = é'e :%(u4 +u52).
n—p
D™ is the Moore-Penrose inverse of D. We obtain
2
1fof 0 0 0.001414 0 0
DD '=] 0 1/e3 0 |=| o0 0.003413 0 )
0 0 1o} 0 0 1.785x10°

and so the variance of the parameter B3 is very large as compared with Bl and Bz . By backtransfor-

mation we find the original least squares estimator

B=V3=VD*5=X*y, where X* = (pxn)=@B3x5=VDU",

var(3) = o2V (D" D)~ 17T,

62 = ! ele= ! e'e, where ezy—XBzy—XX*y:(In —XX)y.
n—p n—p

XT =V D'UT is the Moore-Penrose inverse of X, and as

X" 'xT=xt
XXy "=y Dy T
P=XX"X)'X"=xx"
we obtain the same results as with the classical solution. The variances and covariances of the original

parameters 5= V(3 are rather large (see the matrix (X X )71 in (2)), as all three parameters

By, 35, By depend on (33 which has an very large variance as compared with 3, and (3, .



c) Solution with rank-k-approximation
The matrix X is given with three decimal places and so the smallest singular value of X,

o3 = 0.000 748, is near the maximal rounding error of X, that amounts to 0.0005. The rank-2-
approximation of X will give a matrix X| = (xl-(jl)) = (5x3) with rk(X;)=2 and with
max‘xl-- — xl-(jl)‘ <03 =0.000 748 . We want to determine this matrix X;. The singular value decompo-

sition of X is given by X =UDV ", where U = (5x5) and ¥ = (3x3) are orthogonal and where
D = (5x3) =diag(cy,0,,03) as given in (3). Let

o 0 0] (26590 0 0
0 o, 0 0 17.116 0

Dy = (5x3) =diag(c,,0,,0)=|0 0 o0|=| 0 0 o
0 0 0 0 0 0
0 0 0 0 0 0

Now we define X; as
6) X, =UDV'.

As rk(D;) =2 we also have rk(X;)=2, and if we compute X; we find max‘xij — xl(jl) =0.000379

which is smaller than o3 = 0.000 748 and even smaller than the maximal rounding error of X. So we

will work in the following with X; instead of X as the rank of X7 is numerically stable in the sense

that it cannot be made smaller just by small perturbations of the matrix elements. From the model
y=X,+¢, where X; =(nx p)=UDV'" and ¢ ~ (0,021n)

we obtain the canonical model

(7) §p=D+¢&, where y=U"y, =V, E=U"¢,

and as U is orthogonal we have again € ~ (0,02[ ) » which means that &,...,€, are again uncorrelated

each with variance 2. The canonical model (7) can be written as

Ji =010 +4,

Jr =030, +8,,
®)  »m=¢s,

Y4 =&y,

Vs =¢s.

The parameter B3 does not appear in this model as the corresponding diagonal element in D; is zero.
So 53 can possess arbitrary values, it is not identifiable and not estimable. The least squares estima-

tors for Bl and Bz are given by

By =5/o1,

B =2]0s.
As the transformed observations y; are uncorrelated each with variance o also the two least squares
estimators are uncorrelated with variances Var(éi) =0’ / aiz ,i=1,2. The unknown variance o? can
be estimated by

&2:%()732+)7£+)752);n0tethat n—rk(X;)=5-2=3.
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Minimum length solution

The parameter 33 does not appear in the canonical model and so it can possess arbitrary values. We
set this parameter to zero so that B3 =4"3=min (minimum length definition). The least squares

estimator of (3; will also be zero as well as the variance of this estimator. In matrix notation we now

have
. o 0 0 0 0
B=D/y,where D =| 0 1/o, 0 0 0f.
0 0 0 00

The covariance matrix of 3 is given by

/o2 0 0
var(3)=o(D{ D))" =0?| 0 1/03 0.
0O 0 0

By backtransformation we find the original least squares estimator
B=VB=VD/j=X]y where X; =(pxn)=(3x5)=VD/U",
var(3) = a2V (DI D) VT,

2 1 T

a— ée= ! e'e where e:y—XIB:(In—Xle)y.
n—p n—p

We obtain

0.007182  0.010814 0.007892 0.014064 0.014 665
Xf =[0.007633  0.045102 0.001666 0.004191 0.026340],
0.006 732 —0.023471 0.014118 0.023937 0.002991

0.000 644 0.001001  0.000 286
V(DI D) VT = % 0.002807 —0.000805|=M,
% x  0.001377

0.090144 0.040660  0.118065  0.206935 0.153632
0.821687 —0.107386 —0.163722 0.326385

*

P:Xle: * * 0.186 757 0.322436 0.149811].
* * * 0.557301 0.270416
* * * * 0344110

Note that we had a much larger covariance matrix Var([f) with the classical solution a). If we did the
same computations with the original matrix X,,; instead of X; , which is the rank-2 approximation to
the rounded matrix X, we would find essentially the same results. The maximum difference

maxdiff = max | a;; —by; | between the corresponding matrices is given here:

original data | rank-2 approximation maxdiff
Xori X, 0.000 449
Xori X/ 0.154x107°
V(D3Dy) VT V(DyDy) VT 0.165%107
XoriXori X X\ 0.178x10~*
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Example 4: General linear model, regular case

In this example we consider the general linear model

(1) y=XpB+e¢, where X =(nx p) and€~<0,02W).

Here the error variables ¢,...,¢,, are correlated with covariance matrix oW , where o is unknown
and W = (nxn) is a known positive semidefinite matrix.

Let

(2) X=(5x3)=

A PB —Ww
AN = O N
DOk~ oowWw

as in Example 1. We obtain the singular values

o) (16.560
oy |=] 7612,
oy) 2795

and this means that the matrix X has full rank 3. Furthermore let

4 9 8 -5 —6
1 -7 -9 -5 -7

Fo=0Gx5=| 7 =3 9 4 -9
4 -9 5 9 -8

6 -8 7 —6 1

and now we define

13.059 —3.765 6.294 —1.294 —-0.941
* 12.059 —0.588 1.941 0.588

3 W= %FOFOT =(5x5~ * * 13.882 12.235 0.706|=W.
* * *  15.706 1.235
* * * * 10.941

W is the matrix W, rounded to three decimal places. The singular values of ¥ are

27.951
o) [18.089
© |=|10.654],
os| |8.839

0.114

and so W is a symmetric and positive definite matrix with full rank 5.

a) Classical procedure, Aitken estimator
We consider the general linear model (1) with X = (nx p) and W = (nxn) given by (2) and (3).

The eigenvalue decomposition of W is given by W = RAR" , where R is orthogonal and
A = (5x5)=diag(\,...,\s), \; =0; (as W is positive definite). We set

@) F=RAY2RT, where AY? =diag(\\,...\s)

and obtain
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3310 —0.519 1.221 —0.566 —0.142
* 3421 —-0.086 0272  0.072

F= * * 2.802 2.126 0.096].
* * * 3.282 0.141
* * * * 3.299

F is symmetric and F 2 = FFT = RAR" =W . The random error of our model (1) can now be written

in the form
€= Fu with u~ (0,021n ), i.e. with E(u) =0 and var(u) = azln ,
as E(¢)=E(Fu)=0 and var(c)=E(ce' )= FE(uu" )F' = o?FF" = W . So model (1) can also be
given as
(5) y=X0B+ Fu, where X =(nxp), F=mxn),u~ (0,021n>.
As F is a regular matrix (i.e. F has full rank n) we can write (5) as
(6) y=XB-+u, where y=F 'y and X=F 'X.
Note that the inverse of # = RAY2RT is given by F'=RAY2RT where
ATV2 = diag(l/ \/g yer .,1/ \/g ). In (6) we have the simple linear model and its solution is given by
B _ ()?TX)—I)?T)—} _ (XTW—IX)—lXTW— ly’
var(G) = o> (X W 1x)7!,
ol ee L e as e XB—F (v—xB)=F e,
n—p n—p

and we obtain

0294584 —0.313265 0.211856
xwlx)y = % 0.373243 —0.216344
% «  0.185071

0.045300 —0.067985  0.031067  0.074873  0.056 742
Xw ) ' xTw =] 0105058  0.112274 —0.266029  0.112274 —0.029850].
—0.088830 —0.013145  0.273161 —0.156002  0.055801

b)  Procedure with singular value decomposition
We start with the singular value decomposition of X = F~ X in model (6) that is given by
X =UDV" where U= (nxn) and ¥ = (px p) are orthogonal and D = (nx p)= diag(ay,...,0,);

01,--.,0, are the singular values of X = F ~1X . Here are the three matrices:

0409 0282 0249 0.670  0.492
0025 0772 —0472 —0347  0.248 0.793  0.102  0.600
U=|-0615 0252 0666 —0.187 0283|, V¥=| 0425 0.612 —0.667|,
0.659 —0.077 0418 —0.610 0.115 —0435 0784  0.442
0.141 0505 0312  0.156 —0.777
o 0 0) (9818 0 0
0 o, 0 0 4778 0
D=|0 0 o3|=| 0 0 1.119].
0 0 0 0 0 0
0 0 0 0 0 0

We obtain the canonical model

(7) 7=DB+i where 7=U"F Y, 3=V"8,i=U"u,
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and so
=016 +uy,
Yy =020, +uy,
V3 = 0303 +us,
V4 =uy,
Vs = Us.
The least squares estimators of the canonical parameters are given by
By= /o1,
By =T /02,
B3 =3/o3,
or in matrix notation
. /oy 0 0 00
B=D"p,where D" =| 0 1o, 0 0 0.
0 0 1oz 0 0O

D" is the Moore-Penrose inverse of D. The covariance matrix of 3 is given by

/ol 0 0

A\t “Nent\T 2t t\Ty . 2 Ty 2 2
var(f)=D" var()(D") =o°D"(D") )=0"(D'D) "=0"| 0 105 0
0 0 1/o}

By backtransformation we find the least squares estimators of the original parameters 0 = Vi
B=VB=VD'3=X"3=X"F 'y where X* =(pxn)=(3Bx5=VDU",
var(3) =V (D"D)" VT,

62 = ! ele= ! e'e where e:y—)?[;:y—)z)?+y:(ln—XX+)y.
n—p n—p

X" =V D UT is the Moore-Penrose inverse of X, and as

xwlx)y =y Dy v,
xw )y ' xTw =xF!,

we obtain the same results as with the classical procedure of Aitken.

c) Procedure with generalized singular value decomposition

We consider the general linear model as given in (5):

(8)  y=XB+Fu, whete X =(nxp), F=(nxn), u~(0,0°I,)

with X and F as given above in (2) and (4).

(1)  Singular value decomposition of the matrix (X | F)

The singular value decomposition of (X | F)=(nxm)=(5x8) with m = p+nrn=28 is given by
(X|F)=PAQ",

where P=(nxn)=(5x5) and Q= (mxm)=(8x8) are orthogonal and

A = (nxm)=(5x8)=diag(oy,...,05), and where the singular values oy,...,05 of (X |F) are given

in the following table. We have 7. =rk(X | F)=n =135, and this simplifies the further procedure.



14

Table 1: Singular values of X, F, (X |F) and X

X=(5x3) | F=(5x5 | (X|F)=(5x8) | X=F'X
5.287 17.008
16.560 4.253 8.802 9.818
singular values 7.612 3264 4.563 4.778
2.795 2.973 3.685 1.119
0.338 2.120

(i)
As 7. =1k(X | ) =n=35 we have to determine the CS-decomposition of the orthogonal matrix

0 = (mxm)=(8x8) with the format

(G| G2
©) Q_[Qzl |Q22]

We obtain orthogonal matrices

U:(ng):[U1| o]:[(3><3)| * ]

CS-decomposition of Q

((3%5) | 3x3)
TB6x5) | 5x3)[

(p><n)|(p><p)]
(nxn) | (nx p)

0 [0, x| (5x5)
B NADRRGCHIE:
V_(8XS)_[0 |V2]— © [Gx3)
with
0.409 0.282 0.249 0.626 —0.547
0.793 0.102 0.600 0.025 0.772 —-0472 -0.366 —0.218
U =| 0425 0612 —-0.667|, U, =|—-0.615 0252 0.666 —0.210 —0.266
—0.435 0.784  0.442 0.659 —0.077 0.418 —-0.617 —0.063
0.141 0.505 0.312 0.221 0.761
—0.360 —0.918 —0.144 0.084 0
—0.577 0.351 —-0.722 0.117 0.088 0468 —0.096 —0.878
Vy=1-0407 0.147 0428 0.590 —0.531|, V, =|—0.842 0.251 —0.476
0.235 —0.024 —0.003 0.738  0.632 —-0.266 —0.963 —0.037
0.562 —0.112 —-0.524 0.293 —0.558
such that
Dy | D (3x5) | (3x3)
UToy = p—|21 22| _
0 [D21 | Dyy ) ((5%5) | (5%3)
where
¢ 0 0 0O0]s 0 O
00 ¢, 000[0 s 0
0 0 ¢ 00[0 0 s
p_|st 0 0 0 0[—q 0 0
0055 0000 — 0
0 0 55 00[0 0 -—c
0O 0 0 1 0] O 0 0
0O 0 0 0 1] 0 0 0

The diagonal elements ¢; and s; are given in the following table. Note that cl-2 + Sl-2 =1fori=12,3

and so the matrix D is orthogonal, too.
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Table 2: Diagonal elements c;, s;

i Cl'
1 0.994 852 | 0.101 334
0.978795 | 0.204 843

3 1 0.745 620 | 0.666 371

i

(ii1))  Generalized singular value decomposition and canonical model

We now have
X |F)=PAQ",
(10) (X|F) 0
Q=UDVT,

and from this we find the so-called generalized singular value decomposition of the pair X, F’
(a0 PIXU; = AoV D),
P'FU, = Ay V; Dy,
where Ay = (5x5) =diag(oy,...,05) and where oy,...,05 are the singular values of (X | F) as given
above. For P we have

—-0.264 —-0.156 0.725 0202  0.583
—-0.667 0588 —0.121 —-0.416 0.150
P=|-0314 —-0.367 0440 -0.379 —-0.655].
—-0.290 -0.701 —-0.476 —0.257 0.362
—0.551 —-0.057 —-0.201 0.759 -0.278

Our model (8) can now be written in the canonical form
(12) 7=Dif+ D,
where

F=WAy'PTy, B=UB, i=U]u,

q 0 0 s; 0 0 0O
; 0 ¢ O . 0 s 0 00
D1:D11:(5><3): 0 0 C3 |, D2:D21:(5><5): 0 0 S3 0 0],
0O 0 O 0O 0 0 1 0
0 0 0 0 0 0 01
and so
31 =01 By + sy,
V2 =¢3 By + 521,
(13) y3=c385 +s3u3,
Y4 =y,
Vs =s.
The least squares estimators are given by
By =71/t
By =Fa/cs,
By =y3/c3.

In matrix notation we can write



. /g 0 0 00
=Dy as D =] 0 1 0 0 0],
0 0 ez 00
s 0 0 0 0
S s5 0 0 0
var(y)=o"DyDy =07 | 532 0 ol
0 0 0 10
0 0 0 01
slz/clz 0
var(3) = D] var(G)(D{)' =o?D DD} (D) =02 0 $3/3 0 |=o%Dy
0 s3/c3

For the original parameters we obtain

B=UB, B=U\B, vaB)=U,var(BU] =*U,DyUY .
The unknown variance o is estimated by

~2 ~2 | =2

6" =15 +733).
By backtransformation we obtain again the same results as in a) and b), but the classical Aitken proce-
dure a) works only in the regular case, i.e. if X and F" have full rank, procedure b) with the simple sin-
gular value decomposition works also if multicollinearity is present i.e. if X does not have full rank,

and method c) with the generalized singular value decomposition works even if both X und £ are rank

deficient.

Remark

By multiplying the canonical model (12) with D, ! we obtain a model that is equivalent to the canoni-
cal model (7) as we have D, 1D1 =D, where D= (5x3)=diag(cy,05,03) and where o0}, 0,, 03 are
the singular values of X = F “1x.
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Example 5: General linear model with strict multicollinearity
In this example we consider the general linear model
(1) y=X0B+e, where X =(nx p) and€~<0,02W)

as in Example 4, but this time

32 4
1 9 -7
X:(XI,XZ,X3):(5X3): 4 1 71,
7 2 12
5 6 4

whereas the symmetric matrix W = (5x5) is the same as there:

13.059 —3.765 6.294 —1.294 —-0.941
* 12.059 —0.588 1.941  0.588

W= * * 13.882 12.235 0.706]|.
* * *  15.706 1.235
* * * *  10.941

We have x3 =2x; —x,, i.e. the third column of X is a linear combination of the first two columns, and so

the matrix X has rank 2; so we face the problem of strict multicollinearity. As X "W~'X has the same

rank as X the inverse (X W~ Tx )_1 does not exist and the classical procedure of Aitken breaks down.

a) Procedure with singular value decomposition

As in Example 4 the general linear model can be written in the form

2) y=X0B+4 Fu, where X =(nxp), F=(nxn), u ~(0,021n),

and where FF' =W . As in Example 4 we start with the singular value decomposition of X = F~ x
that is given by X =UDV" where U = (nxn) and V = (px p) are orthogonal and

D = (nx p)=diag(oy,...,0,); 01,...,0, are the singular values of X=F"'X.The following table

gives the singular values of the different matrices involved.

Table 1: Singular values of X,F,)_(:Fle, (X|F)

X=(x3) | F=(5x5) | X=(5x5) | (X|F)

5.287 14.548 19.428

18.802 4.253 3.802 12.572

singular values 12.103 3.264 0 3.945
0 2.973 0 3.619

0.338 0 1.213

And here are the three matrices U,V, D :
—0.427 —-0.200 —0.842 —0.257 —0.060

0.061 —0.892 0.126 0258 —0.345 —0.536 —0216 0816
U=| 0535 0065 —0498 0.642 0223|, ¥=|—0271 —0.872 —0.408|,
~0.709  0.175 0.115  0.673 —0.032 —0.800  0.440 —0.408
—0.161 —0.361 0.119 —0.053  0.909
o 0 0) (14548 0 0
0 o, 0 0 3802 0
D=0 0 o3|=| 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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We obtain the canonical model

() §=DB+i,where =U"F 1y, 3=V"8,i=U"u,

and so
=010 +u,
Yo =0, By + 1y,
)73 = 1’73 5
V4 =y,
Vs =1s.
The least squares estimators of the canonical parameters are given by
Bi=5/o1,
By =52/05.

The parameter 33 can have arbitrary values, it is not identifiable and not estimable without further
assumptions. We set this parameter to zero and so its value is defined such that
G5 = 312 + 5’22 + 532 = min . For the original parameters we have 3= V3,andas 3 3=0"3 our
parameters are made identifiable and estimable by the minimum length requirement
8"3=/3"3=min. As now 53 =0 also the least squares estimate of 63 is zero. In matrix notation
we can write

B=D"5, B=V3=VD'5=VDUTF\),

var(3) = o2D" D' T =}(D'D)", var(B)=o*V(D'D)' VT,

6% = eTeZ%(y32 + 57+ 72) with ry =rk(X)=2.
n—rX
We obtain
2
/ot 0 0| (0004725 0 0
(DD =| 0 103 o|=| 0 0.069175 0/,
0 0 0 0 0 0
0.004576 0.013698 —0.004 545
V(D'DYVT = % 0.052905 —0.025509]|,
% « 0016418

0.049401 0.014657 —-0.076 112 0.061 121  0.009 415
VD'UTF~1=]0.050009 0.063 111 —0.049466 0.026076  0.027105|.
0.048792 —0.033797 —0.102757 0.096166 —0.008275

b)  Procedure with generalized singular value decomposition
We consider the general linear model as given in (2) with X and F' as given there.
(1)  Singular value decomposition of the matrix (X | F)
The singular value decomposition of (X | ) is given by
(X |F)=PAQ",
where P=(5x5) and Q= (8x8) are orthogonal and A = (5x8) = diag(oy,...,05), and where the

singular values oy,...,05 of (X |F') are given above in Table 1. For P we obtain
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0.275 —0.090 0.847 —-0.273 0.353
-0.217 —-0.882 —0.167 —0.380 0.051
P=| 0451 0.011 0.052 —0.411 —-0.790{.
0.744 —0.014 —-0.472 —0.123 0.457
0.349 —0.462 0.169 0.773 —0.199
(i)  CS-decomposition of Q
As r, =1k(X | F)=n=5 we have to determine the CS-decomposition of the orthogonal matrix

0 = (mxm)=(8x8) with the format

(G| G2
Q_[Qzl |Q22]

We obtain orthogonal matrices

U:(ng):[U1| 0]:[(3><3)| x ]

((3%5) | 3x3)
T6x5) | 5x3)[

(p><n)|(p><p)]
(nxn) | (0 p)

0 |U2 * |(5><5)
B " | 0] [((5x5) | *
V_(SXS)_[O |V2]_ [ Gx3)
with
—0.427 0.200 0.388 —0.778 —0.150
—0.536 0.216 —0.816 0.061 0.892 —-0.448 —-0.027 -0.007
U;=|-0.271 0.872 0.408(, U, =| 0.535 —0.065 —-0.035 —0.169 —0.825
—0.800 —0.440 0.408 —0.709 —-0.175 —-0.450 0.210 —0.469
—0.161 0.361 0.667 0.569 —0.277
—0.959 -0.148 0 0 —-0.241
0.139 —0.985 0.041 —-0.084 0.049 —0.747 0.566 0.350
1 =1-0.024 0.087 0.724 —0.683 0.043|, ¥, =| 0.659 0.557 0.506
—0.092 —-0.026 0.619 0.680 0.381 —0.091 —-0.608 0.788
—0.227 0.021 —-0.302 —-0.253 0.890
such that
D, |D (3><5)|(3><3)
UToy —=p—|21 22| _
Q [D21 |D22 (SXS) | (5X3)
where
aq 0 0 0 0f 5 0 O
0 ¢pb 00 0] O s 0
0O 0 0 0 O O 0 1
p—|% 0 00 O0j— O O .
0 s 00 0] 0 — O
0O 0 1 0 o0 O 0 O
0O 0 01 o0 O 0 O
0O 0 0 0 1| O 0 O

The diagonal elements c;, s; are given in Table 2. Note that c,-2 + sl-2 =1 for i =1, 2, and so the matrix

D is orthogonal, too.

Table 2: Diagonal elements c;, s;

i ¢

0.997 646 | 0.068 578
2 10967110 | 0.254 360

S




20

(iii)) Generalized singular decomposition and canonical model
Now we have
(X |F)=PAQT,
Q=UDVT,
and from this we find the so-called generalized singular value decomposition of the pair X, F
@ PTXU, = Ay V; D},
PTFUy = Ao Dy,
where Ay = (5x5) =diag(oy,...,05) and where oy,...,05 are the singular values of (X | F) as given
in Table 1. Our model (2) can now be written in the canonical form
(5)  y=Di3+Dyi,
where

F=WTA'PTy, B=U[B, i=Ulu,

q 0 0 ss; 0.0 00
0 ¢ 0 0 s, 000
D=D[|=(5x3)=|0 0 0|, Dy=D;;=(5x5=|0 0 1 0 0]
0 0 0 010
0 0 0 0 0 00 1

The generalized singular value decomposition (4) shows that rk(X) =rk(Dy;) =rk(D;) =2 and
tk(F) =r1k(D,1) =1k(D,) =5 . Now the canonical model (5) explicitly written has the form
Jr=e By + sy,

Yo =¢y By + sy,

»=uz,
)74 :1243
Vs =us.

The parameter 53 can possess arbitrary values as it is not met in the canonical model and we set this

parameter to zero (minimum length definition). The least squares estimators are given by

By=/c,
By=3n/eca,
By =0.
In matrix notation we can write
. l/cl 0O 0 00O
ﬂ:ij/ as D1+: 0 1/02 0 0 0],
0 0O 0 0O
s5 0 00 0
2
0 s5 0 0 O
- 2 2 2
val(i)=o"DyD} =a"{ o o 1 0 ol
0O 0 010
0O 0 0 0 1

var(3) = D' var(G)(D{ )T = 02Dy DyDY (D) =02 0 s3/3 0|=0Dy.
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For the original parameters we obtain
B=U3, B=U\8, var(B)=U,var(B)U] =o?U,DoUT .
The unknown variance o is estimated by
6 =35 + 3+ 53).
We obtain the same results as in a) with the simple singular value decomposition, but that procedure
works only if the matrix W (and so the matrix F) has full rank, whereas the method with the general-

ized singular value decomposition also works if both X und F are rank deficient as we will see in the
next example.

By multiplying the canonical model (5) with D, ! we obtain a model that is equivalent to (3) and we
have D, 1D1 =D, where D = (5x3)=diag(cy,0,,03) and where oy, 0,, o3 are the singular values
of X=F'x.
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Example 6: General linear model with rank deficient covariance matrix

In this example we consider again the general linear model
(1) y=XpB+e, where X =(nx p) and€~<0,02W).
Let

X=(5x3)=

NP —Ww
AN = O N
DN O bk~ oow

as in Example 4. The matrix X has full rank 3. But in this example the matrix W will be rank deficient.
Let

4 9 8 —5
1 -7 -9 -5
Fp=(Gx4)=| 7 =3 9 4
4 -9 5 9
-6 -8 7 —6
and now we define
93 —-53 265 =35 -05
* 7.8 —-3.65 —1.15 0.85
W=55FFg =(5x5)=| = x 7175 68 105
* * * 10.15 1.45
* * * * 9.25

The singular values of W are

17.462
a1 15.181
t|=|8.812 |,
o5 |2.796
0

and so W is a symmetric and positive semidefinite matrix with rank 4. Now we consider the general

linear model (1) with X = (nx p) and W = (nxn) as given above. As rk(W)=4 the inverse w!

does not exist and so the classical Aitken procedure as well as the procedure with the simple singular
value decomposition cannot work. Therefore we apply the procedure with the generalized singular

value decomposition.

(i)  Factorization of W
We want to find a matrix F = (nx k) such that W = FF' where k = rk(W)=4 . The eigenvalue
decomposition of W is given by W = RAR" , where R is orthogonal and A = (5x5)= diag(N,...,\s),
A =0; (as W is positive semidefinite). As o5 = A5 =0 we set
(2) D=(5x4)=diag(\/\,....\/\y) and F=(5x4)=RD.
As DDT =(5x5)= diag(),...,\4,0)=A we have FF' = RDD'R" = RAR" =W . The random
error of our model (1) can now be written in the form

e=Fu with u~(0,0%1;), i.c. with E(u)=0and var(u)=o>I},
as E(¢)=E(Fu)=0 and var(c)=E(ee' )= FE(uu" )F' = o?FFT = 02 . So model (1) can also be
given as

()  y=XB+ Fu, where X =(nx p), F=(nxk),u~(0,0%I;).
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(1)  Singular value decomposition of (X | F')
Wehave X =(nxp)=(5x3) and F=(nxk)=(5x4) andso (X |F)=(nxm)=(5x7), where
m= p+k="7.Now we compute the singular value decomposition of (X | F):
(X|F)=PAQ",
where P=(5x5) and Q =(7x7) are orthogonal and A = (5x7) =diag(oy,...,05). We obtain

—-0.258 —0.147 0.718 0.226  0.588
—-0.671 0.590 —0.196 -0.338 0.222
P=|-0299 -0.342 0428 —-0.590 -0.513],
-0.275 -0.708 —-0.507 —-0.149  0.379
—0.565 —0.109 —0.075 0.682 —0.445

and the singular values of (X | F') are given in the following table.

Table 1: Singular values of X, F, (X | F)

X=(5x3) | F=(5x4) | X[F)=(xT7)
16.771
16.560 4179 8.540
singular values 7612 3.896 4.246
2.795 %zgg 2.883
' 1.924

(ii1))  CS-decomposition of Q
As r, =1k(X | F)=n=35 we have to determine the CS-decomposition of O = (mxm)=(7x7) with

the format

Q_[Qn | le] (pxn) | (px(m—n»]
Oy | Onp) |k xn) | (kx(m—n))
We obtain orthogonal matrices
U | 0]
0 [0
/| 0]

(3x5) | 3x2)
(4x35) | (4x2)"

x| (4x4)

(5x5)| =
x| (2x2)

U_(7X7)_[ (Bx3)| = ]

V:(8><8):[

with
0.055 0.990 0 0.127
0.148 0.097 0.540 -—0.823
—0.343 0.089 —-0.758 —0.548]’
—0.926 0.041 0367 0.080

—-0.702 —-0.699  0.081 —0.100 0.035
—0.448 0.538 0.709 —-0.015 0.078 [

0.785 —0.214 —0.581
U=| 0616 0369 0.696|, U,=
~0.066  0.905 —0.421

0.483 0.876]

1 =1-0275 0308 —0.488 —0.387 0.665|, V5= 0.876 —0.483

0.250 —-0.255 0.283  0.514 0.727
0.410 —0.248 0.415 —-0.759 0.147

such that

(3><5)|(3><2)]

Dy | D
UTQV:D:[ ” 12] (@x5) | (4x2)

Dy | Dy

where
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1 0 0 0 0] O 0
00 ¢ 0 0 0f 5 0
0 0 ¢cp 00| 0 s
D=0 s 0 0 O0|—¢ 0
0 0 sp 0 0] 0 -0
0 0 0 100 0
0 0 0 010 0

The diagonal elements ¢; and s; are given in Table 2. Note that ciz + sl-2 =1 for i=1,2, and so the
matrix D is orthogonal, too. Also note D,; and D), are not classical diagonal matrices as the diago-

nal starts in the lower right corner and not in the upper left one.

Table 2: Diagonal elements c;, s;

I C; S;

0.988 084 | 0.153 915
2 10.779 148 | 0.626 840

(iv)  Generalized singular value decomposition and canonical model
Now we have

(X|F)=PAQ",

0=UDVT,
and from this we find the so-called generalized singular value decomposition of the pair X, F
@ PTXU, =AW DY),

P'FU, = AW Dy,
where Ay = (7. x1.)=(5x5)=diag(oy,...,05) and where o,...,05 are the singular values of

(X' | F) as given above. Our model (2) can now be written in the canonical form

(5) =D+ Dy,

where
B=U{B,
i=Uju,

Dy=Df| =(5x3)=

cocooco~
cool o

o co
N~————

0 0 00
s; 0 0 0
Dy=D;;=(5x4)=|0 s, 0 0
0 0 10
0 0 01

The generalized singular value decomposition (4) shows that tk(X) =rk(Dy;) =rk(D;) =3 and
tk(F) =1k(D,;) =1k(D,) =4 . The canonical model (5) explicitly written has the form
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=0,
Py =1 By + sy,
3 =2 + 531y,
V4 =13,
Vs = lig.
The observation J; is identical to the parameter 3, , this observation has no random error. As the co-

variance matrix W = (5x5) has rank 4 there exists a linear combination y; of the original observa-
tions ( yy,...,», ) with no random error, and there exists a linear combination Bl of the original pa-

rameters ( 3i,..., Bp ) such that y; = 51. The least squares estimators are given by

Bl:);l’
By = /ey,
By =73/cs.
In matrix notation we can write
R 1 0 0O 0O
B:ij/ as D1+:0 /g 0 0 0f,
0 0 1/02 0 0
0 0 0 O
, |0 s5 0 0 0
var()=o"DyDy =079 o 2 0 0l
0O 0 0 1 0
0O 0 0 01
0 0 0
var(3) = D; var(F)(D{ )" = 02D D,DY (D)) =020 st/ct 0 |=o?Dy.
0 0 s%/c%

For the original parameters we obtain
B=UB, B=U\B, var()=U,var(B)U] =0 U\ DUy .
The unknown variance o2 is estimated by

2 22
6" =3 (75 +7335).
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Example 7: General linear model with rank deficient X and W
In this example we consider again the general linear model
(1) y=X0B+e, where X =(nx p) and€~<0,02W),
but now both matrices X and W are rank deficient, i.e. tk(X) < p and tk(W)<n. Let

32 4
1 9 -7
X:(xl,X2,X3):(5X3): 4 1 7
7 2 12
5 6 4

as in Example 5. We have x3 =2x; —x,, i.e. the third column of X is a linear combination of the first

two columns, and so the matrix X has rank 2. Let

9.3 —-53 265 —-35 —-05
* 7.8 —-3.65 —1.15 0.85
* * 7.75 6.8 1.05
* * * 10.15 1.45
* * * * 9.25

W =(5x5)=

as in Example 6. The singular values of W are

17.462

o) |15.181

©|=|8.812],

os| |2.796
0

and so W is a symmetric and positive semidefinite matrix with rank 4. Now we consider the general

linear model (1) with X =(nx p) and W = (nxn) as given above. As rk(W)=4 the inverse w1

does not exist and so the classical Aitken procedure as well as the procedure with the simple singular
value decomposition cannot work. So we apply the procedure with the generalized singular value de-
composition.

(i)  Factorization of W
We want to find a matrix F = (nxk) such that W = FF' where k = rk(W)=4. The eigenvalue
decomposition of W is given by W = RAR" , where R is orthogonal and A = (5x5) = diag(\,...,\s),
A = o; (as W is positive semidefinite). As o5 = A5 =0 we set

D=(5x4)=diag(JN,...,\[As) and F=(5x4)=RD.
As DD" =(5x5)= diag(),...,A\4,0)=A we have FF" =RDD"R" = RAR" =W . The random
error of our model (1) can now be written in the form

€= Fu with u~ (0,0'zlk ), i.e. with E(u) =0 and var(u) = 021k ,
as E(c)=E(Fu)=0 and var(¢) = E(ce") = FB(uu")F" = ¢*FF" = ¢*W . So model (1) can also be
given as

(2) y=X0+ Fu, where X:(nxp),F:(nxk),u~(O,02]k).



27
(i)
Wehave X =(nx p)=(5x%3) and F=(nxk)=(5x4) andso (X |F)=(nxm)=(5x7), where

m= p+k="7.Now we compute the singular value decomposition of (X | F):

Singular value decomposition of (X | F)

(X|F)=PAQ",
where P=(5x5) and Q =(7x7) are orthogonal and A = (5x7) =diag(oy,...,05) We obtain
0.270 —0.092  0.839 —0.330 0.326
—0.236 —0.870 —0.181 —0.392  0.019
P=| 0442 0.015 0.039 —-0.356 -—0.822],
0.743 —0.022 —-0.475 —0.157 0.444
0.353 —0.483 0.189 0.766 —0.141

and the singular values are given in the following table.

Table 1: Singular values of X, F,(X | F)

X=(5x3) | F=5x4) | (X|F)

19.214

18.802 4.179 12.424

singular values 12.103 3.896 3.639
2.969 )

0 1672 2.503

' 1.093

(iii))  CS-decomposition of Q
As 7. =1k(X | F)=n=35 we have to determine the CS-decomposition of Q = (mxm)=(7x7) with

the format
o [Qu] Q) _((xm | (pxmom)) _((3x5) | 3x2)
Oy1 | Onp) ((kxn) [ (kx(m—n))]  ((4x5) [ (4x2)|"
We obtain orthogonal matrices
B (U] 0) (Bx3)| =
U—(7X7)—[0 |U2]_ © [ @x4)
_gxgy— |0 _[Gx5 ] +
V(gxg)[o |V2] x| (2x2)
with
0.569 —0.100 0.816 —0431 0 0 0.902
—0.173 —0.460 0.867 —0.083
U =10.446 —0.797 —0.408|, U, =
0.691 0596 —0.408 0.283 —0.866 —0.390  0.135
' ' ' 0.839  0.197 0311 0.401
0914 0357 0.010 0.044 —0.190
—-0.358 0922 —-0.025 —-0.143 —-0.023
Vi=| 0.041 —-0.072  0.721 —-0.685 —0.061|, V; :[:gggé _?)22?]
—-0.033 0.117 0.679 0.678  0.253 ’ '
0.186  0.058 —0.134 —0.220  0.946
such that
Dy | D (3x5) | 3x2)
UTov —p—| 21 22| _
Q [Dz] | D22 (4X5) | (4)(2)

where
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1 0 00 0 0 O
0 9 0 0 0 N 0
0 0 00 0 0 1
D=|0 $1 0 0 O - 0].
0 01 00 0 O
0 0 01 0,0 O
00 0010 O

The diagonal elements ¢; and s; are given in Table 2. Note that c12 + slz =1, and so the matrix D is
orthogonal, too. Also note D,; and D, are not classical diagonal matrices as the diagonal starts in

the lower right corner and not in the upper left one.

Table 2: Diagonal elements ¢y, s

i ¢

1 | 0981975 | 0.189 010

i

(iv)  Generalized singular value decomposition and canonical model

Now we have
(X|F)=PAQ" and Q=UDVT,
and from this we find the so-called generalized singular value decomposition of the pair X, F’
3) PTXU; = AgV; Dfj,
PTFU, = AoV D3y,
where Ay = (5x5) =diag(oy,...,05) and where oy,...,05 are the singular values of (X | F) as given
above. Our model (2) can now be written in the canonical form
@) y=DyS+ Dy,

where

Wag'eTy,
Uy g,
UzTu,

y
g
i

Dy =Df| =(5x3)=

SOOOO

cooco~
cool o
N—

0
1
Dy =D =(5x4)={0
0
0

SO~ OO
O~ OO O
— OO oo

The generalized singular value decomposition (3) shows that rk(X) =rk(D;;) =rk(D;) =2 and
tk(F) =r1k(D,1) =rk(D,) =4 . The canonical model (4) explicitly written has the form



29

51=10,

o =1 By + sy 10y,
(5)  y3=uy,

V4 =1u3,

Vs =uy.

The observation 7, is identical to the parameter 3, , this observation has no random error. As the co-
variance matrix W = (5x5) has rank 4 there exists a linear combination y; of the original observa-
tions ( yy,...,», ) with no random error, and there exists a linear combination Bl of the original pa-
rameters ( 3y,..., 5p ) such that y; = Bl- The parameter 33 can have arbitrary values as it does not

show up in the canonical model, and we set this parameter to zero (minimum length definition). The
least squares estimators are given by

By =7,
By =32/c1,
63:0.
In matrix notation we can write
. 1 0 000
B=Dy as D =[0 1l/eg 0 0 0],
0O 0 0 0 O
0O 0 0 0 O
S [ s£ 0 0 0
var(y)=o0"DyD, =0”|10 0 1 0 0
0O 0 010
0O 0 0 0 1
0 0 0
var(3) = D var(3)(D{)" = o> Dy D,D} (D) =02 |0 st/cf 0|=0?Dy.
0 0 0

For the original parameters we obtain
B=U,p, B= Ulé, var(3) = U, Var(é)UlT = 02U1D0U1T .
The unknown variance o is estimated by

) 2 2 2
6° =35 + 75 +35).

Remark

In our example we have n=5, p=3 and

ry =tk(X)=2 <p=3
rg =1k(F)=1tk(W)=k=4 <n=5
7. =1k(X|F)=5 =n
r=ry +rp—1.=1 >0

and this is the most general case of a general linear model with 7. =7 . In the canonical model (5) we

have three categories of observations:



(a)

(b)

(©)
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observations with no random error, that are identical to a parameter ( j; in the example);
number of these observations: ry —r=n—rp =n—ny =5—4=1;
"classical" observations, that depend on the parameters and possess a random error ( y, in the

example); number of these observations: »r=1;

observations, that do not depend on the parameters and possess a random error ( y3, 4, and s

in the example); number of these observations: rp —r=4—-1=3.

Furthermore we have three categories of parameters:

(o)

®

()

parameters, that are completely fixed by the observations (51 in the example); number of these
parameters: ry —r=2—1=1;

"classical" parameters, that can be estimated with a random error (3, in the example); number
of these parameters: r=1;

parameters that do not show up in the canonical model (33 in the example); these parameters

can have arbitrary values and they can be set to zero in order to make all parameters identifiable

(minimum length definition); number of these parameters: p —ry =3—-2=1.

Final remark

If the matrices X and W are nearly rank deficient the rank-k approximation should be applied as de-

scribed in Example 9 so that the ranks become numerically stable in the sense that small perturbations

of the matrix elements cannot reduce the rank further.
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Example 8: General linear model with rank deficient X, W, and (X | F)
In this example we consider again the general linear model
(1) y=X0B+e, where X =(nx p) and5~<0,02W),
but now both matrices X and W are rank deficient, i.e. tk(X) < p and k(W) < n, and in addition
k(X | F)<n.Let

X = ()Cl,X2,X3): (5X3):

N =W
NN — O N
3

as in Example 5. We have x3 =2x; —x,, i.e. the third column of X is a linear combination of the first

two columns, and so the matrix X has rank 2. Let

2 45 4
05 —-35 —7
Fo=(x3)=| 35 —15 7|;
2 —45 12
-3 -4 4

note that the last column of £ is identical to the last column of X. The singular values of X, F, and

(X | F) are given in the following table.

Table 1: Singular values of X, Fy, (X | Fy), W

X=(5x3) | Fy=(5x5) | (X[Fp) w
25.216) | (286.942
' 18.802 16.939 13.519 67.425
singular values 12.103 8.211 6.153 20.133

0 4.487 4.248 0

0 0

Now we define
4025 —42.75 2825 31.75 -8

* 61.5 —42 —-67.25 —155

W=FF =(5x5= * x 635 9775 235].
* * x  168.25 60
* * * * 41

W, is a symmetric and positive semidefinite matrix with rank 3 as rk(W) = rk(F) = 3. The singular
values of W are given in Table 1. We now consider the general linear model (1) with X and W as given
above. As rk(W)=3 <n the inverse w1 does not exist and so the classical Aitken procedure as

well as the procedure with the simple singular value decomposition cannot work. So we apply the
procedure with the generalized singular value decomposition.

(i)  Factorization of W
We want to find a matrix F = (nx k) such that W = FF' where k = rk(W)=3. The eigenvalue de-

composition of W is given by W = RAR" , where R is orthogonal and A = (5x5) = diag(),..., ),

A; =0; (as W is positive semidefinite). As the two smallest eigenvalues are zero we set

2)  D=(5x3)=diag(N,\Aa,/\3) and F=(5x3)=RD.
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We obtain

—3.444 5327  0.093
6.155 —4.091 -—-2.623

F=RD=~| —-7.602 0347 -2.365].

—12.748 —2.294 —-0.695
—4.112 —4.114 2.677

Note that F is different from F), but the singular values of /" and £, are the same as the squared val-

ues are the singular values of W (compare Table 1 and Table 2). As DD" = (5x5)= A we have

FF" =RDD'R" = RAR" =W . The random error of our model (1) can now be written in the form
e=Fu with u~ (0,021k ), i.e. with E(u) =0 and var(u) = 0—21k ,

as E(¢)=E(Fu)=0 and var(c)=E(ce' )= FE@uu")F' = o?FF" = W . So model (1) can also be

given as

(3) y=X0B+ Fu, where X =(nxp), F=nmxk),u~ (O,Uzlk).

with X =(5x3) and F =(5x%3) as given above.

Table 2: Singular values of X, F, (X | F)

X=(5x3) | F=(5x5) | (X|F)
25216
. 18.802 16.939 13.519
singular values 12.103 8.211 6.153
0 4487 4.248

0

(i)  Singular value decomposition of (X | F)
Wehave X =(nxp)=(5x3) and F=(nxk)=(5x3) andso (X | F)=(nxm)=(5x6), where
m= p+k=6.Now we compute the singular value decomposition of (X | F):
(X|F)=PAQ",
where P=(5x5) and Q= (7x7) are orthogonal and A = (5x7) =diag(oy,...,05). We obtain

0.239  0.061 0.889 —0.358 —0.144
—0.308 —0.835 0.256 0347 -0.147

P=| 0441 -0.021 0200 0.498 0.719
0.752 —-0.140 -0.192  0.230 —0.570

0.298 —0.528 —0.260 —-0.671 0.339

and the singular values o7,...,05 are given in Table 2.

(iii)  CS-decomposition of O
Now 7. =r1k(X | F') =4 <n and therefore we will find in our canonical model an additional category
of observations. First we have to determine the CS-decomposition of Q = (mxm) = (6x 6) with the

format

Q:[Qu |le] (pxr.) | (px(m—1,)) :[(3><4)|(3x2>]
01 | O] |(kxre) [ (kx(m=1)) |~ (BxH [ (3x2))’

We obtain orthogonal matrices
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(3x3)| =
* | 3x3)

B RALNRCEOIE
V_(6X6)_[O|V2]_[ © [2x2)
with
0.447 —0365 —0.816 0.974 —0.226 0
Uy =|-0.894 0.183 0408, U,=|-0.124 —0.535 —0.836
0 —0913 0.408 —0.189 —0.814  0.549
—0.209 —0.965 0.156  0.009
| 0863 0236 —0.281 —0.347) (0690  0.724
1710419 0044 —0.240 —0.875]° 27 (0.724 —0.690
0.191 0.104 0916 —0.338
such that
Dy | D (3x4) | (3x2)
UToy=p—|21L | 212 | _
Q [D21|D22 Gx4) [ (3x2)
where
1 0 00l 0 O
O C‘l O O Sl
0 0 00| O0 1
D=1 0 0= o
001 0/0 0
00 0 1/0 0

The diagonal elements ¢; and s; are given in Table 3. Note that 012 + s12 =1, and so the matrix D is
orthogonal, too. Also note D,; and D;, are not classical diagonal matrices as the diagonal starts in

the lower right corner and not in the upper left one.

Table 3: Diagonal elements ¢y, s;

i Cl'

1 | 0.738549 | 0.674 200

S

(iv)  Generalized singular value decomposition and canonical model

Now we have
(X|F)=PAQ" and Q=UDVT,

and from this we find the so-called generalized singular value decomposition of the pair X, F

Ao
PTXU, :[T]Vl Dfj,
(4)
A
PTFU, = [TO]V1 Dj,,

where Ay = (4x4)=diag(oy,...,04) ; 01,...,04 are the positive singular values of (X | F') as given
above. Our model (3) can now be written in the canonical form

5)  j= {%0] - [((‘1‘::11))] where o = D, + Dyl

with



fo=H78"50. 7=y =[R2 [(33 |
B=Us,
ﬁ:UzTu,
10 0 0 0 0
=D =(4x3)=|g & ol D,=DL=w@x3=|1 § Ol
0 0 0 0 0 1

The generalized singular value decomposition (4) shows that rk(X) =rk(D;;) =rk(D;) =2 and

tk(F) = rk(D,) = rk(D, ) = 3. The canonical model (5) explicitly written has the form

(6)

71 =0
Jo =01 By + sy 10y,
Y3 =iy,
V4 =u3,
ys =0.

We have j =3, and 5 =0 ; these two observations have no random error. As the covariance matrix

W, = (5x35) has rank 3 there exists two independent linear combinations y; and ys of the original

observations ( )y,...,, ) with no random error. The parameter B3 can have arbitrary values as it does

not show up in the canonical model, and we set this parameter to zero (minimum length definition).

The least squares estimators are given by

B =71,
By =32/c1,
B:; =0.

In matrix notation we can write

. 10 00
B=Dyy as D =|0 1/ 0 0Of,
0 0

0 0
00 00
. 2h AT 2[00 s2 0 0
var =0“DyD, = 1
(Yo)=0"DyD; =0 0 0 1 0
0 0 0 1
0 0 0
var(3) = D var(3o)(D; )T =D DyDY (DY =02 |0 st/ 0|=0>D,.
0 0 0

For the original parameters we obtain

B=U\B, B=U\5, var(B)=U,var(3)U] =o2U,DyU7 .

The unknown variance o is estimated by

"2 ) 2 2
6% =3 +u3) =573 + 3 +75).
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Remark

In our example we have n=5, p=3 and

ry =1k(X)=2 <p=3
rg =1tk(F)=tk(W)=k=3 <n=5
r.=rtk(X|F)=4 <n=5
r=ry+rg—1.=1 >0

and this is the most general case of the general linear model.

In the canonical model (6) we have four categories of observations:

(a)  observations with no random error, that are identical to a parameter ( ) in the example);
number of these observations: ry —r=2—-1=1;

(b)  "classical" observations, that depend on the parameters and possess a random error ( J, in the
example); number of these observations: » =1;

(c)  observations, that do not depend on the parameters and possess a random error ( 3 and y,4 in
the example); number of these observations: 7z —r=3—-1=2;

(d)  observations, that are identical to zero ( y5 in the example); number of these observations:
n—r.=5-4=1.

The number of observations in categories (a) and (d) that possess no random error is
(ry —=r)+m—r.)=n—rp=n—1k(W)=5-3=2.

Furthermore we have three categories of parameters:

(o)  parameters, that are completely fixed by the observations (Bl in the example); number of these
parameters: ry —r=2—1=1;

(B)  "classical" parameters, that can be estimated with a random error (Bz in the example); number
of these parameters: r =1;

(y)  parameters that do not show up in the canonical model (33 in the example); these parameters

can have arbitrary values and they can be set to zero in order to make all parameters identifiable

(minimum length definition); number of these parameters: p —ry =3—-2=1.
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Example 9: General linear model with nearly rank deficient X, W, and (X | F)

In this example we consider again the general linear model
(1) y=XpB+e¢, where X =(nx p) andz—:~<0,02W),

but now both matrices X and ¥ are nearly rank deficient, and in addition (X | F) is nearly rank defi-

cient. Let
3 2 4
1 9 -7
XO :(xl,xz,x3):(5><3): 4 1 7
7 2 12
5 6 4

X 1s the same as X in Example 8. We have x3 = 2x; —x,, i.e. the third column of X, is a linear
combination of the first two columns, and so the matrix X{, has rank 2. Now let

3.0002 1.9996  4.0002
1.0005 8.9998 —6.9996
X =(5x%x3)=[3.9999 0.9999  7.0002|.
6.9995 1.9995 11.9998
5.0003 59997  3.9999

x; — x| =0.0005 and so X ~ Xp , but X has full rank 3

If X =(x;) and X, = (xlgo)) we have max |x;; i

whereas X, has rank 2 (see the list of singular values below). So X is nearly rank deficient. Let

2 45 4
05 —35 —7

Fy=(x3)=| 35 -15 7.
2 —45 12
3 -4 4

Fy is the same as /" in Example 8. Note that the last column of Fj is identical to the last column
of X, . Now let

40.25 —42.775 2825  31.75 -8
* 61.5 —42 —-67.25 —-155

Wy =FyFy =(5x5)= * x 635 9775 235
* * x 168.25 60
* * * * 41

40.251 —42.751 28.249  31.747 —7.997
*  61.502 —42.001 —-67.248 —15.501

W=(5x5)= * * 63.499 97.751  23.497
* * *  168.253 59.999
* * * * 40.995

Ifw= (wl-j) and W, = (wl-(jo)) we have max‘wlj — wlg-o)‘ =0.005 and so W ~W,, but W has full rank

5 whereas W, has rank 3, the same as F (see the list of singular values below). So also WV is nearly
rank deficient. The singular values of X, X, F, W, W are given in Table 1. The singular values of
Wy = FyFy are the square of the corresponding singular values of F. Table 2 shows that the small

perturbations added to # make the matrix indefinite as one of the five eigenvalues becomes negative.
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Table 1: Singular values of Xy, X, Fy, Wy, W

Xy =(5x3) | X=(05%3) | Fy=(5x3) | Wy=(5x5) | W=(5x5)
286.9422 286.9421
_ 18.8018 18.8014 16.9394 67.4248 67.4244
Singular values 12.1034 12.1031 8.2113 20.1330 20.1343
0 0.000 328 4.4870 0 0.0024
0 0.0017
Table 2: Eigenvalues of W,, W
Wy=(5x5) | W=(5x5)
286.9422 286.9421
. 67.4248 67.4244
Eigenvalues 20.1330 20.1343
0 0.0017
0 —0.0024

(i)  Rank-k approximation and factorization of W

Table 2 shows that all the eigenvalues of ¥, are non-negative and so ¥, is a positive semidefinite
matrix, but this is not true for the matrix ; due to the small perturbations added to W, the rank of W'
has been enhanced from three to five and # has become indefinite. We want to find an approximation
to W with a numerically stable rank. As the elements of W are given with three decimal places the two
smallest singular values 0.0024 and 0.0017 are near the rounding error of W, we determine the rank-3
approximation of . This approximation will give a matrix W} = (wl(jl)) with rk(#])=3 and

max|wl-j — wl(jl)| <04 =0.0024 . The singular value decomposition of ¥ is given by W =UDV " where
U =(5x5) and V = (5x5) are orthogonal and D = (5x5) = diag(oy,...,05) ; 0y,...,05 are the sin-
gular values of . Now define W] as

(2) Wy=UDYV" (=UDUT) where D; = (5x5)=diag(cy,0,,03,0,0) .

Obviously rk(/#]) =3 and we obtain max |w;; — wig-l)| =0.000928 <o, =0.0024 ; so W; ~W . The
rank of ] is numerically stable in the sense that it cannot be reduced by small perturbations of the
matrix elements wlg-l) . In a second step we have to factorize ] such that W; = F;F{" with

F =(5x3). Let Dy = (5x3) = diag(\Jo; ,\J02 ,1J03) and F =UD,. Then

FEF =UD,DJUT =UDU" =W,.So W; = FF' and W, is positive semidefinite.

(i)  Rank-k approximation of X = (nx p)

The elements of X are given with four decimal places and the smallest singular value 0.000 328 is near
the rounding error of X, and so we determine the rank-2 approximation of X. This approximation will
give a matrix X; = (xl-g-l)) with k(X)) =2 and max|x; — xi(jl)| <3 =0.000328. The singular value
decomposition of X = (5x3) is given by X = UDV" where U = (5x5) and V = (3x3) are or-

thogonal and D = (5x3) =diag(oy,0,,03); 01,0,,03 are the singular values of X. Now define X as
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(3) X, =UDV" where D, = (5x3)=diag(cy,0,,0).
Obviously rk(X;)=2 and we obtain max |x; — x(1)| =0.000152 <03 =0.000328;s0 X; ~ X .
(ii1)  Rank-k approximation of (X, | F})

Table 3 gives the singular values of (X | F]). The smallest singular value of (X; |F]) is near the

rounding error of X, and so we determine the rank-4 approximation of (.X; | /7). The singular value

Table 3: Singular values of X7, F{, (X; | F)

X;=05x3) | F=(5x3) | (X]|FR)=(5x6)
252152
18.8014 16.9394 13.5189
singular values | [12.1031 8.2112 6.1533
0 44871 4.2484
0.000107

decomposition of (X | F}) is given by
@ (X |K)=PAQ'

where P=(5x5) and Q =(6x6) are orthogonal and A = (5x6) = diag(oy,... o5 are the

505) 5 Oseens
singular values of (X | F). Now we define (X, | F,) as

(5) (X, |F)=PAQ" where A; = (5x6)=diag(c{,0,,03,04,0) .

We have max|x(l) (2)| =0.000047 and max| (1) f(z) =0.000055;s0 X;~ X, and F{ = F,.
The singular values of (X, | F5) are given in Table 4. Note that X, has the same rank as Xj; it is

remarkable that a rank-k approximation of (X; | /) cannot raise the rank of X.

Now we have max|x; —x{?)|=0.000152 and max|w; —w{’)| =0.001725, where W = F,F; . In-
stead of the original linear model (1) we now consider the approximate model

(6)  y=XB+e, where Xy =(nx p)~ X and e ~(0,0°W,), Wy = F,Fy =W,

and this model is equivalent to

(7)  y=X,8+ Fyu, where X, = (nx p), F> = (nxk), and u ~ (0,021,

with n=35, p=3, k=3 . The singular values of X,, F, and (X, | F;) are given in Table 4; we are

now in exactly the same situation as in Example 8§ (see Table 2 there), and we now proceed as there.

Table 4: Singular values of X,, F5, (X, | F>)

X, =(5x3) | F,=(5%3)
(Xy | F)=(5x6)
25.2152
' 18.8014 16.9394 13.5189
singular values 12.1031 8.2112 6.1533
0 4.4871 4.2484
0
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(iv)  CS-decomposition of Q
The singular value decomposition of (X, | F5) is given in (5), and we have 7. =1k(X, | F>)=4. Now

we have to determine the CS-decomposition of O = (mx m)= (6% 6) with the format

(pxr) | (px(m—rc))]_[(3><4) | (3><2)]
(kxr,) | (kx(m—r,) |~ |Gx% [(3x2))

We obtain orthogonal matrices

U:(6><6):[U1| 0]:[(3><3)| % ]

0 [0, x| (3x3)
B (] 0) (@xd | «
V_(6X6)_[0|V2]—[ x| (2x2)
with
—0.447 —0.365 —0.816 0.974 0 —0226
Uy =|-0.894 0.183 0408, U, =|-0.124 —0.835 —0.535
—0.000 —0.913  0.408 —0.189  0.550 —0.814
—0.209 —0.965 0.009 0.157
y_|—0863 0236 0347 0281 (-1 0
171 0419 —0.043 0.875 0240 "2 | 0 1
0.191  0.104 —0.338 0.916
such that
Dy | D (3x4) | 3x2)
8 U'Qr=D=|A1172/_
® v [D21|D22 <9 [(xD)
where
1 0 00/l 0 O
O Cl O O Sl
0 0 00| O0 1
©) P=lg750 0= o
001 0/0 0
00 0 1/0 0

the diagonal elements ¢; and s; are given in Table 5. Note that 012 + s12 =1 for i=1,2, and so the

matrix D is orthogonal, too.

Table 5: Diagonal elements cj,s;

i Cl'

1 |0.738539 | 0.674 211

Si

(v)  Generalized singular value decomposition and canonical model
Now we have

(10) (X, |F,)=PAQ" and Q=UDVT,
and from this we find the so-called generalized singular value decomposition of X,, F,

A
PTXZUIZ[TO]VIDlTla

A
PTRU, = [TO]VI Djy,
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where Ay = (4x4)=diag(oy,...,04) is the reduced form of A; = (5x6) = diag(oy,...,04,0). Our

model (7) can now be written in the canonical form

(11) y:[%o]:[((‘l‘jll))] where §o = Dy3+ Dy,

with

B=U5,
ﬁ:UzTu,
1 0 O 0 0 O
D=Dl=@x3=[0 ¢ ol D=Dh=@x3=| | g,
0 0 O 0 0 1

0.239 —-0.061 —0.889 —0.358 —0.144

—0.308 0.835 —-0.256 0347 —0.147
P=| 0441 0.021 —-0.200 0.498 0.719{,

0.752  0.140 0.192 0.230 -0.570

0298  0.528 0.260 —-0.671  0.339

and so

31=10,

Jp =1 By + 5110y,
(12)  y3=u,,

Y4 =us,

ys =0.

We have j = 3, and 5 =0 ; these two observations have no random error. As the covariance matrix
W) = (5x5) has rank 3 there exists two independent linear combinations y; and ys of the original

observations ( )y,...,, ) with no random error. The parameter 33 can have arbitrary values as it does

not show up in the canonical model, and we set this parameter to zero (minimum length definition).

The least squares estimators are given by

Bl :j}b
By =7y /ct,
3y =0.

In matrix notation we can write

. 10 00
ﬁ:D{Fj}O as D1+: 0 I/Cl 0 0 N
0 0

0 O
0O 0 0 O
2
~ 2 T 210 s 0 O
varl =0c"D,Dy =0 1 ,
(Yo) LD 0 0 1 0
0 0 0 1

0 0 0
var(3) = D;' var(reg XD} )T = 02D DyDY (D) =52|0 st /et 0|=02Dy.
0 0 0
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The unknown variance o is estimated by 6% = %(ﬁ% + L?32 )= %( )732 + )74% + )752) . Note that the ma-

trices P,U;,U, and the diagonal elements ¢; and s; are essentially the same as in Example 8, and so
the rank-k approximation allows to eliminate small perturbations in the original matrices X and W so
that we can find matrices with numerically stable ranks in the sense that the ranks cannot be reduced

further by small alterations of the matrix elements.

Example 10: General linear model with linear restrictions, regular case

In this example we consider the general linear model

(1) y=X0B+e, where X =(nx p) and ¢ ~ (0,02W) with linear restrictions LG =c.

Here the error variables ¢,...,¢,, are correlated with covariance matrix oW , where o is unknown

and W = (nxn) is a known positive semidefinite matrix. L = (r X p) and ¢ = (r x1) are given, too.

Let

2) X=(5x3)=

NI B — W
AN — O
DN O B~ oowWw

as in Example 4. From Table 1 we see that all singular values of X are positive and so rk(X)=3.

Furthermore let

4 9 8 -5 -6

1 -7 -9 =5 =7
Fy=06x5=7 -3 9 4 -9
4 -9 5 9 =8

-6 -8 7 —6 1

and now we define
13.059 —-3.765 6.294 —1.294 —0.941
* 12.059 —0.588 1.941 0.588

3 W, :%FOFOT =(5%5)~ * « 13.882 12235  0.706|=W .
* * * 15.706 1.235
* * * *  10.941

W is the matrix W, rounded to three decimal places. The singular values of ¥ are given in Table 1,

they are all positive, and so the symmetric matrix W has full rank 5 and is positive definite. In addition
we assume that the linear restriction

@) Bi—0Br+B=17
must be fulfilled. (4) can be written as
LB=c with L=(,—11) and ¢=(17).
The linear model (1) including the restriction (4) can be written as an extended general linear model
y X € 2 w0
5 y.=X.,3,+c¢,, where y, :[E]’ X, = [f] and e, = [ﬁ]N (O,a We), w, :[0 0] .

In the extended model we have
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N 3 2 3 €1
) 1 9 8 13)
. Z 3 _ { . 4 1 4 _ E . 83
ye_(c)_ yal Xe_[L]_7 2 0p fe 0 _54’
Vs 5 6 5 &s
©) 17 1 -1 1 0
13.059 —3.765 6294 —1.294 —09411|0
* 12.059 —0.588 1.941 0.588 |10
W w10 * * 13.882 12.235 0.706 | 0
e 10 |0|] * * * 15.706 1.235 |0
* * * * 1094110
0 0 0 0 00

Note that X, =(n, x p)=(6x3) and W, =(n, xn,)=(6x6) as n,=n+r=5+1=6.

Table 1: Singular values of X, X, W, W,

X=(5x3) | X,=(6x3) | W=(5x5) | W,=(6x6)
27051 27.951
16.560 16.565 18.089 18.089
singular values 7.612 7.665 10.654 10.654
2.795 3.136 8.839 8.839
0.114 0'1)14

(1)  Factorization of W,
We want to find a matrix F, = (1, xk) such that W, = F,F, where k = rk(W,)=5. The eigenvalue
decomposition of W, is given by W, = RAR" , where R is orthogonal and
A =(6x6)=diag()N,...,\g), \; =0; (as W, is positive semidefinite). As \g =04 =0 we set
D=(6x5)=diag(/\,....\[As) and F,=(6x5)=RD.
As DD" = (6x6) = diag(),...,A5,0)=A we have FeFeT =RDD'RT = RAR" = W, . The random
error of our model can now be written in the form
€, = F,u with u ~ (O,UZIk ), i.e. with E(u)=0 and var(u) = azlk ,
as E(e,) =E(F,u)=0 and var(e,) = E(eesg) =F, E(uuT)FeT = azFeFeT = 0'2We . So model (5) is
equivalent to
(1) Yo =X, B+ Fu, where X, =(6x3), F, =(6x5),u~(0,0%I5).

For F, we obtain

F,=(6x5)=
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(1)  Singular value decomposition of the matrix (X, | F,)
The singular value decomposition of (X, | F,) = (n, xm)=(6x8) with m=p+k=3+5=81is
given by

(X, | F,)=PAQ",
where P=(n, xn,)=(6x6) and Q= (mxm)=(8x8) are orthogonal and
A = (n, xm) = (6x8) =diag(oy,...,0¢4), and where the singular values oy,...,04 of (X, |F,) are
given in the following table. We have r, =rk(X, | F,)=n, = 6, and this simplifies the further proce-

dure.

Table 2: Singular values of X,, F,, (X, | F,)

X, =(6x3) | F,=(6x5) | (X,|F,)=(6x8)
5.287 YN
16.565 4253 -
singular values 7.665 3264 4.607
3.136 2973 3.685
0.338 3.277
’ 1.047

(iii))  CS-decomposition of O
As r. =1k(X, | F,) =n, = 6 we have to determine the CS-decomposition of the orthogonal matrix

0 = (mxm)=(8x8) with the format

(8) Q— Qll |Q12 . pxne |p><(m—ne) . 3x6 | 3Ix2
o Q21 |Q22 o kxne |k><(m—ne) “15%x6 | S5x21°
We obtain orthogonal matrices
- Uy | 0] (3x3]| =«
N e e
B 1 | 0] (6x6] =
V_(SXS)_[O |V2]_ ¥ |2><2]
with
—0.127 —-0.194 —-0.973 0 0
0.577  0.816 0.005 0.049 0.299 —-0.066 —0.127  0.942
Uy=|-0.577 0404 0.709(, U,=| 0.110 0.294 —-0.073 0946  0.023
0.577 —0.412 0.705 0.035 0.881 —0.180 —0.283 —0.332
0.984 —-0.105 —-0.108 —0.090 —0.038
—0.237 —-0.371 —0.888 —0.123 —0.017 —0.047
—0.469 —-0.587 0436 —-0.480 —0.113  0.053
v 0.384 —0.415 0.095 0.143 —-0.061 —0.804 Vo — —0.081 —0.997
71 0.016 —0235 0.024 0.508 —0.779 0281 "2 (—0.997 0.081
—0.531 0.521 —-0.027 —-0.100 —0.419 —-0.511
0.543 0.141 —0.105 —0.683 —0.448  0.087
such that
T _ _ D]l |D12 . 3X6|3X2
UQV_D_[DZI |D22 B 5><6|5X2

where
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1 0 00000 0
0¢g 0 000|s O
00 ¢y 0000 s

p_|0 s 0 00 0[—¢ O
00 s, 000[0 —c
00 01000 o0
00 0 0T10[0 o0
00 0 0O0T1|0 O

The diagonal elements ¢; and s; are given in the following table. Note that ciz + s,—2 =1fori=12,

and so the matrix D is orthogonal, too.

Table 3: Diagonal elements c;, s;

i Cl'

0.994 856 | 0.101 301
2 10978298 | 0.207 204

S

(iv)  Generalized singular value decomposition and canonical model
We now have
(Xe |Fe) :PAQTa

9) :
0=UDVT,

and from this we find the so-called generalized singular value decomposition of the pair X,, F,
PTX,Uy= 0oV DIy,

o !
P FUy =AW Dy,

where Ay = (6x6) = diag(oy,...,04) and where oy,...,04 are the singular values of (X, | F,) as

given in Table 2. For P = (6x6) we have

—-0.264 -0.157 0.705 —-0.205 0.591  0.131
—-0.666  0.588 —0.113 0417 0.113  0.108
—-0.314 —-0.368 0437 0378 —0.546 —0.365
—0.291 —0.695 —0.489 0.257 0326 0.144|°
—0.550 —-0.055 —-0.199 —-0.758 —-0.264 —0.100
—0.024 —-0.092 0.144  0.008 —0.404  0.898

Our model (7) can now be written in the canonical form

(11) §=D3+ Dy,

where
7 =WAa'Py,, B=UB i=Uu,
1 0 O 0O 0 0 00
0 ¢ 0 s; 0.0 0 0
_ Nl _ _0 0 (&) T _ _ 0 %) 0 0 0
D=D=6x3)=|y o G| D2=Dihi=6x9=|g % | o ol
0O 0 O 0O 0 o1 0
0 0 O 0 0 0 01

and so the canonical model explicitly written has the form
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71 =0,
Vo =1 By + sy 1y,

(12) J:’3 = 3 + 5y,

V4 =3,
V5 =1y,
Vg = Us.
The least squares estimators are given by
By =,
B =3 /cr,
By =73/
In matrix notation we can write
. 1 0 0 000
B=Dy as Df =(3x6)=[0 1/eg 0 0 0 0,
0 0 1l/c; 0 0 0
0O 0 0 0 0O
0sf 0 000
2

var(7)=02DyD} =¢2|0 0 53 0 0 0]

0 0 0 1 00

0 0 0 010

0 0 0 0 0 1

0 0 0
var(3) = D var(7)(D{ )" = 02D DD} (D) =0?|0 st/c2 0 |=0?Dy.
0 0 s%/c%

For the original parameters we obtain

B=U3, B=U\8, var(B)=U,var(3)U] = U, DoU] .
The unknown variance o is estimated by

6% =15 +75 +3%).

Final Remarks
a) Note that Bl = ) and according to (11) we have

y=My, where M, :VITA(;IPT and yg =15 ¥5,17) .
We obtain
/3

PR

Mlz

* ¥ X ¥ % O
* ¥k X ¥ % O
* X ¥ X X O
* X ¥ ¥ X O
* X K X X O
L S S

and thus (6, = j =17x NE) / 3=9.815. f3, is completely determined by the linear restriction

By~ By + B3 =17 ie. LB=c with L=(L,—11) and c=17 as ||L|=+/3.

b) The linear restriction L3 = ¢ holds true also for the least squares estimator B as
L3=LU\3=LUD] §=LU D My, =M,y,

and as M, = (0, 0,0,0,0, 1) and yg =(),---,5,17) we have LB =My, =17.
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