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KELLERER, A. M., AND Rossi, H . H . On the Determination of Microdosimetric Parameters 
in Time-Varying Radiation Fields: The Variance-Covariance Method. Radial. Res. 97, 237-
245 (1984). 

Microdosimetric measurements in their usual form are difficult in fields of high intensity where 
events, i.e., passages of charged particles, cannot be individually resolved. The variance method 
can then be utilized to obtain the dose averages of the microdosimetric distributions from repeated 
measurements over finite time intervals. An essential condition for the method is that the dose 
per measurement interval is constant, but this condition cannot be fulfilled in accelerator-produced 
fields that consist of variable radiation pulses. A modified method is therefore proposed that 
does not require equal doses per measurement interval. It utilizes two detectors that operate in 
phase, and it derives the microdosimetric parameters from the difference between the variance 
of the signal from one detector and the covariance of the concomitant signals from the two 
detectors. 

INTRODUCTION 
Microdosimetric measurements are usually performed in radiation fields of suffi

ciently low intensity that individual events, i.e., charged-particle traversals through 
the detector, can be resolved. The determination of the probability distribution of 
energy imparted, e, specific energy, z, or lineal energy, y, is then straightforward, and 
it is equally simple to obtain frequency averages or the weighted averages of these 
quantities. 

The situation is more complicated when the fluence rates are so high that individual 
events cannot be resolved. This is especially pronounced when the radiation source 
is a pulsed accelerator. Although it may be possible to employ a detector of such 
small physical size that the mean number of events is substantially less than one, this 
would, especially with a small duty cycle, greatly prolong the time needed to obtain 
a representative distribution of y. 

237 0033-7587/84 $3.00 
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If individual events cannot be resolved one may integrate the detector response 
over specified time intervals that correspond to constant doses. The distribution of 
the signals obtained for the individual intervals can then be utilized to derive the 
moments of the single-event distributions, and, in principle, it could even be used 
to reconstruct the distribution itself. The technique of measuring the detector response 
over specified time intervals was applied in early microdosimetric studies by Rossi 
et al. (7); it has more recently been made the basis of the variance method for the 
determination of the weighted averages zD, or yD of single events for a radiation 
field (2, 3). However, the variance method requires equal dose increments in successive 
measurement intervals. It is not applicable to fields from accelerators that produce 
high-intensity pulses of variable size. A modified technique will therefore be described 
that utilizes a pair of detectors and permits the determination of microdosimetric 
parameters in such cases. 

G E N E R A L C O N S I D E R A T I O N S A N D C O N V E N T I O N S O N N O T A T I O N 

Before the two-detector method is presented in mathematical terms it may be 
useful to outline the underlying concepts. 

When a dosimeter is exposed to a pulse of radiation which imparts a given absorbed 
dose, Z>, it will register a specific energy, z, which is variable. Consequently repeated 
exposures to D result in a distribution,/(z). In conventional measurements of absorbed 
dose this distribution has negligible width, but at sufficiently low doses a suitable 
detector such as a proportional counter exhibits fluctuations that for equal D are 
greater for high-LET radiations and, as indicated above, the relative variance of the 
distribution f(z) can in fact be employed to determine f, the weighted average of 
individual increments of z. 

However, if D varies in successive exposures, the distribution f(z) is broader and 
may be indistinguishable from a spectrum that would be obtained if the detector 
were exposed to radiation of higher LET (i.e., larger f) with constant increments of 
absorbed dose that are equal to the mean value, D, of the absorbed dose when it is 
variable. 

One method of overcoming the difficulty is to determine the variations of D between 
pulses. As will be shown, it is merely necessary for this purpose to measure a quantity 
that is proportional to D\ the factor of proportionality need not be known. Thus one 
could, for instance, determine the variations of the output of an electrometer which 
registers the charge received by an accelerator target in each duty cycle. In this way 
a suitable correction can be derived that permits the derivation of f from the observed 
variance of z. 

It will further be shown that the output of the second instrument may also be 
subject to statistical fluctuations. A special case is that of an identical counter receiving 
the same doses, D. While the spectrum generated by the two devices, A and B, is the 
same, correlation of concomitant pulse heights of the two counters is absent if D is 
fixed, but it is present if D varies. Thus when D is larger there is an enhanced 
probability that both counters register a larger z. From knowledge of the correlation 
one can correct the observed variance of z to obtain f. 

In this method it is, however, essential that at a specified dose, D, the two devices 
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respond independently. If, for example, two proportional counters could both be 
traversed by the same energetic charged particles this kind of correlation would be 
mistaken for that which is associated with variability of D\ the result would be an 
underestimate of f. 

A few conventions on notation will be helpful to make the subsequent arguments 
and results more transparent. The first convention is to utilize the relative variance, 
V(z), of a random variable z: 

V(z) = (z - z)2/z2 = ? / £ 2 - 1. (1) 
The second convention is to utilize the relative covariance, C(zA,zB), or for brevity, 

CAB, of the two random variables zA and zB: 
„ _ ( * A ~ ZAX^B ~ ZB) _ ZAZB 
C A B _ = - - _ _ 1 . { ^ ) zA • zB zAzB 

It is apparent that the relative variance is merely the special form of the relative 
covariance in the case where the two random variables are identical: 

VA = C A A - ( 3 ) 
The variance expresses the mean deviation of a random variable from its expectation 

value; the covariance expresses the mean correlated deviations of two random variables 
from their expectation values. If two random variables are statistically independent 
their covariance is zero. 

It should be noted that the relative, i.e., normalized, quantities VA, KB , and CAB 
are not dependent on detector calibrations and have the same value for any physical 
quantity that is proportional to that measured by the detector. 

A gas-filled microdosimetric detector simulates a tissue region of linear dimensions 
that are smaller by the ratio, r, of the densities. Accordingly the mass, Af, of the 
detector gas exceeds the mass, m, of the simulated region by the factor r2, and the 
same applies to the number of events. It is usual in microdosimetry to relate the 
quantities z and D to the simulated mass, m, rather than to M. For example, if a 
detector of 1-cm diameter simulates a l-/im tissue region, then the absorbed dose 
0.1 mGy to the detector will correspond to an absorbed dose D = 10 kGy in the 
simulated site, and this latter quantity will be referred to in the subsequent equations. 

THE VARIANCE METHOD AND ITS EXTENSION TO VARIABLE FIELDS 
Consider a stable field and the measurement of the specific energy accumulated 

within successive time intervals of equal length. The mean, z, and the mean square, 
z2, of these values are then, as has been shown earlier (4), 

z = D, z1 = £D + D2. (4) 
D is the absorbed dose per interval, and f is the weighted average of specific energy 
in single events:1 

1 In agreement with common usage and for simplicity of notation the symbol { i s used rather than the 
more explicit notation zD. 
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f = j z2j\{z)dzj j zMz)dz. (5) 
fi(z) is the single-event distribution, i.e.,/,(z)dz is the probability for an increment 
between z and z + dz if an event occurs [see for example (5, 6)]. 

The microdosimetric parameter f can be utilized to characterize the quality of a 
radiation. It is connected to the weighted average, yD, of lineal energy that is the 
microdosimetric analogon of dose-average LET. 
Inserting Eq. (4) into Eq. (1) one obtains the relation for f: 

f = V(z)-z = z~2/z-z. (6) 
z2 and z can be estimated from the values, zh obtained from measurements for a 
sufficiently large number, I, of intervals: 

— 1 7 1 7 

z2 = - Y z l z = - 2 z , , (7) 
' i=\ 1 i=\ 

This procedure for the determination of f—the variance method—is dependent 
on the condition that the absorbed dose per interval is constant. If, on the other 
hand, the dose, D, per interval is a random variable with probability density p(D) 
and with mean D and mean square D2, 

D = J Dp(D)dD and = j D2p(D)dD (8) 
one obtains by integration of the terms in Eq. (4) over the distribution p(D): 

z = D and ? = j (fZ> + D2)p(D)dD = ?D + ZF. (9) 
Inserting this into Eq. (I) one has 

V(z) = UD+ V(D). (10) 
The relation for f is 

f = ( K ( z ) - K(Z))).z. (11) 
This result is readily understood. Dose fluctuations cause the additional contribution, 

V(D\ to the observed relative variance of z that is irrelevant to the microdosimetric 
evaluation and that must therefore be subtracted in the formula for f. The correction 
term vanishes if the dose, D, per interval is constant; one obtains then the familiar 
formula of Eq. (6). 

For actual numerical evaluations one can use the equation 
f =(?/z2-D2~/D2)-z (12) 

with the estimates from Eq. (7) and with 
D = -/ZDH D~2 = -AD2 (13) 

where D{ are the doses determined with a dose monitor that operates in phase with 
the microdosimetric detector. 
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Equation (12) has the evident advantage that it is independent of the dose-monitor 

calibration, and, more importantly, that it remains valid if the dose rates at the 
location of the monitor differ by a constant factor from those at the location of the 
microdosimetric detector. Nevertheless it can be impractical to use a dose monitor. 
If an instrument is to measure absorbed dose, rather than specific energy, it needs 
to have a sufficiently large size to overcome the random fluctuations of energy de
position. In variable nonuniform fields, the absorbed doses measured by the monitor 
may then not be proportional to those at the location of the microdosimetric detector. 
An additional problem can be the uncertain influence of the limited resolution of 
any dose monitor on measurements that depend critically on fluctuations of the 
observed values. A better method is therefore required. 

THE VARIANCE-COVARIANCE METHOD 
Consider a pair of microdosimetric detectors, A and B, that operate in phase and 

determine concomitant values zA>/ and zB,/ in a series of measurement intervals, /. 
The detectors are assumed to be in sufficient proximity that the doses, DAi and DBi, 
at their respective locations differ at most by a constant factor: 

DAJ = A , DBJ=f-Dh (14) 
On the other hand, the two detectors must be sufficiently separated to be uncoupled 

in the sense that correlated events, i.e., energy depositions due to the same particle 
or its secondaries, can be disregarded. The two detectors may, but need not, be 
identical. The weighted mean event sizes, fA and fB, in the two detectors depend on 
their effective diameters and can, accordingly, be different. There is, furthermore, no 
need to postulate that the radiation qualities are identical at the locations of the two 
detectors. 

The expectation value, zAzB, of the product of the concomitant detector signals 
involves a double average. Consider first a fixed dose, DA = D and DB = /• D, per 
measurement interval. The expectation value zAzB is then equal to the product of 
the expectation values zA = D and zB = / • D. The reason is that the two random 
variables zA and zB are, for a fixed Z), uncorrelated. This follows from the assumption 
that the two detectors are uncoupled, i.e., that they are not traversed by the same 
particles. As a second step one considers the variations of the dose, D, per interval. 
These variations cause correlation between zA and zB; by integration over the dis
tribution, p(D), of D one obtains 

~^zi=ff D2p(D)dD =fD~2. (15) 
The relative covariance of zA and zB is therefore equal to the relative variance of the 
dose 

CAB = W ( f A • zB) - 1 = ~D2ID2 - 1 = V(D). (16) 
Applied to Eq. (11) this permits a determination, without dose monitor, of the pa
rameters fA or fB. 

It is a simple but notable result that the variance of the dose per interval can be 
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obtained from a pair of uncoupled but simultaneously operating detectors, and that 
no dose monitor is required for this purpose. 

Eq. (11) can now be replaced by 
fA = (*A ~ CAB)-zA 

with the analogous relation for fB being 

TB = (VB ~ CAB)-zB . 

(17) 

(18) 
For the actual numerical evaluation the result can be expressed in terms of the 

quantities zA, zA , zB, zB , zAzB determined with the twin detectors: 
— «T2 zl/zl- 1, VB = zjJzi- 1 

CAB= zAzB/(zAzB) - 1. (19) 
The estimates are based on the values observed in the series of / measurement 

intervals: 
ZA — j 2 ZAJ 

1 i = I 

- - 1 v - _ i V 2 

ZB~ j ZJ ZBJ ZB~JZJ ZB,i 1 

~1 1 2 
^ i = l 

/ 

' /=1 (20) 

ILLUSTRATION OF THE METHOD BY A MONTE CARLO SIMULATION 
The clouds of points in the two panels of Fig. 1 represent distributions of concomitant 

values zA and zB obtained in Monte Carlo simulations of a series of exposures of two 

kGy 

ZA / kGy 
FIG. 1. Monte Carlo simulation of the repeated exposure of a pair of microdosimetric detectors (diameter 

of simulated spheres: 1 ^m) to 340-keV neutrons. Each point represents the pair of values, rA and zB, 
obtained in an exposure. For panel A (2000 exposures) the dose per exposure is equidistributed between 
300 and 330 Gy, for panel B (4000 exposures) it is equidistributed between 0 and 500 Gy. 
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TABLE 1 
Numerical Values from the Monte Carlo Simulations in Fig. 1 

Panel 
Left Right 

zJGy 315.9 248.4 
Zs/Gy 315.8 249.4 
Ä/Gy2 104854 85962 
4 /Gy2 104904 86530 

100063 82452 
vA 0.05072 0.3932 

0.05088 0.3911 

CAB 
0.00303 0.3309 

UGy 15.07 15.47 
UGy 15.43 15.03 

detectors to 340-keV neutrons. The detectors were taken to simulate spherical regions 
of 1-^m diameter, and the computations were based on a measured single-event 
spectrum (7). The left panel represents the outcome of 2000 exposures with the dose 
per measurement interval equidistributed between 300 and 330 Gy; the right panel 
gives the results for 4000 measurement intervals with the dose per interval equidis
tributed between 0 and 500 Gy. As stated earlier, these are nominal doses that refer 
to the simulated system. The actual doses to be applied to a detector of 1-cm diameter 
would range from 3 to 3.3 fiGy and from 0 to 5 /xGy. 

It is evident that there is no appreciable correlation of the detector responses in 
panel A, where the dose per measurement interval has been nearly constant. In panel 
B where there have been large variations of dose per measurement interval the cor
relation of concomitant detector signals is substantial. The resultant numerical values 
are given in Table 1; the inferred values, fA and of the dose-average specific energy 
are in good agreement with the true value, f = 15.21 Gy, of the single-event spectrum 
that has been utilized for the Monte Carlo simulations. 

CONCLUSION 

Two microdosimetric detectors operating in phase during a series of equal or 
variable time intervals are sufficient to derive the parameter f for a radiation field, 
or the related quantity yD that is the microdosimetric analogon of dose-average LET. 
The technique does not require a constant dose rate and is applicable to the fluctuating 
fields of accelerators. 

The method is based on the determination of the variance and the covariance of 
the detector signals. It utilizes the fact that the observed variance of specific energy 
contains two separate contributions, one from the fluctuations of energy deposition— 
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the process relevant to microdosimetry—the other from the fluctuations of absorbed 
dose per interval. The covariance of the signals of two uncoupled detectors contains 
only the second term, and is unaffected by the fluctuations of energy deposition. The 
difference between variance and covariance is therefore the quantity relevant to the 
microdosimetric analysis. The present communication deals only with f, the parameter 
of main pragmatic interest for the characterization of radiation quality. However, 
other parameters linked to higher moments of the microdosimetric distributions can 
be obtained by analogous methods. 

In practical applications it may be advantageous to use pairs of identical detectors. 
However, other configurations are equally possible. In particular it may be noted that 
the second detector need not be calibrated absolutely, and that it need not be a 
microdosimetric detector in the usual sense. It is sufficient that the expectation value 
of its signal is proportional to absorbed dose. 

The determination of the various quantities required by the two-detector method 
poses technical complications that can be resolved by the utilization of microprocessors 
or suitable circuitry. The requirements will be discussed for the likely situation in 
which both instruments are proportional counters. Similar considerations apply for 
other devices. 

The utilization of a pair of instruments and the determination of the variables zA 
and zB merely requires duplication of standard equipment. The derivation of the 
parameter f necessitates determination of the quantities zA, zB, zA, zB, and zAzB. 
They are obtained by summation of the detector signals and their squares and of the 
products of concomitant values of zA and zB. Appropriate, sufficiently fast circuitry 
needs to be provided for this purpose. 

If D is received in pulses that are short compared to the time over which the charge 
produced in the counter is collected, no further complications arise, i.e., fast pulses 
are registered individually (8). If, however, the pulses cannot be resolved in time or 
if some pulses are below the bias necessary to reject noise, one may integrate over 
fixed times by summing charges before they are applied to the input of the preamplifier 
(2, 3). 
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