Leo Knüsel

The General Linear Model and the Generalized Singular Value Decomposition; Some Examples

Technical Report Number 049, 2009
Department of Statistics
University of Munich
http://www.stat.uni-muenchen.de

The General Linear Model and the Generalized Singular Value Decomposition; Some Examples

Leo Knüsel

Department of Statistics
University of Munich
80539 Munich
knuesel@stat.uni-muenchen.de

Abstract

The general linear model $y=X \beta+\varepsilon$ with correlated error variables can be transformed by means of the generalized singular value decomposition to a very simple model (canonical form) where the least squares solution is obvious. The method works also if X and the covariance matrix of the error variables do not have full rank or are nearly rank deficient (rank-k approximation). By backtransformation one obtains the solution for the original model. In this paper we demonstrate the method with some examples.

Keywords

General linear model, canonical form, generalized singular value decomposition, CSdecomposition of an orthogonal matrix, multicollinearity, rank-k approximation.

Introduction and summary

The general linear model is given by

$$
y=X \beta+\varepsilon, \mathrm{E}(\varepsilon)=0, \operatorname{var}(\varepsilon)=\sigma^{2} W, X=(n \times p), W=(n \times n), n>p
$$

$\sigma^{2} W$ is the covariance matrix of ε and we assume that the matrix W is given (symmetric and positive semidefinite) while σ^{2} is unknown. If $W=I_{n}$ we have the simple linear model with uncorrelated error variables $\varepsilon_{1}, \ldots, \varepsilon_{n}$. If $r k(W)=k W$ can be written as $W=F F^{\top}$ where $F=(n \times k)$. The random error ε can now be given in the form $\varepsilon=F u$ with $u \sim\left(0, \sigma^{2} I_{k}\right)$ i.e. with $\mathrm{E}(u)=0, \operatorname{var}(u)=\sigma^{2} I_{k}$ as $\mathrm{E}(\varepsilon)=\mathrm{E}(F u)=0$ and $\operatorname{var}(\varepsilon)=\mathrm{E}\left(\varepsilon \varepsilon^{\top}\right)=F \mathrm{E}\left(u u^{\top}\right) F^{\top}=\sigma^{2} F F^{\top}=\sigma^{2} W$. So the general linear model is equivalent to

$$
y=X \beta+F u, \text { where } X=(n \times p), F=(n \times k) \text { and } u \sim\left(0, \sigma^{2} I_{k}\right)
$$

In Knüsel $(2008,2009)$ the solution of the problem by means of the simple and generalized singular value decomposition is treated and in this paper we give nine examples that deal in particular with the case of rank deficient and nearly rank deficient matrices X and W (multicollinearity, weak multicollinearity). The following table gives an overview of the examples.

Example	Title	Page
1	Simple linear model, regular case	2
2	Simple linear model with strict multicollinearity	4
3	Simple linear model with weak multicollinearity	7
4	General linear model, regular case	11
5	General linear model with strict multicollinearity	17
6	General linear model with rank deficient covariance matrix W	22
7	General linear model with rank deficient X and W	26
8	General linear model with rank deficient X, W, and $(X \mid F)$	31
9	General linear model with nearly rank deficient X, W, and $(X \mid F)$	36
10	General linear model with linear restrictions, regular case	41

The computations in the examples are done with Matlab (2008) and Maple (2006). Matlab offers a procedure $g s v d$ (general singular value decomposition) that includes a subfunction csd (CSdecomposition), and this subfunction is used for computing the CS-decomposition of an orthogonal matrix (see Golub - Van Loan, 1996).

Example 1: Simple linear model, regular case

In this example we consider the simple linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} I_{n}\right)$.

Let
(2) $X=(5 \times 3)=\left(\begin{array}{lll}3 & 2 & 3 \\ 1 & 9 & 8 \\ 4 & 1 & 4 \\ 7 & 2 & 0 \\ 5 & 6 & 5\end{array}\right)$.

We obtain the singular values

$$
\left(\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right)=\left(\begin{array}{c}
16.560 \\
7.612 \\
2.795
\end{array}\right)
$$

and this means that the matrix X has full rank 3 .
a) Classical solution

The classical least squares estimator of the parameter vector β is given by

$$
\hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

(3) $\operatorname{var}(\hat{\beta})=\sigma^{2}\left(X^{\top} X\right)^{-1}$

$$
\hat{\sigma}^{2}=\frac{1}{n-p} e^{\top} e \text {, where } e=y-X \hat{\beta}=\left(I_{n}-P\right) y \text { with } P=X\left(X^{\top} X\right)^{-1} X^{\top}
$$

and we obtain

$$
X^{\top} X=\left(\begin{array}{ccc}
100 & 63 & 58 \\
* & 126 & 112 \\
* & * & 114
\end{array}\right), \quad\left(X^{\top} X\right)^{-1}=\left(\begin{array}{rrrr}
0.014658 & -0.005525 & -0.002030 \\
* & 0.064720 & -0.060773 \\
* & * & 0.069512
\end{array}\right),
$$

$$
\begin{align*}
& \left(X^{\top} X\right)^{-1} X^{\top}=\left(\begin{array}{rrrrrr}
0.026835 & -0.051302 & 0.044988 & 0.091555 & 0.029992 \\
-0.069455 & 0.090766 & -0.200474 & 0.090766 & 0.056827 \\
0.080900 & 0.007103 & 0.209155 & -0.135754 & -0.027230
\end{array}\right), \tag{4}\\
& P=X\left(X^{\top} X\right)^{-1} X^{\top}=\left(\begin{array}{rrrrrr}
0.184294 & 0.048934 & 0.361484 & 0.048934 & 0.121942 \\
* & 0.822415 & -0.086030 & -0.177585 & 0.323599 \\
* & * & 0.816101 & -0.086030 & 0.067877 \\
* & * & * & 0.822415 & 0.323599 \\
* & * & * & * & 0.354775
\end{array}\right) .
\end{align*}
$$

b) Solution with singular value decomposition

The singular value decomposition of X is given by $X=U D V^{\top}$, where $U=(5 \times 5)$ and $V=(3 \times 3)$ are orthogonal and $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$:
(5)

$$
U=\left(\begin{array}{rrrrr}
-0.270 & 0.148 & -0.299 & -0.744 & -0.512 \\
-0.679 & -0.578 & 0.165 & 0.281 & -0.314 \\
-0.295 & 0.264 & -0.812 & 0.417 & 0.100 \\
-0.265 & 0.745 & 0.444 & 0.281 & -0.314 \\
-0.556 & 0.139 & 0.163 & -0.337 & 0.729
\end{array}\right), V=\left(\begin{array}{rrr}
-0.441 & 0.897 & -0.021 \\
-0.653 & -0.305 & 0.694 \\
-0.616 & -0.320 & -0.720
\end{array}\right),
$$

$$
D=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
15.560 & 0 & 0 \\
0 & 7.612 & 0 \\
0 & 0 & 2.795 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

From

$$
y=X \beta+\varepsilon=U D V^{\top} \beta+\varepsilon
$$

we obtain the canonical form of the linear model (1)

$$
\begin{equation*}
\tilde{y}=D \tilde{\beta}+\tilde{\varepsilon}, \text { where } \tilde{y}=U^{\top} y, \tilde{\beta}=V^{\top} \beta, \tilde{\varepsilon}=U^{\top} \varepsilon \tag{6}
\end{equation*}
$$

and as U is orthogonal we have $\tilde{\varepsilon} \sim\left(0, \sigma^{2} I_{n}\right)$ i.e. the error variables $\tilde{\varepsilon}_{1}, \ldots, \tilde{\varepsilon}_{n}$ are again uncorrelated each with variance σ^{2}. The canonical model (6) explicitly written has the form

$$
\begin{align*}
& \tilde{y}_{1}=\sigma_{1} \tilde{\beta}_{1}+\tilde{\varepsilon}_{1} \\
& \tilde{y}_{2}=\sigma_{2} \tilde{\beta}_{2}+\tilde{\varepsilon}_{2} \\
& \tilde{y}_{3}=\sigma_{3} \tilde{\beta}_{3}+\tilde{\varepsilon}_{3} \tag{7}\\
& \tilde{y}_{4}=\tilde{\varepsilon}_{4} \\
& \tilde{y}_{5}=\tilde{\varepsilon}_{5}
\end{align*}
$$

The least squares estimator of $\tilde{\beta}$ is given by $\tilde{\tilde{\beta}}_{i}=\tilde{y}_{i} / \sigma_{i}, i=1, \ldots, 3$ or in matrix notation

$$
\hat{\tilde{\beta}}=D^{+} \tilde{y} \text { where } D^{+}=(p \times n)=(3 \times 5)=\operatorname{diag}\left(1 / \sigma_{1}, 1 / \sigma_{2}, 1 / \sigma_{3}\right)
$$

$$
\begin{equation*}
\operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2}\left(D^{\top} D\right)^{-1} \tag{8}
\end{equation*}
$$

$$
\hat{\sigma}^{2}=\frac{1}{n-p} \tilde{e}^{\top} \tilde{e}=\frac{1}{2}\left(\tilde{u}_{4}^{2}+\tilde{u}_{5}^{2}\right)
$$

D^{+}is the Moore-Penrose inverse of D and we obtain
(9)

$$
D^{+}=\left(\begin{array}{ccccc}
1 / \sigma_{1} & 0 & 0 & 0 & 0 \\
0 & 1 / \sigma_{2} & 0 & 0 & 0 \\
0 & 0 & 1 / \sigma_{3} & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0.060386 & 0 & 0 & 0 & 0 \\
0 & 0.131366 & 0 & 0 & 0 \\
0 & 0 & 0.357751 & 0 & 0
\end{array}\right)
$$

$$
\left(D^{\top} D\right)^{-1}=\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 1 / \sigma_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
0.003646 & 0 & 0 \\
0 & 0.017257 & 0 \\
0 & 0 & 0.127986
\end{array}\right)
$$

By backtransformation we find the least squares estimators of the original parameters $\beta=V \tilde{\beta}$:

$$
\hat{\beta}=V \hat{\tilde{\beta}}=V D^{+} \tilde{y}=X^{+} y \text { where } X^{+}=(p \times n)=(3 \times 5)=V D^{+} U^{\top},
$$

(10) $\operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2} V\left(D^{\top} D\right)^{-1} V^{\top}$,

$$
\hat{\sigma}^{2}=\frac{1}{n-p} \tilde{e}^{\top} \tilde{e}=\frac{1}{n-p} e^{\top} e \text { where } e=y-X \hat{\beta}=y-X X^{+} y=\left(I_{n}-X X^{+}\right) y
$$

$X^{+}=V D^{+} U^{\top}$ is the Moore-Penrose inverse of X, and as

$$
\left(X^{\top} X\right)^{-1} X^{\top}=X^{+}
$$

(11) $\left(X^{\top} X\right)^{-1}=V\left(D^{\top} D\right)^{-1} V^{\top}$

$$
P=X\left(X^{\top} X\right)^{-1} X^{\top}=X X^{+}
$$

we obtain the same results as with the classical solution.

Example 2: Simple linear model with strict multicollinearity

We consider again the simple linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} I_{n}\right)$,
but this time

$$
X=\left(x_{1}, x_{2}, x_{3}\right)=(5 \times 3)=\left(\begin{array}{rrr}
3 & 2 & 4 \\
1 & 9 & -7 \\
4 & 1 & 7 \\
7 & 2 & 12 \\
5 & 6 & 4
\end{array}\right)
$$

We have $x_{3}=2 x_{1}-x_{2}$, i.e. the third column of X is a linear combination of the first two columns, and so the matrix X has the rank $\operatorname{rk}(X)=r_{X}=2$. As $X^{\top} X$ has the same rank as X the inverse $\left(X^{\top} X\right)^{-1}$ does not exist and the classical procedure breaks down.

Solution with singular value decomposition

The singular value decomposition of X is given by $X=U D V^{\top}$, where $U=(5 \times 5)$ and $V=(3 \times 3)$ are orthogonal and $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$:

$$
\begin{aligned}
& U=\left(\begin{array}{rrrrr}
-0.276 & -0.118 & 0.790 & 0.223 & -0.486 \\
0.227 & -0.878 & -0.238 & -0.081 & -0.340 \\
-0.432 & 0.011 & 0.027 & -0.893 & -0.123 \\
-0.746 & -0.006 & -0.503 & 0.376 & -0.219 \\
-0.358 & -0.464 & 0.256 & 0.070 & 0.765
\end{array}\right), V=\left(\begin{array}{rrr}
-0.497 & -0.294 & 0.816 \\
-0.138 & -0.902 & -0.408 \\
-0.857 & 0.315 & -0.408
\end{array}\right), \\
& D=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
18.802 & 0 & 0 \\
0 & 12.103 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Note that $\sigma_{3}=0$ which means that $r k(X)=2$. From

$$
y=X \beta+\varepsilon=U D V^{\top} \beta+\varepsilon
$$

we obtain the canonical form of the linear model (1)

$$
\begin{equation*}
\tilde{y}=D \tilde{\beta}+\tilde{\varepsilon}, \text { where } \tilde{y}=U^{\top} y, \tilde{\beta}=V^{\top} \beta, \tilde{\varepsilon}=U^{\top} \varepsilon \tag{2}
\end{equation*}
$$

and as U is orthogonal we have $\tilde{\varepsilon} \sim\left(0, \sigma^{2} I_{n}\right)$ i.e. the error variables $\tilde{\varepsilon}_{1}, \ldots, \tilde{\varepsilon}_{n}$ are again uncorrelated each with variance σ^{2}. The canonical model (2) explicitly written has the form

$$
\begin{align*}
& \tilde{y}_{1}=\sigma_{1} \tilde{\beta}_{1}+\tilde{\varepsilon}_{1}, \\
& \tilde{y}_{2}=\sigma_{2} \tilde{\beta}_{2}+\tilde{\varepsilon}_{2}, \\
& \tilde{y}_{3}=\tilde{\varepsilon}_{3}, \tag{3}\\
& \tilde{y}_{4}=\tilde{\varepsilon}_{4}, \\
& \tilde{y}_{5}=\tilde{\varepsilon}_{5} .
\end{align*}
$$

The least squares estimator of $\tilde{\beta}$ is given by $\tilde{\tilde{\beta}}_{i}=\tilde{y}_{i} / \sigma_{i}, i=1,2$; the parameter $\tilde{\beta}_{3}$ is not to be found in the canonical model as $\sigma_{3}=0$, it can have arbitrary values, and it cannot be estimated. From

$$
X=U D V^{\top} \text { we derive } X V=U D
$$

and as the third column of $U D$ is zero the same is true for the third column of $X V$. Let $V=\left(v_{1}, v_{2}, v_{3}\right)$, then $X v_{3}=0.816 x_{1}-0.408 x_{2}-0.408 x_{3}=0$, and this is equivalent to $2 x_{1}-x_{2}-x_{3}=0$ as $(2,-1,-1) / \sqrt{6}=(0.816,-0.408,-0.408)$. Now there are three ways how to proceed.

A) Eliminate one of the original parameters

As $2 x_{1}-x_{2}-x_{3}=0$ we can eliminate one of the columns x_{1}, x_{2}, x_{3}. We have e.g.

$$
\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3}\left(2 x_{1}-x_{2}\right)=\left(\beta_{1}+2 \beta_{3}\right) x_{1}+\left(\beta_{2}-\beta_{3}\right) x_{2} .
$$

We can introduce the new parameters

$$
\begin{aligned}
& \bar{\beta}_{1}=\beta_{1}+2 \beta_{3} \\
& \bar{\beta}_{2}=\beta_{2}-\beta_{3}
\end{aligned}
$$

and the new matrix $\bar{X}=\left(x_{1}, x_{2}\right)$. Then model (1) is equivalent to

$$
y=\bar{X} \bar{\beta}+\varepsilon \text {, where } \bar{X}=\left(n \times r_{x}\right)=(5 \times 2) \text { and } \varepsilon \sim\left(0, \sigma^{2} I_{n}\right) .
$$

As \bar{X} has full rank two, we can now apply the methods of example 1 , and we find the covariance matrix

$$
\operatorname{var}(\hat{\bar{\beta}})=\left(\begin{array}{rr}
0.014599 & -0.007299 \\
* & 0.011586
\end{array}\right) .
$$

B) Introduce the canonical parameters

We have

$$
X V=\left(X v_{1}, X v_{2}, X v_{3}\right) \text { and } V^{\top} \beta=\left(\begin{array}{c}
v_{1}^{\top} \beta \\
v_{2}^{\top} \beta \\
v_{3}^{\top} \beta
\end{array}\right)=\left(\begin{array}{c}
\tilde{\beta}_{1} \\
\tilde{\beta}_{2} \\
\tilde{\beta}_{3}
\end{array}\right)=\tilde{\beta}
$$

and so

$$
X \beta=X V V^{\top} \beta=X V \tilde{\beta}=\tilde{\beta}_{1} X v_{1}+\tilde{\beta}_{2} X v_{2}+\tilde{\beta}_{3} X v_{3} .
$$

As $X v_{3}=0$ the parameter $\tilde{\beta}_{3}$ can possess arbitrary values and it does not appear in the canonical model (3). So we are interested only in the two remaining parameters

$$
\begin{aligned}
& \tilde{\beta}_{1}=v_{1}^{\top} \beta=-0.497 \beta_{1}-0.138 \beta_{2}-0.857 \beta_{3} \\
& \tilde{\beta}_{2}=v_{2}^{\top} \beta=-0.294 \beta_{1}-0.902 \beta_{2}+0.315 \beta_{3}
\end{aligned}
$$

The least squares estimators are given by

$$
\begin{aligned}
& \hat{\beta}_{1}=\tilde{y}_{1} / \sigma_{1}, \\
& \hat{\beta}_{2}=\tilde{y}_{2} / \sigma_{2},
\end{aligned}
$$

and if denote the vector of estimable parameters as

$$
\hat{\tilde{\beta}}_{\mathrm{e}}=\left(r_{X} \times 1\right)=\binom{\hat{\tilde{\beta}}_{1}}{\hat{\tilde{\beta}}_{2}}, \text { then } \operatorname{var}\left(\hat{\tilde{\beta}}_{\mathrm{e}}\right)=\sigma^{2}\left(\begin{array}{cc}
1 / \sigma_{1}^{2} & 0 \\
0 & 1 / \sigma_{2}^{2}
\end{array}\right)=\left(\begin{array}{cc}
0.002829 & 0 \\
0 & 0.006826
\end{array}\right) \text {, }
$$

where σ_{1}, σ_{2} are the singular values of X and σ^{2} denotes the unknown variance in model (1). So the least squares estimators are uncorrelated. The unknown variance σ^{2} can be estimated from (3) by

$$
\hat{\sigma}^{2}=\frac{1}{3}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) ; \text { note that } n-r_{X}=3 .
$$

C) Minimum length solution

The parameter $\tilde{\beta}_{3}$ does not appear in the canonical model (3) and so it can have arbitrary values. We set this parameter to zero. This way it is defined such that $\tilde{\beta}^{\top} \tilde{\beta}=\sum \tilde{\beta}_{i}^{2}=\min$. Now $\tilde{\beta}=V^{\top} \beta$ and V is orthogonal. So $\tilde{\beta}^{\top} \tilde{\beta}=\beta^{\top} \beta$, and all parameters in our linear model become identifiable by the requirement $\beta^{\top} \beta=\min ;$ this parameter definition is called the minimum length definition:

$$
\begin{aligned}
& \tilde{\beta}_{1}=-0.497 \beta_{1}-0.138 \beta_{2}-0.857 \beta_{3}, \\
& \tilde{\beta}_{2}=-0.294 \beta_{1}-0.902 \beta_{2}+0.315 \beta_{3}, \\
& \tilde{\beta}_{3}=0.816 \beta_{1}-0.408 \beta_{2}-0.408 \beta_{3}=0 .
\end{aligned}
$$

The least squares estimators are now given by

$$
\begin{aligned}
& \tilde{\tilde{\beta}}_{1}=\tilde{y}_{1} / \sigma_{1} \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / \sigma_{2} \\
& \hat{\tilde{\beta}}_{3}=0 .
\end{aligned}
$$

and we have

$$
\operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2}\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\sigma^{2}\left(\begin{array}{ccc}
0.002829 & 0 & 0 \\
0 & 0.006826 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D^{+} \tilde{y} \text { where } D^{+}=(p \times n)=(3 \times 5)=\operatorname{diag}\left(1 / \sigma_{1}, 1 / \sigma_{2}, 0\right) \\
& \operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2}\left(D^{\top} D\right)^{+} \\
& \hat{\sigma}^{2}=\frac{1}{n-2} \tilde{e}^{\top} \tilde{e}=\frac{1}{3}\left(\tilde{u}_{3}^{2}+\tilde{u}_{4}^{2}+\tilde{u}_{5}^{2}\right)=\frac{1}{3}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right)
\end{aligned}
$$

where $\tilde{e}=\tilde{y}-D \hat{\tilde{\beta}} . D^{+}$is the Moore-Penrose inverse of D and we obtain

$$
\begin{aligned}
& D^{+}=\left(\begin{array}{ccccc}
1 / \sigma_{1} & 0 & 0 & 0 & 0 \\
0 & 1 / \sigma_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
0.053186 & 0 & 0 & 0 & 0 \\
0 & 0.082622 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \left(D^{\top} D\right)^{+}=\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0.002829 & 0 & 0 \\
0 & 0.006826 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

By backtransformation we find the least squares estimator of the original parameters (with minimum length definition):

$$
\begin{aligned}
& \hat{\beta}=V \hat{\tilde{\beta}}=V D^{+} \tilde{y}=V D^{+} U^{\top} y=X^{+} y \text { where } X^{+}=(p \times n)=(3 \times 5)=V D^{+} U^{\top} \\
& \operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2} V\left(D^{\top} D\right)^{+} V^{\top}
\end{aligned}
$$

$$
\hat{\sigma}^{2}=\frac{1}{n-r_{X}} \tilde{e}^{\top} \tilde{e}=\frac{1}{n-r_{X}} e^{\top} e \text { where } e=y-X \hat{\beta}=y-X X^{+} y=\left(I_{n}-X X^{+}\right) y
$$

and where $r_{X}=2$ denotes the rank of $X . X^{+}=V D^{+} U^{\top}$ is the Moore-Penrose inverse of $X=U D V^{\top}$.
We obtain

$$
\begin{aligned}
& X^{+}=\left(\begin{array}{rrrrr}
0.010157 & 0.015294 & 0.011161 & 0.019890 & 0.020739 \\
0.010794 & 0.063782 & 0.002356 & 0.005928 & 0.037249 \\
0.009520 & -0.033194 & 0.019967 & 0.033851 & 0.004229
\end{array}\right), \\
& V\left(D^{\top} D\right)^{+} V^{\top}=\left(\begin{array}{rrrrr}
0.001287 & 0.002002 & 0.000573 \\
* & 0.005613 & -0.001609 \\
& * & * & 0.002755
\end{array}\right), \\
& X X^{+}=\left(\begin{array}{rrrrr}
0.090140 & 0.040667 & 0.118036 & 0.206929 & 0.153632 \\
* & 0.821689 & -0.107404 & -0.163712 & 0.326382 \\
* & * & 0.186769 & 0.322442 & 0.149809 \\
* & * & * & 0.557293 & 0.270421 \\
* & * & * & * & 0.344108
\end{array}\right) .
\end{aligned}
$$

Example 3: Simple linear model with weak multicollinearity

We consider again the simple linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} I_{n}\right)$,
but this time

$$
X_{\text {ori }}=\left(x_{1}, x_{2}, x_{3}\right)=(5 \times 3)=\sqrt{2}\left(\begin{array}{rrr}
3 & 2 & 4 \\
1 & 9 & -7 \\
4 & 1 & 7 \\
7 & 2 & 12 \\
5 & 6 & 4
\end{array}\right) \approx\left(\begin{array}{rrr}
4.243 & 2.828 & 5.657 \\
1.414 & 12.728 & -9.899 \\
5.657 & 1.414 & 9.899 \\
9.899 & 2.828 & 16.971 \\
7.071 & 8.485 & 5.657
\end{array}\right)=X .
$$

We have $x_{3}=2 x_{1}-x_{2}$ as in Example 2, and so the original matrix $X_{\text {ori }}$ has rank 2 whereas for the matrix X ($=X_{\text {ori }}$ rounded to 3 decimal places) we obtain the singular values

$$
\left(\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right)=\left(\begin{array}{c}
26.590 \\
17.116 \\
0.000748
\end{array}\right),
$$

and this means that the rounded matrix X has full rank 3 .

a) Classical solution

The classical least squares estimator of the parameter vector β is given by

$$
\begin{aligned}
& \hat{\beta}=\left(X^{\top} X\right)^{-1} X^{\top} y \\
& \operatorname{var}(\hat{\beta})=\sigma^{2}\left(X^{\top} X\right)^{-1} \\
& \hat{\sigma}^{2}=\frac{1}{n-p} e^{\top} e, \text { where } e=y-X \hat{\beta}=\left(I_{n}-P\right) y \text { with } P=X\left(X^{\top} X\right)^{-1} X^{\top}
\end{aligned}
$$

and we obtain

$$
\left(X^{\top} X\right)^{-1}=\left(\begin{array}{rrr}
1190235 & -595091 & -595127 \\
* & 297532 & 297550 \\
* & * & 297568
\end{array}\right),
$$

(2) $\quad\left(X^{\top} X\right)^{-1} X^{\top}=\left(\begin{array}{rrrrr}618.561 & -163.829 & 541.697 & -675912 & 174.596 \\ -309.256 & 81.962 & -270.831 & 337.952 & -87.261 \\ -309.275 & 81.898 & -270.835 & 337.992 & -87.289\end{array}\right)$,

$$
P=X\left(X^{\top} X\right)^{-1} X^{\top}=\left(\begin{array}{rrrrr}
0.411600 & -0.044486 & 0.399576 & -0.144337 & 0.244361 \\
* & 0.844241 & -0.181951 & -0.070678 & 0.302354 \\
* & * & 0.433286 & 0.014814 & 0.229265 \\
* & * & * & 0.941155 & 0.171272 \\
* & * & * & * & 0.369718
\end{array}\right) .
$$

b) Solution with singular value decomposition

The singular value decomposition of X is given by $X=U D V^{\top}$, where $U=(5 \times 5)$ and $V=(3 \times 3)$ are orthogonal and $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$:
(3)

$$
U=\left(\begin{array}{rrrrr}
-0.276 & -0.118 & -0.567 & -0.596 & -0.483 \\
0.227 & -0.878 & 0.150 & 0.201 & -0.340 \\
-0.432 & 0.011 & -0.497 & 0.747 & -0.095 \\
-0.747 & -0.006 & 0.620 & -0.050 & -0.237 \\
-0.358 & -0.464 & -0.160 & -0.210 & 0.766
\end{array}\right), V=\left(\begin{array}{rrr}
-0.497 & -0.294 & -0.817 \\
-0.138 & -0.902 & 0.408 \\
-0.857 & 0.315 & 0.408
\end{array}\right),
$$

$$
D=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
26.590 & 0 & 0 \\
0 & 17.116 & 0 \\
0 & 0 & 0.000748 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

From

$$
y=X \beta+\varepsilon=U D V^{\top} \beta+\varepsilon
$$

we obtain the canonical form of the linear model (1)

$$
\begin{equation*}
\tilde{y}=D \tilde{\beta}+\tilde{\varepsilon}, \text { where } \tilde{y}=U^{\top} y, \tilde{\beta}=V^{\top} \beta, \tilde{\varepsilon}=U^{\top} \varepsilon, \tag{4}
\end{equation*}
$$

and as U is orthogonal we have $\tilde{\varepsilon} \sim\left(0, \sigma^{2} I_{n}\right)$ i.e. the error variables $\tilde{\varepsilon}_{1}, \ldots, \tilde{\varepsilon}_{n}$ are again uncorrelated each with variance σ^{2}. The least squares estimator of $\tilde{\beta}$ is given by $\hat{\tilde{\beta}}_{i}=\tilde{y}_{i} / \sigma_{i}, i=1, \ldots, 3$ or in matrix notation

$$
\hat{\tilde{\beta}}=D^{+} \tilde{y} \text { where } D^{+}=(p \times n)=(3 \times 5)=\operatorname{diag}\left(1 / \sigma_{1}, 1 / \sigma_{2}, 1 / \sigma_{3}\right),
$$

$$
\begin{align*}
& \operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2}\left(D^{\top} D\right)^{-1}, \tag{5}\\
& \hat{\sigma}^{2}=\frac{1}{n-p} \tilde{e}^{\top} \tilde{e}=\frac{1}{2}\left(\tilde{u}_{4}^{2}+\tilde{u}_{5}^{2}\right) .
\end{align*}
$$

D^{+}is the Moore-Penrose inverse of D. We obtain

$$
\left(D^{\top} D\right)^{-1}=\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 1 / \sigma_{3}^{2}
\end{array}\right)=\left(\begin{array}{ccc}
0.001414 & 0 & 0 \\
0 & 0.003413 & 0 \\
0 & 0 & 1.785 \times 10^{6}
\end{array}\right),
$$

and so the variance of the parameter $\tilde{\beta}_{3}$ is very large as compared with $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$. By backtransformation we find the original least squares estimator

$$
\begin{aligned}
& \hat{\beta}=V \hat{\tilde{\beta}}=V D^{+} \tilde{y}=X^{+} y, \text { where } X^{+}=(p \times n)=(3 \times 5)=V D^{+} U^{\top}, \\
& \operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2} V\left(D^{\top} D\right)^{-1} V^{\top}, \\
& \hat{\sigma}^{2}=\frac{1}{n-p} \tilde{e}^{\top} \tilde{e}=\frac{1}{n-p} e^{\top} e, \text { where } e=y-X \hat{\beta}=y-X X^{+} y=\left(I_{n}-X X^{+}\right) y .
\end{aligned}
$$

$X^{+}=V D^{+} U^{\top}$ is the Moore-Penrose inverse of X, and as

$$
\begin{aligned}
& \left(X^{\top} X\right)^{-1} X^{\top}=X^{+} \\
& \left(X^{\top} X\right)^{-1}=V\left(D^{\top} D\right)^{-1} V^{\top} \\
& P=X\left(X^{\top} X\right)^{-1} X^{\top}=X X^{+}
\end{aligned}
$$

we obtain the same results as with the classical solution. The variances and covariances of the original parameters $\beta=V \tilde{\beta}$ are rather large (see the matrix $\left(X^{\top} X\right)^{-1}$ in (2)), as all three parameters $\beta_{1}, \beta_{2}, \beta_{3}$ depend on $\tilde{\beta}_{3}$ which has an very large variance as compared with $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$.

c) Solution with rank-k-approximation

The matrix X is given with three decimal places and so the smallest singular value of X, $\sigma_{3}=0.000748$, is near the maximal rounding error of X, that amounts to 0.0005 . The rank-2approximation of X will give a matrix $X_{1}=\left(x_{i j}^{(1)}\right)=(5 \times 3)$ with $\operatorname{rk}\left(X_{1}\right)=2$ and with $\max \left|x_{i j}-x_{i j}^{(1)}\right| \leq \sigma_{3}=0.000748$. We want to determine this matrix X_{1}. The singular value decomposition of X is given by $X=U D V^{\top}$, where $U=(5 \times 5)$ and $V=(3 \times 3)$ are orthogonal and where $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ as given in (3). Let

$$
D_{1}=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, 0\right)=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
26.590 & 0 & 0 \\
0 & 17.116 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now we define X_{1} as

$$
\begin{equation*}
X_{1}=U D_{1} V^{\top} . \tag{6}
\end{equation*}
$$

As $\operatorname{rk}\left(D_{1}\right)=2$ we also have $\operatorname{rk}\left(X_{1}\right)=2$, and if we compute X_{1} we find $\max \left|x_{i j}-x_{i j}^{(1)}\right|=0.000379$ which is smaller than $\sigma_{3}=0.000748$ and even smaller than the maximal rounding error of X. So we will work in the following with X_{1} instead of X as the rank of X_{1} is numerically stable in the sense that it cannot be made smaller just by small perturbations of the matrix elements. From the model

$$
y=X_{1} \beta+\varepsilon, \text { where } X_{1}=(n \times p)=U D_{1} V^{\top} \text { and } \varepsilon \sim\left(0, \sigma^{2} I_{n}\right)
$$

we obtain the canonical model

$$
\begin{equation*}
\tilde{y}=D_{1} \tilde{\beta}+\tilde{\varepsilon}, \text { where } \tilde{y}=U^{\top} y, \tilde{\beta}=V^{\top} \beta, \tilde{\varepsilon}=U^{\top} \varepsilon \tag{7}
\end{equation*}
$$

and as U is orthogonal we have again $\tilde{\varepsilon} \sim\left(0, \sigma^{2} I_{n}\right)$, which means that $\tilde{\varepsilon}_{1}, \ldots, \tilde{\varepsilon}_{n}$ are again uncorrelated each with variance σ^{2}. The canonical model (7) can be written as

$$
\begin{align*}
& \tilde{y}_{1}=\sigma_{1} \tilde{\beta}_{1}+\tilde{\varepsilon}_{1} \tag{8}\\
& \tilde{y}_{2}=\sigma_{2} \tilde{\beta}_{2}+\tilde{\varepsilon}_{2} \\
& \tilde{y}_{3}=\tilde{\varepsilon}_{3} \\
& \tilde{y}_{4}=\tilde{\varepsilon}_{4} \\
& \tilde{y}_{5}=\tilde{\varepsilon}_{5}
\end{align*}
$$

The parameter $\tilde{\beta}_{3}$ does not appear in this model as the corresponding diagonal element in D_{1} is zero. So $\tilde{\beta}_{3}$ can possess arbitrary values, it is not identifiable and not estimable. The least squares estimators for $\tilde{\beta}_{1}$ and $\tilde{\beta}_{2}$ are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1} / \sigma_{1} \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / \sigma_{2}
\end{aligned}
$$

As the transformed observations \tilde{y}_{i} are uncorrelated each with variance σ^{2} also the two least squares estimators are uncorrelated with variances $\operatorname{var}\left(\hat{\tilde{\beta}}_{i}\right)=\sigma^{2} / \sigma_{i}^{2}, i=1,2$. The unknown variance σ^{2} can be estimated by

$$
\hat{\sigma}^{2}=\frac{1}{3}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) ; \text { note that } n-\mathrm{rk}\left(X_{1}\right)=5-2=3 .
$$

Minimum length solution

The parameter $\tilde{\beta}_{3}$ does not appear in the canonical model and so it can possess arbitrary values. We set this parameter to zero so that $\tilde{\beta}^{\top} \tilde{\beta}=\beta^{\top} \beta=\min$ (minimum length definition). The least squares estimator of $\tilde{\beta}_{3}$ will also be zero as well as the variance of this estimator. In matrix notation we now have

$$
\tilde{\tilde{\beta}}=D_{1}^{+} y, \text { where } D_{1}^{+}=\left(\begin{array}{ccccc}
1 / \sigma_{1} & 0 & 0 & 0 & 0 \\
0 & 1 / \sigma_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The covariance matrix of $\hat{\tilde{\beta}}$ is given by

$$
\operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2}\left(D_{1}^{\top} D_{1}\right)^{+}=\sigma^{2}\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

By backtransformation we find the original least squares estimator

$$
\begin{aligned}
& \hat{\beta}=V \hat{\tilde{\beta}}=V D_{1}^{+} \tilde{y}=X_{1}^{+} y \text { where } X_{1}^{+}=(p \times n)=(3 \times 5)=V D_{1}^{+} U^{\top} \\
& \operatorname{var}(\hat{\beta})=\sigma^{2} V\left(D_{1}^{\top} D_{1}\right)^{+} V^{\top}
\end{aligned}
$$

$$
\hat{\sigma}^{2}=\frac{1}{n-p} \tilde{e}^{\top} \tilde{e}=\frac{1}{n-p} e^{\top} e \text { where } e=y-X_{1} \hat{\beta}=\left(I_{n}-X_{1} X_{1}^{+}\right) y
$$

We obtain

$$
\begin{aligned}
& X_{1}^{+}=\left(\begin{array}{rrrrr}
0.007182 & 0.010814 & 0.007892 & 0.014064 & 0.014665 \\
0.007633 & 0.045102 & 0.001666 & 0.004191 & 0.026340 \\
0.006732 & -0.023471 & 0.014118 & 0.023937 & 0.002991
\end{array}\right), \\
& V\left(D_{1}^{\top} D_{1}\right)^{+} V^{\top}=\left(\begin{array}{rrrrr}
0.000644 & 0.001001 & 0.000286 \\
* & 0.002807 & -0.000805 \\
* & * & 0.001377
\end{array}\right)=M, \\
& P=X_{1} X_{1}^{+}=\left(\begin{array}{rrrrrr}
0.090144 & 0.040660 & 0.118065 & 0.206935 & 0.153632 \\
* & 0.821687 & -0.107386 & -0.163722 & 0.326385 \\
* & * & 0.186757 & 0.322436 & 0.149811 \\
* & * & * & 0.557301 & 0.270416 \\
* & * & * & * & 0.344110
\end{array}\right) .
\end{aligned}
$$

Note that we had a much larger covariance matrix $\operatorname{var}(\hat{\beta})$ with the classical solution a). If we did the same computations with the original matrix $X_{\text {ori }}$ instead of X_{1}, which is the rank-2 approximation to the rounded matrix X, we would find essentially the same results. The maximum difference maxdiff $=\max \left|a_{i j}-b_{i j}\right|$ between the corresponding matrices is given here:

original data	rank-2 approximation	maxdiff
$X_{\text {ori }}$	X_{1}	0.000449
$X_{\text {ori }}^{+}$	X_{1}^{+}	0.154×10^{-5}
$V\left(D_{2}^{\top} D_{2}\right)^{+} V^{\top}$	$V\left(D_{2}^{\top} D_{2}\right)^{+} V^{\top}$	0.165×10^{-6}
$X_{\text {ori }} X_{\text {ori }}^{+}$	$X_{1} X_{1}^{+}$	0.178×10^{-4}

Example 4: General linear model, regular case

In this example we consider the general linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} W\right)$.

Here the error variables $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are correlated with covariance matrix $\sigma^{2} W$, where σ^{2} is unknown and $W=(n \times n)$ is a known positive semidefinite matrix.

Let

$$
X=(5 \times 3)=\left(\begin{array}{lll}
3 & 2 & 3 \tag{2}\\
1 & 9 & 8 \\
4 & 1 & 4 \\
7 & 2 & 0 \\
5 & 6 & 5
\end{array}\right)
$$

as in Example 1. We obtain the singular values

$$
\left(\begin{array}{l}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{3}
\end{array}\right)=\left(\begin{array}{c}
16.560 \\
7.612 \\
2.795
\end{array}\right)
$$

and this means that the matrix X has full rank 3. Furthermore let

$$
F_{0}=(5 \times 5)=\left(\begin{array}{rrrrr}
4 & 9 & 8 & -5 & -6 \\
1 & -7 & -9 & -5 & -7 \\
7 & -3 & 9 & 4 & -9 \\
4 & -9 & 5 & 9 & -8 \\
-6 & -8 & 7 & -6 & 1
\end{array}\right)
$$

and now we define

$$
W_{0}=\frac{1}{17} F_{0} F_{0}^{\top}=(5 \times 5) \approx\left(\begin{array}{rrrrr}
13.059 & -3.765 & 6.294 & -1.294 & -0.941 \tag{3}\\
* & 12.059 & -0.588 & 1.941 & 0.588 \\
* & * & 13.882 & 12.235 & 0.706 \\
* & * & * & 15.706 & 1.235 \\
* & * & * & * & 10.941
\end{array}\right)=W .
$$

W is the matrix W_{0} rounded to three decimal places. The singular values of W are

$$
\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{5}
\end{array}\right)=\left(\begin{array}{c}
27.951 \\
18.089 \\
10.654 \\
8.839 \\
0.114
\end{array}\right),
$$

and so W is a symmetric and positive definite matrix with full rank 5 .
a) Classical procedure, Aitken estimator

We consider the general linear model (1) with $X=(n \times p)$ and $W=(n \times n)$ given by (2) and (3).
The eigenvalue decomposition of W is given by $W=R \Lambda R^{\top}$, where R is orthogonal and $\Lambda=(5 \times 5)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{5}\right), \lambda_{i}=\sigma_{i}$ (as W is positive definite). We set
(4) $F=R \Lambda^{1 / 2} R^{\top}$, where $\Lambda^{1 / 2}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{5}}\right)$
and obtain

$$
F \approx\left(\begin{array}{rrrrr}
3.310 & -0.519 & 1.221 & -0.566 & -0.142 \\
* & 3.421 & -0.086 & 0.272 & 0.072 \\
* & * & 2.802 & 2.126 & 0.096 \\
* & * & * & 3.282 & 0.141 \\
* & * & * & * & 3.299
\end{array}\right) .
$$

F is symmetric and $F^{2}=F F^{\top}=R \Lambda R^{\top}=W$. The random error of our model (1) can now be written in the form

$$
\varepsilon=F u \text { with } u \sim\left(0, \sigma^{2} I_{n}\right), \text { i.e. with } \mathrm{E}(u)=0 \text { and } \operatorname{var}(u)=\sigma^{2} I_{n}
$$

as $\mathrm{E}(\varepsilon)=\mathrm{E}(F u)=0$ and $\operatorname{var}(\varepsilon)=\mathrm{E}\left(\varepsilon \varepsilon^{\top}\right)=F \mathrm{E}\left(u u^{\top}\right) F^{\top}=\sigma^{2} F F^{\top}=\sigma^{2} W$. So model (1) can also be given as
(5) $y=X \beta+F u$, where $X=(n \times p), F=(n \times n), u \sim\left(0, \sigma^{2} I_{n}\right)$.

As F is a regular matrix (i.e. F has full rank n) we can write (5) as
(6) $\bar{y}=\bar{X} \beta+u$, where $\bar{y}=F^{-1} y$ and $\bar{X}=F^{-1} X$.

Note that the inverse of $F=R \Lambda^{1 / 2} R^{\top}$ is given by $F^{-1}=R \Lambda^{-1 / 2} R^{\top}$ where $\Lambda^{-1 / 2}=\operatorname{diag}\left(1 / \sqrt{\lambda_{1}}, \ldots, 1 / \sqrt{\lambda_{n}}\right)$. In (6) we have the simple linear model and its solution is given by

$$
\begin{aligned}
& \hat{\beta}=\left(\bar{X}^{\top} \bar{X}\right)^{-1} \bar{X}^{\top} \bar{y}=\left(X^{\top} W^{-1} X\right)^{-1} X^{\top} W^{-1} y \\
& \operatorname{var}(\hat{\beta})=\sigma^{2}\left(X^{\top} W^{-1} X\right)^{-1} \\
& \hat{\sigma}^{2}=\frac{1}{n-p} \bar{e}^{\top} \bar{e}=\frac{1}{n-p} e^{\top} W^{-1} e \text { as } \bar{e}=\bar{y}-\bar{X} \hat{\beta}=F^{-1}(y-X \hat{\beta})=F^{-1} e
\end{aligned}
$$

and we obtain

$$
\begin{aligned}
& \left(X^{\top} W^{-1} X\right)^{-1}=\left(\begin{array}{rrrrr}
0.294584 & -0.313265 & 0.211856 \\
* & 0.373243 & -0.216344 \\
* & * & 0.185071
\end{array}\right) \\
& \left(X^{\top} W^{-1} X\right)^{-1} X^{\top} W^{-1}=\left(\begin{array}{rrrrr}
0.045300 & -0.067985 & 0.031067 & 0.074873 & 0.056742 \\
0.105058 & 0.112274 & -0.266029 & 0.112274 & -0.029850 \\
-0.088830 & -0.013145 & 0.273161 & -0.156002 & 0.055801
\end{array}\right) .
\end{aligned}
$$

b) Procedure with singular value decomposition

We start with the singular value decomposition of $\bar{X}=F^{-1} X$ in model (6) that is given by
$\bar{X}=U D V^{\top}$ where $U=(n \times n)$ and $V=(p \times p)$ are orthogonal and $D=(n \times p)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)$;
$\sigma_{1}, \ldots, \sigma_{n}$ are the singular values of $\bar{X}=F^{-1} X$. Here are the three matrices:

$$
\begin{aligned}
& U=\left(\begin{array}{rrrrr}
0.409 & 0.282 & 0.249 & 0.670 & 0.492 \\
0.025 & 0.772 & -0.472 & -0.347 & 0.248 \\
-0.615 & 0.252 & 0.666 & -0.187 & 0.283 \\
0.659 & -0.077 & 0.418 & -0.610 & 0.115 \\
0.141 & 0.505 & 0.312 & 0.156 & -0.777
\end{array}\right), V=\left(\begin{array}{rrr}
0.793 & 0.102 & 0.600 \\
0.425 & 0.612 & -0.667 \\
-0.435 & 0.784 & 0.442
\end{array}\right) \\
& D=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
9.818 & 0 & 0 \\
0 & 4.778 & 0 \\
0 & 0 & 1.119 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

We obtain the canonical model
(7) $\tilde{y}=D \tilde{\beta}+\tilde{u}$ where $\tilde{y}=U^{\top} F^{-1} y, \tilde{\beta}=V^{\top} \beta, \tilde{u}=U^{\top} u$,
and so

$$
\begin{aligned}
& \tilde{y}_{1}=\sigma_{1} \tilde{\beta}_{1}+u_{1}, \\
& \tilde{y}_{2}=\sigma_{2} \tilde{\beta}_{2}+u_{2}, \\
& \tilde{y}_{3}=\sigma_{3} \tilde{\beta}_{3}+u_{3}, \\
& \tilde{y}_{4}=u_{4}, \\
& \tilde{y}_{5}=u_{5} .
\end{aligned}
$$

The least squares estimators of the canonical parameters are given by

$$
\begin{aligned}
& \hat{\beta}_{1}=\tilde{y}_{1} / \sigma_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / \sigma_{2}, \\
& \hat{\tilde{\beta}}_{3}=\tilde{y}_{3} / \sigma_{3},
\end{aligned}
$$

or in matrix notation

$$
\hat{\tilde{\beta}}=D^{+} \tilde{y}, \text { where } \quad D^{+}=\left(\begin{array}{ccccc}
1 / \sigma_{1} & 0 & 0 & 0 & 0 \\
0 & 1 / \sigma_{2} & 0 & 0 & 0 \\
0 & 0 & 1 / \sigma_{3} & 0 & 0
\end{array}\right) \text {. }
$$

D^{+}is the Moore-Penrose inverse of D. The covariance matrix of $\hat{\tilde{\beta}}$ is given by

$$
\left.\operatorname{var}(\hat{\tilde{\beta}})=D^{+} \operatorname{var}(\tilde{y})\left(D^{+}\right)^{\top}=\sigma^{2} D^{+}\left(D^{+}\right)^{\top}\right)=\sigma^{2}\left(D^{\top} D\right)^{-1}=\sigma^{2}\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 1 / \sigma_{3}^{2}
\end{array}\right) .
$$

By backtransformation we find the least squares estimators of the original parameters $\beta=V \tilde{\beta}$:

$$
\begin{aligned}
& \hat{\beta}=V \hat{\tilde{\beta}}=V D^{+} \tilde{y}=\bar{X}^{+} \bar{y}=\bar{X}^{+} F^{-1} y \text { where } \bar{X}^{+}=(p \times n)=(3 \times 5)=V D^{+} U^{\top}, \\
& \operatorname{var}(\hat{\tilde{\beta}})=\sigma^{2} V\left(D^{\top} D\right)^{-1} V^{\top},
\end{aligned}
$$

$$
\hat{\sigma}^{2}=\frac{1}{n-p} \tilde{e}^{\top} \tilde{e}=\frac{1}{n-p} e^{\top} e \text { where } e=y-\bar{X} \hat{\beta}=y-\bar{X} \bar{X}^{+} y=\left(I_{n}-X X^{+}\right) y .
$$

$\bar{X}^{+}=V D^{+} U^{\top}$ is the Moore-Penrose inverse of \bar{X}, and as

$$
\begin{aligned}
& \left(X^{\top} W^{-1} X\right)^{-1}=V\left(D^{\top} D\right)^{-1} V^{\top}, \\
& \left(X^{\top} W^{-1} X\right)^{-1} X^{\top} W^{-1}=\bar{X}^{+} F^{-1}
\end{aligned}
$$

we obtain the same results as with the classical procedure of Aitken.
c) Procedure with generalized singular value decomposition

We consider the general linear model as given in (5):
(8) $y=X \beta+F u$, where $X=(n \times p), F=(n \times n), u \sim\left(0, \sigma^{2} I_{n}\right)$
with X and F as given above in (2) and (4).
(i) Singular value decomposition of the matrix $(X \mid F)$

The singular value decomposition of $(X \mid F)=(n \times m)=(5 \times 8)$ with $m=p+n=8$ is given by

$$
(X \mid F)=P \Delta Q^{\top},
$$

where $P=(n \times n)=(5 \times 5)$ and $Q=(m \times m)=(8 \times 8)$ are orthogonal and
$\Delta=(n \times m)=(5 \times 8)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$, and where the singular values $\sigma_{1}, \ldots, \sigma_{5}$ of $(X \mid F)$ are given in the following table. We have $r_{c}=\operatorname{rk}(X \mid F)=n=5$, and this simplifies the further procedure.

Table 1: Singular values of $X, F,(X \mid F)$ and \bar{X}

	$X=(5 \times 3)$	$F=(5 \times 5)$	$(X \mid F)=(5 \times 8)$	$\bar{X}=F^{-1} X$
singular values	$\left(\begin{array}{c}16.560 \\ 7.612 \\ 2.795\end{array}\right)$	$\left(\begin{array}{c}5.287 \\ 4.253 \\ 3.264 \\ 2.973 \\ 0.338\end{array}\right)$	$\left(\begin{array}{c}17.008 \\ 8.802 \\ 4.563 \\ 3.685 \\ 2.120\end{array}\right)$	$\left(\begin{array}{c}9.818 \\ 4.778 \\ 1.119\end{array}\right)$

(ii) CS-decomposition of Q

As $r_{c}=\operatorname{rk}(X \mid F)=n=5$ we have to determine the CS-decomposition of the orthogonal matrix $Q=(m \times m)=(8 \times 8)$ with the format

$$
Q=\left(\begin{array}{l|l|l}
Q_{11} & Q_{12} \tag{9}\\
\hline Q_{21} & Q_{22}
\end{array}\right)=\left(\begin{array}{l|l|l}
(p \times n) & (p \times p) \\
\hline(n \times n) & (n \times p)
\end{array}\right)=\left(\begin{array}{ll}
(3 \times 5) & (3 \times 3) \\
\hline(5 \times 5) & (5 \times 3)
\end{array}\right) .
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(8 \times 8)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 3) & * \\
\hline * & (5 \times 5)
\end{array}\right) \\
& V=(8 \times 8)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(5 \times 5) & * \\
\hline * & (3 \times 3)
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
0.793 & 0.102 & 0.600 \\
0.425 & 0.612 & -0.667 \\
-0.435 & 0.784 & 0.442
\end{array}\right), \quad U_{2}=\left(\begin{array}{rrrrr}
0.409 & 0.282 & 0.249 & 0.626 & -0.547 \\
0.025 & 0.772 & -0.472 & -0.366 & -0.218 \\
-0.615 & 0.252 & 0.666 & -0.210 & -0.266 \\
0.659 & -0.077 & 0.418 & -0.617 & -0.063 \\
0.141 & 0.505 & 0.312 & 0.221 & 0.761
\end{array}\right) \\
& V_{1}=\left(\begin{array}{rrrrr}
-0.360 & -0.918 & -0.144 & 0.084 & 0 \\
-0.577 & 0.351 & -0.722 & 0.117 & 0.088 \\
-0.407 & 0.147 & 0.428 & 0.590 & -0.531 \\
0.235 & -0.024 & -0.003 & 0.738 & 0.632 \\
0.562 & -0.112 & -0.524 & 0.293 & -0.558
\end{array}\right), \quad V_{2}=\left(\begin{array}{rrr}
0.468 & -0.096 & -0.878 \\
-0.842 & 0.251 & -0.476 \\
-0.266 & -0.963 & -0.037
\end{array}\right)
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 5) & (3 \times 3) \\
\hline(5 \times 5) & (5 \times 3)
\end{array}\right)
$$

where

$$
D=\left(\begin{array}{ccccc|ccc}
c_{1} & 0 & 0 & 0 & 0 & s_{1} & 0 & 0 \\
0 & c_{2} & 0 & 0 & 0 & 0 & s_{2} & 0 \\
0 & 0 & c_{3} & 0 & 0 & 0 & 0 & s_{3} \\
\hline s_{1} & 0 & 0 & 0 & 0 & -c_{1} & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 & 0 & -c_{2} & 0 \\
0 & 0 & s_{3} & 0 & 0 & 0 & 0 & -c_{3} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

The diagonal elements c_{i} and s_{i} are given in the following table. Note that $c_{i}^{2}+s_{i}^{2}=1$ for $i=1,2,3$ and so the matrix D is orthogonal, too.

Table 2: Diagonal elements c_{i}, s_{i}

i	c_{i}	s_{i}
1	0.994852	0.101334
2	0.978795	0.204843
3	0.745620	0.666371

(iii) Generalized singular value decomposition and canonical model

We now have
(10)

$$
\begin{aligned}
& (X \mid F)=P \Delta Q^{\top}, \\
& Q=U D V^{\top},
\end{aligned}
$$

and from this we find the so-called generalized singular value decomposition of the pair X, F

$$
\begin{align*}
& P^{\top} X U_{1}=\Delta_{0} V_{1} D_{11}^{\top}, \tag{11}\\
& P^{\top} F U_{2}=\Delta_{0} V_{1} D_{21}^{\top},
\end{align*}
$$

where $\Delta_{0}=(5 \times 5)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$ and where $\sigma_{1}, \ldots, \sigma_{5}$ are the singular values of $(X \mid F)$ as given above. For P we have

$$
P=\left(\begin{array}{rrrrr}
-0.264 & -0.156 & 0.725 & 0.202 & 0.583 \\
-0.667 & 0.588 & -0.121 & -0.416 & 0.150 \\
-0.314 & -0.367 & 0.440 & -0.379 & -0.655 \\
-0.290 & -0.701 & -0.476 & -0.257 & 0.362 \\
-0.551 & -0.057 & -0.201 & 0.759 & -0.278
\end{array}\right) .
$$

Our model (8) can now be written in the canonical form
(12) $\tilde{y}=D_{1} \tilde{\beta}+D_{2} \tilde{u}$,
where

$$
\begin{aligned}
& \tilde{y}=V_{1}^{\top} \Delta_{0}^{-1} P^{\top} y, \tilde{\beta}=U_{1}^{\top} \beta, \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(5 \times 3)=\left(\begin{array}{ccc}
c_{1} & 0 & 0 \\
0 & c_{2} & 0 \\
0 & 0 & c_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad D_{2}=D_{21}^{\top}=(5 \times 5)=\left(\begin{array}{ccccc}
s_{1} & 0 & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 \\
0 & 0 & s_{3} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

and so

$$
\begin{aligned}
& \tilde{y}_{1}=c_{1} \tilde{\beta}_{1}+s_{1} \tilde{u}_{1}, \\
& \tilde{y}_{2}=c_{2} \tilde{\beta}_{2}+s_{2} \tilde{u}_{2},
\end{aligned}
$$

(13)

$$
\begin{aligned}
& \tilde{y}_{3}=c_{3} \tilde{\beta}_{3}+s_{3} \tilde{u}_{3}, \\
& \tilde{y}_{4}=\tilde{u}_{4}, \\
& \tilde{y}_{5}=\tilde{u}_{5} .
\end{aligned}
$$

The least squares estimators are given by

$$
\begin{aligned}
& \hat{\beta}_{1}=\tilde{y}_{1} / c_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{2}, \\
& \hat{\tilde{\beta}}_{3}=\tilde{y}_{3} / c_{3} .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\beta}=D_{1}^{+} \tilde{y} \text { as } D_{1}^{+}=\left(\begin{array}{ccccc}
1 / c_{1} & 0 & 0 & 0 & 0 \\
0 & 1 / c_{2} & 0 & 0 & 0 \\
0 & 0 & 1 / c_{3} & 0 & 0
\end{array}\right), \\
& \operatorname{var}(\tilde{y})=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{ccccc}
s_{1}^{2} & 0 & 0 & 0 & 0 \\
0 & s_{2}^{2} & 0 & 0 & 0 \\
0 & 0 & s_{3}^{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}(\tilde{y})\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
s_{1}^{2} / c_{1}^{2} & 0 & 0 \\
0 & s_{2}^{2} / c_{2}^{2} & 0 \\
0 & 0 & s_{3}^{2} / c_{3}^{2}
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

For the original parameters we obtain

$$
\beta=U_{1} \tilde{\beta}, \quad \hat{\beta}=U_{1} \hat{\beta}, \quad \operatorname{var}(\hat{\beta})=U_{1} \operatorname{var}(\hat{\tilde{\beta}}) U_{1}^{\top}=\sigma^{2} U_{1} D_{0} U_{1}^{\top} .
$$

The unknown variance σ^{2} is estimated by

$$
\hat{\sigma}^{2}=\frac{1}{2}\left(\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) .
$$

By backtransformation we obtain again the same results as in a) and b), but the classical Aitken procedure a) works only in the regular case, i.e. if X and F have full rank, procedure b) with the simple singular value decomposition works also if multicollinearity is present i.e. if X does not have full rank, and method c) with the generalized singular value decomposition works even if both X und F are rank deficient.

Remark

By multiplying the canonical model (12) with D_{2}^{-1} we obtain a model that is equivalent to the canonical model (7) as we have $D_{2}^{-1} D_{1}=D$, where $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ and where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the singular values of $\bar{X}=F^{-1} X$.

Example 5: General linear model with strict multicollinearity

In this example we consider the general linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} W\right)$
as in Example 4, but this time

$$
X=\left(x_{1}, x_{2}, x_{3}\right)=(5 \times 3)=\left(\begin{array}{rrr}
3 & 2 & 4 \\
1 & 9 & -7 \\
4 & 1 & 7 \\
7 & 2 & 12 \\
5 & 6 & 4
\end{array}\right),
$$

whereas the symmetric matrix $W=(5 \times 5)$ is the same as there:

$$
W=\left(\begin{array}{rrrrr}
13.059 & -3.765 & 6.294 & -1.294 & -0.941 \\
* & 12.059 & -0.588 & 1.941 & 0.588 \\
* & * & 13.882 & 12.235 & 0.706 \\
* & * & * & 15.706 & 1.235 \\
* & * & * & * & 10.941
\end{array}\right) .
$$

We have $x_{3}=2 x_{1}-x_{2}$, i.e. the third column of X is a linear combination of the first two columns, and so the matrix X has rank 2; so we face the problem of strict multicollinearity. As $X^{\top} W^{-1} X$ has the same rank as X the inverse $\left(X^{\top} W^{-1} X\right)^{-1}$ does not exist and the classical procedure of Aitken breaks down.

a) Procedure with singular value decomposition

As in Example 4 the general linear model can be written in the form
(2) $y=X \beta+F u$, where $X=(n \times p), F=(n \times n), u \sim\left(0, \sigma^{2} I_{n}\right)$, and where $F F^{\top}=W$. As in Example 4 we start with the singular value decomposition of $\bar{X}=F^{-1} X$ that is given by $\bar{X}=U D V^{\top}$ where $U=(n \times n)$ and $V=(p \times p)$ are orthogonal and $D=(n \times p)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) ; \sigma_{1}, \ldots, \sigma_{n}$ are the singular values of $\bar{X}=F^{-1} X$. The following table gives the singular values of the different matrices involved.

Table 1: Singular values of $X, F, \bar{X}=F^{-1} X,(X \mid F)$

	$X=(5 \times 3)$	$F=(5 \times 5)$	$\bar{X}=(5 \times 5)$	$(X \mid F)$
singular values	$(18.802$			
	12.103			

And here are the three matrices U, V, D :

$$
\begin{aligned}
& U=\left(\begin{array}{rrrrr}
-0.427 & -0.200 & -0.842 & -0.257 & -0.060 \\
0.061 & -0.892 & 0.126 & 0.258 & -0.345 \\
0.535 & 0.065 & -0.498 & 0.642 & 0.223 \\
-0.709 & 0.175 & 0.115 & 0.673 & -0.032 \\
-0.161 & -0.361 & 0.119 & -0.053 & 0.909
\end{array}\right), V=\left(\begin{array}{rrr}
-0.536 & -0.216 & 0.816 \\
-0.271 & -0.872 & -0.408 \\
-0.800 & 0.440 & -0.408
\end{array}\right), \\
& D=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
14.548 \\
0 & 0 & 0.802 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

We obtain the canonical model
(3) $\tilde{y}=D \tilde{\beta}+\tilde{u}$, where $\tilde{y}=U^{\top} F^{-1} y, \tilde{\beta}=V^{\top} \beta, \tilde{u}=U^{\top} u$,
and so

$$
\begin{aligned}
& \tilde{y}_{1}=\sigma_{1} \tilde{\beta}_{1}+\tilde{u}_{1}, \\
& \tilde{y}_{2}=\sigma_{2} \tilde{\beta}_{2}+\tilde{u}_{2}, \\
& \tilde{y}_{3}=\tilde{u}_{3}, \\
& \tilde{y}_{4}=\tilde{u}_{4}, \\
& \tilde{y}_{5}=\tilde{u}_{5} .
\end{aligned}
$$

The least squares estimators of the canonical parameters are given by

$$
\begin{aligned}
& \hat{\beta}_{1}=\tilde{y}_{1} / \sigma_{1}, \\
& \hat{\beta}_{2}=\tilde{y}_{2} / \sigma_{2} .
\end{aligned}
$$

The parameter $\tilde{\beta}_{3}$ can have arbitrary values, it is not identifiable and not estimable without further assumptions. We set this parameter to zero and so its value is defined such that
$\tilde{\beta}^{\top} \tilde{\beta}=\tilde{\beta}_{1}^{2}+\tilde{\beta}_{2}^{2}+\tilde{\beta}_{3}^{2}=\mathrm{min}$. For the original parameters we have $\beta=V \tilde{\beta}$, and as $\beta^{\top} \beta=\tilde{\beta}^{\top} \tilde{\beta}$ our parameters are made identifiable and estimable by the minimum length requirement $\beta^{\top} \beta=\tilde{\beta}^{\top} \tilde{\beta}=\min$. As now $\tilde{\beta}_{3}=0$ also the least squares estimate of $\tilde{\beta}_{3}$ is zero. In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D^{+} \tilde{y}, \quad \hat{\beta}=V \hat{\tilde{\beta}}=V D^{+} \tilde{y}=V D^{+} U^{\top} F^{-1} y, \\
& \operatorname{var}(\tilde{\tilde{\beta}})=\sigma^{2} D^{+} D^{+\top}=\sigma^{2}\left(D^{\top} D\right)^{+}, \quad \operatorname{var}(\hat{\beta})=\sigma^{2} V\left(D^{\top} D\right)^{+} V^{\top}, \\
& \hat{\sigma}^{2}=\frac{1}{n-r_{X}} \tilde{e}^{\top} \tilde{e}=\frac{1}{3}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) \text { with } r_{X}=r k(X)=2 .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
& \left(D^{\top} D\right)^{+}=\left(\begin{array}{ccc}
1 / \sigma_{1}^{2} & 0 & 0 \\
0 & 1 / \sigma_{2}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
0.004725 & 0 & 0 \\
0 & 0.069175 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& V\left(D^{\top} D\right)^{+} V^{\top}=\left(\begin{array}{rrr}
0.004576 & 0.013698 & -0.004545 \\
* & 0.052905 & -0.025509 \\
* & * & 0.016418
\end{array}\right), \\
& V D^{+} U^{\top} F^{-1}=\left(\begin{array}{rrrrr}
0.049401 & 0.014657 & -0.076112 & 0.061121 & 0.009415 \\
0.050009 & 0.063111 & -0.049466 & 0.026076 & 0.027105 \\
0.048792 & -0.033797 & -0.102757 & 0.096166 & -0.008275
\end{array}\right) .
\end{aligned}
$$

b) Procedure with generalized singular value decomposition

We consider the general linear model as given in (2) with X and F as given there.
(i) Singular value decomposition of the matrix $(X \mid F)$

The singular value decomposition of $(X \mid F)$ is given by

$$
(X \mid F)=P \Delta Q^{\top},
$$

where $P=(5 \times 5)$ and $Q=(8 \times 8)$ are orthogonal and $\Delta=(5 \times 8)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$, and where the singular values $\sigma_{1}, \ldots, \sigma_{5}$ of $(X \mid F)$ are given above in Table 1. For P we obtain

$$
P=\left(\begin{array}{rrrrr}
0.275 & -0.090 & 0.847 & -0.273 & 0.353 \\
-0.217 & -0.882 & -0.167 & -0.380 & 0.051 \\
0.451 & 0.011 & 0.052 & -0.411 & -0.790 \\
0.744 & -0.014 & -0.472 & -0.123 & 0.457 \\
0.349 & -0.462 & 0.169 & 0.773 & -0.199
\end{array}\right) .
$$

(ii) CS-decomposition of Q

As $r_{c}=\operatorname{rk}(X \mid F)=n=5$ we have to determine the CS-decomposition of the orthogonal matrix $Q=(m \times m)=(8 \times 8)$ with the format

$$
Q=\left(\begin{array}{l|l}
Q_{11} & Q_{12} \\
\hline Q_{21} & Q_{22}
\end{array}\right)=\left(\begin{array}{c|c}
(p \times n) & (p \times p) \\
\hline(n \times n) & (n \times p)
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 5) & (3 \times 3) \\
\hline(5 \times 5) & (5 \times 3)
\end{array}\right)
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(8 \times 8)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 3) & * \\
\hline * & (5 \times 5)
\end{array}\right) \\
& V=(8 \times 8)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(5 \times 5) & * \\
\hline * & (3 \times 3)
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
-0.536 & 0.216 & -0.816 \\
-0.271 & 0.872 & 0.408 \\
-0.800 & -0.440 & 0.408
\end{array}\right), \quad U_{2}=\left(\begin{array}{rrrrr}
-0.427 & 0.200 & 0.388 & -0.778 & -0.150 \\
0.061 & 0.892 & -0.448 & -0.027 & -0.007 \\
0.535 & -0.065 & -0.035 & -0.169 & -0.825 \\
-0.709 & -0.175 & -0.450 & 0.210 & -0.469 \\
-0.161 & 0.361 & 0.667 & 0.569 & -0.277
\end{array}\right) \\
& V_{1}=\left(\begin{array}{rrccr}
-0.959 & -0.148 & 0 & 0 & -0.241 \\
0.139 & -0.985 & 0.041 & -0.084 & 0.049 \\
-0.024 & 0.087 & 0.724 & -0.683 & 0.043 \\
-0.092 & -0.026 & 0.619 & 0.680 & 0.381 \\
-0.227 & 0.021 & -0.302 & -0.253 & 0.890
\end{array}\right), \quad V_{2}=\left(\begin{array}{rrrr}
-0.747 & 0.566 & 0.350 \\
0.659 & 0.557 & 0.506 \\
-0.091 & -0.608 & 0.788
\end{array}\right)
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 5) & (3 \times 3) \\
\hline(5 \times 5) & (5 \times 3)
\end{array}\right)
$$

where

$$
D=\left(\begin{array}{ccccc|ccc}
c_{1} & 0 & 0 & 0 & 0 & s_{1} & 0 & 0 \\
0 & c_{2} & 0 & 0 & 0 & 0 & s_{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline s_{1} & 0 & 0 & 0 & 0 & -c_{1} & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 & 0 & -c_{2} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
\end{array}\right) .
$$

The diagonal elements c_{i}, s_{i} are given in Table 2. Note that $c_{i}^{2}+s_{i}^{2}=1$ for $i=1,2$, and so the matrix D is orthogonal, too.

Table 2: Diagonal elements c_{i}, s_{i}

i	c_{i}	s_{i}
1	0.997646	0.068578
2	0.967110	0.254360

(iii) Generalized singular decomposition and canonical model

Now we have

$$
\begin{aligned}
& (X \mid F)=P \Delta Q^{\top}, \\
& Q=U D V^{\top},
\end{aligned}
$$

and from this we find the so-called generalized singular value decomposition of the pair X, F

$$
\begin{align*}
& P^{\top} X U_{1}=\Delta_{0} V_{1} D_{11}^{\top}, \\
& P^{\top} F U_{2}=\Delta_{0} V_{1} D_{21}^{\top}, \tag{4}
\end{align*}
$$

where $\Delta_{0}=(5 \times 5)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$ and where $\sigma_{1}, \ldots, \sigma_{5}$ are the singular values of $(X \mid F)$ as given in Table 1. Our model (2) can now be written in the canonical form
(5) $\tilde{y}=D_{1} \tilde{\beta}+D_{2} \tilde{u}$,
where

$$
\begin{aligned}
& \tilde{y}=V_{1}^{\top} \Delta_{0}^{-1} P^{\top} y, \quad \tilde{\beta}=U_{1}^{\top} \beta, \quad \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(5 \times 3)=\left(\begin{array}{ccc}
c_{1} & 0 & 0 \\
0 & c_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad D_{2}=D_{21}^{\top}=(5 \times 5)=\left(\begin{array}{ccccc}
s_{1} & 0 & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

The generalized singular value decomposition (4) shows that $\operatorname{rk}(X)=\operatorname{rk}\left(D_{11}\right)=\operatorname{rk}\left(D_{1}\right)=2$ and $\operatorname{rk}(F)=\operatorname{rk}\left(D_{21}\right)=\operatorname{rk}\left(D_{2}\right)=5$. Now the canonical model (5) explicitly written has the form
$\tilde{y}_{1}=c_{1} \tilde{\beta}_{1}+s_{1} \tilde{u}_{1}$,
$\tilde{y}_{2}=c_{2} \tilde{\beta}_{2}+s_{2} \tilde{u}_{2}$,
$\tilde{y}_{3}=\tilde{u}_{3}$,
$\tilde{y}_{4}=\tilde{u}_{4}$,
$\tilde{y}_{5}=\tilde{u}_{5}$.
The parameter $\tilde{\beta}_{3}$ can possess arbitrary values as it is not met in the canonical model and we set this parameter to zero (minimum length definition). The least squares estimators are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1} / c_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{2}, \\
& \hat{\tilde{\beta}}_{3}=0 .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D_{1}^{+} \tilde{y} \text { as } D_{1}^{+}=\left(\begin{array}{ccccc}
1 / c_{1} & 0 & 0 & 0 & 0 \\
0 & 1 / c_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \operatorname{var}(\tilde{y})=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{ccccc}
s_{1}^{2} & 0 & 0 & 0 & 0 \\
0 & s_{2}^{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}(\tilde{y})\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
s_{1}^{2} / c_{1}^{2} & 0 & 0 \\
0 & s_{2}^{2} / c_{2}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

For the original parameters we obtain

$$
\beta=U_{1} \tilde{\beta}, \quad \hat{\beta}=U_{1} \hat{\beta}, \quad \operatorname{var}(\hat{\beta})=U_{1} \operatorname{var}(\hat{\tilde{\beta}}) U_{1}^{\top}=\sigma^{2} U_{1} D_{0} U_{1}^{\top} .
$$

The unknown variance σ^{2} is estimated by

$$
\hat{\sigma}^{2}=\frac{1}{3}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) .
$$

We obtain the same results as in a) with the simple singular value decomposition, but that procedure works only if the matrix W (and so the matrix F) has full rank, whereas the method with the generalized singular value decomposition also works if both X und F are rank deficient as we will see in the next example.

By multiplying the canonical model (5) with D_{2}^{-1} we obtain a model that is equivalent to (3) and we have $D_{2}^{-1} D_{1}=D$, where $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ and where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the singular values of $\bar{X}=F^{-1} X$.

Example 6: General linear model with rank deficient covariance matrix

In this example we consider again the general linear model

$$
\begin{equation*}
y=X \beta+\varepsilon \text {, where } X=(n \times p) \text { and } \varepsilon \sim\left(0, \sigma^{2} W\right) \text {. } \tag{1}
\end{equation*}
$$

Let

$$
X=(5 \times 3)=\left(\begin{array}{lll}
3 & 2 & 3 \\
1 & 9 & 8 \\
4 & 1 & 4 \\
7 & 2 & 0 \\
5 & 6 & 5
\end{array}\right)
$$

as in Example 4. The matrix X has full rank 3. But in this example the matrix W will be rank deficient. Let

$$
F_{0}=(5 \times 4)=\left(\begin{array}{rrrr}
4 & 9 & 8 & -5 \\
1 & -7 & -9 & -5 \\
7 & -3 & 9 & 4 \\
4 & -9 & 5 & 9 \\
-6 & -8 & 7 & -6
\end{array}\right)
$$

and now we define

$$
W=\frac{1}{20} F_{0} F_{0}^{\top}=(5 \times 5)=\left(\begin{array}{crccc}
9.3 & -5.3 & 2.65 & -3.5 & -0.5 \\
* & 7.8 & -3.65 & -1.15 & 0.85 \\
* & * & 7.75 & 6.8 & 1.05 \\
* & * & * & 10.15 & 1.45 \\
* & * & * & * & 9.25
\end{array}\right) .
$$

The singular values of W are

$$
\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{5}
\end{array}\right)=\left(\begin{array}{c}
17.462 \\
15.181 \\
8.812 \\
2.796 \\
0
\end{array}\right),
$$

and so W is a symmetric and positive semidefinite matrix with rank 4. Now we consider the general linear model (1) with $X=(n \times p)$ and $W=(n \times n)$ as given above. As $r k(W)=4$ the inverse W^{-1} does not exist and so the classical Aitken procedure as well as the procedure with the simple singular value decomposition cannot work. Therefore we apply the procedure with the generalized singular value decomposition.

(i) Factorization of W

We want to find a matrix $F=(n \times k)$ such that $W=F F^{\top}$ where $k=r k(W)=4$. The eigenvalue decomposition of W is given by $W=R \Lambda R^{\top}$, where R is orthogonal and $\Lambda=(5 \times 5)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{5}\right)$, $\lambda_{i}=\sigma_{i}$ (as W is positive semidefinite). As $\sigma_{5}=\lambda_{5}=0$ we set
(2) $D=(5 \times 4)=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{4}}\right)$ and $F=(5 \times 4)=R D$.

As $D D^{\top}=(5 \times 5)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{4}, 0\right)=\Lambda$ we have $F F^{\top}=R D D^{\top} R^{\top}=R \Lambda R^{\top}=W$. The random error of our model (1) can now be written in the form

$$
\varepsilon=F u \text { with } u \sim\left(0, \sigma^{2} I_{k}\right) \text {, i.e. with } \mathrm{E}(u)=0 \text { and } \operatorname{var}(u)=\sigma^{2} I_{k} \text {, }
$$

as $\mathrm{E}(\varepsilon)=\mathrm{E}(F u)=0$ and $\operatorname{var}(\varepsilon)=\mathrm{E}\left(\varepsilon \varepsilon^{\top}\right)=F \mathrm{E}\left(u u^{\top}\right) F^{\top}=\sigma^{2} F F^{\top}=\sigma^{2} W$. So model (1) can also be given as
(3) $y=X \beta+F u$, where $X=(n \times p), F=(n \times k), u \sim\left(0, \sigma^{2} I_{k}\right)$.
(ii) Singular value decomposition of $(X \mid F)$

We have $X=(n \times p)=(5 \times 3)$ and $F=(n \times k)=(5 \times 4)$ and so $(X \mid F)=(n \times m)=(5 \times 7)$, where $m=p+k=7$. Now we compute the singular value decomposition of $(X \mid F)$:

$$
(X \mid F)=P \Delta Q^{\top},
$$

where $P=(5 \times 5)$ and $Q=(7 \times 7)$ are orthogonal and $\Delta=(5 \times 7)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$. We obtain

$$
P=\left(\begin{array}{rrrrr}
-0.258 & -0.147 & 0.718 & 0.226 & 0.588 \\
-0.671 & 0.590 & -0.196 & -0.338 & 0.222 \\
-0.299 & -0.342 & 0.428 & -0.590 & -0.513 \\
-0.275 & -0.708 & -0.507 & -0.149 & 0.379 \\
-0.565 & -0.109 & -0.075 & 0.682 & -0.445
\end{array}\right),
$$

and the singular values of $(X \mid F)$ are given in the following table.
Table 1: Singular values of $X, F,(X \mid F)$

	$X=(5 \times 3)$	$F=(5 \times 4)$	$(X \mid F)=(5 \times 7)$
singular values	$\left(\begin{array}{c}16.560 \\ 7.612 \\ 2.795\end{array}\right)$	$\left(\begin{array}{l}4.179 \\ 3.896 \\ \\ \end{array}\right.$	$\left(\begin{array}{c}16.771 \\ 2.969 \\ 1.672\end{array}\right)$

(iii) CS-decomposition of Q

As $r_{c}=\operatorname{rk}(X \mid F)=n=5$ we have to determine the CS-decomposition of $Q=(m \times m)=(7 \times 7)$ with the format

$$
Q=\left(\begin{array}{l|l|l}
Q_{11} & Q_{12} \\
\hline Q_{21} & Q_{22}
\end{array}\right)=\left(\begin{array}{l|l}
(p \times n) & (p \times(m-n)) \\
\hline(k \times n) & (k \times(m-n))
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 5) & (3 \times 2) \\
\hline(4 \times 5) & (4 \times 2)
\end{array}\right) .
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(7 \times 7)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 3) & * \\
\hline * & (4 \times 4)
\end{array}\right) \\
& V=(8 \times 8)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(5 \times 5) & * \\
\hline * & (2 \times 2)
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
0.785 & -0.214 & -0.581 \\
0.616 & 0.369 & 0.696 \\
-0.066 & 0.905 & -0.421
\end{array}\right), U_{2}=\left(\begin{array}{rrrrr}
0.055 & 0.990 & 0 & 0.127 \\
0.148 & 0.097 & 0.540 & -0.823 \\
-0.343 & 0.089 & -0.758 & -0.548 \\
-0.926 & 0.041 & 0.367 & 0.080
\end{array}\right), \\
& V_{1}=\left(\begin{array}{rrrrr}
-0.702 & -0.699 & 0.081 & -0.100 & 0.035 \\
-0.448 & 0.538 & 0.709 & -0.015 & 0.078 \\
-0.275 & 0.308 & -0.488 & -0.387 & 0.665 \\
0.250 & -0.255 & 0.283 & 0.514 & 0.727 \\
0.410 & -0.248 & 0.415 & -0.759 & 0.147
\end{array}\right), \quad V_{2}=\left(\begin{array}{rr}
0.483 & 0.876 \\
0.876 & -0.483
\end{array}\right),
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 5) & (3 \times 2) \\
\hline(4 \times 5) & (4 \times 2)
\end{array}\right),
$$

where

$$
D=\left(\begin{array}{ccccc|cc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c_{1} & 0 & 0 & 0 & s_{1} & 0 \\
0 & 0 & c_{2} & 0 & 0 & 0 & s_{2} \\
\hline 0 & s_{1} & 0 & 0 & 0 & -c_{1} & 0 \\
0 & 0 & s_{2} & 0 & 0 & 0 & -c_{2} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

The diagonal elements c_{i} and s_{i} are given in Table 2. Note that $c_{i}^{2}+s_{i}^{2}=1$ for $i=1,2$, and so the matrix D is orthogonal, too. Also note D_{21} and D_{12} are not classical diagonal matrices as the diagonal starts in the lower right corner and not in the upper left one.

Table 2: Diagonal elements c_{i}, s_{i}

i	c_{i}	s_{i}
1	0.988084	0.153915
2	0.779148	0.626840

(iv) Generalized singular value decomposition and canonical model

Now we have

$$
\begin{aligned}
& (X \mid F)=P \Delta Q^{\top}, \\
& Q=U D V^{\top},
\end{aligned}
$$

and from this we find the so-called generalized singular value decomposition of the pair X, F

$$
\begin{align*}
& P^{\top} X U_{1}=\Delta_{1} V_{1} D_{11}^{\top}, \tag{4}\\
& P^{\top} F U_{2}=\Delta_{1} V_{1} D_{21}^{\top},
\end{align*}
$$

where $\Delta_{0}=\left(r_{c} \times r_{c}\right)=(5 \times 5)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$ and where $\sigma_{1}, \ldots, \sigma_{5}$ are the singular values of $(X \mid F)$ as given above. Our model (2) can now be written in the canonical form
(5) $\tilde{y}=D_{1} \tilde{\beta}+D_{2} \tilde{u}$,
where

$$
\begin{aligned}
& \tilde{y}=V_{1}^{\top} \Delta_{0}^{-1} P^{\top} y, \\
& \tilde{\beta}=U_{1}^{\top} \beta, \\
& \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(5 \times 3)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & c_{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& D_{2}=D_{21}^{\top}=(5 \times 4)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
s_{1} & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

The generalized singular value decomposition (4) shows that $\operatorname{rk}(X)=\operatorname{rk}\left(D_{11}\right)=\operatorname{rk}\left(D_{1}\right)=3$ and $\operatorname{rk}(F)=\operatorname{rk}\left(D_{21}\right)=\operatorname{rk}\left(D_{2}\right)=4$. The canonical model (5) explicitly written has the form

$$
\begin{aligned}
& \tilde{y}_{1}=\tilde{\beta}_{1}, \\
& \tilde{y}_{2}=c_{1} \tilde{\beta}_{2}+s_{1} \tilde{u}_{1}, \\
& \tilde{y}_{3}=c_{2} \tilde{\beta}_{3}+s_{2} \tilde{u}_{2}, \\
& \tilde{y}_{4}=\tilde{u}_{3}, \\
& \tilde{y}_{5}=\tilde{u}_{4} .
\end{aligned}
$$

The observation \tilde{y}_{1} is identical to the parameter $\tilde{\beta}_{1}$, this observation has no random error. As the covariance matrix $W=(5 \times 5)$ has rank 4 there exists a linear combination \tilde{y}_{1} of the original observations (y_{1}, \ldots, y_{n}) with no random error, and there exists a linear combination $\tilde{\beta}_{1}$ of the original parameters $\left(\beta_{1}, \ldots, \beta_{p}\right)$ such that $\tilde{y}_{1}=\tilde{\beta}_{1}$. The least squares estimators are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{1}, \\
& \hat{\tilde{\beta}}_{3}=\tilde{y}_{3} / c_{2} .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D_{1}^{+} \tilde{y} \text { as } D_{1}^{+}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 / c_{1} & 0 & 0 & 0 \\
0 & 0 & 1 / c_{2} & 0 & 0
\end{array}\right), \\
& \operatorname{var}(\tilde{y})=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \\
0 & s_{1}^{2} & 0 & 0 & 0 \\
0 & 0 & s_{2}^{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right), \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}(\tilde{y})\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s_{1}^{2} / c_{1}^{2} & 0 \\
0 & 0 & s_{2}^{2} / c_{2}^{2}
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

For the original parameters we obtain

$$
\beta=U_{1} \tilde{\beta}, \quad \hat{\beta}=U_{1} \hat{\tilde{\beta}}, \quad \operatorname{var}(\hat{\beta})=U_{1} \operatorname{var}(\hat{\tilde{\beta}}) U_{1}^{\top}=\sigma^{2} U_{1} D_{0} U_{1}^{\top} .
$$

The unknown variance σ^{2} is estimated by

$$
\hat{\sigma}^{2}=\frac{1}{2}\left(\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) .
$$

Example 7: General linear model with rank deficient X and W

In this example we consider again the general linear model

$$
\begin{equation*}
y=X \beta+\varepsilon, \text { where } X=(n \times p) \text { and } \varepsilon \sim\left(0, \sigma^{2} W\right), \tag{1}
\end{equation*}
$$

but now both matrices X and W are rank deficient, i.e. $\operatorname{rk}(X)<p$ and $\operatorname{rk}(W)<n$. Let
$X=\left(x_{1}, x_{2}, x_{3}\right)=(5 \times 3)=\left(\begin{array}{rrr}3 & 2 & 4 \\ 1 & 9 & -7 \\ 4 & 1 & 7 \\ 7 & 2 & 12 \\ 5 & 6 & 4\end{array}\right)$
as in Example 5. We have $x_{3}=2 x_{1}-x_{2}$, i.e. the third column of X is a linear combination of the first two columns, and so the matrix X has rank 2. Let

$$
W=(5 \times 5)=\left(\begin{array}{rrrcc}
9.3 & -5.3 & 2.65 & -3.5 & -0.5 \\
* & 7.8 & -3.65 & -1.15 & 0.85 \\
* & * & 7.75 & 6.8 & 1.05 \\
* & * & * & 10.15 & 1.45 \\
* & * & * & * & 9.25
\end{array}\right)
$$

as in Example 6. The singular values of W are

$$
\left(\begin{array}{c}
\sigma_{1} \\
\vdots \\
\sigma_{5}
\end{array}\right)=\left(\begin{array}{c}
17.462 \\
15.181 \\
8.812 \\
2.796 \\
0
\end{array}\right),
$$

and so W is a symmetric and positive semidefinite matrix with rank 4. Now we consider the general linear model (1) with $X=(n \times p)$ and $W=(n \times n)$ as given above. As $r k(W)=4$ the inverse W^{-1} does not exist and so the classical Aitken procedure as well as the procedure with the simple singular value decomposition cannot work. So we apply the procedure with the generalized singular value decomposition.
(i) Factorization of W

We want to find a matrix $F=(n \times k)$ such that $W=F F^{\top}$ where $k=r k(W)=4$. The eigenvalue decomposition of W is given by $W=R \Lambda R^{\top}$, where R is orthogonal and $\Lambda=(5 \times 5)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{5}\right)$, $\lambda_{i}=\sigma_{i}$ (as W is positive semidefinite). As $\sigma_{5}=\lambda_{5}=0$ we set

$$
D=(5 \times 4)=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{4}}\right) \text { and } F=(5 \times 4)=R D .
$$

As $D D^{\top}=(5 \times 5)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{4}, 0\right)=\Lambda$ we have $F F^{\top}=R D D^{\top} R^{\top}=R \Lambda R^{\top}=W$. The random error of our model (1) can now be written in the form

$$
\varepsilon=F u \text { with } u \sim\left(0, \sigma^{2} I_{k}\right) \text {, i.e. with } \mathrm{E}(u)=0 \text { and } \operatorname{var}(u)=\sigma^{2} I_{k} \text {, }
$$

as $\mathrm{E}(\varepsilon)=\mathrm{E}(F u)=0$ and $\operatorname{var}(\varepsilon)=\mathrm{E}\left(\varepsilon \varepsilon^{\top}\right)=F \mathrm{E}\left(u u^{\top}\right) F^{\top}=\sigma^{2} F F^{\top}=\sigma^{2} W$. So model (1) can also be given as

$$
\begin{equation*}
y=X \beta+F u \text {, where } X=(n \times p), F=(n \times k), u \sim\left(0, \sigma^{2} I_{k}\right) \text {. } \tag{2}
\end{equation*}
$$

(ii) Singular value decomposition of $(X \mid F)$

We have $X=(n \times p)=(5 \times 3)$ and $F=(n \times k)=(5 \times 4)$ and so $(X \mid F)=(n \times m)=(5 \times 7)$, where $m=p+k=7$. Now we compute the singular value decomposition of $(X \mid F)$:

$$
(X \mid F)=P \Delta Q^{\top}
$$

where $P=(5 \times 5)$ and $Q=(7 \times 7)$ are orthogonal and $\Delta=(5 \times 7)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$ We obtain

$$
P=\left(\begin{array}{rrrrr}
0.270 & -0.092 & 0.839 & -0.330 & 0.326 \\
-0.236 & -0.870 & -0.181 & -0.392 & 0.019 \\
0.442 & 0.015 & 0.039 & -0.356 & -0.822 \\
0.743 & -0.022 & -0.475 & -0.157 & 0.444 \\
0.353 & -0.483 & 0.189 & 0.766 & -0.141
\end{array}\right),
$$

and the singular values are given in the following table.
Table 1: Singular values of $X, F,(X \mid F)$
$\left.\begin{array}{|c|c|c|c|}\hline & X=(5 \times 3) & F=(5 \times 4) & (X \mid F) \\ \hline & (18.802 \\ \text { singular values } & 12.103 \\ 0\end{array}\right) \quad\left(\begin{array}{c}4.179 \\ 3.896 \\ 2.969 \\ \\ \end{array}\right.$

(iii) CS-decomposition of Q

As $r_{c}=\operatorname{rk}(X \mid F)=n=5$ we have to determine the CS-decomposition of $Q=(m \times m)=(7 \times 7)$ with the format

$$
Q=\left(\begin{array}{l|l}
Q_{11} & Q_{12} \\
\hline Q_{21} & Q_{22}
\end{array}\right)=\left(\begin{array}{l|l}
(p \times n) & (p \times(m-n)) \\
\hline(k \times n) & (k \times(m-n))
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 5) & (3 \times 2) \\
\hline(4 \times 5) & (4 \times 2)
\end{array}\right) .
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(7 \times 7)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 3) & * \\
\hline * & (4 \times 4)
\end{array}\right) \\
& V=(8 \times 8)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(5 \times 5) & * \\
\hline * & (2 \times 2)
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
0.569 & -0.100 & 0.816 \\
0.446 & -0.797 & -0.408 \\
0.691 & 0.596 & -0.408
\end{array}\right), \quad U_{2}=\left(\begin{array}{rrrrr}
-0.431 & 0 & 0 & 0.902 \\
-0.173 & -0.460 & 0.867 & -0.083 \\
0.283 & -0.866 & -0.390 & 0.135 \\
0.839 & 0.197 & 0.311 & 0.401
\end{array}\right) \\
& V_{1}=\left(\begin{array}{rrrrr}
0.914 & 0.357 & 0.010 & 0.044 & -0.190 \\
-0.358 & 0.922 & -0.025 & -0.143 & -0.023 \\
0.041 & -0.072 & 0.721 & -0.685 & -0.061 \\
-0.033 & 0.117 & 0.679 & 0.678 & 0.253 \\
0.186 & 0.058 & -0.134 & -0.220 & 0.946
\end{array}\right), \quad V_{2}=\left(\begin{array}{rr}
-0.641 & 0.768 \\
-0.768 & -0.641
\end{array}\right)
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 5) & (3 \times 2) \\
\hline(4 \times 5) & (4 \times 2)
\end{array}\right)
$$

where

$$
D=\left(\begin{array}{ccccc|cc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c_{1} & 0 & 0 & 0 & s_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & s_{1} & 0 & 0 & 0 & -c_{1} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

The diagonal elements c_{1} and s_{1} are given in Table 2. Note that $c_{1}^{2}+s_{1}^{2}=1$, and so the matrix D is orthogonal, too. Also note D_{21} and D_{12} are not classical diagonal matrices as the diagonal starts in the lower right corner and not in the upper left one.

Table 2: Diagonal elements c_{1}, s_{1}

i	c_{i}	s_{i}
1	0.981975	0.189010

(iv) Generalized singular value decomposition and canonical model

Now we have

$$
(X \mid F)=P \Delta Q^{\top} \quad \text { and } \quad Q=U D V^{\top},
$$

and from this we find the so-called generalized singular value decomposition of the pair X, F

$$
\begin{align*}
& P^{\top} X U_{1}=\Delta_{0} V_{1} D_{11}^{\top}, \tag{3}\\
& P^{\top} F U_{2}=\Delta_{0} V_{1} D_{21}^{\top},
\end{align*}
$$

where $\Delta_{0}=(5 \times 5)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$ and where $\sigma_{1}, \ldots, \sigma_{5}$ are the singular values of $(X \mid F)$ as given above. Our model (2) can now be written in the canonical form

$$
\begin{equation*}
\tilde{y}=D_{1} \tilde{\beta}+D_{2} \tilde{u} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{y}=V_{1}^{\top} \Delta_{0}^{-1} P^{\top} y, \\
& \tilde{\beta}=U_{1}^{\top} \beta, \\
& \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(5 \times 3)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& D_{2}=D_{21}^{\top}=(5 \times 4)=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
s_{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

The generalized singular value decomposition (3) shows that $\operatorname{rk}(X)=\operatorname{rk}\left(D_{11}\right)=\operatorname{rk}\left(D_{1}\right)=2$ and $\operatorname{rk}(F)=\operatorname{rk}\left(D_{21}\right)=\operatorname{rk}\left(D_{2}\right)=4$. The canonical model (4) explicitly written has the form

$$
\begin{align*}
& \tilde{y}_{1}=\tilde{\beta}_{1}, \\
& \tilde{y}_{2}=c_{1} \tilde{\beta}_{2}+s_{1} \tilde{u}_{1}, \\
& \tilde{y}_{3}=\tilde{u}_{2}, \tag{5}\\
& \tilde{y}_{4}=\tilde{u}_{3}, \\
& \tilde{y}_{5}=\tilde{u}_{4} .
\end{align*}
$$

The observation \tilde{y}_{1} is identical to the parameter $\tilde{\beta}_{1}$, this observation has no random error. As the covariance matrix $W=(5 \times 5)$ has rank 4 there exists a linear combination \tilde{y}_{1} of the original observations (y_{1}, \ldots, y_{n}) with no random error, and there exists a linear combination $\tilde{\beta}_{1}$ of the original parameters $\left(\beta_{1}, \ldots, \beta_{p}\right)$ such that $\tilde{y}_{1}=\tilde{\beta}_{1}$. The parameter $\tilde{\beta}_{3}$ can have arbitrary values as it does not show up in the canonical model, and we set this parameter to zero (minimum length definition). The least squares estimators are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{1}, \\
& \hat{\beta}_{3}=0 .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D_{1}^{+} \tilde{y} \text { as } D_{1}^{+}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 / c_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \\
& \operatorname{var}(\tilde{y})=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & s_{1}^{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}(\tilde{y})\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s_{1}^{2} / c_{1}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

For the original parameters we obtain

$$
\beta=U_{1} \tilde{\beta}, \quad \hat{\beta}=U_{1} \hat{\tilde{\beta}}, \quad \operatorname{var}(\hat{\beta})=U_{1} \operatorname{var}(\hat{\tilde{\beta}}) U_{1}^{\top}=\sigma^{2} U_{1} D_{0} U_{1}^{\top} .
$$

The unknown variance σ^{2} is estimated by

$$
\hat{\sigma}^{2}=\frac{1}{3}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) .
$$

Remark

In our example we have $n=5, p=3$ and

$$
\begin{array}{ll}
r_{X}=\operatorname{rk}(X)=2 & <p=3 \\
r_{F}=\operatorname{rk}(F)=\operatorname{rk}(W)=k=4 & <n=5 \\
r_{c}=\operatorname{rk}(X \mid F)=5 & =n \\
r=r_{X}+r_{F}-r_{c}=1 & >0
\end{array}
$$

and this is the most general case of a general linear model with $r_{c}=n$. In the canonical model (5) we have three categories of observations:
(a) observations with no random error, that are identical to a parameter (\tilde{y}_{1} in the example); number of these observations: $r_{X}-r=n-r_{F}=n-r_{W}=5-4=1$;
(b) "classical" observations, that depend on the parameters and possess a random error (\tilde{y}_{2} in the example); number of these observations: $r=1$;
(c) observations, that do not depend on the parameters and possess a random error ($\tilde{y}_{3}, \tilde{y}_{4}$, and \tilde{y}_{5} in the example); number of these observations: $r_{F}-r=4-1=3$.

Furthermore we have three categories of parameters:
(α) parameters, that are completely fixed by the observations ($\tilde{\beta}_{1}$ in the example); number of these parameters: $r_{X}-r=2-1=1$;
(β) "classical" parameters, that can be estimated with a random error ($\tilde{\beta}_{2}$ in the example); number of these parameters: $r=1$;
$(\gamma) \quad$ parameters that do not show up in the canonical model ($\tilde{\beta}_{3}$ in the example); these parameters can have arbitrary values and they can be set to zero in order to make all parameters identifiable (minimum length definition); number of these parameters: $p-r_{X}=3-2=1$.

Final remark

If the matrices X and W are nearly rank deficient the rank-k approximation should be applied as described in Example 9 so that the ranks become numerically stable in the sense that small perturbations of the matrix elements cannot reduce the rank further.

Example 8: General linear model with rank deficient X, W, and $(X \mid F)$

In this example we consider again the general linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} W\right)$,
but now both matrices X and W are rank deficient, i.e. $\operatorname{rk}(X)<p$ and $\operatorname{rk}(W)<n$, and in addition $\mathrm{rk}(X \mid F)<n$. Let
$X=\left(x_{1}, x_{2}, x_{3}\right)=(5 \times 3)=\left(\begin{array}{rrr}3 & 2 & 4 \\ 1 & 9 & -7 \\ 4 & 1 & 7 \\ 7 & 2 & 12 \\ 5 & 6 & 4\end{array}\right)$
as in Example 5. We have $x_{3}=2 x_{1}-x_{2}$, i.e. the third column of X is a linear combination of the first two columns, and so the matrix X has rank 2. Let

$$
F_{0}=(5 \times 3)=\left(\begin{array}{ccr}
2 & 4.5 & 4 \\
0.5 & -3.5 & -7 \\
3.5 & -1.5 & 7 \\
2 & -4.5 & 12 \\
-3 & -4 & 4
\end{array}\right) ;
$$

note that the last column of F_{0} is identical to the last column of X. The singular values of X, F, and $(X \mid F)$ are given in the following table.

Table 1: Singular values of $X, F_{0},\left(X \mid F_{0}\right), W$

	$X=(5 \times 3)$	$F_{0}=(5 \times 5)$	$\left(X \mid F_{0}\right)$	W
singular values	$\left(\begin{array}{c}18.802 \\ 12.103 \\ 0\end{array}\right)$	$\left(\begin{array}{c}16.939 \\ 8.211 \\ 4.487\end{array}\right)$	$\left(\begin{array}{c}25.216 \\ 13.519 \\ 6.153 \\ 4.248 \\ 0\end{array}\right)$	$\left(\begin{array}{c}286.942 \\ 67.425 \\ 20.133 \\ 0 \\ 0\end{array}\right)$

Now we define

$$
W=F_{0} F_{0}^{\top}=(5 \times 5)=\left(\begin{array}{rrrrr}
40.25 & -42.75 & 28.25 & 31.75 & -8 \\
* & 61.5 & -42 & -67.25 & -15.5 \\
* & * & 63.5 & 97.75 & 23.5 \\
* & * & * & 168.25 & 60 \\
* & * & * & * & 41
\end{array}\right) .
$$

W_{0} is a symmetric and positive semidefinite matrix with rank 3 as $\mathrm{rk}(W)=\mathrm{rk}(F)=3$. The singular values of W are given in Table 1. We now consider the general linear model (1) with X and W as given above. As $r k(W)=3<n$ the inverse W^{-1} does not exist and so the classical Aitken procedure as well as the procedure with the simple singular value decomposition cannot work. So we apply the procedure with the generalized singular value decomposition.
(i) Factorization of W

We want to find a matrix $F=(n \times k)$ such that $W=F F^{\top}$ where $k=r k(W)=3$. The eigenvalue decomposition of W is given by $W=R \Lambda R^{\top}$, where R is orthogonal and $\Lambda=(5 \times 5)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{5}\right)$, $\lambda_{i}=\sigma_{i}$ (as W is positive semidefinite). As the two smallest eigenvalues are zero we set
(2) $D=(5 \times 3)=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \sqrt{\lambda_{3}}\right)$ and $F=(5 \times 3)=R D$.

We obtain

$$
F=R D \approx\left(\begin{array}{rrr}
-3.444 & 5.327 & 0.093 \\
6.155 & -4.091 & -2.623 \\
-7.602 & 0.347 & -2.365 \\
-12.748 & -2.294 & -0.695 \\
-4.112 & -4.114 & 2.677
\end{array}\right) .
$$

Note that F is different from F_{0}, but the singular values of F and F_{0} are the same as the squared values are the singular values of W (compare Table 1 and Table 2). As $D D^{\top}=(5 \times 5)=\Lambda$ we have $F F^{\top}=R D D^{\top} R^{\top}=R \Lambda R^{\top}=W$. The random error of our model (1) can now be written in the form $\varepsilon=F u$ with $u \sim\left(0, \sigma^{2} I_{k}\right)$, i.e. with $\mathrm{E}(u)=0$ and $\operatorname{var}(u)=\sigma^{2} I_{k}$,
as $\mathrm{E}(\varepsilon)=\mathrm{E}(F u)=0$ and $\operatorname{var}(\varepsilon)=\mathrm{E}\left(\varepsilon \varepsilon^{\top}\right)=F \mathrm{E}\left(u u^{\top}\right) F^{\top}=\sigma^{2} F F^{\top}=\sigma^{2} W$. So model (1) can also be given as
(3) $y=X \beta+F u$, where $X=(n \times p), F=(n \times k), u \sim\left(0, \sigma^{2} I_{k}\right)$.
with $X=(5 \times 3)$ and $F=(5 \times 3)$ as given above.
Table 2: Singular values of $X, F,(X \mid F)$

	$X=(5 \times 3)$	$F=(5 \times 5)$	$(X \mid F)$
			$\left(\begin{array}{c}25.216 \\ \text { singular values }\end{array}\right.$
	$\left(\begin{array}{c}18.802 \\ 12.103 \\ 0\end{array}\right)$	$\left(\begin{array}{c}16.939 \\ 8.211 \\ 4.487\end{array}\right)$	$\left(\begin{array}{c}13.519 \\ 6.153 \\ 4.248 \\ 0\end{array}\right)$

(ii) Singular value decomposition of $(X \mid F)$

We have $X=(n \times p)=(5 \times 3)$ and $F=(n \times k)=(5 \times 3)$ and so $(X \mid F)=(n \times m)=(5 \times 6)$, where $m=p+k=6$. Now we compute the singular value decomposition of $(X \mid F)$:

$$
(X \mid F)=P \Delta Q^{\top}
$$

where $P=(5 \times 5)$ and $Q=(7 \times 7)$ are orthogonal and $\Delta=(5 \times 7)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right)$. We obtain

$$
P=\left(\begin{array}{rrrrr}
0.239 & 0.061 & 0.889 & -0.358 & -0.144 \\
-0.308 & -0.835 & 0.256 & 0.347 & -0.147 \\
0.441 & -0.021 & 0.200 & 0.498 & 0.719 \\
0.752 & -0.140 & -0.192 & 0.230 & -0.570 \\
0.298 & -0.528 & -0.260 & -0.671 & 0.339
\end{array}\right)
$$

and the singular values $\sigma_{1}, \ldots, \sigma_{5}$ are given in Table 2.

(iii) CS-decomposition of Q

Now $r_{c}=\operatorname{rk}(X \mid F)=4<n$ and therefore we will find in our canonical model an additional category of observations. First we have to determine the CS-decomposition of $Q=(m \times m)=(6 \times 6)$ with the format

$$
Q=\left(\begin{array}{l|l}
Q_{11} & Q_{12} \\
\hline Q_{21} & Q_{22}
\end{array}\right)=\left(\begin{array}{l|l}
\left(p \times r_{c}\right) & \left(p \times\left(m-r_{c}\right)\right) \\
\hline\left(k \times r_{c}\right) & \left(k \times\left(m-r_{c}\right)\right)
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 4) & (3 \times 2) \\
\hline(3 \times 4) & (3 \times 2)
\end{array}\right) .
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(6 \times 6)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 3) & * \\
\hline * & (3 \times 3)
\end{array}\right) \\
& V=(6 \times 6)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(4 \times 4) & * \\
\hline * & (2 \times 2)
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
0.447 & -0.365 & -0.816 \\
-0.894 & 0.183 & 0.408 \\
0 & -0.913 & 0.408
\end{array}\right), U_{2}=\left(\begin{array}{rrr}
0.974 & -0.226 & 0 \\
-0.124 & -0.535 & -0.836 \\
-0.189 & -0.814 & 0.549
\end{array}\right) \\
& V_{1}=\left(\begin{array}{rrrr}
-0.209 & -0.965 & 0.156 & 0.009 \\
0.863 & -0.236 & -0.281 & -0.347 \\
-0.419 & 0.044 & -0.240 & -0.875 \\
0.191 & 0.104 & 0.916 & -0.338
\end{array}\right), \quad V_{2}=\left(\begin{array}{rr}
0.690 & 0.724 \\
0.724 & -0.690
\end{array}\right)
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 4) & (3 \times 2) \\
\hline(3 \times 4) & (3 \times 2)
\end{array}\right)
$$

where

$$
D=\left(\begin{array}{cccc|cc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & c_{1} & 0 & 0 & s_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & s_{1} & 0 & 0 & -c_{1} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

The diagonal elements c_{1} and s_{1} are given in Table 3. Note that $c_{1}^{2}+s_{1}^{2}=1$, and so the matrix D is orthogonal, too. Also note D_{21} and D_{12} are not classical diagonal matrices as the diagonal starts in the lower right corner and not in the upper left one.

Table 3: Diagonal elements c_{1}, s_{1}

i	c_{i}	s_{i}
1	0.738549	0.674200

(iv) Generalized singular value decomposition and canonical model

Now we have

$$
(X \mid F)=P \Delta Q^{\top} \quad \text { and } \quad Q=U D V^{\top},
$$

and from this we find the so-called generalized singular value decomposition of the pair X, F
(4)

$$
\begin{aligned}
& P^{\top} X U_{1}=\left(\frac{\Delta_{0}}{0}\right) V_{1} D_{11}^{\top}, \\
& P^{\top} F U_{2}=\left(\frac{\Delta_{0}}{0}\right) V_{1} D_{21}^{\top},
\end{aligned}
$$

where $\Delta_{0}=(4 \times 4)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{4}\right) ; \sigma_{1}, \ldots, \sigma_{4}$ are the positive singular values of $(X \mid F)$ as given above. Our model (3) can now be written in the canonical form
(5) $\quad \tilde{y}=\left(\frac{\tilde{y}_{0}}{0}\right)=\left(\frac{(4 \times 1)}{(1 \times 1)}\right)$, where $\tilde{y}_{0}=D_{1} \tilde{\beta}+D_{2} \tilde{u}$
with

$$
\begin{aligned}
& \tilde{y}_{0}=V_{1}^{\top} \Delta_{0}^{-1} \bar{y}_{0}, \bar{y}=P^{\top} y=\left(\frac{\bar{y}_{0}}{0}\right)=\left(\frac{(4 \times 1)}{(1 \times 1)}\right), \\
& \tilde{\beta}=U_{1}^{\top} \beta, \\
& \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(4 \times 3)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad D_{2}=D_{21}^{\top}=(4 \times 3)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
s_{1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

The generalized singular value decomposition (4) shows that $\operatorname{rk}(X)=\operatorname{rk}\left(D_{11}\right)=\operatorname{rk}\left(D_{1}\right)=2$ and $\operatorname{rk}(F)=\operatorname{rk}\left(D_{21}\right)=\operatorname{rk}\left(D_{2}\right)=3$. The canonical model (5) explicitly written has the form

$$
\begin{aligned}
& \tilde{y}_{1}=\tilde{\beta}_{1} \\
& \tilde{y}_{2}=c_{1} \tilde{\beta}_{2}+s_{1} \tilde{u}_{1},
\end{aligned}
$$

(6) $\tilde{y}_{3}=\tilde{u}_{2}$,
$\tilde{y}_{4}=\tilde{u}_{3}$,
$\tilde{y}_{5}=0$.
We have $\tilde{y}_{1}=\tilde{\beta}_{1}$ and $\tilde{y}_{5}=0$; these two observations have no random error. As the covariance matrix $W_{1}=(5 \times 5)$ has rank 3 there exists two independent linear combinations \tilde{y}_{1} and \tilde{y}_{5} of the original observations $\left(y_{1}, \ldots, y_{n}\right)$ with no random error. The parameter $\tilde{\beta}_{3}$ can have arbitrary values as it does not show up in the canonical model, and we set this parameter to zero (minimum length definition). The least squares estimators are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{1}, \\
& \hat{\beta}_{3}=0 .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D_{1}^{+} \tilde{y}_{0} \quad \text { as } D_{1}^{+}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / c_{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& \operatorname{var}\left(\tilde{y}_{0}\right)=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & s_{1}^{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}\left(\tilde{y}_{0}\right)\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s_{1}^{2} / c_{1}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

For the original parameters we obtain

$$
\beta=U_{1} \tilde{\beta}, \quad \hat{\beta}=U_{1} \hat{\tilde{\beta}}, \quad \operatorname{var}(\hat{\beta})=U_{1} \operatorname{var}(\hat{\tilde{\beta}}) U_{1}^{\top}=\sigma^{2} U_{1} D_{0} U_{1}^{\top} .
$$

The unknown variance σ^{2} is estimated by

$$
\hat{\sigma}^{2}=\frac{1}{2}\left(\tilde{u}_{2}^{2}+\tilde{u}_{3}^{2}\right)=\frac{1}{2}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right) .
$$

Remark

In our example we have $n=5, p=3$ and

$$
\begin{array}{ll}
r_{X}=\operatorname{rk}(X)=2 & <p=3 \\
r_{F}=\operatorname{rk}(F)=\operatorname{rk}(W)=k=3 & <n=5 \\
r_{c}=\operatorname{rk}(X \mid F)=4 & <n=5 \\
r=r_{X}+r_{F}-r_{c}=1 & >0
\end{array}
$$

and this is the most general case of the general linear model.

In the canonical model (6) we have four categories of observations:
(a) observations with no random error, that are identical to a parameter (\tilde{y}_{1} in the example); number of these observations: $r_{X}-r=2-1=1$;
(b) "classical" observations, that depend on the parameters and possess a random error (\tilde{y}_{2} in the example); number of these observations: $r=1$;
(c) observations, that do not depend on the parameters and possess a random error (\tilde{y}_{3} and \tilde{y}_{4} in the example); number of these observations: $r_{F}-r=3-1=2$;
(d) observations, that are identical to zero (\tilde{y}_{5} in the example); number of these observations: $n-r_{c}=5-4=1$.
The number of observations in categories (a) and (d) that possess no random error is $\left(r_{X}-r\right)+\left(n-r_{c}\right)=n-r_{F}=n-\operatorname{rk}(W)=5-3=2$.

Furthermore we have three categories of parameters:
(α) parameters, that are completely fixed by the observations ($\tilde{\beta}_{1}$ in the example); number of these parameters: $r_{X}-r=2-1=1$;
(β) "classical" parameters, that can be estimated with a random error ($\tilde{\beta}_{2}$ in the example); number of these parameters: $r=1$;
(γ) parameters that do not show up in the canonical model ($\tilde{\beta}_{3}$ in the example); these parameters can have arbitrary values and they can be set to zero in order to make all parameters identifiable (minimum length definition); number of these parameters: $p-r_{X}=3-2=1$.

Example 9: General linear model with nearly rank deficient X, W, and $(X \mid F)$

In this example we consider again the general linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} W\right)$,
but now both matrices X and W are nearly rank deficient, and in addition $(X \mid F)$ is nearly rank deficient. Let
$X_{0}=\left(x_{1}, x_{2}, x_{3}\right)=(5 \times 3)=\left(\begin{array}{rrr}3 & 2 & 4 \\ 1 & 9 & -7 \\ 4 & 1 & 7 \\ 7 & 2 & 12 \\ 5 & 6 & 4\end{array}\right)$
X_{0} is the same as X in Example 8 . We have $x_{3}=2 x_{1}-x_{2}$, i.e. the third column of X_{0} is a linear combination of the first two columns, and so the matrix X_{0} has rank 2. Now let

$$
X=(5 \times 3)=\left(\begin{array}{rrr}
3.0002 & 1.9996 & 4.0002 \\
1.0005 & 8.9998 & -6.9996 \\
3.9999 & 0.9999 & 7.0002 \\
6.9995 & 1.9995 & 11.9998 \\
5.0003 & 5.9997 & 3.9999
\end{array}\right) .
$$

If $X=\left(x_{i j}\right)$ and $X_{0}=\left(x_{i j}^{(0)}\right)$ we have max $\left|x_{i j}-x_{i j}^{(0)}\right|=0.0005$ and so $X \approx X_{0}$, but X has full rank 3 whereas X_{0} has rank 2 (see the list of singular values below). So X is nearly rank deficient. Let

$$
F_{0}=(5 \times 3)=\left(\begin{array}{lrr}
2 & 4.5 & 4 \\
0.5 & -3.5 & -7 \\
3.5 & -1.5 & 7 \\
2 & -4.5 & 12 \\
-3 & -4 & 4
\end{array}\right) .
$$

F_{0} is the same as F in Example 8. Note that the last column of F_{0} is identical to the last column of X_{0}. Now let

$$
\begin{aligned}
& W_{0}=F_{0} F_{0}^{\top}=(5 \times 5)=\left(\begin{array}{rrrrr}
40.25 & -42.75 & 28.25 & 31.75 & -8 \\
* & 61.5 & -42 & -67.25 & -15.5 \\
* & * & 63.5 & 97.75 & 23.5 \\
* & * & * & 168.25 & 60 \\
* & * & * & * & 41
\end{array}\right) \\
& W=(5 \times 5)=\left(\begin{array}{rrrrrr}
40.251 & -42.751 & 28.249 & 31.747 & -7.997 \\
* & 61.502 & -42.001 & -67.248 & -15.501 \\
* & * & 63.499 & 97.751 & 23.497 \\
* & * & * & 168.253 & 59.999 \\
* & * & * & * & 40.995
\end{array}\right)
\end{aligned}
$$

If $W=\left(w_{i j}\right)$ and $W_{0}=\left(w_{i j}^{(0)}\right)$ we have $\max \left|w_{i j}-w_{i j}^{(0)}\right|=0.005$ and so $W \approx W_{0}$, but W has full rank 5 whereas W_{0} has rank 3 , the same as F_{0} (see the list of singular values below). So also W is nearly rank deficient. The singular values of $X_{0}, X, F_{0}, W_{0}, W$ are given in Table 1. The singular values of $W_{0}=F_{0} F_{0}^{\top}$ are the square of the corresponding singular values of F_{0}. Table 2 shows that the small perturbations added to W make the matrix indefinite as one of the five eigenvalues becomes negative.

Table 1: Singular values of $X_{0}, X, F_{0}, W_{0}, W$

	$X_{0}=(5 \times 3)$	$X=(5 \times 3)$	$F_{0}=(5 \times 3)$	$W_{0}=(5 \times 5)$	$W=(5 \times 5)$
				$\left(\begin{array}{c}286.9422 \\ 67.4248 \\ \text { Singular values }\end{array}\right.$	$\left(\begin{array}{c}18.8018 \\ 12.1034 \\ 0\end{array}\right)$
	$\left(\begin{array}{c}18.8014 \\ 12.1031 \\ 0.000328\end{array}\right)$	$\left(\begin{array}{c}16.9394 \\ 8.2113 \\ 4.4870\end{array}\right)$	$\left(\begin{array}{c}67.42424 \\ 0 \\ 0\end{array}\right)$	$\left(\begin{array}{c}0.1343 \\ 0.0024 \\ 0.0017\end{array}\right)$	

Table 2: Eigenvalues of W_{0}, W

	$W_{0}=(5 \times 5)$	$W=(5 \times 5)$
Eigenvalues	(286.9422)	(286.9421)
	67.4248	67.4244
	20.1330	20.1343
	0	0.0017
	0	-0.0024

(i) Rank-k approximation and factorization of W

Table 2 shows that all the eigenvalues of W_{0} are non-negative and so W_{0} is a positive semidefinite matrix, but this is not true for the matrix W; due to the small perturbations added to W_{0} the rank of W has been enhanced from three to five and W has become indefinite. We want to find an approximation to W with a numerically stable rank. As the elements of W are given with three decimal places the two smallest singular values 0.0024 and 0.0017 are near the rounding error of W, we determine the rank-3 approximation of W. This approximation will give a matrix $W_{1}=\left(w_{i j}^{(1)}\right)$ with $\mathrm{rk}\left(W_{1}\right)=3$ and $\max \left|w_{i j}-w_{i j}^{(1)}\right| \leq \sigma_{4}=0.0024$. The singular value decomposition of W is given by $W=U D V^{\top}$ where $U=(5 \times 5)$ and $V=(5 \times 5)$ are orthogonal and $D=(5 \times 5)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right) ; \sigma_{1}, \ldots, \sigma_{5}$ are the singular values of W. Now define W_{1} as
(2) $W_{1}=U D_{1} V^{\top}\left(=U D_{1} U^{\top}\right)$ where $D_{1}=(5 \times 5)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, 0,0\right)$.

Obviously $\operatorname{rk}\left(W_{1}\right)=3$ and we obtain $\max \left|w_{i j}-w_{i j}^{(1)}\right|=0.000928 \leq \sigma_{4}=0.0024$; so $W_{1} \approx W$. The rank of W_{1} is numerically stable in the sense that it cannot be reduced by small perturbations of the matrix elements $w_{i j}^{(1)}$. In a second step we have to factorize W_{1} such that $W_{1}=F_{1} F_{1}^{\top}$ with $F_{1}=(5 \times 3)$. Let $D_{2}=(5 \times 3)=\operatorname{diag}\left(\sqrt{\sigma_{1}}, \sqrt{\sigma_{2}}, \sqrt{\sigma_{3}}\right)$ and $F_{1}=U D_{2}$. Then $F_{1} F_{1}^{\top}=U D_{2} D_{2}^{\top} U^{\top}=U D_{1} U^{\top}=W_{1}$. So $W_{1}=F_{1} F_{1}^{\top}$ and W_{1} is positive semidefinite.

(ii) Rank-k approximation of $X=(n \times p)$

The elements of X are given with four decimal places and the smallest singular value 0.000328 is near the rounding error of X, and so we determine the rank-2 approximation of X. This approximation will give a matrix $X_{1}=\left(x_{i j}^{(1)}\right)$ with $\operatorname{rk}\left(X_{1}\right)=2$ and $\max \left|x_{i j}-x_{i j}^{(1)}\right| \leq \sigma_{3}=0.000328$. The singular value decomposition of $X=(5 \times 3)$ is given by $X=U D V^{\top}$ where $U=(5 \times 5)$ and $V=(3 \times 3)$ are orthogonal and $D=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right) ; \sigma_{1}, \sigma_{2}, \sigma_{3}$ are the singular values of X. Now define X_{1} as

$$
\begin{equation*}
X_{1}=U D_{1} V^{\top} \text { where } D_{1}=(5 \times 3)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, 0\right) . \tag{3}
\end{equation*}
$$

Obviously $\operatorname{rk}\left(X_{1}\right)=2$ and we obtain $\max \left|x_{i j}-x_{i j}^{(1)}\right|=0.000152 \leq \sigma_{3}=0.000328$; so $X_{1} \approx X$.

(iii) Rank-k approximation of $\left(X_{1} \mid F_{1}\right)$

Table 3 gives the singular values of $\left(X_{1} \mid F_{1}\right)$. The smallest singular value of $\left(X_{1} \mid F_{1}\right)$ is near the rounding error of X, and so we determine the rank-4 approximation of $\left(X_{1} \mid F_{1}\right)$. The singular value

Table 3: Singular values of $X_{1}, F_{1},\left(X_{1} \mid F_{1}\right)$

	$X_{1}=(5 \times 3)$	$F_{1}=(5 \times 3)$	$\left(X_{1} \mid F_{1}\right)=(5 \times 6)$
singular values	$\left(\begin{array}{c}18.8014 \\ 12.1031 \\ 0\end{array}\right)$	$\left(\begin{array}{c}16.9394 \\ 8.2112 \\ 4.4871\end{array}\right)$	$\left(\begin{array}{c}25.2152 \\ 13.5189 \\ 6.1533 \\ 4.2484 \\ 0.000107\end{array}\right)$

decomposition of ($X_{1} \mid F_{1}$) is given by

$$
\begin{equation*}
\left(X_{1} \mid F_{1}\right)=P \Delta Q^{\top} \tag{4}
\end{equation*}
$$

where $P=(5 \times 5)$ and $Q=(6 \times 6)$ are orthogonal and $\Delta=(5 \times 6)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{5}\right) ; \sigma_{1}, \ldots, \sigma_{5}$ are the singular values of $\left(X_{1} \mid F_{1}\right)$. Now we define $\left(X_{2} \mid F_{2}\right)$ as

$$
\begin{equation*}
\left(X_{2} \mid F_{2}\right)=P \Delta_{1} Q^{\top} \text { where } \Delta_{1}=(5 \times 6)=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, 0\right) . \tag{5}
\end{equation*}
$$

We have $\max \left|x_{i j}^{(1)}-x_{i j}^{(2)}\right|=0.000047$ and $\max \left|f_{i j}^{(1)}-f_{i j}^{(2)}\right|=0.000055$; so $X_{1} \approx X_{2}$ and $F_{1} \approx F_{2}$. The singular values of ($X_{2} \mid F_{2}$) are given in Table 4. Note that X_{2} has the same rank as X_{1}; it is remarkable that a rank-k approximation of $\left(X_{1} \mid F_{1}\right)$ cannot raise the rank of X_{1}.

Now we have max $\left|x_{i j}-x_{i j}^{(2)}\right|=0.000152$ and $\max \left|w_{i j}-w_{i j}^{(2)}\right|=0.001725$, where $W_{2}=F_{2} F_{2}^{\top}$. Instead of the original linear model (1) we now consider the approximate model
(6) $y=X_{2} \beta+\varepsilon$, where $X_{2}=(n \times p) \approx X$ and $\varepsilon \sim\left(0, \sigma^{2} W_{2}\right), W_{2}=F_{2} F_{2}^{\top} \approx W$,
and this model is equivalent to
(7) $y=X_{2} \beta+F_{2} u$, where $X_{2}=(n \times p), F_{2}=(n \times k)$, and $u \sim\left(0, \sigma^{2} I_{k}\right)$
with $n=5, p=3, k=3$. The singular values of X_{2}, F_{2} and $\left(X_{2} \mid F_{2}\right)$ are given in Table 4; we are now in exactly the same situation as in Example 8 (see Table 2 there), and we now proceed as there.

Table 4: Singular values of $X_{2}, F_{2},\left(X_{2} \mid F_{2}\right)$

	$X_{2}=(5 \times 3)$	$F_{2}=(5 \times 3)$	$\left(X_{2} \mid F_{2}\right)=(5 \times 6)$
singular values	$\left(\begin{array}{c}18.8014 \\ 12.1031 \\ 0\end{array}\right)$	$\left(\begin{array}{c}16.9394 \\ 8.2112 \\ 4.4871\end{array}\right)$	$\left(\begin{array}{c}25.2152 \\ 13.5189 \\ 6.1533 \\ 4.2484 \\ 0\end{array}\right)$

(iv) $C S$-decomposition of Q

The singular value decomposition of ($X_{2} \mid F_{2}$) is given in (5), and we have $r_{c}=\operatorname{rk}\left(X_{2} \mid F_{2}\right)=4$. Now we have to determine the CS-decomposition of $Q=(m \times m)=(6 \times 6)$ with the format

$$
\left(\begin{array}{c|c|c}
\left(p \times r_{c}\right) & \left(p \times\left(m-r_{c}\right)\right) \\
\hline\left(k \times r_{c}\right) & \left(k \times\left(m-r_{c}\right)\right)
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 4) & (3 \times 2) \\
\hline(3 \times 4) & (3 \times 2)
\end{array}\right) .
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(6 \times 6)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
(3 \times 3) & * \\
\hline * & (3 \times 3)
\end{array}\right) \\
& V=(6 \times 6)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{cc}
(4 \times 4) & * \\
\hline * & (2 \times 2)
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
-0.447 & -0.365 & -0.816 \\
-0.894 & 0.183 & 0.408 \\
-0.000 & -0.913 & 0.408
\end{array}\right), \quad U_{2}=\left(\begin{array}{rrr}
0.974 & 0 & -0.226 \\
-0.124 & -0.835 & -0.535 \\
-0.189 & 0.550 & -0.814
\end{array}\right) \\
& V_{1}=\left(\begin{array}{rrrr}
-0.209 & -0.965 & 0.009 & 0.157 \\
-0.863 & 0.236 & 0.347 & 0.281 \\
0.419 & -0.043 & 0.875 & 0.240 \\
0.191 & 0.104 & -0.338 & 0.916
\end{array}\right), \quad V_{2}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \tag{8}\\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{l|l}
(3 \times 4) & (3 \times 2) \\
\hline(3 \times 4) & (3 \times 2)
\end{array}\right)
$$

where

$$
D=\left(\begin{array}{cccc|cc}
1 & 0 & 0 & 0 & 0 & 0 \tag{9}\\
0 & c_{1} & 0 & 0 & s_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & s_{1} & 0 & 0 & -c_{1} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) ;
$$

the diagonal elements c_{1} and s_{1} are given in Table 5. Note that $c_{1}^{2}+s_{1}^{2}=1$ for $i=1,2$, and so the matrix D is orthogonal, too.

Table 5: Diagonal elements c_{1}, s_{1}

i	c_{i}	s_{i}
1	0.738539	0.674211

(v) Generalized singular value decomposition and canonical model

Now we have
(10) $\quad\left(X_{2} \mid F_{2}\right)=P \Delta_{1} Q^{\top}$ and $Q=U D V^{\top}$,
and from this we find the so-called generalized singular value decomposition of X_{2}, F_{2}

$$
\begin{aligned}
& P^{\top} X_{2} U_{1}=\left(\frac{\Delta_{0}}{0}\right) V_{1} D_{11}^{\top}, \\
& P^{\top} F_{2} U_{2}=\left(\frac{\Delta_{0}}{0}\right) V_{1} D_{21}^{\top},
\end{aligned}
$$

where $\Delta_{0}=(4 \times 4)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{4}\right)$ is the reduced form of $\Delta_{1}=(5 \times 6)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{4}, 0\right)$. Our model (7) can now be written in the canonical form
(11) $\tilde{y}=\left(\frac{\tilde{y}_{0}}{0}\right)=\left(\frac{(4 \times 1)}{(1 \times 1)}\right)$, where $\tilde{y}_{0}=D_{1} \tilde{\beta}+D_{2} \tilde{u}$,
with

$$
\begin{aligned}
& \tilde{y}_{0}=V_{1}^{\top} \Delta_{0}^{-1} \bar{y}_{0}, \bar{y}=P^{\top} y=\left(\frac{\bar{y}_{0}}{0}\right) \\
& \tilde{\beta}=U_{1}^{\top} \beta, \\
& \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(4 \times 3)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad D_{2}=D_{21}^{\top}=(4 \times 3)=\left(\begin{array}{rrr}
0 & 0 & 0 \\
s_{1} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& P=\left(\begin{array}{rrrrr}
0.239 & -0.061 & -0.889 & -0.358 & -0.144 \\
-0.308 & 0.835 & -0.256 & 0.347 & -0.147 \\
0.441 & 0.021 & -0.200 & 0.498 & 0.719 \\
0.752 & 0.140 & 0.192 & 0.230 & -0.570 \\
0.298 & 0.528 & 0.260 & -0.671 & 0.339
\end{array}\right),
\end{aligned}
$$

and so

$$
\text { (12) } \tilde{y}_{3}=\tilde{u}_{2},
$$

$$
\begin{aligned}
& \tilde{y}_{1}=\tilde{\beta}_{1}, \\
& \tilde{y}_{2}=c_{1} \tilde{\beta}_{2}+s_{1} \tilde{u}_{1}, \\
& \tilde{y}_{3}=\tilde{u}_{2}, \\
& \tilde{y}_{4}=\tilde{u}_{3}, \\
& \tilde{y}_{5}=0 .
\end{aligned}
$$

We have $\tilde{y}_{1}=\tilde{\beta}_{1}$ and $\tilde{y}_{5}=0$; these two observations have no random error. As the covariance matrix $W_{1}=(5 \times 5)$ has rank 3 there exists two independent linear combinations \tilde{y}_{1} and \tilde{y}_{5} of the original observations $\left(y_{1}, \ldots, y_{n}\right)$ with no random error. The parameter $\tilde{\beta}_{3}$ can have arbitrary values as it does not show up in the canonical model, and we set this parameter to zero (minimum length definition). The least squares estimators are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{1}, \\
& \hat{\beta}_{3}=0 .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\tilde{\beta}}=D_{1}^{+} \tilde{y}_{0} \quad \text { as } D_{1}^{+}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / c_{1} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& \operatorname{var}\left(\tilde{y}_{0}\right)=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & s_{1}^{2} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}\left(\tilde{y}_{\mathrm{red}}\right)\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s_{1}^{2} / c_{1}^{2} & 0 \\
0 & 0 & 0
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

The unknown variance σ^{2} is estimated by $\hat{\sigma}^{2}=\frac{1}{2}\left(\tilde{u}_{2}^{2}+\tilde{u}_{3}^{2}\right)=\frac{1}{2}\left(\tilde{y}_{3}^{2}+\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}\right)$. Note that the matrices P, U_{1}, U_{2} and the diagonal elements c_{1} and s_{1} are essentially the same as in Example 8, and so the rank-k approximation allows to eliminate small perturbations in the original matrices X and W so that we can find matrices with numerically stable ranks in the sense that the ranks cannot be reduced further by small alterations of the matrix elements.

Example 10: General linear model with linear restrictions, regular case

In this example we consider the general linear model
(1) $y=X \beta+\varepsilon$, where $X=(n \times p)$ and $\varepsilon \sim\left(0, \sigma^{2} W\right)$ with linear restrictions $L \beta=c$.

Here the error variables $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are correlated with covariance matrix $\sigma^{2} W$, where σ^{2} is unknown and $W=(n \times n)$ is a known positive semidefinite matrix. $L=(r \times p)$ and $c=(r \times 1)$ are given, too.
Let

$$
X=(5 \times 3)=\left(\begin{array}{lll}
3 & 2 & 3 \tag{2}\\
1 & 9 & 8 \\
4 & 1 & 4 \\
7 & 2 & 0 \\
5 & 6 & 5
\end{array}\right)
$$

as in Example 4. From Table 1 we see that all singular values of X are positive and so $\operatorname{rk}(X)=3$.
Furthermore let

$$
F_{0}=(5 \times 5)=\left(\begin{array}{rrrrr}
4 & 9 & 8 & -5 & -6 \\
1 & -7 & -9 & -5 & -7 \\
7 & -3 & 9 & 4 & -9 \\
4 & -9 & 5 & 9 & -8 \\
-6 & -8 & 7 & -6 & 1
\end{array}\right)
$$

and now we define

$$
W_{0}=\frac{1}{17} F_{0} F_{0}^{\top}=(5 \times 5) \approx\left(\begin{array}{rrrrr}
13.059 & -3.765 & 6.294 & -1.294 & -0.941 \tag{3}\\
* & 12.059 & -0.588 & 1.941 & 0.588 \\
* & * & 13.882 & 12.235 & 0.706 \\
* & * & * & 15.706 & 1.235 \\
* & * & * & * & 10.941
\end{array}\right)=W
$$

W is the matrix W_{0} rounded to three decimal places. The singular values of W are given in Table 1 , they are all positive, and so the symmetric matrix W has full rank 5 and is positive definite. In addition we assume that the linear restriction
(4) $\beta_{1}-\beta_{2}+\beta_{3}=17$
must be fulfilled. (4) can be written as

$$
L \beta=c \text { with } L=(1,-1,1) \text { and } c=(17) .
$$

The linear model (1) including the restriction (4) can be written as an extended general linear model

$$
y_{e}=X_{e} \beta_{e}+\varepsilon_{e}, \text { where } y_{e}=\left(\frac{y}{c}\right), X_{e}=\left(\frac{X}{L}\right) \text { and } \varepsilon_{e}=\left(\frac{\varepsilon}{0}\right) \sim\left(0, \sigma^{2} W_{e}\right), W_{e}=\left(\begin{array}{c|c}
W & 0 \tag{5}\\
\hline 0 & 0
\end{array}\right) .
$$

In the extended model we have
(6)

$$
\begin{aligned}
& y_{e}=\left(\frac{y}{c}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
17
\end{array}\right), \quad X_{e}=\left(\frac{X}{L}\right)=\left(\begin{array}{rrr}
3 & 2 & 3 \\
1 & 9 & 8 \\
4 & 1 & 4 \\
7 & 2 & 0 \\
5 & 6 & 5 \\
\hline 1 & -1 & 1
\end{array}\right), \varepsilon_{e}=\left(\frac{\varepsilon}{0}\right)=\left(\begin{array}{l}
\varepsilon_{1} \\
\varepsilon_{2} \\
\varepsilon_{3} \\
\varepsilon_{4} \\
\frac{\varepsilon_{5}}{0}
\end{array}\right), \\
& W_{e}=\left(\begin{array}{l|l}
W & 0 \\
\hline 0 & 0
\end{array}\right)=\left(\begin{array}{rrrrr|r}
13.059 & -3.765 & 6.294 & -1.294 & -0.941 & 0 \\
* & 12.059 & -0.588 & 1.941 & 0.588 & 0 \\
* & * & 13.882 & 12.235 & 0.706 & 0 \\
* & * & * & 15.706 & 1.235 & 0 \\
* & * & * & * & 10.941 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Note that $X_{e}=\left(n_{e} \times p\right)=(6 \times 3)$ and $W_{e}=\left(n_{e} \times n_{e}\right)=(6 \times 6)$ as $n_{e}=n+r=5+1=6$.
Table 1: Singular values of X, X_{e}, W, W_{e}

	$X=(5 \times 3)$	$X_{e}=(6 \times 3)$	$W=(5 \times 5)$	$W_{e}=(6 \times 6)$
singular values			$\left(\begin{array}{c}27.951 \\ 16.560 \\ 7.612 \\ 2.795\end{array}\right)$	$\left(\begin{array}{c}16.565 \\ 7.665 \\ 3.136\end{array}\right)$
			$\left(\begin{array}{c}27.951 \\ 10.654 \\ 8.839 \\ 0.114\end{array}\right)$	
8.839				
0.114				
0				

(i) Factorization of W_{e}

We want to find a matrix $F_{e}=\left(n_{e} \times k\right)$ such that $W_{e}=F_{e} F_{e}^{\top}$ where $k=r k\left(W_{e}\right)=5$. The eigenvalue decomposition of W_{e} is given by $W_{e}=R \Lambda R^{\top}$, where R is orthogonal and
$\Lambda=(6 \times 6)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{6}\right), \lambda_{i}=\sigma_{i}$ (as W_{e} is positive semidefinite). As $\lambda_{6}=\sigma_{6}=0$ we set

$$
D=(6 \times 5)=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{5}}\right) \text { and } F_{e}=(6 \times 5)=R D
$$

As $D D^{\top}=(6 \times 6)=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{5}, 0\right)=\Lambda$ we have $F_{e} F_{e}^{\top}=R D D^{\top} R^{\top}=R \Lambda R^{\top}=W_{e}$. The random error of our model can now be written in the form
$\varepsilon_{e}=F_{e} u$ with $u \sim\left(0, \sigma^{2} I_{k}\right)$, i.e. with $\mathrm{E}(u)=0$ and $\operatorname{var}(u)=\sigma^{2} I_{k}$,
as $\mathrm{E}\left(\varepsilon_{e}\right)=\mathrm{E}\left(F_{e} u\right)=0$ and $\operatorname{var}\left(\varepsilon_{e}\right)=\mathrm{E}\left(\varepsilon_{e} \varepsilon_{e}^{\top}\right)=F_{e} \mathrm{E}\left(u u^{\top}\right) F_{e}^{\top}=\sigma^{2} F_{e} F_{e}^{\top}=\sigma^{2} W_{e}$. So model (5) is equivalent to
(7) $y_{e}=X_{e} \beta+F_{e} u$, where $X_{e}=(6 \times 3), F_{e}=(6 \times 5), u \sim\left(0, \sigma^{2} I_{5}\right)$.

For F_{e} we obtain

$$
F_{e}=(6 \times 5)=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
\hline 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

(ii) Singular value decomposition of the matrix $\left(X_{e} \mid F_{e}\right)$

The singular value decomposition of $\left(X_{e} \mid F_{e}\right)=\left(n_{e} \times m\right)=(6 \times 8)$ with $m=p+k=3+5=8$ is given by

$$
\left(X_{e} \mid F_{e}\right)=P \Delta Q^{\top}
$$

where $P=\left(n_{e} \times n_{e}\right)=(6 \times 6)$ and $Q=(m \times m)=(8 \times 8)$ are orthogonal and
$\Delta=\left(n_{e} \times m\right)=(6 \times 8)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{6}\right)$, and where the singular values $\sigma_{1}, \ldots, \sigma_{6}$ of $\left(X_{e} \mid F_{e}\right)$ are given in the following table. We have $r_{c}=r k\left(X_{e} \mid F_{e}\right)=n_{e}=6$, and this simplifies the further procedure.

Table 2: Singular values of $X_{e}, F_{e},\left(X_{e} \mid F_{e}\right)$

	$X_{e}=(6 \times 3)$	$F_{e}=(6 \times 5)$	$\left(X_{e} \mid F_{e}\right)=(6 \times 8)$
singular values	$\left(\begin{array}{r}16.565 \\ 7.665 \\ 3.136\end{array}\right)$	$\left(\begin{array}{l}5.287 \\ 4.253 \\ 3.264 \\ 2.973 \\ 0.338\end{array}\right)$	$\left(\begin{array}{r}17.013 \\ 8.838 \\ 4.607 \\ 3.685 \\ 3.277 \\ 1.047\end{array}\right)$

(iii) CS-decomposition of Q

As $r_{c}=\operatorname{rk}\left(X_{e} \mid F_{e}\right)=n_{e}=6$ we have to determine the CS-decomposition of the orthogonal matrix $Q=(m \times m)=(8 \times 8)$ with the format

$$
Q=\left(\begin{array}{l|l}
Q_{11} & Q_{12} \tag{8}\\
\hline Q_{21} & Q_{22}
\end{array}\right)=\left(\begin{array}{l|l}
p \times n_{e} & p \times\left(m-n_{e}\right) \\
\hline k \times n_{e} & k \times\left(m-n_{e}\right)
\end{array}\right)=\left(\begin{array}{l|l}
3 \times 6 & 3 \times 2 \\
\hline 5 \times 6 & 5 \times 2
\end{array}\right) .
$$

We obtain orthogonal matrices

$$
\begin{aligned}
& U=(8 \times 8)=\left(\begin{array}{c|c}
U_{1} & 0 \\
\hline 0 & U_{2}
\end{array}\right)=\left(\begin{array}{c|c}
3 \times 3 & * \\
\hline * & 5 \times 5
\end{array}\right) \\
& V=(8 \times 8)=\left(\begin{array}{c|c}
V_{1} & 0 \\
\hline 0 & V_{2}
\end{array}\right)=\left(\begin{array}{c|c}
6 \times 6 & * \\
\hline * & 2 \times 2
\end{array}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& U_{1}=\left(\begin{array}{rrr}
0.577 & 0.816 & 0.005 \\
-0.577 & 0.404 & 0.709 \\
0.577 & -0.412 & 0.705
\end{array}\right), \quad U_{2}=\left(\begin{array}{rrrrr}
-0.127 & -0.194 & -0.973 & 0 & 0 \\
0.049 & 0.299 & -0.066 & -0.127 & 0.942 \\
0.110 & 0.294 & -0.073 & 0.946 & 0.023 \\
0.035 & 0.881 & -0.180 & -0.283 & -0.332 \\
0.984 & -0.105 & -0.108 & -0.090 & -0.038
\end{array}\right) \\
& V_{1}=\left(\begin{array}{rrrrrr}
-0.237 & -0.371 & -0.888 & -0.123 & -0.017 & -0.047 \\
-0.469 & -0.587 & 0.436 & -0.480 & -0.113 & 0.053 \\
0.384 & -0.415 & 0.095 & 0.143 & -0.061 & -0.804 \\
0.016 & -0.235 & 0.024 & 0.508 & -0.779 & 0.281 \\
-0.531 & 0.521 & -0.027 & -0.100 & -0.419 & -0.511 \\
0.543 & 0.141 & -0.105 & -0.683 & -0.448 & 0.087
\end{array}\right), \quad V_{2}=\left(\begin{array}{rr}
-0.081 & -0.997 \\
-0.997 & 0.081
\end{array}\right)
\end{aligned}
$$

such that

$$
U^{\top} Q V=D=\left(\begin{array}{l|l}
D_{11} & D_{12} \\
\hline D_{21} & D_{22}
\end{array}\right)=\left(\begin{array}{l|l}
3 \times 6 & 3 \times 2 \\
\hline 5 \times 6 & 5 \times 2
\end{array}\right)
$$

where

$$
D=\left(\begin{array}{cccccc|cc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & c_{1} & 0 & 0 & 0 & 0 & s_{1} & 0 \\
0 & 0 & c_{2} & 0 & 0 & 0 & 0 & s_{2} \\
\hline 0 & s_{1} & 0 & 0 & 0 & 0 & -c_{1} & 0 \\
0 & 0 & s_{2} & 0 & 0 & 0 & 0 & -c_{2} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

The diagonal elements c_{i} and s_{i} are given in the following table. Note that $c_{i}^{2}+s_{i}^{2}=1$ for $i=1,2$, and so the matrix D is orthogonal, too.

Table 3: Diagonal elements c_{i}, s_{i}

i	c_{i}	s_{i}
1	0.994856	0.101301
2	0.978298	0.207204

(iv) Generalized singular value decomposition and canonical model

We now have

$$
\begin{align*}
& \left(X_{e} \mid F_{e}\right)=P \Delta Q^{\top}, \tag{9}\\
& Q=U D V^{\top}
\end{align*}
$$

and from this we find the so-called generalized singular value decomposition of the pair X_{e}, F_{e}

$$
\begin{align*}
& P^{\top} X_{e} U_{1}=\Delta_{0} V_{1} D_{11}^{\top}, \tag{10}\\
& P^{\top} F_{e} U_{2}=\Delta_{0} V_{1} D_{21}^{\top},
\end{align*}
$$

where $\Delta_{0}=(6 \times 6)=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{6}\right)$ and where $\sigma_{1}, \ldots, \sigma_{6}$ are the singular values of $\left(X_{e} \mid F_{e}\right)$ as given in Table 2. For $P=(6 \times 6)$ we have

$$
P=\left(\begin{array}{rrrrrr}
-0.264 & -0.157 & 0.705 & -0.205 & 0.591 & 0.131 \\
-0.666 & 0.588 & -0.113 & 0.417 & 0.113 & 0.108 \\
-0.314 & -0.368 & 0.437 & 0.378 & -0.546 & -0.365 \\
-0.291 & -0.695 & -0.489 & 0.257 & 0.326 & 0.144 \\
-0.550 & -0.055 & -0.199 & -0.758 & -0.264 & -0.100 \\
-0.024 & -0.092 & 0.144 & 0.008 & -0.404 & 0.898
\end{array}\right) .
$$

Our model (7) can now be written in the canonical form
(11) $\tilde{y}=D_{1} \tilde{\beta}+D_{2} \tilde{u}$,
where

$$
\begin{aligned}
& \tilde{y}=V_{1}^{\top} \Delta_{0}^{-1} P^{\top} y_{e}, \tilde{\beta}=U_{1}^{\top} \beta, \tilde{u}=U_{2}^{\top} u, \\
& D_{1}=D_{11}^{\top}=(6 \times 3)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & c_{2} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad D_{2}=D_{21}^{\top}=(6 \times 5)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
s_{1} & 0 & 0 & 0 & 0 \\
0 & s_{2} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right),
\end{aligned}
$$

and so the canonical model explicitly written has the form

$$
\begin{align*}
& \tilde{y}_{1}=\tilde{\beta}_{1}, \\
& \tilde{y}_{2}=c_{1} \tilde{\beta}_{2}+s_{1} \tilde{u}_{1}, \\
& \tilde{y}_{3}=c_{2} \tilde{\beta}_{3}+s_{2} \tilde{u}_{2}, \tag{12}\\
& \tilde{y}_{4}=\tilde{u}_{3}, \\
& \tilde{y}_{5}=\tilde{u}_{4}, \\
& \tilde{y}_{6}=\tilde{u}_{5} .
\end{align*}
$$

The least squares estimators are given by

$$
\begin{aligned}
& \hat{\tilde{\beta}}_{1}=\tilde{y}_{1}, \\
& \hat{\tilde{\beta}}_{2}=\tilde{y}_{2} / c_{1}, \\
& \hat{\tilde{\beta}}_{3}=\tilde{y}_{3} / c_{2} .
\end{aligned}
$$

In matrix notation we can write

$$
\begin{aligned}
& \hat{\beta}=D_{1}^{+} \tilde{y} \text { as } D_{1}^{+}=(3 \times 6)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 / c_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / c_{2} & 0 & 0 & 0
\end{array}\right), \\
& \operatorname{var}(\tilde{y})=\sigma^{2} D_{2} D_{2}^{\top}=\sigma^{2}\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & s_{1}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & s_{2}^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \\
& \operatorname{var}(\hat{\tilde{\beta}})=D_{1}^{+} \operatorname{var}(\tilde{y})\left(D_{1}^{+}\right)^{\top}=\sigma^{2} D_{1}^{+} D_{2} D_{2}^{\top}\left(D_{1}^{+}\right)^{\top}=\sigma^{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & s_{1}^{2} / c_{1}^{2} & 0 \\
0 & 0 & s_{2}^{2} / c_{2}^{2}
\end{array}\right)=\sigma^{2} D_{0} .
\end{aligned}
$$

For the original parameters we obtain

$$
\beta=U_{1} \tilde{\beta}, \quad \hat{\beta}=U_{1} \hat{\tilde{\beta}}, \quad \operatorname{var}(\hat{\beta})=U_{1} \operatorname{var}(\hat{\tilde{\beta}}) U_{1}^{\top}=\sigma^{2} U_{1} D_{0} U_{1}^{\top} .
$$

The unknown variance σ^{2} is estimated by

$$
\hat{\sigma}^{2}=\frac{1}{3}\left(\tilde{y}_{4}^{2}+\tilde{y}_{5}^{2}+\tilde{y}_{6}^{2}\right) .
$$

Final Remarks

a) Note that $\tilde{\beta}_{1}=\tilde{y}_{1}$ and according to (11) we have

$$
\tilde{y}=M_{1} y_{e} \text { where } M_{1}=V_{1}^{\top} \Delta_{0}^{-1} P^{\top} \text { and } y_{e}^{\top}=\left(y_{1}, \ldots, y_{5}, 17\right) .
$$

We obtain

$$
M_{1}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & \sqrt{3} / 3 \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & * \\
* & * & * & * & * & *
\end{array}\right),
$$

and thus $\tilde{\beta}_{1}=\tilde{y}_{1}=17 \times \sqrt{3} / 3=9.815 . \tilde{\beta}_{1}$ is completely determined by the linear restriction $\beta_{1}-\beta_{2}+\beta_{3}=17$ i.e. $L \beta=c$ with $L=(1,-1,1)$ and $c=17$ as $\|L\|=\sqrt{3}$.
b) The linear restriction $L \beta=c$ holds true also for the least squares estimator $\hat{\beta}$ as

$$
L \hat{\beta}=L U_{1} \hat{\tilde{\beta}}=L U_{1} D_{1}^{+} \tilde{y}=L U_{1} D_{1}^{+} M_{1} y_{e}=M_{2} y_{e}
$$

and as $M_{2}=(0,0,0,0,0,1)$ and $y_{e}^{\top}=\left(y_{1}, \ldots, y_{5}, 17\right)$ we have $L \hat{\beta}=M_{2} y_{e}=17$.

References

Golub, G. H. and Van Loan, C. F. (1996). Matrix computations. Third edition, 694 pp.
The John Hopkins University Press.
Knüsel, L. (2008). Singulärwert-Zerlegung und Methode der kleinsten Quadrate.
Technical Report Number 31, 2008, Department of Statistics, www.stat.uni-muenchen.de.
Knüsel, L. (2009). The General Linear Model and the Generalized Singular Value Decomposition.
Technical Report Number 48, 2009, Department of Statistics, www.stat.uni-muenchen.de.
Matlab (2008). Technical Software for Engineering and Science. www.mathworks.com.
Maple (2006). Advanced Mathematical Software. www.maplesoft.com.

