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Abstract: The general linear model y = Xβ + ε  with correlated error variables can be trans-
formed by means of the generalized singular value decomposition to a very simple model (ca-
nonical form) where the least squares solution is obvious. The method works also if X and the
covariance matrix of the error variables do not have full rank or are nearly rank deficient (rank-k
approximation). By backtransformation one obtains the solution for the original model. In this
paper we demonstrate the method with some examples.

Keywords
General linear model, canonical form, generalized singular value decomposition, CS-
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Introduction and summary
The general linear model is given by

2, E( ) 0, var( ) , ( ), ( ),y X W X n p W n n n pβ ε ε ε σ= + = = = × = × > .
2Wσ  is the covariance matrix of ε  and we assume that the matrix W is given (symmetric and positive

semidefinite) while 2σ  is unknown. If nW I=  we have the simple linear model with uncorrelated error
variables 1, , nε ε… . If ( )rk W k=  W can be written as W FF= T  where ( )F n k= × . The random error
ε  can now be given in the form Fuε=  with 2~ (0, )ku Iσ  i.e. with 2E( ) 0, var( ) ku u Iσ= =  as
E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So the general linear model is
equivalent to

2, where  ( ), ( )  and  ~ (0, )ky X Fu X n p F n k u Iβ σ= + = × = × .
In Knüsel (2008, 2009) the solution of the problem by means of the simple and generalized singular
value decomposition is treated and in this paper we give nine examples that deal in particular with the
case of rank deficient and nearly rank deficient matrices X and W (multicollinearity, weak multi-
collinearity). The following table gives an overview of the examples.

Example Title Page
1 Simple linear model, regular case 2
2 Simple linear model with strict multicollinearity 4
3 Simple linear model with weak multicollinearity 7
4 General linear model, regular case 11
5 General linear model with strict multicollinearity 17
6 General linear model with rank deficient covariance matrix W 22
7 General linear model with rank deficient X and W 26
8 General linear model with rank deficient X, W, and (X | F) 31
9 General linear model with nearly rank deficient X, W, and (X | F) 36
10 General linear model with linear restrictions, regular case 41

The computations in the examples are done with Matlab (2008) and Maple (2006). Matlab offers a
procedure gsvd (general singular value decomposition) that includes a subfunction csd (CS-
decomposition), and this subfunction is used for computing the CS-decomposition of an orthogonal
matrix (see Golub – Van Loan, 1996). 
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Example 1: Simple linear model, regular case

In this example we consider the simple linear model

(1) ( )2,  where ( ) and ~ 0, ny X X n p Iβ ε ε σ= + = × .

Let

(2)

3 2 3
1 9 8

(5 3) 4 1 4
7 2 0
5 6 5

X

     = × =       

.

We obtain the singular values

1
2
3

16.560
7.612
2.795

σ
σ
σ

        =         
,

and this means that the matrix X has full rank 3.

a) Classical solution
The classical least squares estimator of the parameter vector β  is given by

(3)

1

2 1

2 1

ˆ ( )
ˆvar( ) ( )

1 ˆˆ , where  ( )   with  ( )n

X X X y

X X

e e e y X I P y P X X X X
n p

β

β σ

σ β

−

−

−

=

=

= = − = − =
−

T T

T

T T T

and we obtain

(4)

1

1

100 63 58 0.014 658 0.005 525 0.002 030
126 112 , ( ) 0.064 720 0.060 773 ,

114 0.069512

0.026 835 0.051302 0.044 988 0.091555 0.029 992
( ) 0.069 455 0.090 766 0.200 474 0.

X X X X

X X X

−

−

   − −     = ∗ = ∗ −        ∗ ∗ ∗ ∗   
−

= − −

T T

T T

1

090 766 0.056 827 ,
0.080 900 0.007103 0.209155 0.135 754 0.027 230

0.184 294 0.048 934 0.361 484 0.048 934 0.121942
0.822 415 0.086 030 0.177 585 0.323 599

( ) 0.816101 0.086 030 0.067 877
0.822 415

P X X X X−

       − − 

∗ − −
= = ∗ ∗ −

∗ ∗ ∗

T T .
0.323 599
0.354 775

             ∗ ∗ ∗ ∗ 

b) Solution with singular value decomposition

The singular value decomposition of X is given by X UDV= T , where (5 5)U = ×  and (3 3)V = ×

are orthogonal and 1 2 3(5 3) diag( , , )D σ σ σ= × = :

(5)

0.270 0.148 0.299 0.744 0.512
0.441 0.897 0.0210.679 0.578 0.165 0.281 0.314

, 0.653 0.300.295 0.264 0.812 0.417 0.100
0.265 0.745 0.444 0.281 0.314
0.556 0.139 0.163 0.337 0.729

U V

 − − − −    − −− − −   = = − −− −  − −    − − 

1
2

3

5 0.694 ,
0.616 0.320 0.720

0 0 15.560 0 0
0 0 0 7.612 0

.0 0 2.7950 0
0 0 00 0 0
0 0 00 0 0

D

σ
σ

σ

      − − − 

              = =                 
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From

y X UDVβ ε β ε= + = +T

we obtain the canonical form of the linear model (1)

(6) y Dβ ε= + ,  where  , ,y U y V Uβ β ε ε= = =T T T ,

and as U  is orthogonal we have 2~ (0, )nIε σ  i.e. the error variables 1, , nε ε…  are again uncorrelated

each with variance 2σ . The canonical model (6) explicitly written has the form

(7)

1 1 1 1

2 2 2 2

3 3 3 3

4 4

5 5

,

,

,
,
.

y

y

y
y
y

σ β ε
σ β ε
σ β ε
ε
ε

= +

= +

= +
=
=

The least squares estimator of β  is given by ˆ , 1, ,3i i iy iβ σ= = …  or in matrix notation

(8)

1 2 3
2 1

2 2 21
4 52

ˆ   where  ( ) (3 5) diag(1 ,1 ,1 ),
ˆvar( ) ( ) ,

1ˆ ( ).

D y D p n

D D

e e u u
n p

β σ σ σ

β σ

σ

+ +

−

= = × = × =

=

= = +
−

T

T

D+  is the Moore-Penrose inverse of D and we obtain

(9)

1
2

3
2
1

1 2
2

2
3

1 0 0 0 0 0.060 386 0 0 0 0
0 1 0 0 0 0 0.131366 0 0 0 ,

0 0 0.357 751 0 00 0 1 0 0

1 0 0 0.003 646 0 0
( ) 0 1 0 0 0.017 257 0 .

0 0 0.127 9860 0 1

D

D D

σ
σ

σ

σ
σ

σ

+

−

        = =         
        = =           

T

By backtransformation we find the least squares estimators of the original parameters Vβ β= :

(10) 2 1

2

ˆˆ   where  ( ) (3 5) ,
ˆvar( ) ( ) ,

1 1 ˆˆ  where  ( ) .n

V V D y X y X p n V D U

V D D V

e e e e e y X y XX y I XX y
n p n p

β β

β σ

σ β

+ + + +

+ +

−

= = = = × = × =

=

= = = − = − = −
− −

T

T T

T T

X V D U+ += T  is the Moore-Penrose inverse of X, and as 

(11)

1

1 1

1

( )

( ) ( )

( )

X X X X

X X V D D V

P X X X X X X

+

+

−

− −

−

=

=

= =

T T

T T T

T T

we obtain the same results as with the classical solution.
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Example 2: Simple linear model with strict multicollinearity
We consider again the simple linear model 

(1) ( )2,  where ( ) and ~ 0, ny X X n p Iβ ε ε σ= + = × ,

but this time

1 2 3

3 2 4
1 9 7

( , , ) (5 3) 4 1 7
7 2 12
5 6 4

X x x x

   −   = = × =       

.

We have 3 1 22x x x= − , i.e. the third column of X is a linear combination of the first two columns, and

so the matrix X has the rank rk( ) 2XX r= = . As X XT  has the same rank as X the inverse 1( )X X −T

does not exist and the classical procedure breaks down.

Solution with singular value decomposition

The singular value decomposition of X is given by X UDV= T , where (5 5)U = ×  and (3 3)V = ×

are orthogonal and 1 2 3(5 3) diag( , , )D σ σ σ= × = :

0.276 0.118 0.790 0.223 0.486
0.497 0.294 0.8160.227 0.878 0.238 0.081 0.340

, 0.138 00.432 0.011 0.027 0.893 0.123
0.746 0.006 0.503 0.376 0.219
0.358 0.464 0.256 0.070 0.765

U V

 − − −    − −− − − −   = = − −− − −  − − − −    − − 

1
2

3

.902 0.408 ,
0.857 0.315 0.408

0 0 18.802 0 0
0 0 0 12.103 0

.0 0 00 0
0 0 00 0 0
0 0 00 0 0

D

σ
σ

σ

   −   − − 

              = =                 
Note that 3 0σ =  which means that ( ) 2rk X = . From

y X UDVβ ε β ε= + = +T

we obtain the canonical form of the linear model (1)

(2) y Dβ ε= + ,  where  , ,y U y V Uβ β ε ε= = =T T T ,

and as U  is orthogonal we have 2~ (0, )nIε σ  i.e. the error variables 1, , nε ε…  are again uncorrelated
each with variance 2σ . The canonical model (2) explicitly written has the form

(3)

1 1 1 1

2 2 2 2

3 3

4 4

5 5

,

,
,
,
.

y

y
y
y
y

σ β ε
σ β ε
ε
ε
ε

= +

= +
=
=
=

The least squares estimator of β  is given by ˆ , 1,2i i iy iβ σ= = ; the parameter 3β  is not to be found
in the canonical model as 3 0σ = , it can have arbitrary values, and it cannot be estimated. From

X UDV= T   we derive  XV UD= ,

and as the third column of UD  is zero the same is true for the third column of XV . Let

1 2 3( , , )V v v v= , then 3 1 2 30.816 0.408 0.408 0Xv x x x= − − = , and this is equivalent to

1 2 32 0x x x− − =  as (2, 1, 1) 6 (0.816, 0.408, 0.408)− − = − − . Now there are three ways how to
proceed.
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A) Eliminate one of the original parameters
As 1 2 32 0x x x− − =  we can eliminate one of the columns 1 2 3, ,x x x . We have e.g.

1 1 2 2 3 3 1 1 2 2 3 1 2 1 3 1 2 3 2(2 ) ( 2 ) ( )x x x x x x x x xβ β β β β β β β β β+ + = + + − = + + − .

We can introduce the new parameters

1 1 3

2 2 3

2β β β
β β β
= +

= −

and the new matrix 1 2( , )X x x= . Then model (1) is equivalent to

( )2,  where ( ) (5 2)  and  ~ 0,x ny X X n r Iβ ε ε σ= + = × = × .

As X  has full rank two, we can now apply the methods of example 1, and we find the covariance
matrix

0.014 599 0.007 299ˆvar( ) 0.011586β
 − =   ∗ 

.

B) Introduce the canonical parameters 
We have

1 1

1 2 3 2 2

33

( , , )  and  
v

XV Xv Xv Xv V v
v

β β
β β β β

ββ

          = = = =          

T

T T

T

and so

1 1 2 2 3 3X XVV XV Xv Xv Xvβ β β β β β= = = + +T .

As 3 0Xv =  the parameter 3β  can possess arbitrary values and it does not appear in the canonical

model (3). So we are interested only in the two remaining parameters 

1 1 1 2 3

2 2 1 2 3

0.497 0.138 0.857

0.294 0.902 0.315

v

v

β β β β β

β β β β β

= =− − −

= =− − +

T

T

The least squares estimators are given by

1 1 1

2 2 2

ˆ ,
ˆ ,

y

y

β σ

β σ

=

=

and if denote the vector of estimable parameters as 

( ) 1
e

2

ˆˆ 1 ˆXr
ββ
β

  = × =    
, then ( )

2
2 1

e 2
2

1 0 0.002 829 0ˆvar 0 0.006 8260 1
σβ σ

σ

     = =       
,

where 1,σ σ2  are the singular values of X and 2σ  denotes the unknown variance in model (1). So the

least squares estimators are uncorrelated. The unknown variance 2σ  can be estimated from (3) by
2 2 2 21

3 4 53ˆ ( )y y yσ = + + ; note that 3Xn r− = .

C) Minimum length solution

The parameter 3β  does not appear in the canonical model (3) and so it can have arbitrary values. We

set this parameter to zero. This way it is defined such that 2 miniβ β β=∑ =T . Now Vβ β= T  and V

is orthogonal. So β β β β=T T , and all parameters in our linear model become identifiable by the re-

quirement minβ β =T ; this parameter definition is called the minimum length definition:
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1 1 2 3

2 1 2 3

3 1 2 3

0.497 0.138 0.857 ,

0.294 0.902 0.315 ,

0.816 0.408 0.408 0.

β β β β

β β β β
β β β β

=− − −

=− − +

= − − =

The least squares estimators are now given by

1 1 1

2 2 2

3

ˆ ,
ˆ ,
ˆ 0.

y

y

β σ

β σ

β

=

=

=
and we have

( )
2
1

2 2 2
2

1 0 0 0.002 829 0 0
ˆvar 0 1 0 0 0.006 826 0

0 0 00 0 0

σ
β σ σ σ

        = =           

.

In matrix notation we can write

1 2
2

2 2 2 2 2 2 21 1
3 4 5 3 4 53 3

ˆ   where  ( ) (3 5) diag(1 ,1 , 0),
ˆvar( ) ( ) ,

1ˆ ( ) ( ),
2

D y D p n

D D

e e u u u y y y
n

β σ σ

β σ

σ

+ +

+

= = × = × =

=

= = + + = + +
−

T

T

where ˆe y Dβ= − . D+  is the Moore-Penrose inverse of D and we obtain

1
2

2
1

2
2

1 0 0 0 0 0.053186 0 0 0 0
0 1 0 0 0 0 0.082 622 0 0 0 ,

0 0 0 0 00 0 0 0 0

1 0 0 0.002 829 0 0
( ) 0 1 0 0 0.006 826 0 .

0 0 00 0 0

D

D D

σ
σ

σ
σ

+

+

        = =          
        = =          

T

By backtransformation we find the least squares estimator of the original parameters (with minimum
length definition):

2

2

ˆˆ  where  ( ) (3 5) ,
ˆvar( ) ( ) ,

1 1 ˆˆ  where  ( ) ,n
X X

V V D y V D U y X y X p n V D U

V D D V

e e e e e y X y XX y I XX y
n r n r

β β

β σ

σ β

+ + + + +

+

+ +

= = = = = × = × =

=

= = = − = − = −
− −

T T

T T

T T

and where 2Xr =  denotes the rank of X. X V D U+ += T  is the Moore-Penrose inverse of X UDV= T .

We obtain
0.010157 0.015 294 0.011 161 0.019 890 0.020 739
0.010 794 0.063 782 0.002 356 0.005 928 0.037 249 ,
0.009 520 0.033194 0.019 967 0.033 851 0.004 229

0.001 287 0.002 002 0.000 573
( ) 0.005 613 0.001609

0.00

X

V D D V

+

+

   =    − 

= ∗ −
∗ ∗

T T ,
2 755

0.090140 0.040 667 0.118 036 0.206 929 0.153 632
0.821689 0.107 404 0.163 712 0.326 382

.0.186 769 0.322 442 0.149 809
0.557 293 0.270 421

0.344108

XX +

       
   ∗ − −   = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 
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Example 3: Simple linear model with weak multicollinearity
We consider again the simple linear model 

(1) ( )2,  where ( ) and ~ 0, ny X X n p Iβ ε ε σ= + = × ,

but this time

ori 1 2 3

3 2 4 4.243 2.828 5.657
1 9 7 1.414 12.728 9.899

( , , ) (5 3) 2 4 1 7 5.657 1.414 9.899
7 2 12 9.899 2.828 16.971
5 6 4 7.071 8.485 5.657

X x x x X

        − −      = = × = ≈ =                 

.

We have 3 1 22x x x= −  as in Example 2, and so the original matrix oriX  has rank 2 whereas for the

matrix X (= oriX  rounded to 3 decimal places) we obtain the singular values

1
2
3

26.590
17.116

0.000 748

σ
σ
σ

        =         
,

and this means that the rounded matrix X has full rank 3.

a) Classical solution
The classical least squares estimator of the parameter vector β  is given by

1

2 1

2 1

ˆ ( )
ˆvar( ) ( )

1 ˆˆ , where  ( )   with  ( )n

X X X y

X X

e e e y X I P y P X X X X
n p

β

β σ

σ β

−

−

−

=

=

= = − = − =
−

T T

T

T T T

and we obtain

1
1190 235 595 091 595127

( ) 297 532 297 550
297 568

X X −
 − −   = ∗    ∗ ∗ 

T ,

(2) 1
618.561 163.829 541.697 675 912 174.596

( ) 309.256 81.962 270.831 337.952 87.261
309.275 81.898 270.835 337.992 87.289

X X X−
 − −   = − − −   − − − 

T T ,

1

0.411600 0.044 486 0.399 576 0.144 337 0.244 361
0.844 241 0.181951 0.070 678 0.302 354

( ) 0.433 286 0.014 814 0.229 265
0.941155 0.171 272

0.369 718

P X X X X−

 − −   ∗ − −   = = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T T .

b) Solution with singular value decomposition

The singular value decomposition of X is given by X UDV= T , where (5 5)U = ×  and (3 3)V = ×

are orthogonal and 1 2 3(5 3) diag( , , )D σ σ σ= × = :
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(3)

0.276 0.118 0.567 0.596 0.483
0.497 0.294 0.8170.227 0.878 0.150 0.201 0.340

, 0.130.432 0.011 0.497 0.747 0.095
0.747 0.006 0.620 0.050 0.237
0.358 0.464 0.160 0.210 0.766

U V

 − − − − −    − − −− −   = = −− − −  − − − −    − − − − 

1
2

3

8 0.902 0.408 ,
0.857 0.315 0.408

0 0 26.590 0 0
0 0 0 17.116 0

.0 0 0.000 7480 0
0 0 00 0 0
0 0 00 0 0

D

σ
σ

σ

   −   − 

              = =                 

From

y X UDVβ ε β ε= + = +T

we obtain the canonical form of the linear model (1)

(4) y Dβ ε= + ,  where  , ,y U y V Uβ β ε ε= = =T T T ,

and as U  is orthogonal we have 2~ (0, )nIε σ  i.e. the error variables 1, , nε ε…  are again uncorrelated

each with variance 2σ . The least squares estimator of β  is given by ˆ , 1, ,3i i iy iβ σ= = …  or in ma-

trix notation

(5)

1 2 3
2 1

2 2 21
4 52

ˆ   where  ( ) (3 5) diag(1 ,1 ,1 ),
ˆvar( ) ( ) ,

1ˆ ( ).

D y D p n

D D

e e u u
n p

β σ σ σ

β σ

σ

+ +

−

= = × = × =

=

= = +
−

T

T

D+  is the Moore-Penrose inverse of D. We obtain
2
1

1 2
2

62
3

1 0 0 0.001 414 0 0
( ) 0 1 0 0 0.003 413 0

0 0 1.785 100 0 1
D D

σ
σ

σ

−

           = =      ×  

T ,

and so the variance of the parameter 3β  is very large as compared with 1β  and 2β . By backtransfor-

mation we find the original least squares estimator

2 1

2

ˆˆ ,    where   ( ) (3 5) ,
ˆvar( ) ( ) ,

1 1 ˆˆ ,    where   ( ) .n

V V D y X y X p n V D U

V D D V

e e e e e y X y XX y I XX y
n p n p

β β

β σ

σ β

+ + + +

+ +

−

= = = = × = × =

=

= = = − = − = −
− −

T

T T

T T

X V D U+ += T  is the Moore-Penrose inverse of X, and as 
1

1 1

1

( )

( ) ( )

( )

X X X X

X X V D D V

P X X X X X X

+

+

−

− −

−

=

=

= =

T T

T T T

T T

we obtain the same results as with the classical solution. The variances and covariances of the original

parameters Vβ β=  are rather large (see the matrix 1( )X X −T  in (2)), as all three parameters

1 2 3, ,β β β  depend on 3β  which has an very large variance as compared with 1β  and 2β .
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c) Solution with rank-k-approximation
The matrix X is given with three decimal places and so the smallest singular value of X,

3 0.000 748σ = , is near the maximal rounding error of X, that amounts to 0.0005. The rank-2-

approximation of X will give a matrix (1)
1 ( ) (5 3)ijX x= = ×  with 1rk( ) 2X =  and with

(1)
3max 0.000 748ij ijx x σ− ≤ = . We want to determine this matrix 1X . The singular value decompo-

sition of X is given by X UDV= T , where (5 5)U = ×  and (3 3)V = ×  are orthogonal and where

1 2 3(5 3) diag( , , )D σ σ σ= × =  as given in (3). Let 

1
2

1 1 2

0 0 26.590 0 0
0 0 0 17.116 0

(5 3) diag( , ,0) 0 0 00 0 0
0 0 00 0 0
0 0 00 0 0

D

σ
σ

σ σ

              = × = = =                

.

Now we define 1X  as

(6) 1 1X UD V= T .

As 1rk( ) 2D =  we also have 1rk( ) 2X = , and if we compute 1X  we find (1)max 0.000 379ij ijx x− =

which is smaller than 3 0.000 748σ =  and even smaller than the maximal rounding error of X. So we

will work in the following with 1X  instead of X  as the rank of 1X  is numerically stable in the sense

that it cannot be made smaller just by small perturbations of the matrix elements. From the model

( )2
1 1 1,  where ( )  and ~ 0, ny X X n p UD V Iβ ε ε σ= + = × = T

we obtain the canonical model 

(7) 1y D β ε= + ,  where  , ,y U y V Uβ β ε ε= = =T T T ,

and as U is orthogonal we have again 2~ (0, )nIε σ , which means that 1, , nε ε…  are again uncorrelated

each with variance 2σ . The canonical model (7) can be written as

(8)

1 1 1 1

2 2 2 2

3 3

4 4

5 5

,

,
,
,
.

y

y
y
y
y

σ β ε
σ β ε
ε
ε
ε

= +

= +
=
=
=

The parameter 3β  does not appear in this model as the corresponding diagonal element in 1D  is zero.

So 3β  can possess arbitrary values, it is not identifiable and not estimable. The least squares estima-

tors for 1β  and 2β  are given by

1 1 1

2 2 2

ˆ ,
ˆ .

y

y

β σ

β σ

=

=

As the transformed observations iy  are uncorrelated each with variance 2σ  also the two least squares
estimators are uncorrelated with variances 2 2ˆvar( ) , 1,2i i iβ σ σ= = . The unknown variance 2σ  can
be estimated by

2 2 2 21
3 4 53ˆ ( )y y yσ = + + ; note that 1rk( ) 5 2 3n X− = − = .
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Minimum length solution

The parameter 3β  does not appear in the canonical model and so it can possess arbitrary values. We

set this parameter to zero so that minβ β β β= =T T  (minimum length definition). The least squares

estimator of 3β  will also be zero as well as the variance of this estimator. In matrix notation we now

have

1
ˆ D yβ += , where 

1
21

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

D
σ

σ+
   =     

.

The covariance matrix of β̂  is given by

2
1

2 2 2
1 1 2

1 0 0
ˆvar( ) ( ) 0 1 0

0 0 0
D D

σ
β σ σ σ+

     = =      

T .

By backtransformation we find the original least squares estimator

1 1 1 1
2

1 1

2
1 1 1

ˆˆ   where  ( ) (3 5) ,

ˆvar( ) ( ) ,
1 1 ˆˆ  where  ( ) .n

V V D y X y X p n V D U

V D D V

e e e e e y X I X X y
n p n p

β β

β σ

σ β

+ + + +

+

+

= = = = × = × =

=

= = = − = −
− −

T

T T

T T

We obtain

1

1 1

0.007182 0.010 814 0.007 892 0.014 064 0.014 665
0.007 633 0.045102 0.001666 0.004191 0.026 340 ,
0.006 732 0.023 471 0.014118 0.023 937 0.002 991

0.000 644 0.001001 0.000 286
( ) 0.002 807 0.000 805

0

X

V D D V

+

+

   =     − 

= ∗ −
∗ ∗

T T ,
.001377

M
   =    

1 1

0.090144 0.040 660 0.118 065 0.206 935 0.153 632
0.821687 0.107 386 0.163 722 0.326 385

0.186 757 0.322 436 0.149 811
0.557 301 0.270 416

0.344110

P X X +

   ∗ − −   = = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

.

Note that we had a much larger covariance matrix ˆvar( )β  with the classical solution a). If we did the
same computations with the original matrix oriX  instead of 1X , which is the rank-2 approximation to
the rounded matrix X, we would find essentially the same results. The maximum difference

max | |ij ijmaxdiff a b= −  between the corresponding matrices is given here:

original data rank-2 approximation maxdiff

oriX 1X 0.000 449
+
oriX 1X + 50.154 10−×

2 2( )V D D V+T T
2 2( )V D D V+T T 60.165 10−×

+
ori oriX X +

1 1X X 40.178 10−×
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Example 4: General linear model, regular case

In this example we consider the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = × .

Here the error variables 1, , nε ε…  are correlated with covariance matrix 2Wσ , where 2σ  is unknown

and ( )W n n= ×  is a known positive semidefinite matrix.

Let

(2)

3 2 3
1 9 8

(5 3) 4 1 4
7 2 0
5 6 5

X

     = × =       

as in Example 1. We obtain the singular values

1
2
3

16.560
7.612
2.795

σ
σ
σ

        =         
,

and this means that the matrix X has full rank 3. Furthermore let

0

4 9 8 5 6
1 7 9 5 7

(5 5) 7 3 9 4 9
4 9 5 9 8
6 8 7 6 1

F

 − −   − − − −   = × = − −   − −    − − − 

and now we define

(3) 1
0 0 017

13.059 3.765 6.294 1.294 0.941
12.059 0.588 1.941 0.588

(5 5) 13.882 12.235 0.706
15.706 1.235

10.941

W F F W

 − − −   ∗ −   = = × ≈ =∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T .

W is the matrix 0W  rounded to three decimal places. The singular values of W are

 
1

5

27.951
18.089
10.654
8.839
0.114

σ

σ

         =          

,

and so W is a symmetric and positive definite matrix with full rank 5.

a) Classical procedure, Aitken estimator

We consider the general linear model (1) with ( )X n p= ×  and ( )W n n= ×  given by (2) and (3).

The eigenvalue decomposition of W is given by W R R= Λ T , where R is orthogonal and

1 5(5 5) diag( , , )λ λΛ= × = … , i iλ σ=  (as W is positive definite). We set 

(4) 1 2F R R= Λ T ,  where  1 2
1 5diag( , , )λ λΛ = …

and obtain
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3.310 0.519 1.221 0.566 0.142
3.421 0.086 0.272 0.072

2.802 2.126 0.096
3.282 0.141

3.299

F

 − − −   ∗ −   ≈ ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

.

F is symmetric and 2F FF R R W= = Λ =T T . The random error of our model (1) can now be written
in the form

2 2  with  ~ (0, ), i.e. with  E( ) 0 and var( )n nFu u I u u Iε σ σ= = = ,

as E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So model (1) can also be

given as

(5) ( )2,   where  ( ), ( ), ~ 0, ny X Fu X n p F n n u Iβ σ= + = × = × .

As F is a regular matrix (i.e. F has full rank n) we can write (5) as

(6) 1 1,   where    and  y X u y F y X F Xβ − −= + = = .

Note that the inverse of 1 2F R R= Λ T  is given by 1 1 2F R R− −= Λ T  where
1 2

1diag(1 , ,1 )nλ λ−Λ = … . In (6) we have the simple linear model and its solution is given by

1 1 1 1

2 1 1

2 1 1 1

ˆ ( ) ( ) ,
ˆvar( ) ( ) ,

1 1 ˆ ˆˆ   as   ( ) ,

X X X y X W X X W y

X W X

e e e W e e y X F y X F e
n p n p

β

β σ

σ β β

− − − −

− −

− − −

= =

=

= = = − = − =
− −

T T T T

T

T T

and we obtain

1 1
0.294 584 0.313 265 0.211856

( ) 0.373 243 0.216 344
0.185 071

X W X− −
 −   = ∗ −    ∗ ∗ 

T

1 1 1
0.045 300 0.067 985 0.031067 0.074 873 0.056 742

( ) 0.105 058 0.112 274 0.266 029 0.112 274 0.029 850
0.088 830 0.013145 0.273161 0.156 002 0.055 801

X W X X W− − −
 −   = − −   − − − 

T T .

b) Procedure with singular value decomposition

We start with the singular value decomposition of 1X F X−=  in model (6) that is given by
X UDV= T  where ( )U n n= ×  and ( )V p p= ×  are orthogonal and 1( ) diag( , , )nD n p σ σ= × = … ;

1, , nσ σ…  are the singular values of 1X F X−= . Here are the three matrices:

0.409 0.282 0.249 0.670 0.492
0.793 0.102 0.6000.025 0.772 0.472 0.347 0.248

, 0.425 0.612 0.6670.615 0.252 0.666 0.187 0.283
0.0.659 0.077 0.418 0.610 0.115

0.141 0.505 0.312 0.156 0.777

U V

   − −   = = −− −   −− −     − 

1
2

3

,
435 0.784 0.442

0 0 9.818 0 0
0 0 0 4.778 0

.0 0 1.1190 0
0 0 00 0 0
0 0 00 0 0

D

σ
σ

σ

       

              = =                 

We obtain the canonical model

(7) y D uβ= +   where  1 , ,y U F y V u U uβ β−= = =T T T ,
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and so

1 1 1 1

2 2 2 2

3 3 3 3

4 4

5 5

,

,

,
,
.

y u

y u

y u
y u
y u

σ β
σ β
σ β

= +

= +

= +
=
=

The least squares estimators of the canonical parameters are given by

1 1 1

2 2 2

3 3 3

ˆ ,
ˆ ,
ˆ ,

y

y

y

β σ

β σ

β σ

=

=

=

or in matrix notation

ˆ D yβ += , where  
1

2
3

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

D
σ

σ
σ

+
   =     

.

D+  is the Moore-Penrose inverse of D. The covariance matrix of β̂  is given by

2
1

2 2 1 2 2
2

2
3

1 0 0
ˆvar( ) var( ) ( ) ( ) ) ( ) 0 1 0

0 0 1
D y D D D D D

σ
β σ σ σ σ

σ

+ + + + −

     = = = =      

T T T .

By backtransformation we find the least squares estimators of the original parameters Vβ β= :

1

2 1

2

ˆˆ  where  ( ) (3 5) ,
ˆvar( ) ( ) ,

1 1 ˆˆ  where  ( ) .n

V V D y X y X F y X p n V D U

V D D V

e e e e e y X y XX y I XX y
n p n p

β β

β σ

σ β

+ + + + +

+ +

−

−

= = = = = × = × =

=

= = = − = − = −
− −

T

T T

T T

X V D U+ += T  is the Moore-Penrose inverse of X , and as 
1 1 1( ) ( )X W X V D D V− − −=T T T ,
1 1 1 1( )X W X X W X F+− − − −=T T ,

we obtain the same results as with the classical procedure of Aitken.

c) Procedure with generalized singular value decomposition

We consider the general linear model as given in (5):

(8) ( )2,   where   ( ), ( ), ~ 0, ny X Fu X n p F n n u Iβ σ= + = × = ×

with X and F as given above in (2) and (4).

(i) Singular value decomposition of the matrix ( | )X F

The singular value decomposition of ( | ) ( ) (5 8)X F n m= × = ×  with 8m p n= + =  is given by
( | )X F P Q= ∆ T ,

where ( ) (5 5)P n n= × = ×  and ( ) (8 8)Q m m= × = ×  are orthogonal and

1 5( ) (5 8) diag( , , )n m σ σ∆= × = × = … , and where the singular values 1 5, ,σ σ…  of ( | )X F  are given

in the following table. We have ( | ) 5cr rk X F n= = = , and this simplifies the further procedure.
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Table 1: Singular values of , , ( | )X F X F  and X

(5 3)X = × (5 5)F = × ( ) (5 8)X F = × 1X F X−=

singular values
16.560
7.612
2.795

       

5.287
4.253
3.264
2.973
0.338

             

17.008
8.802
4.563
3.685
2.120

             

9.818
4.778
1.119

       

(ii) CS-decomposition of Q

As rk( | ) 5cr X F n= = =  we have to determine the CS-decomposition of the orthogonal matrix

( ) (8 8)Q m m= × = ×  with the format 

(9) 11 12
21 22

( ) ( ) (3 5) (3 3)
( ) ( ) (5 5) (5 3)

Q Q p n p pQ Q Q n n n p
     × × × ×    = = =         × × × ×    

. 

We obtain orthogonal matrices 

1
2

0 (3 3)(8 8) 0 (5 5)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (5 5)(8 8) 0 (3 3)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.409 0.282 0.249 0.626 0.547
0.793 0.102 0.600 0.025 0.772 0.472 0.366 0.218
0.425 0.612 0.667 , 0.615 0.252 0.666 0.210 0.266
0.435 0.784 0.442 0.659 0.077 0.418 0.617 0.063

0.141 0.505 0.312 0.22

U U

−
  − − −  = − = − − −   − − − − 

1 0.761

             

1 2

0.360 0.918 0.144 0.084 0
0.468 0.096 0.8780.577 0.351 0.722 0.117 0.088

, 0.842 0.251 0.0.407 0.147 0.428 0.590 0.531
0.235 0.024 0.003 0.738 0.632
0.562 0.112 0.524 0.293 0.558

V V

 − − −    − −− −   = = − −− −   − −     − − − 

476
0.266 0.963 0.037

      − − − 

such that

11 12
21 22

(3 5) (3 3)
(5 5) (5 3)

D DU QV D D D
   × ×  = = =     × ×  

T

where

1 1
2 2

3 3
1 1

2 2
3 3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

c s
c s

c s
s cD s c

s c

         − =  −   −       

.

The diagonal elements ic  and is  are given in the following table. Note that 2 2 1i ic s+ =  for 1, 2, 3i=

and so the matrix D is orthogonal, too.
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Table 2: Diagonal elements ,i ic s

i ic is

1 0.994 852 0.101 334
2 0.978795 0.204 843
3 0.745 620 0.666 371

(iii) Generalized singular value decomposition and canonical model
We now have

(10)
( | ) ,

,

X F P Q

Q UDV

= ∆

=

T

T

and from this we find the so-called generalized singular value decomposition of the pair ,X F

(11) 1 0 1 11

2 0 1 21

,

,

P XU V D

P FU V D

=∆

=∆

T T

T T

where 0 1 5(5 5) diag( , , )σ σ∆ = × = …  and where 1 5, ,σ σ…  are the singular values of ( | )X F  as given

above. For P we have
0.264 0.156 0.725 0.202 0.583
0.667 0.588 0.121 0.416 0.150
0.314 0.367 0.440 0.379 0.655
0.290 0.701 0.476 0.257 0.362
0.551 0.057 0.201 0.759 0.278

P

 − −   − − −   = − − − −  − − − −    − − − − 

.

Our model (8) can now be written in the canonical form

(12) 1 2y D D uβ= + ,

where
1

1 0 1 2, , ,y V P y U u U uβ β−= ∆ = =T T T T

1 1
2 2

1 11 2 213 3

0 0 0 0 0 0
0 0 0 0 0 0

(5 3) , (5 5) ,0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c s
c s

D D D Dc s

            = = × = = = × =               

T T

and so

(13)

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4

5 5

,

,

,
,
.

y c s u

y c s u

y c s u
y u
y u

β
β
β

= +

= +

= +
=
=

The least squares estimators are given by

1 1 1

2 2 2

3 3 3

ˆ ,
ˆ ,
ˆ .

y c

y c

y c

β

β

β

=

=

=

In matrix notation we can write
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1
21 1

3

1 0 0 0 0
ˆ    as   0 1 0 0 0

0 0 1 0 0

c
D y D c

c
β + +

   = =    
,

2
1

2
22 2 22 2 3

0 0 0 0
0 0 0 0

var( ) 0 0 0 0
0 0 0 1 0
0 0 0 0 1

s
s

y D D sσ σ

       = =        

T ,

2 2
1 1

2 2 2 2 2
2 2 2 2 01 1 1 1

2 2
3 3

0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0

s c
D y D D D D D s c D

s c
β σ σ σ+ + + +

     = = = =     

T T T .

For the original parameters we obtain
2

1 1 1 1 1 0 1
ˆ ˆˆ ˆ, , var( ) var( )U U U U U D Uβ β β β β β σ= = = =T T .

The unknown variance 2σ  is estimated by
2 2 21

4 52ˆ ( )y yσ = + .

By backtransformation we obtain again the same results as in a) and b), but the classical Aitken proce-
dure a) works only in the regular case, i.e. if X and F have full rank, procedure b) with the simple sin-
gular value decomposition works also if multicollinearity is present i.e. if X does not have full rank,
and method c) with the generalized singular value decomposition works even if both X und F are rank
deficient.

Remark
By multiplying the canonical model (12) with 1

2D−  we obtain a model that is equivalent to the canoni-
cal model (7) as we have 1

2 1D D D− = , where 1 2 3(5 3) diag( , , )D σ σ σ= × =  and where 1 2 3, ,σ σ σ  are
the singular values of 1X F X−= .
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Example 5: General linear model with strict multicollinearity
In this example we consider the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = ×

as in Example 4, but this time

1 2 3

3 2 4
1 9 7

( , , ) (5 3) 4 1 7
7 2 12
5 6 4

X x x x

   −   = = × =      

,

whereas the symmetric matrix (5 5)W = ×  is the same as there:

13.059 3.765 6.294 1.294 0.941
12.059 0.588 1.941 0.588

13.882 12.235 0.706
15.706 1.235

10.941

W

 − − −   ∗ −   = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

.

We have 3 1 22x x x= − , i.e. the third column of X is a linear combination of the first two columns, and so

the matrix X has rank 2; so we face the problem of strict multicollinearity. As 1X W X−T  has the same

rank as X the inverse 1 1( )X W X− −T  does not exist and the classical procedure of Aitken breaks down.

a) Procedure with singular value decomposition

As in Example 4 the general linear model can be written in the form 

(2) ( )2,   where  ( ), ( ), ~ 0, ny X Fu X n p F n n u Iβ σ= + = × = × ,

and where FF W=T . As in Example 4 we start with the singular value decomposition of 1X F X−=

that is given by X UDV= T  where ( )U n n= ×  and ( )V p p= ×  are orthogonal and

1( ) diag( , , )nD n p σ σ= × = … ; 1, , nσ σ…  are the singular values of 1X F X−= . The following table

gives the singular values of the different matrices involved.

Table 1: Singular values of 1, , , ( | )X F X F X X F−=

(5 3)X = × (5 5)F = × (5 5)X = × ( | )X F

singular values
18.802
12.103

0

       

5.287
4.253
3.264
2.973
0.338

             

14.548
3.802

0
0
0

             

19.428
12.572
3.945
3.619
1.213

             

And here are the three matrices , ,U V D :

0.427 0.200 0.842 0.257 0.060
0.536 0.216 0.8160.061 0.892 0.126 0.258 0.345

, 0.271 0.870.535 0.065 0.498 0.642 0.223
0.709 0.175 0.115 0.673 0.032
0.161 0.361 0.119 0.053 0.909

U V

 − − − − −    − −− −   = = − −−  − −    − − − 

1
2

3

2 0.408 ,
0.800 0.440 0.408

0 0 14.548 0 0
0 0 0 3.802 0

.0 0 00 0
0 0 00 0 0
0 0 00 0 0

D

σ
σ

σ

   −   − − 

              = =                 
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We obtain the canonical model

(3) y D uβ= + , where 1 , ,y U F y V u U uβ β−= = =T T T ,

and so

1 1 1 1

2 2 2 2

3 3

4 4

5 5

,

,
,
,
.

y u

y u
y u
y u
y u

σ β
σ β

= +

= +
=
=
=

The least squares estimators of the canonical parameters are given by

1 1 1

2 2 2

ˆ ,
ˆ .

y

y

β σ

β σ

=

=

The parameter 3β  can have arbitrary values, it is not identifiable and not estimable without further

assumptions. We set this parameter to zero and so its value is defined such that
2 2 2
1 2 3 minβ β β β β= + + =T . For the original parameters we have Vβ β= , and as β β β β=T T  our

parameters are made identifiable and estimable by the minimum length requirement

minβ β β β= =T T . As now 3 0β =  also the least squares estimate of 3β  is zero. In matrix notation

we can write
1

2 2 2

2 2 2 21
3 4 53

ˆˆ ˆ, ,
ˆ ˆvar( ) ( ) , var( ) ( ) ,

1ˆ ( )   with   ( ) 2.X
X

D y V V D y V D U F y

D D D D V D D V

e e y y y r rk X
n r

β β β

β σ σ β σ

σ

+ + +

+ + + +

−= = = =

= = =

= = + + = =
−

T

T T T T

T

We obtain
2
1

2
2

1 0 0 0.004 725 0 0
( ) 0 1 0 0 0.069175 0 ,

0 0 00 0 0

0.004 576 0.013 698 0.004 545
( ) 0.052 905 0.025 509 ,

0.016 418

D D

V D D V

σ
σ+

+

        = =           
 −   = ∗ −    ∗ ∗ 

T

T T

1
0.049 401 0.014 657 0.076 112 0.061 121 0.009 415
0.050 009 0.063 111 0.049 466 0.026 076 0.027105
0.048 792 0.033 797 0.102 757 0.096166 0.008 275

V D U F+ −
 −   = −    − − − 

T .

b) Procedure with generalized singular value decomposition

We consider the general linear model as given in (2) with X and F as given there.

(i) Singular value decomposition of the matrix ( | )X F

The singular value decomposition of ( | )X F  is given by

( | )X F P Q= ∆ T ,

where (5 5)P= ×  and (8 8)Q= ×  are orthogonal and 1 5(5 8) diag( , , )σ σ∆= × = … , and where the

singular values 1 5, ,σ σ…  of ( | )X F  are given above in Table 1. For P we obtain
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0.275 0.090 0.847 0.273 0.353
0.217 0.882 0.167 0.380 0.051
0.451 0.011 0.052 0.411 0.790
0.744 0.014 0.472 0.123 0.457
0.349 0.462 0.169 0.773 0.199

P

 − −   − − − −   = − −   − − −     − − 

.

(ii) CS-decomposition of Q

As rk( | ) 5cr X F n= = =  we have to determine the CS-decomposition of the orthogonal matrix

( ) (8 8)Q m m= × = ×  with the format 

11 12
21 22

( ) ( ) (3 5) (3 3)
( ) ( ) (5 5) (5 3)

Q Q p n p pQ Q Q n n n p
     × × × ×    = = =         × × × ×    

. 

We obtain orthogonal matrices 

1
2

0 (3 3)(8 8) 0 (5 5)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (5 5)(8 8) 0 (3 3)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.427 0.200 0.388 0.778 0.150
0.536 0.216 0.816 0.061 0.892 0.448 0.027 0.007
0.271 0.872 0.408 , 0.535 0.065 0.035 0.169 0.825
0.800 0.440 0.408 0.709 0.175 0.450 0.210 0.469

0.161 0.361 0

U U

− − −
 − − − − −  = − = − − − −   − − − − − − 

− .667 0.569 0.277

             − 

1 2

0.959 0.148 0 0 0.241
0.747 0.566 0.3500.139 0.985 0.041 0.084 0.049

, 0.659 0.557 0.5060.024 0.087 0.724 0.683 0.043
0.00.092 0.026 0.619 0.680 0.381

0.227 0.021 0.302 0.253 0.890

V V

 − − −    −− −   = =− −   −− −    − − − 
91 0.608 0.788

       − 

such that

11 12
21 22

(3 5) (3 3)
(5 5) (5 3)

D DU QV D D D
   × ×  = = =     × ×  

T

where

1 1
2 2

1 1
2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

c s
c s

s cD s c

         − =  −          

.

The diagonal elements ,i ic s  are given in Table 2. Note that 2 2 1i ic s+ =  for 1, 2i= , and so the matrix

D is orthogonal, too.

Table 2: Diagonal elements ,i ic s

i ic is

1 0.997 646 0.068 578
2 0.967 110 0.254 360
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(iii) Generalized singular decomposition and canonical model
Now we have

( | ) ,

,

X F P Q

Q UDV

= ∆

=

T

T

and from this we find the so-called generalized singular value decomposition of the pair ,X F

(4) 1 0 1 11

2 0 1 21

,

,

P XU V D

P FU V D

=∆

=∆

T T

T T

where 0 1 5(5 5) diag( , , )σ σ∆ = × = …  and where 1 5, ,σ σ…  are the singular values of ( | )X F  as given

in Table 1. Our model (2) can now be written in the canonical form

(5) 1 2y D D uβ= + ,

where
1

1 0 1 2, , ,y V P y U u U uβ β−= ∆ = =T T T T

1 1
2 2

1 11 2 21

0 0 0 0 0 0
0 0 0 0 0 0

(5 3) , (5 5) .0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c s
c s

D D D D

            = = × = = = × =               

T T

The generalized singular value decomposition (4) shows that 11 1rk( ) rk( ) rk( ) 2X D D= = =  and

21 2rk( ) rk( ) rk( ) 5F D D= = = . Now the canonical model (5) explicitly written has the form

1 1 1 1 1

2 2 2 2 2

3 3

4 4

5 5

,

,
,
,
.

y c s u

y c s u
y u
y u
y u

β
β

= +

= +
=
=
=

The parameter 3β  can possess arbitrary values as it is not met in the canonical model and we set this

parameter to zero (minimum length definition). The least squares estimators are given by

1 1 1

2 2 2

3

ˆ ,
ˆ ,
ˆ 0.

y c

y c

β

β

β

=

=

=

In matrix notation we can write

1
21 1

1 0 0 0 0
ˆ    as   0 1 0 0 0

0 0 0 0 0

c
D y D cβ + +

   = =     
,

2
1

2
22 2

2 2

0 0 0 0
0 0 0 0

var( ) 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

s
s

y D Dσ σ

       = =        

T ,

2 2
1 1

2 2 2 2 2
2 2 2 2 01 1 1 1

0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0 0

s c
D y D D D D D s c Dβ σ σ σ+ + + +

     = = = =     

T T T .
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For the original parameters we obtain
2

1 1 1 1 1 0 1
ˆ ˆˆ ˆ, , var( ) var( )U U U U U D Uβ β β β β β σ= = = =T T .

The unknown variance 2σ  is estimated by
2 2 2 21

3 4 53ˆ ( )y y yσ = + + .

We obtain the same results as in a) with the simple singular value decomposition, but that procedure
works only if the matrix W (and so the matrix F) has full rank, whereas the method with the general-
ized singular value decomposition also works if both X und F are rank deficient as we will see in the
next example.

By multiplying the canonical model (5) with 1
2D−  we obtain a model that is equivalent to (3) and we

have 1
2 1D D D− = , where 1 2 3(5 3) diag( , , )D σ σ σ= × =  and where 1 2 3, ,σ σ σ  are the singular values

of 1X F X−= .
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Example 6: General linear model with rank deficient covariance matrix

In this example we consider again the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = × .

Let
3 2 3
1 9 8

(5 3) 4 1 4
7 2 0
5 6 5

X

     = × =       
as in Example 4. The matrix X has full rank 3. But in this example the matrix W will be rank deficient.
Let

0

4 9 8 5
1 7 9 5

(5 4) 7 3 9 4
4 9 5 9
6 8 7 6

F

 −   − − −   = × = −   −    − − − 
and now we define

1
0 020

9.3 5.3 2.65 3.5 0.5
7.8 3.65 1.15 0.85

(5 5) 7.75 6.8 1.05
10.15 1.45

9.25

W F F

 − − −   ∗ − −   = = × = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T .

The singular values of W are

 
1

5

17.462
15.181
8.812
2.796

0

σ

σ

         =          

,

and so W is a symmetric and positive semidefinite matrix with rank 4. Now we consider the general

linear model (1) with ( )X n p= ×  and ( )W n n= ×  as given above. As ( ) 4rk W =  the inverse 1W−

does not exist and so the classical Aitken procedure as well as the procedure with the simple singular
value decomposition cannot work. Therefore we apply the procedure with the generalized singular
value decomposition.

(i) Factorization of W

We want to find a matrix ( )F n k= ×  such that W FF= T  where ( ) 4k rk W= = . The eigenvalue

decomposition of W is given by W R R= Λ T , where R is orthogonal and 1 5(5 5) diag( , , )λ λΛ= × = … ,

i iλ σ=  (as W is positive semidefinite). As 5 5 0σ λ= =  we set 

(2) 1 4(5 4) diag( , , )D λ λ= × = …   and  (5 4)F RD= × = .

As 1 4(5 5) diag( , , ,0)DD λ λ= × = =Λ…T  we have FF RDD R R R W= = Λ =T T T T . The random

error of our model (1) can now be written in the form
2 2  with  ~ (0, ), i.e. with  E( ) 0 and var( )k kFu u I u u Iε σ σ= = = ,

as E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So model (1) can also be

given as

(3) 2,   where  ( ), ( ), ~ (0, )ky X Fu X n p F n k u Iβ σ= + = × = × .
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(ii) Singular value decomposition of ( | )X F

We have ( ) (5 3)X n p= × = ×  and ( ) (5 4)F n k= × = ×  and so ( | ) ( ) (5 7)X F n m= × = × , where

7m p k= + = . Now we compute the singular value decomposition of ( | )X F :

( | )X F P Q= ∆ T ,

where (5 5)P= ×  and (7 7)Q= ×  are orthogonal and 1 5(5 7) diag( , , )σ σ∆= × = … . We obtain

0.258 0.147 0.718 0.226 0.588
0.671 0.590 0.196 0.338 0.222
0.299 0.342 0.428 0.590 0.513
0.275 0.708 0.507 0.149 0.379
0.565 0.109 0.075 0.682 0.445

P

 − −   − − −   = − − − −  − − − −    − − − − 

,

and the singular values of ( | )X F  are given in the following table.

Table 1: Singular values of , , ( | )X F X F

(5 3)X = × (5 4)F = × ( | ) (5 7)X F = ×

singular values
16.560
7.612
2.795

       

4.179
3.896
2.969
1.672

          

16.771
8.540
4.246
2.883
1.924

             

(iii) CS-decomposition of Q

As rk( | ) 5cr X F n= = =  we have to determine the CS-decomposition of ( ) (7 7)Q m m= × = ×  with

the format 

11 12
21 22

( ) ( ( )) (3 5) (3 2)
( ) ( ( )) (4 5) (4 2)

Q Q p n p m nQ Q Q k n k m n
     × × − × ×    = = =         × × − × ×    

. 

We obtain orthogonal matrices 
1

2

0 (3 3)(7 7) 0 (4 4)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (5 5)(8 8) 0 (2 2)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.055 0.990 0 0.1270.785 0.214 0.581 0.148 0.097 0.540 0.8230.616 0.369 0.696 , 0.343 0.089 0.758 0.5480.066 0.905 0.421 0.926 0.041 0.367 0.080

U U

  − −  −  = =      − − −   − −   − 

,

1 2

0.702 0.699 0.081 0.100 0.035
0.448 0.538 0.709 0.015 0.078 0.483 0.876,0.275 0.308 0.488 0.387 0.665 0.876 0.4830.250 0.255 0.283 0.514 0.727
0.410 0.248 0.415 0.759 0.147

V V

 − − −   − −     = =− − −   −  −     − − 

 ,

such that

11 12
21 22

(3 5) (3 2)
(4 5) (4 2)

D DU QV D D D
   × ×  = = =     × ×  

T ,

where
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1 1

2 2

1 1

2 2

1 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

c s
c s

D s c
s c

           = −    −         

.

The diagonal elements ic  and is  are given in Table 2. Note that 2 2 1i ic s+ =  for 1, 2i= , and so the

matrix D is orthogonal, too. Also note 21D  and 12D  are not classical diagonal matrices as the diago-

nal starts in the lower right corner and not in the upper left one.

Table 2: Diagonal elements ,i ic s

i ic is

1 0.988 084 0.153 915
2 0.779 148 0.626 840

(iv) Generalized singular value decomposition and canonical model
Now we have

( | ) ,

,

X F P Q

Q UDV

= ∆

=

T

T

and from this we find the so-called generalized singular value decomposition of the pair ,X F

(4) 1 1 1 11

2 1 1 21

,

,

P XU V D

P FU V D

=∆

=∆

T T

T T

where 0 1 5( ) (5 5) diag( , , )c cr r σ σ∆ = × = × = …  and where 1 5, ,σ σ…  are the singular values of

( | )X F  as given above. Our model (2) can now be written in the canonical form

(5) 1 2y D D uβ= + ,

where
1

1 0

1

2

,

,

,

y V P y

U

u U u

β β

−= ∆

=

=

T T

T

T

1
1 11 2

1
2 21 2

1 0 0
0 0

(5 3) ,0 0
0 0 0
0 0 0

0 0 0 0
0 0 0

(5 4) .0 0 0
0 0 1 0
0 0 0 1

c
D D c

s
D D s

     = = × =       
     = = × =       

T

T

The generalized singular value decomposition (4) shows that 11 1rk( ) rk( ) rk( ) 3X D D= = =  and

21 2rk( ) rk( ) rk( ) 4F D D= = = . The canonical model (5) explicitly written has the form
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1 1

2 1 2 1 1

3 2 3 2 2

4 3

5 4

,

,

,
,
.

y

y c s u

y c s u
y u
y u

β
β
β

=

= +

= +
=
=

The observation 1y  is identical to the parameter 1β , this observation has no random error. As the co-

variance matrix (5 5)W = ×  has rank 4 there exists a linear combination 1y  of the original observa-

tions ( 1, , ny y… ) with no random error, and there exists a linear combination 1β  of the original pa-

rameters ( 1, , pβ β… ) such that 1 1y β= . The least squares estimators are given by

1 1

2 2 1

3 3 2

ˆ ,
ˆ ,
ˆ .

y

y c

y c

β

β

β

=

=

=

In matrix notation we can write

11 1
2

1 0 0 0 0
ˆ    as   0 1 0 0 0

0 0 1 0 0
D y D c

c
β + +

   = =     
,

2
12 2 22 2 2

0 0 0 0
0 0 0 0

var( ) 0 0 0 0
0 0 0 1 0
0 0 0 0 1

s
y D D sσ σ

       = =        

T ,

2 2 2 2 2
2 2 1 1 01 1 1 1

2 2
2 2

0 0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0
D y D D D D D s c D

s c
β σ σ σ+ + + +

    = = = =    

T T T .

For the original parameters we obtain
2

1 1 1 1 1 0 1
ˆ ˆˆ ˆ, , var( ) var( )U U U U U D Uβ β β β β β σ= = = =T T .

The unknown variance 2σ  is estimated by
2 2 21

4 52ˆ ( )y yσ = + .
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Example 7: General linear model with rank deficient X and W

In this example we consider again the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = × ,

but now both matrices X and W are rank deficient, i.e. rk( )X p<  and rk( )W n< . Let

1 2 3

3 2 4
1 9 7

( , , ) (5 3) 4 1 7
7 2 12
5 6 4

X x x x

   −   = = × =      

 

as in Example 5. We have 3 1 22x x x= − , i.e. the third column of X is a linear combination of the first

two columns, and so the matrix X has rank 2. Let
9.3 5.3 2.65 3.5 0.5

7.8 3.65 1.15 0.85
(5 5) 7.75 6.8 1.05

10.15 1.45
9.25

W

 − − −   ∗ − −   = × = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

as in Example 6. The singular values of W are

 
1

5

17.462
15.181
8.812
2.796

0

σ

σ

         =          

,

and so W is a symmetric and positive semidefinite matrix with rank 4. Now we consider the general

linear model (1) with ( )X n p= ×  and ( )W n n= ×  as given above. As ( ) 4rk W =  the inverse 1W−

does not exist and so the classical Aitken procedure as well as the procedure with the simple singular
value decomposition cannot work. So we apply the procedure with the generalized singular value de-
composition.

(i) Factorization of W

We want to find a matrix ( )F n k= ×  such that W FF= T  where ( ) 4k rk W= = . The eigenvalue

decomposition of W is given by W R R= Λ T , where R is orthogonal and 1 5(5 5) diag( , , )λ λΛ= × = … ,

i iλ σ=  (as W is positive semidefinite). As 5 5 0σ λ= =  we set 

( ) 1 45 4 diag( , , )D λ λ= × = …   and  (5 4)F RD= × = .

As 1 4(5 5) diag( , , ,0)DD λ λ= × = =Λ…T  we have FF RDD R R R W= = Λ =T T T T . The random

error of our model (1) can now be written in the form
2 2  with  ~ (0, ), i.e. with  E( ) 0 and var( )k kFu u I u u Iε σ σ= = = ,

as E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So model (1) can also be

given as

(2) ( )2,   where  ( ), ( ), ~ 0, ky X Fu X n p F n k u Iβ σ= + = × = × .
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(ii) Singular value decomposition of ( | )X F

We have ( ) (5 3)X n p= × = ×  and ( ) (5 4)F n k= × = ×  and so ( | ) ( ) (5 7)X F n m= × = × , where

7m p k= + = . Now we compute the singular value decomposition of ( | )X F :

( | )X F P Q= ∆ T ,

where (5 5)P= ×  and (7 7)Q= ×  are orthogonal and 1 5(5 7) diag( , , )σ σ∆= × = …  We obtain

0.270 0.092 0.839 0.330 0.326
0.236 0.870 0.181 0.392 0.019
0.442 0.015 0.039 0.356 0.822
0.743 0.022 0.475 0.157 0.444
0.353 0.483 0.189 0.766 0.141

P

 − −   − − − −   = − −   − − −     − − 

,

and the singular values are given in the following table.

Table 1: Singular values of , ,( | )X F X F

(5 3)X = × (5 4)F = × ( | )X F

singular values
18.802
12.103

0

       

4.179
3.896
2.969
1.672

          

19.214
12.424
3.639
2.503
1.093

             

(iii) CS-decomposition of Q
As rk( | ) 5cr X F n= = =  we have to determine the CS-decomposition of ( ) (7 7)Q m m= × = ×  with

the format 

11 12
21 22

( ) ( ( )) (3 5) (3 2)
( ) ( ( )) (4 5) (4 2)

Q Q p n p m nQ Q Q k n k m n
     × × − × ×    = = =         × × − × ×    

. 

We obtain orthogonal matrices 

1
2

0 (3 3)(7 7) 0 (4 4)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (5 5)(8 8) 0 (2 2)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.431 0 0 0.9020.569 0.100 0.816 0.173 0.460 0.867 0.0830.446 0.797 0.408 , 0.283 0.866 0.390 0.1350.691 0.596 0.408 0.839 0.197 0.311 0.401

U U

 −  −  − − −  = − − =      − −   −    

1 2

0.914 0.357 0.010 0.044 0.190
0.358 0.922 0.025 0.143 0.023 0.641 0.768,0.041 0.072 0.721 0.685 0.061 0.768 0.6410.033 0.117 0.679 0.678 0.253
0.186 0.058 0.134 0.220 0.946

V V

 −   − − − −   −  = =− − −   − −−     − − 



such that

11 12
21 22

(3 5) (3 2)
(4 5) (4 2)

D DU QV D D D
   × ×  = = =     × ×  

T

where



28

1 1

1 1

1 0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

c s

s cD

         −=           

.

The diagonal elements 1c  and 1s  are given in Table 2. Note that 2 2
1 1 1c s+ = , and so the matrix D is

orthogonal, too. Also note 21D  and 12D  are not classical diagonal matrices as the diagonal starts in

the lower right corner and not in the upper left one.

Table 2: Diagonal elements 1 1,c s

i ic is

1 0.981 975 0.189 010

(iv) Generalized singular value decomposition and canonical model

Now we have

( | )      and     X F P Q Q UDV= ∆ =T T ,

and from this we find the so-called generalized singular value decomposition of the pair ,X F

(3) 1 0 1 11

2 0 1 21

,

,

P XU V D

P FU V D

=∆

=∆

T T

T T

where 0 1 5(5 5) diag( , , )σ σ∆ = × = …  and where 1 5, ,σ σ…  are the singular values of ( | )X F  as given

above. Our model (2) can now be written in the canonical form

(4) 1 2y D D uβ= + ,

where
1

1 0

1

2

,

,

,

y V P y

U

u U u

β β

−= ∆

=

=

T T

T

T

1
1 11

1
2 21

1 0 0
0 0

(5 3) ,0 0 0
0 0 0
0 0 0

0 0 0 0
0 0 0

(5 4) ,0 1 0 0
0 0 1 0
0 0 0 1

c
D D

s
D D

     = = × =      
     = = × =       

T

T

The generalized singular value decomposition (3) shows that 11 1rk( ) rk( ) rk( ) 2X D D= = =  and

21 2rk( ) rk( ) rk( ) 4F D D= = = . The canonical model (4) explicitly written has the form
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(5)

1 1

2 1 2 1 1

3 2

4 3

5 4

,

,
,
,
.

y

y c s u
y u
y u
y u

β
β

=

= +
=
=
=

The observation 1y  is identical to the parameter 1β , this observation has no random error. As the co-

variance matrix (5 5)W = ×  has rank 4 there exists a linear combination 1y  of the original observa-

tions ( 1, , ny y… ) with no random error, and there exists a linear combination 1β  of the original pa-

rameters ( 1, , pβ β… ) such that 1 1y β= . The parameter 3β  can have arbitrary values as it does not

show up in the canonical model, and we set this parameter to zero (minimum length definition). The
least squares estimators are given by

1 1

2 2 1

3

ˆ ,
ˆ ,
ˆ 0.

y

y c

β

β

β

=

=

=

In matrix notation we can write

11 1

1 0 0 0 0
ˆ    as   0 1 0 0 0

0 0 0 0 0
D y D cβ + +

   = =    
,

2
12 2

2 2

0 0 0 0 0
0 0 0 0

var( ) 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

s
y D Dσ σ

       = =        

T

2 2 2 2 2
2 2 1 1 01 1 1 1

0 0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0 0
D y D D D D D s c Dβ σ σ σ+ + + +

    = = = =    

T T T .

For the original parameters we obtain
2

1 1 1 1 1 0 1
ˆ ˆˆ ˆ, , var( ) var( )U U U U U D Uβ β β β β β σ= = = =T T .

The unknown variance 2σ  is estimated by
2 2 2 21

3 4 53ˆ ( )y y yσ = + + .

Remark
In our example we have 5n= , 3p=  and

rk( ) 2 3
rk( ) rk( ) 4 5
rk( | ) 5

1 0

X

F

c

X F c

r X p
r F W k n
r X F n
r r r r

= = < =
= = = = < =
= = =
= + − = >

and this is the most general case of a general linear model with cr n= . In the canonical model (5) we

have three categories of observations:
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(a) observations with no random error, that are identical to a parameter ( 1y  in the example);

number of these observations: 5 4 1X F Wr r n r n r− = − = − = − = ;

(b) "classical" observations, that depend on the parameters and possess a random error ( 2y  in the

example); number of these observations: 1r= ;
(c) observations, that do not depend on the parameters and possess a random error ( 3y , 4y , and 5y

in the example); number of these observations: 4 1 3Fr r− = − = .

Furthermore we have three categories of parameters:
(α) parameters, that are completely fixed by the observations ( 1β  in the example); number of these

parameters: 2 1 1Xr r− = − = ;

(β) "classical" parameters, that can be estimated with a random error ( 2β  in the example); number

of these parameters: 1r= ;
(γ) parameters that do not show up in the canonical model ( 3β  in the example); these parameters

can have arbitrary values and they can be set to zero in order to make all parameters identifiable
(minimum length definition); number of these parameters: 3 2 1Xp r− = − = .

Final remark
If the matrices X and W are nearly rank deficient the rank-k approximation should be applied as de-
scribed in Example 9 so that the ranks become numerically stable in the sense that small perturbations
of the matrix elements cannot reduce the rank further.
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Example 8: General linear model with rank deficient X, W, and (X | F)

In this example we consider again the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = × ,

but now both matrices X and W are rank deficient, i.e. rk( )X p<  and rk( )W n< , and in addition

rk( | )X F n< . Let

1 2 3

3 2 4
1 9 7

( , , ) (5 3) 4 1 7
7 2 12
5 6 4

X x x x

   −   = = × =      

 

as in Example 5. We have 3 1 22x x x= − , i.e. the third column of X is a linear combination of the first

two columns, and so the matrix X has rank 2. Let

0

2 4.5 4
0.5 3.5 7

(5 3) 3.5 1.5 7
2 4.5 12
3 4 4

F

   − −   = × = −   −    − − 

;

note that the last column of 0F  is identical to the last column of X. The singular values of X, F, and

( | )X F  are given in the following table.

Table 1: Singular values of 0 0, , ( | ),X F X F W

(5 3)X = × 0 (5 5)F = × 0( | )X F W

singular values
18.802
12.103

0

       

16.939
8.211
4.487

       

25.216
13.519
6.153
4.248

0

             

286.942
67.425
20.133

0
0

             

Now we define

0

40.25 42.75 28.25 31.75 8
61.5 42 67.25 15.5

(5 5) 63.5 97.75 23.5
168.25 60

41

W F F

 − −   ∗ − − −   = = × = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T
0 .

0W  is a symmetric and positive semidefinite matrix with rank 3 as rk( ) rk( ) 3W F= = . The singular

values of W are given in Table 1. We now consider the general linear model (1) with X and W as given

above. As ( ) 3rk W n= <  the inverse 1W−  does not exist and so the classical Aitken procedure as

well as the procedure with the simple singular value decomposition cannot work. So we apply the
procedure with the generalized singular value decomposition.

(i) Factorization of W

We want to find a matrix ( )F n k= ×  such that W FF= T  where ( ) 3k rk W= = . The eigenvalue de-

composition of W is given by W R R= Λ T , where R is orthogonal and 1 5(5 5) diag( , , )λ λΛ= × = … ,

i iλ σ=  (as W is positive semidefinite). As the two smallest eigenvalues are zero we set 

(2) 1 2 3(5 3) diag( , , )D λ λ λ= × =   and  (5 3)F RD= × = .
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We obtain
3.444 5.327 0.093
6.155 4.091 2.623
7.602 0.347 2.365

12.748 2.294 0.695
4.112 4.114 2.677

F RD

 −    − −   = ≈ − −    − − −     − − 

.

Note that F is different from 0F , but the singular values of F and 0F  are the same as the squared val-

ues are the singular values of W (compare Table 1 and Table 2). As (5 5)DD = × =ΛT  we have

FF RDD R R R W= = Λ =T T T T . The random error of our model (1) can now be written in the form
2 2  with  ~ (0, ), i.e. with  E( ) 0 and var( )k kFu u I u u Iε σ σ= = = ,

as E( ) E( ) 0Fuε = =  and 2 2var( ) E( ) E( )F uu F FF Wε εε σ σ= = = =T T T T . So model (1) can also be

given as

(3) ( )2,   where  ( ), ( ), ~ 0, ky X Fu X n p F n k u Iβ σ= + = × = × .

with (5 3)X = ×  and (5 3)F = ×  as given above.

Table 2: Singular values of , , ( | )X F X F

(5 3)X = × (5 5)F = × ( | )X F

singular values
18.802
12.103

0

       

16.939
8.211
4.487

       

25.216
13.519
6.153
4.248

0

             

(ii) Singular value decomposition of ( | )X F

We have ( ) (5 3)X n p= × = ×  and ( ) (5 3)F n k= × = ×  and so ( | ) ( ) (5 6)X F n m= × = × , where

6m p k= + = . Now we compute the singular value decomposition of ( | )X F :

( | )X F P Q= ∆ T ,

where (5 5)P= ×  and (7 7)Q= ×  are orthogonal and 1 5(5 7) diag( , , )σ σ∆= × = … . We obtain

0.239 0.061 0.889 0.358 0.144
0.308 0.835 0.256 0.347 0.147
0.441 0.021 0.200 0.498 0.719
0.752 0.140 0.192 0.230 0.570
0.298 0.528 0.260 0.671 0.339

P

 − −   − − −   = −   − − −     − − − 

and the singular values 1 5, ,σ σ…  are given in Table 2.

(iii) CS-decomposition of Q

Now rk( | ) 4cr X F n= = <  and therefore we will find in our canonical model an additional category

of observations. First we have to determine the CS-decomposition of ( ) (6 6)Q m m= × = ×  with the

format 

11 12
21 22

( ) ( ( )) (3 4) (3 2)
( ) ( ( )) (3 4) (3 2)

c c
c c

p r p m rQ QQ Q Q k r k m r
    × × − × ×  = = =     × × − × ×     

. 

We obtain orthogonal matrices 
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1
2

0 (3 3)(6 6) 0 (3 3)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (4 4)(6 6) 0 (2 2)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.447 0.365 0.816 0.974 0.226 0
0.894 0.183 0.408 , 0.124 0.535 0.836

0 0.913 0.408 0.189 0.814 0.549
U U

   − − −     = − = − − −        − − −   

1 2

0.209 0.965 0.156 0.009
0.863 0.236 0.281 0.347 0.690 0.724,0.419 0.044 0.240 0.875 0.724 0.690
0.191 0.104 0.916 0.338

V V

 − −     − − −  = =   − − − −     − 

such that

11 12
21 22

(3 4) (3 2)
(3 4) (3 2)

D DU QV D D D
   × ×  = = =     × ×  

T

where

1 1

1 1

1 0 0 0 0 0
0 0 0 0
0 0 0 0 0 1
0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

c s

D s c

       =  −       

.

The diagonal elements 1c  and 1s  are given in Table 3. Note that 2 2
1 1 1c s+ = , and so the matrix D is

orthogonal, too. Also note 21D  and 12D  are not classical diagonal matrices as the diagonal starts in

the lower right corner and not in the upper left one.

Table 3: Diagonal elements 1 1,c s

i ic is

1 0.738 549 0.674 200

(iv) Generalized singular value decomposition and canonical model

Now we have

( | ) and     X F P Q Q UDV= ∆ =T T ,

and from this we find the so-called generalized singular value decomposition of the pair ,X F

(4)

0
1 1 11

0
2 1 21

,0

,0

P XU V D

P FU V D

 ∆ =   
 ∆ =   

T T

T T

where 0 1 4(4 4) diag( , , )σ σ∆ = × = … ; 1 4, ,σ σ…  are the positive singular values of ( | )X F  as given

above. Our model (3) can now be written in the canonical form

(5) 0
0 1 2

(4 1) ,    where   (1 1)0
yy y D D uβ

   ×  = = = +     ×  

with
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1 0
0 1 0 0

1

2

(4 1), ,(1 1)0

,

,

yy V y y P y

U

u U u

β β

−    ×  = ∆ = = =     ×  

=

=

T T

T

T

1 11 11 2 21

1 0 0 0 0 0
0 0 0 0(4 3) , (4 3)0 0 0 0 1 0
0 0 0 0 0 1

c sD D D D
          = = × = = = × =           

T T .

The generalized singular value decomposition (4) shows that 11 1rk( ) rk( ) rk( ) 2X D D= = =  and

21 2rk( ) rk( ) rk( ) 3F D D= = = . The canonical model (5) explicitly written has the form

(6)

1 1

2 1 2 1 1

3 2

4 3

5

,

,
,
,

0.

y

y c s u
y u
y u
y

β
β

=

= +
=
=
=

We have 1 1y β=  and 5 0y = ; these two observations have no random error. As the covariance matrix

1 (5 5)W = ×  has rank 3 there exists two independent linear combinations 1y  and 5y  of the original
observations ( 1, , ny y… ) with no random error. The parameter 3β  can have arbitrary values as it does
not show up in the canonical model, and we set this parameter to zero (minimum length definition).
The least squares estimators are given by

1 1

2 2 1

3

ˆ ,
ˆ ,
ˆ 0.

y

y c

β

β

β

=

=

=

In matrix notation we can write

0 11 1

1 0 0 0
ˆ    as   0 1 0 0

0 0 0 0
D y D cβ + +

   = =     
,

22 2 10 2 2

0 0 0 0
0 0 0var( )
0 0 1 0
0 0 0 1

sy D Dσ σ

     = =       

T

2 2 2 2 2
0 2 2 1 1 01 1 1 1

0 0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0 0
D y D D D D D s c Dβ σ σ σ+ + + +

    = = = =    

T T T .

For the original parameters we obtain
2

1 1 1 1 1 0 1
ˆ ˆˆ ˆ, , var( ) var( )U U U U U D Uβ β β β β β σ= = = =T T .

The unknown variance 2σ  is estimated by
2 2 2 2 2 21 1

2 3 3 4 52 2ˆ ( ) ( )u u y y yσ = + = + + .
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Remark
In our example we have 5n= , 3p=  and

rk( ) 2 3
rk( ) rk( ) 3 5
rk( | ) 4 5

1 0

X

F

c

X F c

r X p
r F W k n
r X F n
r r r r

= = < =
= = = = < =
= = < =
= + − = >

and this is the most general case of the general linear model. 

In the canonical model (6) we have four categories of observations:
(a) observations with no random error, that are identical to a parameter ( 1y  in the example);

number of these observations: 2 1 1Xr r− = − = ;

(b) "classical" observations, that depend on the parameters and possess a random error ( 2y  in the

example); number of these observations: 1r= ;
(c) observations, that do not depend on the parameters and possess a random error ( 3y  and 4y  in

the example); number of these observations: 3 1 2Fr r− = − = ;

(d) observations, that are identical to zero ( 5y  in the example); number of these observations:

5 4 1cn r− = − = .

The number of observations in categories (a) and (d) that possess no random error is
( ) ( ) rk( ) 5 3 2X c Fr r n r n r n W− + − = − = − = − = .

Furthermore we have three categories of parameters:
(α) parameters, that are completely fixed by the observations ( 1β  in the example); number of these

parameters: 2 1 1Xr r− = − = ;

(β) "classical" parameters, that can be estimated with a random error ( 2β  in the example); number

of these parameters: 1r= ;
(γ) parameters that do not show up in the canonical model ( 3β  in the example); these parameters

can have arbitrary values and they can be set to zero in order to make all parameters identifiable
(minimum length definition); number of these parameters: 3 2 1Xp r− = − = .
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Example 9: General linear model with nearly rank deficient X, W, and (X | F)

In this example we consider again the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = × ,

but now both matrices X and W are nearly rank deficient, and in addition ( | )X F  is nearly rank defi-

cient. Let

0 1 2 3

3 2 4
1 9 7

( , , ) (5 3) 4 1 7
7 2 12
5 6 4

X x x x

   −   = = × =       

 

0X  is the same as X in Example 8. We have 3 1 22x x x= − , i.e. the third column of 0X  is a linear

combination of the first two columns, and so the matrix 0X  has rank 2. Now let 

3.0002 1.9996 4.0002
1.0005 8.9998 6.9996

(5 3) 3.9999 0.9999 7.0002
6.9995 1.9995 11.9998
5.0003 5.9997 3.9999

X

   −   = × =        

.

If ( )ijX x=  and (0)
0 ( )ijX x=  we have (0)max 0.0005ij ijx x− =  and so 0X X≈ , but X has full rank 3

whereas 0X  has rank 2 (see the list of singular values below). So X is nearly rank deficient. Let

0

2 4.5 4
0.5 3.5 7

(5 3) 3.5 1.5 7
2 4.5 12
3 4 4

F

   − −   = × = −   −    − − 

.

0F  is the same as F in Example 8. Note that the last column of 0F  is identical to the last column

of 0X . Now let

0 0 0

40.25 42.75 28.25 31.75 8
61.5 42 67.25 15.5

(5 5) 63.5 97.75 23.5
168.25 60

41

W F F

 − −   ∗ − − −   = = × = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T

 

40.251 42.751 28.249 31.747 7.997
61.502 42.001 67.248 15.501

(5 5) 63.499 97.751 23.497
168.253 59.999

40.995

W

 − −   ∗ − − −   = × = ∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

If ( )ijW w=  and  (0)
0 ( )ijW w=  we have (0)max 0.005ij ijw w− =  and so 0W W≈ , but W has full rank

5 whereas 0W  has rank 3, the same as 0F  (see the list of singular values below). So also W is nearly

rank deficient. The singular values of 0 0 0, , , ,X X F W W  are given in Table 1. The singular values of

0 0 0W F F= T  are the square of the corresponding singular values of 0F . Table 2 shows that the small

perturbations added to W make the matrix indefinite as one of the five eigenvalues becomes negative.
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Table 1: Singular values of 0 0 0, , , ,X X F W W

0 (5 3)X = × (5 3)X = × 0 (5 3)F = × 0 (5 5)W = × (5 5)W = ×

Singular values
18.8018
12.1034

0

       

18.8014
12.1031

0.000 328

       

16.9394
8.2113
4.4870

       

286.9422
67.4248
20.1330

0
0

             

286.9421
67.4244
20.1343
0.0024
0.0017

             

Table 2: Eigenvalues of 0 ,W W

0 (5 5)W = × (5 5)W = ×

Eigenvalues

286.9422
67.4248
20.1330

0
0

             

286.9421
67.4244
20.1343
0.0017
0.0024

            − 

(i) Rank-k approximation and factorization of W

Table 2 shows that all the eigenvalues of 0W  are non-negative and so 0W  is a positive semidefinite

matrix, but this is not true for the matrix W; due to the small perturbations added to 0W  the rank of W

has been enhanced from three to five and W has become indefinite. We want to find an approximation

to W with a numerically stable rank. As the elements of W are given with three decimal places the two

smallest singular values 0.0024 and 0.0017 are near the rounding error of W, we determine the rank-3

approximation of W. This approximation will give a matrix (1)
1 ( )ijW w=  with 1rk( ) 3W =  and

(1)
4max 0.0024ij ijw w σ− ≤ = . The singular value decomposition of W is given by W UDV= T  where

(5 5)U = ×  and (5 5)V = ×  are orthogonal and 1 5(5 5) diag( , , )D σ σ= × = … ; 1 5, ,σ σ…  are the sin-

gular values of W. Now define 1W  as

(2) 1 1 1( )W UD V UD U= =T T  where 1 1 2 3(5 5) diag( , , ,0,0)D σ σ σ= × = .

Obviously 1rk( ) 3W =  and we obtain (1)
4max 0.000 928 0.0024ij ijw w σ− = ≤ = ; so 1W W≈ . The

rank of 1W  is numerically stable in the sense that it cannot be reduced by small perturbations of the

matrix elements (1)
ijw . In a second step we have to factorize 1W  such that 1 1 1W F F= T  with

1 (5 3)F = × . Let 2 1 2 3(5 3) diag( , , )D σ σ σ= × =  and 1 2F UD= . Then

1 1 2 2 1 1F F UD D U UD U W= = =T T T T . So 1 1 1W F F= T  and 1W  is positive semidefinite.

(ii) Rank-k approximation of ( )X n p= ×

The elements of X are given with four decimal places and the smallest singular value 0.000 328 is near

the rounding error of X, and so we determine the rank-2 approximation of X. This approximation will

give a matrix (1)
1 ( )ijX x=  with 1rk( ) 2X =  and (1)

3max 0.000 328ij ijx x σ− ≤ = . The singular value

decomposition of (5 3)X = ×  is given by X UDV= T  where (5 5)U = ×  and (3 3)V = ×  are or-

thogonal and 1 2 3(5 3) diag( , , )D σ σ σ= × = ; 1 2 3, ,σ σ σ  are the singular values of X. Now define 1X  as
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(3) 1 1X UD V= T  where 1 1 2(5 3) diag( , ,0)D σ σ= × = .

Obviously 1rk( ) 2X =  and we obtain (1)
3max 0.000152 0.000 328ij ijx x σ− = ≤ = ; so 1X X≈ .

(iii) Rank-k approximation of 1 1( | )X F

Table 3 gives the singular values of 1 1( | )X F . The smallest singular value of 1 1( | )X F  is near the

rounding error of X, and so we determine the rank-4 approximation of 1 1( | )X F . The singular value

Table 3: Singular values of 1 1 1 1, , ( | )X F X F

1 (5 3)X = × 1 (5 3)F = × 1 1( | ) (5 6)X F = ×

singular values
18.8014
12.1031

0

       

16.9394
8.2112
4.4871

       

25.2152
13.5189
6.1533
4.2484

0.000107

             

decomposition of 1 1( | )X F  is given by 

(4) 1 1( | )X F P Q= ∆ T

where (5 5)P= ×  and (6 6)Q= ×  are orthogonal and 1 5(5 6) diag( , , )σ σ∆= × = … ; 1 5, ,σ σ…  are the

singular values of 1 1( | )X F . Now we define 2 2( | )X F  as

(5) 2 2 1( | )X F P Q= ∆ T  where 1 1 2 3 4(5 6) diag( , , , ,0)σ σ σ σ∆ = × = .

We have (1) (2)max 0.000 047ij ijx x− =  and (1) (2)max 0.000 055ij ijf f− = ; so 1 2X X≈  and 1 2F F≈ .

The singular values of 2 2( | )X F  are given in Table 4. Note that 2X  has the same rank as 1X ; it is

remarkable that a rank-k approximation of 1 1( | )X F  cannot raise the rank of 1X .

Now we have (2)max 0.000152ij ijx x− =  and (2)max 0.001725ij ijw w− = , where 2 2 2W F F= T . In-

stead of the original linear model (1) we now consider the approximate model

(6) ( )2
2 2 2 2 2 2,  where  ( )  and ~ 0, ,y X X n p X W W F F Wβ ε ε σ= + = × ≈ = ≈T ,

and this model is equivalent to

(7) 2
2 2 2 2,  where ( ), ( ),  and ~ (0, )ky X F u X n p F n k u Iβ σ= + = × = ×

with 5, 3, 3n p k= = = . The singular values of 2 2,X F  and 2 2( | )X F  are given in Table 4; we are

now in exactly the same situation as in Example 8 (see Table 2 there), and we now proceed as there.

Table 4: Singular values of 2 2 2 2, , ( | )X F X F

2 (5 3)X = × 2 (5 3)F = ×

2 2( | ) (5 6)X F = ×

singular values
18.8014
12.1031

0

       

16.9394
8.2112
4.4871

       

25.2152
13.5189
6.1533
4.2484

0
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(iv) CS-decomposition of Q

The singular value decomposition of 2 2( | )X F  is given in (5), and we have 2 2rk( | ) 4cr X F= = . Now

we have to determine the CS-decomposition of ( ) (6 6)Q m m= × = ×  with the format 

( ) ( ( )) (3 4) (3 2)
( ) ( ( )) (3 4) (3 2)

c c
c c

p r p m r
k r k m r

   × × − × ×  =   × × − × ×   
.

We obtain orthogonal matrices 

1
2

0 (3 3)(6 6) 0 (3 3)
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 (4 4)(6 6) 0 (2 2)
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.447 0.365 0.816 0.974 0 0.226
0.894 0.183 0.408 , 0.124 0.835 0.535
0.000 0.913 0.408 0.189 0.550 0.814

U U
   − − − −     = − = − − −        − − − −   

1 2

0.209 0.965 0.009 0.157
0.863 0.236 0.347 0.281 1 0,0.419 0.043 0.875 0.240 0 1
0.191 0.104 0.338 0.916

V V

 − −     − −  = =   −      − 

such that

(8) 11 12
21 22

(3 4) (3 2)
(3 4) (3 2)

D DU QV D D D
   × ×  = = =     × ×  

T

where

(9)
1 1

1 1

1 0 0 0 0 0
0 0 0 0
0 0 0 0 0 1
0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

c s

D s c

       =  −       

;

the diagonal elements 1c  and 1s  are given in Table 5. Note that 2 2
1 1 1c s+ =  for 1,2i= , and so the

matrix D is orthogonal, too. 

Table 5: Diagonal elements 1 1,c s

i ic is

1 0.738 539 0.674 211

(v) Generalized singular value decomposition and canonical model
Now we have

(10) 2 2 1( | )    and   ,X F P Q Q UDV= ∆ =T T

and from this we find the so-called generalized singular value decomposition of 2 2,X F

0
2 1 1 11

0
2 2 1 21

,0

,0

P X U V D

P F U V D

 ∆ =   
 ∆ =   

T T

T T
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where 0 1 4(4 4) diag( , , )σ σ∆ = × = …  is the reduced form of 1 1 4(5 6) diag( , , ,0)σ σ∆ = × = … . Our

model (7) can now be written in the canonical form

(11) 0
0 1 2

(4 1) , where  (1 1)0
yy y D D uβ

   ×  = = = +     ×  
,

with

1 0
0 1 0 0

1

2

, 0

,

,

yy V y y P y

U

u U u

β β

−  = ∆ = =   

=

=

T T

T

T

11 11

1 0 0
0 0(4 3) 0 0 0
0 0 0

cD D
    = = × =     

T ,     12 21

0 0 0
0 0(4 3) 0 1 0

0 0 1

sD D
    = = × =     

T ,

0.239 0.061 0.889 0.358 0.144
0.308 0.835 0.256 0.347 0.147
0.441 0.021 0.200 0.498 0.719
0.752 0.140 0.192 0.230 0.570
0.298 0.528 0.260 0.671 0.339

P

 − − − −   − − −   = −   −     − 

,

and so

(12)

1 1

2 1 2 1 1

3 2

4 3

5

,

,
,
,

0.

y

y c s u
y u
y u
y

β
β

=

= +
=
=
=

We have 1 1y β=  and 5 0y = ; these two observations have no random error. As the covariance matrix

1 (5 5)W = ×  has rank 3 there exists two independent linear combinations 1y  and 5y  of the original

observations ( 1, , ny y… ) with no random error. The parameter 3β  can have arbitrary values as it does

not show up in the canonical model, and we set this parameter to zero (minimum length definition).
The least squares estimators are given by

1 1

2 2 1

3

ˆ ,
ˆ ,
ˆ 0.

y

y c

β

β

β

=

=

=

In matrix notation we can write

0 11 1

1 0 0 0
ˆ    as   0 1 0 0

0 0 0 0
D y D cβ + +

   = =     
,

22 2 10 2 2

0 0 0 0
0 0 0var( )
0 0 1 0
0 0 0 1

sy D Dσ σ

     = =       

T ,

2 2 2 2 2
red 2 2 1 1 01 1 1 1

0 0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0 0
D y D D D D D s c Dβ σ σ σ+ + + +

    = = = =    

T T T .
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The unknown variance 2σ  is estimated by  2 2 2 2 2 21 1
2 3 3 4 52 2ˆ ( ) ( )u u y y yσ = + = + + . Note that the ma-

trices 1 2, ,P U U  and the diagonal elements 1c  and 1s  are essentially the same as in Example 8, and so

the rank-k approximation allows to eliminate small perturbations in the original matrices X and W so

that we can find matrices with numerically stable ranks in the sense that the ranks cannot be reduced

further by small alterations of the matrix elements.

Example 10: General linear model with linear restrictions, regular case

In this example we consider the general linear model

(1) ( )2,  where ( ) and ~ 0,y X X n p Wβ ε ε σ= + = ×  with linear restrictions L cβ = .

Here the error variables 1, , nε ε…  are correlated with covariance matrix 2Wσ , where 2σ  is unknown

and ( )W n n= ×  is a known positive semidefinite matrix. ( )L r p= ×  and ( 1)c r= ×  are given, too.

Let

(2)

3 2 3
1 9 8

(5 3) 4 1 4
7 2 0
5 6 5

X

     = × =       
as in Example 4. From Table 1 we see that all singular values of X are positive and so rk( ) 3X = .

Furthermore let

0

4 9 8 5 6
1 7 9 5 7

(5 5) 7 3 9 4 9
4 9 5 9 8
6 8 7 6 1

F

 − −   − − − −   = × = − −   − −    − − − 
and now we define

(3) 1
0 0 017

13.059 3.765 6.294 1.294 0.941
12.059 0.588 1.941 0.588

(5 5) 13.882 12.235 0.706
15.706 1.235

10.941

W F F W

 − − −   ∗ −   = = × ≈ =∗ ∗   ∗ ∗ ∗     ∗ ∗ ∗ ∗ 

T .

W is the matrix 0W  rounded to three decimal places. The singular values of W are given in Table 1,

they are all positive, and so the symmetric matrix W has full rank 5 and is positive definite. In addition
we assume that the linear restriction
(4) 1 2 3 17β β β− + =
must be fulfilled. (4) can be written as

  with  (1, 1,1)  and  (17)L c L cβ = = − = .

The linear model (1) including the restriction (4) can be written as an extended general linear model

(5) ( )2 0,  where  ,  and ~ 0, ,0 0 0e e e e e e e e e
y X Wy X y X W Wc L

εβ ε ε σ
             = + = = = =                   

.

In the extended model we have
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(6)

( ) ( )
1 1
2 2
3 3
4 4
5 5

3 2 3
1 9 8
4 1 4, , ,7 2 0 0
5 6 5
1 1 117 0

1

0
0 0

e e e

e

y
y
yy Xy Xc Ly
y

WW

ε
ε
εεε ε
ε

                      = = = = = =                     −      

 = =  

3.059 3.765 6.294 1.294 0.941 0
12.059 0.588 1.941 0.588 0

13.882 12.235 0.706 0 .15.706 1.235 0
10.941 0

0 0 0 0 0 0

 − − −   ∗ −   ∗ ∗   ∗ ∗ ∗    ∗ ∗ ∗ ∗    

Note that ( ) (6 3)e eX n p= × = ×  and ( ) (6 6)e e eW n n= × = ×  as 5 1 6en n r= + = + = .

Table 1: Singular values of , , ,e eX X W W

(5 3)X = × (6 3)eX = × (5 5)W = × (6 6)eW = ×

singular values
16.560
7.612
2.795

       

16.565
7.665
3.136

       

27.951
18.089
10.654
8.839
0.114

             

27.951
18.089
10.654
8.839
0.114

0

                

(i) Factorization of eW

We want to find a matrix ( )e eF n k= ×  such that e e eW F F= T  where ( ) 5ek rk W= = . The eigenvalue

decomposition of eW  is given by eW R R= Λ T , where R is orthogonal and

1 6(6 6) diag( , , )λ λΛ= × = … , i iλ σ=  (as eW  is positive semidefinite). As 6 6 0λ σ= =  we set 

( ) 1 56 5 diag( , , )D λ λ= × = …   and  (6 5)eF RD= × = .

As 1 5(6 6) diag( , , ,0)DD λ λ= × = =Λ…T  we have e e eF F RDD R R R W= = Λ =T T T T . The random

error of our model can now be written in the form
2 2  with  ~ (0, ), i.e. with  E( ) 0 and var( )e e k kF u u I u u Iε σ σ= = = ,

as E( ) E( ) 0e eF uε = =  and 2 2var( ) E( ) E( )e e e e e e e eF uu F F F Wε ε ε σ σ= = = =T T T T . So model (5) is

equivalent to

(7) ( )2
5,   where  (6 3), (6 5), ~ 0,e e e e ey X F u X F u Iβ σ= + = × = × .

For eF  we obtain

(6 5)

0 0 0 0 0

eF

 ∗ ∗ ∗ ∗ ∗   ∗ ∗ ∗ ∗ ∗   ∗ ∗ ∗ ∗ ∗ = × =  ∗ ∗ ∗ ∗ ∗    ∗ ∗ ∗ ∗ ∗     

.
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(ii) Singular value decomposition of the matrix ( | )e eX F

The singular value decomposition of ( | ) ( ) (6 8)e e eX F n m= × = ×  with 3 5 8m p k= + = + =  is
given by

( | )e eX F P Q= ∆ T ,

where ( ) (6 6)e eP n n= × = ×  and ( ) (8 8)Q m m= × = ×  are orthogonal and

1 6( ) (6 8) diag( , , )en m σ σ∆= × = × = … , and where the singular values 1 6, ,σ σ…  of ( | )e eX F  are

given in the following table. We have ( | ) 6c e e er rk X F n= = = , and this simplifies the further proce-

dure.

Table 2: Singular values of , , ( | )e e e eX F X F

(6 3)eX = × (6 5)eF = × ( ) (6 8)e eX F = ×

singular values
16.565
7.665
3.136

       

5.287
4.253
3.264
2.973
0.338

             

17.013
8.838
4.607
3.685
3.277
1.047

                

(iii) CS-decomposition of Q

As rk( | ) 6c e e er X F n= = =  we have to determine the CS-decomposition of the orthogonal matrix

( ) (8 8)Q m m= × = ×  with the format 

(8) 11 12
21 22

( ) 3 6 3 2
( ) 5 6 5 2

e e
e e

p n p m nQ QQ Q Q k n k m n
    × × − × ×  = = =     × × − × ×     

. 

We obtain orthogonal matrices 

1
2

0 3 3(8 8) 0 5 5
UU U
   × ∗  = × = =     ∗ ×  

1
2

0 6 6(8 8) 0 2 2
VV V
   × ∗  = × = =     ∗ ×  

with

1 2

0.127 0.194 0.973 0 0
0.577 0.816 0.005 0.049 0.299 0.066 0.127 0.942
0.577 0.404 0.709 , 0.110 0.294 0.073 0.946 0.023
0.577 0.412 0.705 0.035 0.881 0.180 0.283 0.332

0.984 0.105 0.108 0.090 0.03

U U

− − −
  − −  = − = −    − − − − 

− − − − 8

             

1

0.237 0.371 0.888 0.123 0.017 0.047
0.469 0.587 0.436 0.480 0.113 0.053
0.384 0.415 0.095 0.143 0.061 0.804
0.016 0.235 0.024 0.508 0.779 0.281
0.531 0.521 0.027 0.100 0.419 0.511
0.543 0.141 0.105 0.683 0.44

V

− − − − − −
− − − −

− − −= − −
− − − − −

− − −

2
0.081 0.997, 0.997 0.081

8 0.087

V

        − −   =  −         

such that

11 12
21 22

3 6 3 2
5 6 5 2

D DU QV D D D
   × ×  = = =     × ×  

T

where
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1 1
2 2

1 1
2 2

1 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

c s
c s

s cD s c

         − =  −          

.

The diagonal elements ic  and is  are given in the following table. Note that 2 2 1i ic s+ =  for 1, 2i= ,

and so the matrix D is orthogonal, too.

Table 3: Diagonal elements ,i ic s

i ic is

1 0.994 856 0.101 301
2 0.978 298 0.207 204

(iv) Generalized singular value decomposition and canonical model
We now have

(9)
( | ) ,

,
e eX F P Q

Q UDV

= ∆

=

T

T

and from this we find the so-called generalized singular value decomposition of the pair ,e eX F

(10) 1 0 1 11

2 0 1 21

,

,
e

e

P X U V D

P F U V D

=∆

=∆

T T

T T

where 0 1 6(6 6) diag( , , )σ σ∆ = × = …  and where 1 6, ,σ σ…  are the singular values of ( | )e eX F  as

given in Table 2. For (6 6)P= ×  we have

0.264 0.157 0.705 0.205 0.591 0.131
0.666 0.588 0.113 0.417 0.113 0.108
0.314 0.368 0.437 0.378 0.546 0.365
0.291 0.695 0.489 0.257 0.326 0.144
0.550 0.055 0.199 0.758 0.264 0.100
0.024 0.092 0.144 0.008 0.404 0.

P

− − −
− −
− − − −= − − −
− − − − − −
− − − 898

                

.

Our model (7) can now be written in the canonical form

(11) 1 2y D D uβ= + ,

where
1

1 0 1 2, , ,ey V P y U u U uβ β−= ∆ = =T T T T

1 1
2 21 11 2 21

1 0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0(6 3) , (6 5) ,0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

c s
c sD D D D

               = = × = = = × =                 

T T

and so the canonical model explicitly written has the form
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(12)

1 1

2 1 2 1 1

3 2 3 2 2

4 3

5 4

6 5

,

,

,
,
,
.

y

y c s u

y c s u
y u
y u
y u

β
β
β

=

= +

= +
=
=
=

The least squares estimators are given by

1 1

2 2 1

3 3 2

ˆ ,
ˆ ,
ˆ .

y

y c

y c

β

β

β

=

=

=

In matrix notation we can write

11 1
2

1 0 0 0 0 0
ˆ    as   (3 6) 0 1 0 0 0 0

0 0 1 0 0 0
D y D c

c
β + +

   = = × =     
,

2
1

22 2 22 2

0 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0var( )
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

s
sy D Dσ σ

        = =         

T ,

2 2 2 2 2
2 2 1 1 01 1 1 1

2 2
2 2

0 0 0
ˆvar( ) var( )( ) ( ) 0 0

0 0
D y D D D D D s c D

s c
β σ σ σ+ + + +

    = = = =    

T T T .

For the original parameters we obtain
2

1 1 1 1 1 0 1
ˆ ˆˆ ˆ, , var( ) var( )U U U U U D Uβ β β β β β σ= = = =T T .

The unknown variance 2σ  is estimated by
2 2 2 21

4 5 63ˆ ( )y y yσ = + + .

Final Remarks
a) Note that 1 1yβ =  and according to (11) we have

1
1 1 1 0  where  ey M y M V P−= = ∆T T  and 1 5( , , ,17)ey y y= …T .

We obtain

1

0 0 0 0 0 3 3

M

   ∗ ∗ ∗ ∗ ∗ ∗   ∗ ∗ ∗ ∗ ∗ ∗ = ∗ ∗ ∗ ∗ ∗ ∗   ∗ ∗ ∗ ∗ ∗ ∗   ∗ ∗ ∗ ∗ ∗ ∗ 

,

and thus 1 1 17 3 3 9.815yβ = = × = . 1β  is completely determined by the linear restriction

1 2 3 17β β β− + =  i.e. L cβ =  with (1, 1,1)L= −  and 17c=  as 3L = .

b) The linear restriction L cβ =  holds true also for the least squares estimator β̂  as

1 1 1 1 21 1
ˆˆ

e eL LU LU D y LU D M y M yβ β + += = = =

and as ( )2 0, 0, 0, 0, 0,1M =  and 1 5( , , ,17)ey y y= …T  we have 2
ˆ 17eL M yβ = = .
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