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Abstract

Data structures in modern applications frequently combine the necessity of flexi-

ble regression techniques such as nonlinear and spatial effects with high-dimensional

covariate vectors. While estimation of the former is typically achieved by supple-

menting the likelihood with a suitable smoothness penalty, the latter are usually

assigned shrinkage penalties that enforce sparse models. In this paper, we consider a

Bayesian unifying perspective, where conditionally Gaussian priors can be assigned

to all types of regression effects. Suitable hyperprior assumptions on the variances

of the Gaussian distributions then induce the desired smoothness or sparseness

properties. As a major advantage, general Markov chain Monte Carlo simulation

algorithms can be developed that allow for the joint estimation of smooth and spa-

tial effects and regularised coefficient vectors. Two applications demonstrate the

usefulness of the proposed procedure: A geoadditive regression model for data from

the Munich rental guide and an additive probit model for the prediction of consumer

credit defaults. In both cases, high-dimensional vectors of categorical covariates will

be included in the regression models. The predictive ability of the resulting high-

dimensional structure additive regression models compared to expert models will

be of particular relevance and will be evaluated on cross-validation test data.

Key words: Bayesian Lasso; Laplace prior; Markov random fields; MCMC; penalised

splines; Ridge regression; scale mixtures.
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1 Introduction

Regression models with high-dimensional vectors of regression coefficients have gained

considerable attention within recent years. Much methodological development has been

stimulated through biological applications where the high-dimensional covariate vec-

tor represents for example gene expression measurements (Bae & Mallick 2004, Goe-

man 2007, Griffin & Brown 2007). In such applications, the number of regression coeffi-

cients may well exceed the sample size, but the predictor is still linear because the effects

of gene expressions are assumed to be linear, at least after suitable transformation and

normalisation. Regularisation in the resulting high-dimensional linear or generalised lin-

ear models is typically based on shrinkage estimators, keeping the parameters identifiable

and at the same time aiming at variable selection.

This paper is motivated through a number of consulting cases and applications in social

science, economics and public health with the following common feature: A response vari-

able of interest shall be related to a combination of high-dimensional covariate vectors with

usual linear effects, several continuous covariates with nonlinear effects of unknown func-

tional form, and possibly additional nonlinear effects of spatial or geographical location.

Thus, there is a need for flexible regression models, incorporating these different types

of covariates and effects in a structured additive predictor, and combining regularisation

with semiparametric smoothing. We will exemplarily focus on analysing regression data

from the Munich rental guide and from credit scoring. Other applications with similar

data structures include the analysis of childhood undernutrition, morbidity and mortality

in developing countries using Demographic and Health Survey (DHS) data (see for exam-

ple Kandala et al. (2001), Kandala et al. (2007) or Adebayo & Fahrmeir (2005)) or the

analysis of claim size and claim frequency in non-life insurance (Fahrmeir et al. 2007).

Previous research has mostly concentrated either on penalisation approaches for semi-

parametric smoothing (Eilers & Marx 1996, Ruppert, Wand & Carroll 2003, Fahrmeir,

Kneib & Lang 2004, Wood 2006) or on regularizing high-dimensional but exclusively linear
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predictors. Although regularisation approaches such as Ridge or Lasso regression actu-

ally fit in this framework since they also rely on penalised estimation, only very limited

work has been done for combining both approaches. A notable exception is Vandenhende

et al. (2007) where penalised spline smoothing is supplemented with Ridge regression.

Both yield quadratic penalties, allowing to apply penalised least-squares estimation or

penalised Fisher scoring.

We propose high-dimensional Bayesian structured additive regression models providing

both flexibility in smoothing nonlinear or spatial effects and the possibility to regularise

high-dimensional covariate effects. As a unifying concept, conditionally Gaussian priors

are assigned to all types of covariate effects. Suitable hyperpriors on the variances of the

Gaussian distributions then induce non-Gaussian marginal priors, enforcing the desired

smoothness or sparseness properties. Semiparametric smoothing is based on Bayesian

penalised splines with Gaussian smoothness priors, corresponding to difference penalties

for basis function coefficients, and on Gaussian Markov random field priors for spatial

effects as in Fahrmeir, Kneib & Lang (2004), Lang & Brezger (2004) or Brezger & Lang

(2006). Regularisation priors can be expressed as scale mixtures of Gaussian distributions,

including the Bayesian Lasso (Park & Casella 2008), the broader class of shrinkage priors

proposed in Griffin & Brown (2005) and Griffin & Brown (2007), and the spike and slab

prior of Ishwaran & Rao (2007), all of them suggested in the context of high-dimensional

Gaussian linear models.

The unifying framework of conditionally Gaussian priors facilitates full Bayesian Markov

chain Monte Carlo (MCMC) inference from a conceptual and implementational perspec-

tive. For Gaussian regression models or models that can be related to latent Gaussian

models, such as the probit model, full conditionals for all regression coefficients are Gaus-

sian leading to Gibbs samplers as in Section 2. For non-Gaussian exponential family

regression models, block updates for regression coefficients are obtained from Metropolis

Hastings steps with Gaussian ‘iteratively weighted least squares (IWLS)’ proposals as

outlined in Section 6.
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In many of the consulting cases and applications mentioned in the beginning, predictive

performance is at least as important as build-in variable selection properties. We inves-

tigate predictive performance exemplarily in two applications where prediction is of high

relevance.

Our first application (Section 4) is the Munich rental guide, an ongoing consulting case

for the City of Munich. The response variable of interest is the net rent per square

meter that shall be related to several hundreds of covariates characterising flats and

properties of the neighborhood. The ultimate goal of rental guides is to predict rents for

flats with a given covariate combination, providing a reference point both for landlords

and tenants. To achieve this goal, the usual strategy of selecting a suitable subset of

covariates may be deemed to be suboptimal since information may be lost when ignoring

or combining specific covariates. While the large number of observations collected in

the Munich rental guide (with a sample size of approximately n = 3, 000) renders even

hundreds of parameters identifiable, a large estimation uncertainty will be associated

with estimates that are only weakly identified. Examples may be categorical covariates

where some of the categories are only rarely observed, covariates that yield quasi-complete

separation, or covariates that are highly correlated. We will therefore supplement the high-

dimensional vector of covariates with regularisation priors that mimic Ridge and Lasso

regression. In addition, some of the covariate effects included in the data are well-known

to follow nonlinear patterns. Examples are the year of construction or the size of the

flat. From previous studies it seems difficult to approximate their effects in terms of,

for example, polynomials, hinting at the necessity to consider flexible nonlinear effects.

Moreover, spatial information on the location of the flats within Munich is available and

may provide important information in addition to the available covariates.

In our second example, we will predict failures of consumer credits in a binary regression

model from high-dimensional vectors of covariates characterising the credit holder. Again

the major aim is prediction and it will turn out to be useful to include all covariates

in a regularised fashion. While no spatial data is available in this case, the effects of
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age of the credit holder, credit amount and duration of the contract are suspected to be

of nonlinear form, yielding the necessity to combine regularisation of high-dimensional

regression coefficients with estimation of semiparametric regression models.

2 High-Dimensional Structured Additive Regression

2.1 Observation Model

This section considers Gaussian models yi|ηi ∼ N(ηi, σ
2) and binary probit models P (yi =

1|ηi) = Φ(ηi) (where Φ(·) denotes the standard normal cumulative distribution function)

with conditionally independent responses yi and (geo-) additive predictors

ηi = x′
iβ + u′

iγ + f1(zi1) + . . . + fp(zip) + fspat(si) (1)

where x represents a high-dimensional vector of covariates with regression coefficients β

that should be subject to regularisation. The additional vector of covariates u with linear

effects γ contains variables whose effects should be estimated unrestrictedly. This may,

for example, be relevant in biostatistical applications where x represents high-dimensional

gene expression data while u contains a limited number of clinical covariates. Since the

latter are deemed to be more reliable and represent the benchmark information for the

model including gene expression data, their effects should not be subject to regularisation

(Binder & Schumacher 2008). Nonlinear effects of continuous covariates z1, . . . , zp are

included in terms of the functions f1, . . . , fp. Each function is approximated through a

basis function expansion fl(zl) = bl(zl)
′αl with a vector of basis function evaluations

bl(zl) = (B1(zl), . . . , BK(zl))
′ and a vector of basis coefficients αl. We will focus on a B-

spline basis and on Bayesian P-splines (Lang & Brezger 2004, Brezger & Lang 2006), but

our approach is general and other bases may be employed as well. Spatial information,

if included in the regression model, is represented in terms of geographical regions s ∈

{1, . . . , S} the observations pertain to, leading to a spatial function fspat(s). The spatial

function is expressed in terms of parameters αs,spat = fspat(s) and spatial adjacency of the
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regions will be taken into account in their prior distribution. Extensions to other types

of responses and regression models are outlined in the discussion in Section 6 (see also

Fahrmeir, Kneib & Lang (2004)).

For the description of Bayesian inference, it will be helpful to represent model (1) in

unified vector-matrix representation as

η = Xβ + Uγ + Z1α1 + . . . + Zpαp + Zspatαspat.

where X, U , Z1, . . . , Zp are design matrices constructed from covariates and basis

functions. To unify notation, we define αspat = (. . . , αs,spat, . . .)
′ for the spatial effects and

Zspat is a zero/one incidence matrix linking observations i to the corresponding regions

si ∈ {1, . . . , S}.

2.2 Bayesian Regularisation and Smoothness Priors

For the vector γ of unregularised regression coefficients, we assume a flat prior p(γ) ∝ 1

or a weakly informative Gaussian prior γ ∼ N(0, cI), c large. Regularisation priors for

β and smoothness priors for α1, . . . ,αp,αspat have a common structure: Conditionally

upon variances, they are multivariate Gaussian. This facilitates unified formulation and

implementation of posterior inference via Gibbs sampling. However, different types of

hyperpriors for variances are considered, leading to varying properties of marginal regu-

larisation and smoothness priors.

Regularisation priors and analogue frequentist shrinkage penalties have often been devel-

oped primarily for variable selection purposes. A desirable feature for variable selection is

to shrink small effects to zero but to shrink important effects only moderately to prevent

them from large bias. Our empirical experience suggests that improved variable selection

performance does not necessarily improve prediction or classification quality, in particular

when taking computational effort into account. Therefore, we restrict presentation here to

Bayesian versions of the Ridge and Lasso penalties and mention competing regularisation

priors with good variable selection properties as discussed for example in Griffin & Brown
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(2005) and Griffin & Brown (2007), Ishwaran & Rao (2007) for Gaussian models, and in

Konrath, Kneib & Fahrmeir (2008) for hazard rate models in Section 6.

Bayesian Ridge. The Bayesian version of the Ridge penalty is obtained when assuming

(conditional) Gaussian i.i.d. priors

βj|τ 2
j

i.i.d.∼ N(0, τ 2
j ), j = 1, . . . , q,

for the components of β together with inverse Gamma hyperpriors τ 2
j

i.i.d.∼ IG(a, b) for

variances (inverse shrinkage parameters). The marginal prior for regression coefficients

is a scaled t-distribution with 2a degrees of freedom and scale parameter (b/a)0.5, see

Figure 1 for its log-density.

Bayesian Lasso. From a Bayesian perspective, the Lasso penalty with shrinkage pa-

rameter λ (Tibshirani 1996) is the log-prior derived from a Laplace distribution βj|λ i.i.d.∼

Laplace(0, λ) , compare e.g. Park & Casella (2008). Expressing the Laplace density as a

scale mixture of normals with an exponential mixing distribution, and specifying a gamma

prior for λ2 leads to the following hierarchical formulation of the Bayesian Lasso:

βj|τ 2
j

i.i.d.∼ N(0, τ 2
j ), τ 2

j |λ
i.i.d.∼ Exp(λ2/2), λ2 ∼ Ga(a, b).

Conditionally upon τ 2
j , the prior for βj is Gaussian, but the marginal prior is non-Gaussian

and can be expressed as

p(βj|a, b) =
a2a

√
π2b

Γ

(
a +

1

2

)
exp

(
β2

j

8b

)
D−2a−1



√

β2
j

2b


 . (2)

where D−2a−1 is the parabolic cylinder function (Griffin & Brown 2005, Griffin & Brown

2007). Comparing the marginal Bayesian Lasso log-prior in Figure 1 with the marginal

Ridge log-prior as well as with the frequentist Lasso and Ridge penalties, we see that

Bayesian Lasso and Ridge are not so far from each other as in their frequentist versions

although the Lasso log-prior still has somewhat heavier tails. Even more importantly, the

Bayesian Ridge has much more probability mass centered about zero, with a distinct peak
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at zero, compared to the frequentist Ridge (and Lasso) penalty. Therefore, the shrinkage

of large coefficients towards zero is only moderate while shrinkage of small coefficients

towards zero is encouraged.

Smoothness priors for functions. Priors for function parameters αl, l =

1, . . . , p, spat have the same general form. Given the variance (or inverse smoothing)

parameter δ2
l , the priors are conditionally Gaussian

p(αl|δ2
l ) ∝

(
1

δ2
l

) rank(Kl)

2

exp

(
− 1

2δ2
l

α′
lK lαl

)
. (3)

The specific form of the penalty matrix K l depends on the specific assumption made for

the function fl.

For a function fl(zl) of a continuous covariate zl, our preferred option are Bayesian P-

splines (Lang & Brezger 2004, Brezger & Lang 2006). In this case, the precision matrix

is given as K l = D′
dDd, where Dd is a matrix of first (d = 1) or second (d = 2)

order differences, and K l is partially improper with rank(K l) = K − d. Priors for other

basis function representations such as the truncated power basis for regression splines or

smoothing spline bases have the same general form.

In our application to the Munich rent data, we will choose a standard Markov random

field prior

αspat,s|αspat,r, r 6= s, δ2
spat ∼ N

(
1

|Ns|
∑

r∈Ns

αspat,r,
δ2
spat

|Ns|

)

for the spatial effects, where Ns denotes the set of neighbors to region s. The re-

sulting penalty matrix Kspat is an adjacency matrix with entries |Ns| on the diagonal

and −1 on the off-diagonals whenever two regions are neighbors. As a consequence,

rank(Kspat) = S − 1, i.e. the spatial prior is partially improper again. Other options for

modelling spatial effects like proper Gaussian conditional autoregressive (CAR) models

and stationary Gaussian random field (Kriging) models are proper, but with the same

general form, see Rue & Held (2005) or Banerjee, Carlin & Gelfand (2003).

8



In all cases, we assume inverse Gamma priors

δ2
l ∼ IG(al, bl)

with small values al = bl = ε > 0 as a standard option. Note however, that a flat prior

p(δl) ∝ 1, recommended by Gelman (2006), can be written as an improper IG-prior as

well with al = −0.5, bl = 0.

Summarizing, we recognise the common structure of Bayesian regularisation and smooth-

ness priors: Given the variance parameters τ 2
j , j = 1, . . . , q, in regularisation priors and

δ2
l ,, l = 1, . . . , p, spat in smoothness priors, the corresponding prior distributions for

β = (β1, . . . , βj, . . . , βq)
′ and αl are conditionally Gaussian N(0,P −1

β ) and N(0,P−1
l ),

with precision matrices

P β = diag(1/τ 2
1 , . . . , 1/τ 2

q ), P l = K l/δ
2
l .

Formally, flat priors p(γ) ∝ 1 for unregularised regression parameters can be expressed

in the same form with P γ = 0.

The difference in marginal priors comes from different assumptions on variance parameters

at further stages of the hierarchical priors. As a particular advantage, this leads to unified

Gibbs or MCMC schemes for posterior inference.

Finally, we assume an inverse Gamma prior σ2 ∼ IG(aσ, bσ) for the variance in Gaussian

observation models yi ∼ N(ηi, σ
2).

3 Posterior Inference

For Gaussian responses, full conditionals for the vectors β and γ of regularised and un-

regularised regression parameters as well for function parameters are Gaussian:

• β| · ∼ N(µβ,Σβ) where

µβ = Σβ

1

σ2
X ′(y − η−β), Σβ =

(
1

σ2
X ′X + P β

)−1

and η−β = η −Xβ.
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• γ| · ∼ N(µγ ,Σγ) where

µγ = Σγ

1

σ2
U ′(y − η−γ), Σγ = σ2(U ′U )−1

and η−γ = η −Uγ.

• αl| · ∼ N(µl,Σl), l = 1, . . . , p, spat where

µl = Σα

1

σ2
Z ′

l(y − η−l), Σl =

(
1

σ2
Z ′

lZ l + P l

)−1

.

and η−l = η −Z lαl.

For variance and shrinkage parameters, full conditionals are as follows

• Bayesian Ridge:

τ 2
j | · ∼ IG

(
a +

q

2
, b +

1

2
β2

j

)
.

• Bayesian Lasso:

1

τ 2
j

∣∣∣∣ · ∼ InvGauss

( |λ|
|βj|

, λ2

)
, λ2| · ∼ Ga

(
a + q, b +

1

2

q∑

j=1

τ 2
j

)
.

• Smoothing variances:

δ2
l | · ∼ IG

(
al +

rank(K l)

2
, bl +

1

2
αlK lαl

)
.

• Error variance:

σ2| · ∼ IG

(
aσ +

n

2
, bσ +

1

2

n∑

i=1

(yi − ηi)
2

)

Drawing samples iteratively from these full conditionals results in a Gibbs sampler, with-

out any further need for tuning. Still, some of the updating steps require additional

comments. For the high-dimensional vector β, it will typically be necessary to apply a

block-update since a complete update will lead to very long computation times due to

the high-dimensional matrix computations involved. We consider blocks of 20 parameters

per default. For the smooth and spatial effects, one can take advantage of sparse matrix

structures since the precision matrix of the full conditional has band structure (P-splines)
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or is at least close to a band matrix (spatial effects). Employing sparse matrix compu-

tations (such as the sparse matrix Cholesky decomposition) as described in Rue & Held

(2005), the simulation of the high-dimensional Gaussian effects becomes feasible even in

case of large spatial effects as in the Munich rental guide example with approximately 400

regions.

For binary probit models yi ∼ B(1, πi), πi = Φ(ηi), a Gibbs sampler can be constructed

using auxiliary Gaussian responses ỹi ∼ N(ηi, 1) related to yi via the threshold relation

yi = 1 ⇐⇒ ỹi > 0,

following Albert & Chib (1993) for linear predictors and Fahrmeir & Lang (2001b) for

categorical response models with geoadditive predictors. This requires additional samples

from truncated normals that are arising as the resulting full conditionals for the auxiliary

variables ỹi. The remaining steps for drawing from full conditionals for regression and

variance parameters are essentially the same as for Gaussian models, replacing yi, through

ỹi and omitting sampling for σ2.

4 Munich Rental Guide

According to German law, increases in rents for flats can be justified based on “average

rents” paid for flats that are comparable in size, equipment, quality and location. As

a consequence, most larger cities publish rental guides that provide such average rents,

obtained from regression models with net rents or net rents per square meter as dependent

variables and characteristics of the flat as explanatory variables. For short, the aim of

rental guides is to predict net rents based on a potentially large set of covariates.

In the following, we will analyse data on approximately 3,000 flats in the City of Mu-

nich collected by Infratest Sozialforschung for the 2007 rental guide (see http://www.

muenchen.de/mietspiegel for the official documentation of the 2007 rental guide). The

original data (that are available for research purposes upon request) contain approxi-
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mately 250 covariates describing characteristics of the flats as diverse as the quality of

bathroom equipment, whether the flat is rented for the first time, the presence of a garden

or a balcony, etc. While most of the covariates are categorical, there are some continuous

covariates of designated interest. These are the size of the flat and the age of the building

in which the flat is located. Both are well-known from previous analyses to have nonlinear

impact on the net rent. Moreover, a spatial variable is available that represents the sub-

quarter of Munich where the flat is located. Although a variable representing the expert

assessment of the location (with the three categories average, high, highest) is available,

it has been shown that a more detailed treatment of the spatial effect usually leads to

better predictions of the net rent.

Based on the previous considerations, we will predict net rents per square meter from a

high-dimensional geoadditive regression model

netrent i = γ0 + x′
iβ + f1(size i) + f2(year i) + fspat(si) + εi

where γ0 corresponds to an unpenalised intercept, xi represents a 238-dimensional vector

of mostly categorical covariates with effects summarised in the vector β that is assigned

an appropriate shrinkage prior. To be more specific, we will consider Bayesian Ridge and

Bayesian Lasso priors. The functions f1 and f2 are smooth functions of the continuous

covariates size of the flat (size, in square meters) and year of construction (year , in

years). Both functions are modelled as Bayesian cubic P-splines with twenty inner knots

and second order random walk prior. The spatial effect is assigned a Markov random field

prior based on the discrete spatial information on the 411 subquartes of Munich.

To contrast the high-dimensional geoadditive model, we considered the expert model used

in the 2007 Munich rental guide (and applied to a data set from previous years in Fahrmeir

& Lang (2001a)) as a benchmark for regularised estimation with Ridge or Lasso priors. In

the expert model, the number of influential variables is reduced by combining and deleting

specific variables in a combination of knowledge from previous rental guides and stepwise

variable selection methods. This yields a model specification with 28 explanatory variables
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that are assigned flat, noninformative priors. Size of the flat, year of construction and

location are treated exactly as in the regularised model, i.e. they are modelled flexibly

with penalised spline and Markov random field priors.

Figures 2 and 3 visualise the estimated nonlinear and spatial effects for the three models

considered. While the effect of size is rather independent of the model specification, some

differences can be observed for the year of construction. Both regularised approaches yield

very comparable results while the curve for the expert model shows a higher increase for

very old flats and a smaller increase for very new flats. It is also interesting to note that

the width of the 95% pointwise confidence intervals does not increase when moving from

the expert model with a moderate number of regressors to the high-dimensional models.

Obviously, the regularisation priors introduce enough penalisation to yield an effective

parameter count that is much smaller than the actual number of regression coefficients.

For the spatial effect, point estimates are again close to each other for all three models.

Surprisingly, it is possible to identify an even clearer spatial pattern in this case, with more

pointwise significant effects when considering the high-dimensional geoadditive models.

When interpreting the estimated nonlinear effects, all three models show the expected

results with high net rents per square meter for smaller flats and only very little variation

for flats of size larger than about 50 square meters. While the regularised high-dimensional

models identify no effect for old buildings since the point estimate is very close to zero, the

expert model identifies a positive effect (though zero is mostly included in the confidence

bands) for old buildings. All three models pick up the expected decrease in net rents for

buildings constructed during the 1950s to 1970s, while rents start to increase again for

newly constructed buildings. The spatial effect identifies increased rents for flats in the

center of Munich, although several of the categorical covariates already try to account for

the higher life quality in the city center and some expensive subquarters in the southern

part of Munich. In contrast, significantly negative effects are found for some subquarters

at the border of Munich.

Table 1 shows estimated regularised effects for the subset of covariates with associated
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posterior probabilities smaller than 0.05 in either the Bayesian Lasso or the Bayesian

Ridge model. While the posterior probabilities are in good agreement between the two

regularisation approaches, the estimated effects show quite some differences. In partic-

ular, the absolute value of the estimated effects is mostly larger for the Lasso whenever

differences of a certain magnitude are observed. This confirms the intuition that the Lasso

induces less penalisation for larger effects due to the heavier tails of the corresponding

prior density. It turns out that the dummy for company housing is a variable with very

high impact, leading to a reduction of about one Euro for the net rent per square me-

ter. This of course perfectly makes sense since companies will typically rent flats to their

employees for a lower charge. Several other covariates included in the list in Table 1

correspond to specific equipment of the flat such as different types of floor material or the

availability of an intercom system.

In summary, the estimated nonlinear and spatial effects are not too different whether

a high-dimensional model is employed or not. Still there are of course differences in

the parametric part of the predictor and our original motivation was prediction-oriented,

anyway. We therefore split the data into ten mutually exclusive data sets and performed a

ten-fold cross-validation to assess the predictive ability of the three models. As a measure

for predictive quality we considered the mean-squared error of prediction, computed based

on the out of bag sample (i.e. the 10% of the data left out of the model fitting process).

Figure 4 shows a parallel coordinate plot of the mean squared error of prediction, where

each line corresponds to a specific data configuration. By connecting results for the same

data it is possible to directly compare the results obtained with the three models for a

specific data set. For all except one data set, we identify a strong gain in predictive ability

by introducing the high-dimensional covariate vector with any type of regularisation.

Furthermore, there seems to be a very minor preference for the Lasso but differences are

actually very small.
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5 Credit Scoring

In the second example, we are analysing data on the defaults of consumer credits well

known under the heading “German credit data” in the classification community (see for

example Michie et al. (1994) or Holmes & Adams (2002)) and available from the data

archive of the Department of Statistics at the Ludwig-Maximilians-University Munich

(http://www.stat.uni-muenchen.de/service/datenarchiv/). The data set consists

of information on 1000 consumer credits from a German bank and the major aim is to

separate credit-worthy and not credit-worthy clients based on covariates. Hence, the

response variable of interest is a binary indicator yi that specifies whether the credit has

been paid back (yi = 1, credit-worthy) or not (yi = 0, not credit-worthy). A total of

54 covariates is available to characterise the client, including information on age of the

client, credit amount and duration of the credit. These three covariates are continuous

and will be inspected for nonlinear effects in the following. The remaining covariates are

categorical and will be assigned Ridge and Lasso priors for regularisation, leading to the

binary additive probit model

P (yi = 1) = Φ(γ0 + x′
iβ + f1(age) + f2(amount) + f3(duration)).

Again the only effect that is not regularised is the overall intercept γ0.

The results from the regularised estimation schemes are compared to results from a lit-

erature model that only contains the nonlinear effects and information on three further

categorical covariates (payment of previous credits with categories good and bad; intended

use with categories professional and private; running account with categories no, medium

and good). The comparison is based on results from 10-fold cross-validation and basically

investigates the predictive ability of the models. As criteria, we considered the area under

the receiver operator characteristic (ROC) curve (AUC, Hosmer & Lemeshow (2000)) as

well as a number of scoring rules discussed in Gneiting & Raftery (2007) (hit rate, log-

arithmic score, Brier score, spherical score). All criteria are evaluated on the out-of-bag

sample, i.e. the 10% of the data left out of estimation.
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Figure 5 shows a parallel coordinate plot of the predictive performance measures that ba-

sically indicates that regularised estimation pays off in terms of predictive ability. Again,

both Lasso and Ridge regularisation are quite close to each other with a minor tendency

towards Lasso estimation. The larger variability in the results for the hit rate (i.e. the

percentage of correctly classified observations) are induced by an undesirable property of

this quantity: It does not measure how well a client is predicted in terms of the predicted

probability but is only based on a zero/one decision rule. As a consequence, there is a

hard break between clients with probabilities slightly larger or smaller than the cut-off

value of 0.5 while the other scoring rules induce a smooth transition from clients with

small probabilities to those with larger probabilities.

For illustrative purposes, Figure 6 shows the ROC curves for the three models obtained

with the full data set. It confirms the improved predictive ability of the regularised

estimation scheme since the ROC curves are consistently higher than those of the literature

model. Also, the ROC curves for Lasso and Ridge are quite close over the complete

domain.

Figure 7 shows the estimated nonlinear effects for the three models. All functions are

in very close accordance with mild deviations from linearity. The age effect indicates a

somewhat reduced credit-worthiness for young credit-holders up to an age of about 35.

For older credit-holders, the effect is mostly constant and approximately equal to zero.

The effect of the credit amount is mostly decreasing, indicating a higher probability for

larger credits not to be paid back. Similarly, long-term credits have a higher probability

of defaulting. Note that it is important to recognise that our analysis only differenti-

ates between complete payment of the credit (credit-worthy) and incomplete payment

(not credit-worthy). Especially for the amount and the duration effects, different func-

tional forms may be obtained if the paid back percentage of a credit is considered as the

dependent variable.

Table 2 shows the estimated regularised effects for the subset of covariates with poste-

rior probability less than 0.05 in either the Lasso or the Ridge model. These include
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information on several variables characterising the running account, confirming the use of

analogous variables in the literature example. In addition, some variables characterising

the intended use have highly significant impact on the probability of credit defaults.

6 Extensions

Joint regularisation and smoothing in high-dimensional structured additive regression can

be extended in several directions. For instance, other regularisation priors that can be

expressed as scale mixtures of normals can be employed instead of the Bayesian Ridge and

Lasso. Ishwaran & Rao (2007) considered the so-called spike and slab prior constructed

as a bimodal mixture of inverse Gamma priors. To be more specific, the prior variances

τ 2
j of high-dimensional covariate vectors are assigned the prior

τ 2
j ∼ (1− ω) IG(a, ν0b) + ω IG(a, ν1b)

i.e. a mixture of two inverse gamma priors with mixture probabilities ω and (1−ω). The

hyperparameters of the inverse gamma components share the parameters a and b but are

different in the parameters ν0 and ν1. These are chosen to produce a mixture where one

component is concentrated close to zero (ν0 close to zero, the spike) and one component

is clearly separated away from zero (ν1 = 1, the slab). Ishwaran & Rao (2007) have

demonstrated that the spike and slab prior has very good variable selection and oracle

properties and can also be used to select influential covariates based on the posterior

probabilities for the mixture components. The spike and slab prior is also included in our

software and is investigated in combination with smoothness priors in (Konrath, Kneib

& Fahrmeir 2008).

Additional semiparametric components such as varying coefficient and interaction terms

can be included in the predictor, specifying appropriate Gaussian priors of the same gen-

eral form (3), see Fahrmeir, Kneib & Lang (2004). Furthermore, the entire approach

can be extended to generalised regression models with the same high-dimensional pre-

dictor structure (1) but with different types of responses. In particular this includes
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high-dimensional exponential family regression for discrete and other non-Gaussian re-

sponses and Cox-type hazard rate models (Konrath, Kneib & Fahrmeir 2008) that would

for example allow to analyse the credit data with a logit model. For such intrinsically

non-Gaussian models, the general structure of MCMC algorithms remains the same, but

the full conditionals for regression and basis function coefficients are no longer Gaussian.

Instead, block updates for β,γ,α1, . . . ,αp,αspat are obtained from an Metropolis Hast-

ings step with a Gaussian ‘iteratively weighted least squares (IWLS)’ proposal, where

the full conditional is approximated by a Gaussian distribution. This leads to Gaussian

proposal densities with expectation and covariance vector

µβ = ΣβX ′W (ỹ − η−β), Σβ = (X ′WX + P β)
−1

where W and ỹ are the usual generalised linear model weights and working responses.

Analogous expressions result for γ,α1, . . . ,αp and αspat. IWLS proposals are compu-

tationally efficient and require no manual fine tuning, see Brezger & Lang (2006) in

the context of structured additive exponential family regression, and Konrath, Kneib &

Fahrmeir (2008) for hazard rate models with high-dimensional predictor.
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Figure 1: Log-densities of regularisation priors for fixed hyperparameters (solid line) and
marginalised over the hyperparameters (dashed line). The left panel shows the Ridge prior
and the marginal scaled t-distribution, the right panel shows the Bayesian Lasso with the
marginal log-density (2).
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Figure 2: Rental guide: Estimated nonparametric effects and 95% pointwise credible bands
in the expert model (top row), the Bayesian Ridge model (middle row) and the Bayesian
Lasso model (bottom row).

23



-1.3 0 1.3 -1.0 0 1.0

-1.3 0 1.3 -1.0 0 1.0

-1.3 0 1.3 -1.0 0 1.0

Figure 3: Rental guide: Estimated spatial effects and 80% pointwise posterior probabilities
in the expert model (top row), the Bayesian Ridge model (middle row) and the Bayesian
Lasso model (bottom row).
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Lasso Ridge
Variable Post. Mean Post. Prob. Post. Mean Post. Prob.

company housing -1.318 0.000 -0.977 0.000
fridge 0.436 0.000 0.414 0.000
intercom 0.375 0.000 0.362 0.000
drying area -0.429 0.000 -0.427 0.000
playground -0.474 0.000 -0.455 0.000
attic -0.565 0.000 -0.540 0.000
no. of occupants 0.119 0.000 0.125 0.006
side costs -0.005 0.000 -0.005 0.000
floor covering (PVC) 0.545 0.000 0.489 0.000
floor covering (felt files) 0.441 0.000 0.389 0.004
rent start date before 2002 -0.916 0.000 -0.847 0.000
tiled bathroom 0.239 0.002 0.250 0.002
average residential area -0.459 0.002 -0.429 0.004
no waterheating -1.052 0.004 -0.532 0.004
no additional heating -0.375 0.014 -0.400 0.002
special windows 0.268 0.014 0.272 0.010
grassy area -0.260 0.016 -0.294 0.004
kitchen size > 12m2 -0.207 0.022 -0.233 0.006
drying room -0.182 0.022 -0.202 0.006
bath width 0.139 0.024 0.160 0.018
no. of roof terraces 0.506 0.026 0.406 0.024
floor covering (simple wooden floor) 0.337 0.026 0.312 0.010
modernised windows -0.161 0.028 -0.189 0.024
modernised floor 0.183 0.030 0.197 0.024
bathtub 0.260 0.032 0.297 0.018
room 3 facing garden 0.219 0.040 0.247 0.054
built-in kitchen 0.215 0.044 0.236 0.030
2nd bathroom 0.327 0.048 0.327 0.030
shower 0.216 0.054 0.254 0.006
no balcony -0.207 0.056 -0.242 0.036
satellite dish -0.253 0.060 -0.273 0.022
room 4 facing street -0.290 0.060 -0.300 0.032
cooking hobs 0.231 0.064 0.262 0.026
room 1 facing south 0.173 0.064 0.219 0.016
stairwell renovation -0.175 0.066 -0.205 0.020
penthouse apartment 0.279 0.076 0.297 0.024
floor covering (linoleum) -0.248 0.088 -0.313 0.010
2nd toilet 0.187 0.100 0.199 0.048

Table 1: Rental guide: Regularised effects with posterior probability lower than 0.05 in
either the Bayesian Lasso or the Bayesian Ridge model.
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Lasso Ridge
Variable Post. Mean Post. Prob. Post. Mean Post. Prob.

no current account -0.891 0.000 -0.820 0.000
no positive balance -0.637 0.000 -0.593 0.000
no savings account -0.390 0.004 -0.422 0.002
for new vehicle 0.491 0.012 0.445 0.010
poor paying habits -0.509 0.018 -0.479 0.012
risky account -0.554 0.018 -0.530 0.006
alternative purpose -0.309 0.036 -0.353 0.008
medium term employment 0.270 0.040 0.269 0.070
no previous loans -0.233 0.092 -0.269 0.024
no assets 0.206 0.130 0.277 0.046

Table 2: Credit scoring: Regularised effects with posterior probability lower than 0.05 in
either the Bayesian Lasso or the Bayesian Ridge model.
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