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ANALYSIS OF TUMOR RATES AND INCIDENCES
- A SURVEY OF CONCEPTS AND METHODS -

A.M.Kellerer and D.Chmelevsky

Institut fir Medizinische Strahlenkunde der Universitdt Wirzburg,
Versbacher Str.5, D-8700 Wirzburg

1. Introduction

Risk estimates for radiation carcinogenesis are based on observed dose-effect
relations. Such relations can be obtained in various ways and, depending on the
underlying quantities and the computational procedures, they may differ greatly,
even for the same set of experimental data or for the same epidemiological

findings.

It is therefore mandatory to achieve coherence in the definition and usage

of basic quantities, in the estimates of these quantities, and in the derivation
of their standard errors or confidence intervals. It is equally important that
suitable tests be utilized for the comparison of incidences or tumor rates in
different groups of exposed individuals. Such tests exist for certain types of
data but are lacking for others. It is, furthermore, of importance that proper
methods be used for the joint analysis of time dependences of tumor rates or
tumor prevalences in a number of groups differently exposed. Such methods are
always based on implicit assumptions. While the assumptions are unavoidable,

they need to be properly stated and to be clearly understood.

In this brief synopsis the definition of basic quantities will be given, the
notion of censored data will be explained, estimates and their standard errors
will be considered, the existence of non-parametric tests for right-censored
data and the lack of non-parametric tests for double-censored data will be
discussed. A further point of particular current interest is the joint maximum-
likelihood analysis of time and dose dependences of tumor rates or tumor pre-
valences. For more rigorous and detailed treatments the reader can turn to

a number of useful reviews and monographs (1-5).



2. The Simple Case of Uncensored Data

The most simple, although the least common case is that of uncensored data.

The term uncensored means that the observations are complete, i.e., individuals
remain at risk either to the end of the observation period or until the effect
of interest occurs. Furthermore it is assumed that one deals with a manifest
disease, i.e., a disease that is either rapidly lethal or otherwise readily
discovered. Examples of manifest diseases are leukemias, osteosarcomas or,
among the non-lethal examples, mammary neoplasms in the rat. An example of an
occult disease — observed in the sacrificed animal, or observed incidentally

in animals dead for other reasons - are benign pulmonary neoplasms or, in the
case of the rat, also pulmonary malignancies that appear to cause no appreciable
life shortening (6). The distinction between manifest and occult tumors is fun-
damental, because entirely different mathematical procedures are required, that

will be considered in sections 3 and 4.

The observation, even of a manifest disease, can be uncensored only in the ab-
sence of competing risks, i.e., if no unrelated mortality and no loss from ob-
servation for other reason occurs. This is rarely the case. However, the simple
example of uncensored data may serve to introduce the basic concepts and quanti-

ties.

For the subsequent considerations let N(t) be the number of survivors, i.e. the
number of individuals still at risk at time t, and let n(t) be the number of
individuals that have incurred the effect up to time t. Let t=o be the time

at the start of the experiment and N=N(o) the number of individuals at the

time of exposure. Statistical estimates of the quantities will, in the usual
way, be designated by a circumflex, and standard errors of the estimates will

be included in the formulae.

The most commonly considered quantity is the cumulative incidence (or simply
incidence), I(t), up to time t; it is the probability of an individual to
incur the effect up to the specified time. The estimate of I(t) for uncen-
sored data requires no explanation; the standard deviation results from the

assumption of statistical independence, i.e., from the assumption that n(t)
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follows a binomial distribution:

I(t) = (/N = /n(e) (1-n(e)/N) / N (1)

If several tumors can occur, i.e., if animals remain at risk after they have
developed neoplasms, one can consider another basic quantity the mean number
of tumors per animal, R(t). Its estimate for uncensored data is also trivial.

It is simply the ratio of the total number, m(t), of tumors up to time t and

the number, N, of animals:
R(t) = m(t)/N + m(t)/N (2)

The standard error in this equation is based on a presumed statistical in-
dependence of tumors, i.e., on the Poisson distribution. |f the neoplasms are
not independent, the standard error in Eq(2) can be too small and one must
use the standard error based on the observed numbers of tumors in individual

animals. This aspect deserves careful attention, whenever multiple tumors are
analysed.

R(t) is also called cumulative tumor rate, because it is the integral of the

(differential) tumor rate, r(t):

t
R(t) = [ r(1) dr (3)

(0]

r(t) is the probability per individual and per unit time (at time t) to develop
a tumor. The tumor rate is a fundamental quantity analogous to the mortality
rate, and the common term hazard function is used in the statistical litera-
ture. The age and sex dependent mortality rates and tumor rates in human po-
pulations are essential for actuarian epidemiological investigations. However,
it is rarely possible in radiation carcinogenesis studies to estimate the time
dependence of the differential tumor rates, r(t), as large numbers of observed
individuals would be required to achieve reasonable precision, The cumulative
rate, R(t), is an integral over the observation period up to time t, and is

therefore more readily estimated.

In the subsequent section it will be pointed out that the cumulative tumor

rate, R(t), is a meaningful quantity even in those cases where first tumors

only are observed.
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Cumulative incidence, I(t), and the mean number of tumors per animal, R(t),
are related if independence of the individual tumors can be assumed, i.e.,

if the assumption of a Poisson distribution is valid. I(t) is the probability
for at least one tumor up to time t. According to the Poisson statistics

S(t) = exp(-R(t)) is the probability for no tumor if the mean number of tumors
is R(t). Accordingly one has the following relations between I(t), R(t), and
the probability,S(t), for no tumor:

I(t) = 1-S(t) = 1-exp(-R(t)) or R(t) = -IZn(1-1(t)) = -In S(t) (4)

A semi-logarithmic plot of S(t) versus t yields the same curves as a linear
plot of R(t). However, it is evident that the numerical estimates from Eqs(1)
and (2) need not precisely fulfil relation (4). This is a matter of statistical

fluctuations.

An estimation of the cumulative tumor rate, R(t), on the basis of multiple
tumors is advantageous because it makes use of the full experimental informa-
tion. On the other hand, the estimation on the basis of first tumors only

avoids the problem of the statistical dependence or independence of tumors.

As with the estimates of the cumulative incidence and the cumulative tumor
rate; there are no difficulties with statistical tests for comparison of
tumor rates in the simple case of uncensored data. Non-parametric tests are
most suitable because they require no assumptions on the time dependence of
I(t) or R(t). If only the numbers, n](t) and nz(t), of animals with tumor up
to a specified time, t, in the two groups of size N] and N2, are known, the
Fisher Exact Probability Test is applicable (see, for example (7)). It is,
however, evident that the mere comparison of n,(t) and nz(t) at an arbitrary
time is not fully satisfactory; even at comparable cumulative incidences the
temporal patterns of events in the two groups may differ substantially. It
is therefore more efficient to utilize the exact event times and to apply
the Mann-Whitney rank-sum test for the comparison of tumor rates in the two
groups. If the fraction of individuals affected is small the logrank test or

the Breslow test (see section 3.2)can be more suitable.
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3. The Common Case of Right-Censored Data

In most experimental and epidemiological investigations one deals with
incomplete observations; with increasing time, t, the observed sample de-
creases not merely due to the occurrence of the effect in individuals but
also due to other causes such as unrelated mortality, disappearance for other
reasons, or incompleteness of observation in some individuals in an ongoing
study. For manifest diseases one speaks then of right-censored data, and this
expresses the fact that one knows for an individual either the actual time, t,
of the occurrence of the tumor or one knows that the individual has incurred

no tumor up to a time, T of disappearance due to unrelated reasons.

3.1 Estimates of R(t) and I(t)

It is apparent that one can not, for right-censored data, simply apply formulae
(1) or (2). If one were to count merely the number of observed tumors or of
individuals with tumor and to relate them to the initial number of individuals
at risk, one would evidently underestimate the cumulative tumor rate or the
cumulative incidence. Surprisingly it is not uncommon that crude incidences,
are derived from Eq(1) in spite of competing risks that may depend on absorbed
dose and on other factors. This may lead to meaningless results, and the use

of crude incidences must be strongly discouraged. In too many instances it has

invalidated the results of otherwise valuable studies.

Proper competing risk corrected estimates are comparatively simple and have

been in use (as documented by Groer (8)) for centuries. No involved statisti-

cal theory is needed to understand the proper estimate of the cumulative tumor
rate, R(t), for right-censored data. One merely needs to sum, up to the speci-
fied time, t, all quotients of newly arising tumors and individuals, N(t), still
at risk. In the simple case where all tumors are observed individually at their

occurrence times, t., the quotients are I/N(ti) and the estimate is therefore:

R(t) = ZN(L) * 1/2—1—— (5)

i N(t,)?

The standard deviation results from the properties of the Poisson distribution

(see (9)). The summations extend over all event times, t., up to time t.



If the observation is not continuous but at distinct times, and if ki events
are found at time t., the term 1/N(ti) is replaced by ki/Ni’ and l/N(ti)2 is
replaced by ki/Niz’ where Ni is a mean number of animals at risk during the

intervening interval of no observation. Analogous modifications apply to Eq(7).

Eq(5) can be applied to first tumors, but it can equally be applied if successive
tumors can occur in one animal (9). This requires no different formula because
animals with a previous tumor remain then at risk and continue to be included
in N(t), until they are removed due to competing risks. It is important to
appreciate this point: inclusion of multiple tumors increases the number of
terms in the summation, but it decreases the magnitude of the individual terms
due to the larger values N(t,). The estimates obtained in the two ways are
equivalent, if the tumors are statistically independent. If they are not, i.e.,
if occurrence of a tumor increases the probability for subsequent tumors, or

if animals have inherently different tumor rates, a(t) computed from all tumors
will exceed a(t) computed from first tumors only. It must also be noted that
the standard error in Eq(5) is then too small. The term (actuarian) mean number
of tumors is synonymous with cumulative tumor rate if R(t) is based not only

on first tumors.

If Poisson statistics can be assumed, or if first tumors only are utilized,
the estimate from Eq(5) can with Eq(4) also provide the value of the cumulative

incidence:

T(t) = 1 - exp(-R(t)) (6)

This estimate has certain advantages. However, another, largely equivalent
estimate has been far more common. Although it has a much earlier history,
it is usually called the Kaplan-Meier product-limit estimate. In the same

way as the sum-limit estimate of Eq(5) it is here given in its simple form

for individually resolved event times:

I(t) = n(1- ——) = (1- 1(¢)) -]/z-—‘—2 (7)

N(ti) N(ti)

As in Eq(5) the summations extend over all times, t., up to time t.
The expression for the standard error is called the Greenwood formula. Both

the estimate and the standard error lead numerically to nearly the same values
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as Eq(6) with Eq(5), provided the number of individuals at risk is not too
small. It is therefore arbitrary whether one chooses the sum-limit estimate
or the product-limit estimate to obtain the cumulative incidence (or actuarian

incidence) .

A merely technical point deserves consideration. The estimates of Eq(5) to (7)
provide step functions. The discrete steps have evidently no biological meahing
and they can make it difficult to read graphs with a set of intersecting curves.
It is therefore advisable to draw the resulting curves as polygons connecting

the midpoints on the vertical steps.

6
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.09 Gy T
L T . |
¢ L Figure 1.
g Cumulative tumor rates, R(t),
[N . .
(] 2 1.e. actuarian mean numbers of
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2 0 ACI rats exposed to x-rays and
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Fig.1 gives results from a recent experiment of Shellabarger et al.(10). For
female ACI rats treated with DES the actuarian mean number, R(t), of mammary

adenocarcinomas is given as a function of the dose of 430 keV neutrons and of

X-rays.
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3.2 Tests for Right—-Censored Data

Neither the Exact Probability Test nor the Mann-Whitney rank-sum test are
applicable to right-censored data. However, the more recently introduced
Mantel-Haenzel (or log-rank) test or certain closely related non-parametric
tests such as the Breslow test (for detailed explanations see (1,2))can be

utilized.

The log-rank test can be understood in the same way as Eq(5). Event rates in
two groups are compared. Whenever an event occurs one considers the probability,
under the null-hypothesis, that it be in group 1. This probability is equal to
the relative proportion of individuals in group 1 at the time t, when the event
occurs p, = Nl(ti)/(N](ti)+N2(ti))' I f ti(i = 1,2 ... I) are the event times

in the two groups, the expected number of events, nes in group 1 and the

. . 2
corresponding variance, oy, are:

i I , I
n, = ) P and o, = Y P; (1-pi) (8)

The variance results from the binominal distribution and the presumed inde-
pendence of results in successive observations. The difference between the
calculated expectation, 5], and the actually observed number, Nis of events
in group 1 can then serve as test statistic to assess the acceptability of the
null-hypothesis of equality of the tumor rates in the two groups. Accordingly

one uses the test statistic:
z= (In, = 7] -0.5) /o (9)

the value of z is tested against the standard normal distribution, i.e., if
z exceeds 1.96 equality of the tumor rates in the two groups is rejected with

two-sided error probability 0.05.

The term -0.5, the so-called continuity correction, in Eq(9) is essential

for small samples; failure to include the continuity correction can lead to
actual error levels that are substantially in excess of the assumed error

levels (11). An explicit form of the test (12), not based on the standard normal
distribution, has been applied to the study of neutron induced mammary neoplasms

in the rat (9).
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Peto and Peto (13) have proposed generalizations of the log-rank test that result
when different weight factors, w,, are introduced in Eqs(8). Of particular im-
portance is the possibility to assign larger weights to the earlier observations;
for example one can use descending ranks with successive events (12). The im-
portant Breslow test results when the numbers of individuals still at risk in
both groups are chosen as weight factors. The Breslow test has more power than
the simple log-rank test, if tumor rates in the two groups differ only in a
initial phase of the observation period. If tumor rates differ by the same factor
throughout the observation period (see section 3.3 for the proportional hazards

model) the log-rank test has the highest power (13).

3.3 Joint Estimates from Several Observed Groups

Radiation-carcinogenesis studies involve frequently a set of groups exposed
differently. As pointed out, there are then methods to estimate the time de-
pendences and standard errors of the cumulative incidence or the cumulative
tumor rate in the individual groups. In a large experiment where the time de-
pendences in the individual groups are well defined, the results may be suffi-
cient to achieve a coherent overall picture of the time and dose response. An
example is Shallabarger's earlier study (9) on mammary neoplasms in neutron
exposed Sprague-Dawley rats. However, in the more common case of small or
moderately sized groups the statistical fluctuations may be substantial and
it may be difficult to recognize a coherent picture of the time and dose de-
pendence. More complex methods are then required to arrive at consistent and
comparable results. Such methods must always be based on certain implicit
assumptions, and this introduces an element of arbitrariness. While this is
unavoidable, the assumptions need to be understood and need to be pointed out

clearly.

The proportional hazards model and its solution by a method of Cox is virtually
the only approach for simultaneous fits utilized in radiation-carcinogenesis
studies. It will therefore be briefly considered. However, other possibilities
to obtain a joint maximum likelihood fit of R(t) or I(t) will also be indi-
cated. All treatments are based on the assumption that the differential or
integral tumor rate has a certain dependence on time after exposure, and that

this dependence changes in a relatively simple way with increasing absorbed



dose or with the variation of other factors. The proportional hazards model
postulates that the tumor rates are increased by a dose-dependent but time

independent factor:
R(t,dD) = A(D) - R(t) (10)

where R(t) is a common base-line function. It is the objective of the computa-
tional procedure to obtain best estimates of the base-line function and of the
proportional hazard factors, A(Di), for the individual groups exposed to doses
Di' The problem is non-parametric in the sense that one utilizes no analytical
expression for the base line function R(t); instead one searches generally for

the best solution that need merely be monotonic in t.

Kalbfleisch and Prentice (5) give excellent accounts of the Cox model and of
related topics; in the present context it is therefore sufficient to appreciate
the essential problem. This is to find that base-line function, R(t), and those
parameters, Ai, for the individual groups that maximize the lZkelihood for the
observed result. The likelihood is computed under acceptance of the observed
event times, t, (i =1,2 .. 1), and censoring times, Ty (k = 1,2 .. K). For
simplicity it will again be assumed that each event time correspond to one new
tumor and each censoring time corresponds to the loss of one individual for un-

related reasons. One can then readily show that the likelihood is equal to:

L = g ‘(tz) E (1-I(Tk)) (11)

+)

where I(t) is the cumulative incidence, and i(t) is the derivative of I(t).
The products extend over all times, tZ’ of the occurrence of a tumor and all

times, Ty of censoring (end of observation of an individual without tumor).

The solution of the proportional hazards model for right-censored data requires
only a relatively simple iterative optimization algorithm. This appears to be
the reason that the few derivations of joint maximum likelihood solutions in
radiation-carcinogenesis studies have exclusively used the proportional hazards

model (see for example (14)(15)). One must, however, realize that there are

In certain numerical computations, for example the Cox solution, I(t)

is represented by a function with discrete steps, and i(tZ) is then

not the derivative of I(tZ), but is equal to its change at tZ'



alternatives. With the further sophistication and extension of experimental
investigations or epidemiological studies it will be essential to explore and
compare different treatments and to assess their possible bias. Two main alter-

natives to the proportional hazards model will therefore be mentioned. It is

evident, that there are others,

One alternative to the proportional hazards model is the time-shift model. It
postulates that the tumor rates remain unchanged, but are shifted forward in

time with increasing dose:
R(t,D) = R( t+s(D) ) , i.e. 1(t,d) = I( t+s(D) ) (12)

Shellabarger's extensive investigation of mammary neoplasms in the Sprague-Dawley
rat (9) has led to results that are consistent with this relation. However, no

joint maximum likelihood solution has yet been derived for these results or

similar sets of data.

A second alternative is the accelerated time model. This model has found appli-
cations in the field of industrial testing procedures; it is there known as

the accelerated failure-time model (16). It invokes an acceleration factor,not

a shift in time:
R(t,D) = R( a(D)-t ) , i.e. 1(t,D) = I( a(D)-t ) (13)

The accelerated time model has not been utilized in radiation-carcinogenesis
studies with right-censored data. However, it may deserve as much attention as

the proportional hazards model.

A judgement of the comparative applicability of different models may not be
possible, except in large scale investigations. Furthermore the proportional
hazards model and the accelerated time model are equivalent if the base-

line function is a simple power of time:
R(t,0) = A(D) tP = (a(d)-t)P,  with a(D) = a(D)'/P (14)

For this Wezbull model the question is meaningless whether irradiation leads

to more tumors or to the same number of tumors at earlier times.
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The comparatively simple Eq(14) is an example of a parametric model. It is
evident that there are numerous other possibilities. The more general Weibull

model :

R(t,D) = 2 (t+s)P (15)

can be used in a variety of ways depending on the assumed dose dependence of
one or of more of its three parameters A,s, and p. A different parametric model,
not infrequently invoked (see for example (18,19)) is the assumption that I(t,D)

follows a cumulative log-normal distribution.

Parametric models may be useful for the analysis of the time and dose dependence
of tumor rates. In general, however, it will be better to avoid assumptions that
may be too narrow, and to perform the analysis with non-parametric base-line
functions. Regardless of the choice of models, it is essential to obtain the
simul taneous maximum likelihood solutions by computer. With the non-parametric
approach the computer solution is unavoidable, although it is somewhat complex.
With the parametric models the computer solutions happen to be fairly simple

(see (3)). Visual fits are uncertain and easily misleading because one tends to
estimate the base-line fuﬁction from the most informative group in the experiment
with mere subsequent adjustment of one or two parameters to the remaining groups.
In the rigorous solution the shape of the base-line function is jointly determined

by the entirety of data.

Lafuma and colleagues investigate in their current study (20,21) the full spectrum
of neoplasms in Sprague-Dawley rats exposed to fission neutrons. In an initial
step of the analysis, with some low dose groups and the controls still unfinished,
all lethal carcinomas and sarcomas have been pooled. Fig.2 gives, as an example,
the sum-1imit estimates (see Eq(5)). To keep this common graph readable the
standard errors are omitted. Due to the moderate size of the groups exposed to
different doses there are fluctuations that make it difficult to judge the precise
trend of the time and dose dependence. The Cox proportional hazards model has,
therefore, been applied to obtain a more coherent picture, and the results are
given in Fig.3. It is evident that this type of analysis facilitates the deriva-
tion of dose-effect relations or RBE-dose relations. Only preliminary results

are available from this current investigation. However, it is evident that a

comparative study of the different models will be required.
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Cumulative tumor rates, R(t), for all lethal car-
cinomas and sarcomas in Sprague-Dawley rats exposed
to fission neutrons in a current experiment by
Lafuma et al.(20,21). The curves are individual
estimates according to Eq.(5) for the dose groups
with completed observation; the standard deviations
are omitted to keep the graph readable.
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Analogous graph to Fig.2, with results based on
the proportional hazards model. The curves are
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animals dead or less than 4 animals alive in the
group.



Fig.4 exemplifies a slightly different and not uncommon representation that is
essentially equivalent to Fig.3. This graph gives the probability, S(t)=exp(-R(t)),

for no tumor at time t.
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L4, The Case of Double-Censored Data

The term double-censored data refers to the case of occult diseases that are
observed only incidentally in sacrificed animals or in individuals dead for
other reasons. In the present context it is assumed that the disease is entirely
non-fatal. Even with this assumption the statistical problems in the analysis
are considerable. One must, furthermore, note that there is a large gray area

of diseases that are neither fatal nor entirely non-fatal; additional compli-

cations will then arise that will not be considered.

With double censored data one never knows actual times of occurrence of a
tumor. When a dead animal bears the tumor, the event time, ti’ is smaller than
the time, Tis of death. When the dead animal bears no tumor the hypothetical

event time, t., is larger than T

k.1 Estimate of I(t)

The basic quantity to be investigated is the probability of an animal, at

time t, to bear the tumor. This corresponds to the cumulative incidence, I(t),
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discussed earlier, but the term prevalence is more commonly used.+)
Estimation of I(t) and its standard error is simple in an experiment with
serial sacrifices; Eqs(1) and (2) are then applicable. However, experiments
with serial sacrifices require large numbers of animals. If a multiplicity
of absorbed doses or other factors are investigated the approach may become
quickly prohibitive. Survival experiments, or survival experiments combined
with sacrifices, can then be more economical. However, comparatively little
use is made of this possibility, this being apparently due to the statistical
problems arising in the analysis. On the other hand, Hoel and Walburg (22)
have, a decade ago, exemplified and recommended the method that is presently
known as isotonic regression and that can for double-censored data be con-
sidered the analogon of the product-1imit estimate for right-censored data.
Isotonic regression is a relatively simple algorithm that provides, with the
constraint of monotonicity, a maximum likelihood estimate of the prevalence

I(t) of an occult disease (23).

Apart from Hoel and Walburg's work and a recent study (6), it is difficult

to find examples where isotonic estimates have been used for the analysis

of radiation carcinogenesis. In view of its unfamiliarity the algorithm is,
therefore, explained in the appendix. The somewhat difficult problem of the
derivation of standard errors for isotonic regression will not be considered,

as there appears to be no valid theoretical treatment of the topic.

Fig.5 gives, as an example for isotonic regression, the estimates of lung
cancer prevalence in Sprague-Dawley rats exposed to fission neutrons. As in
Figs.2 and 3 the data are from the on-going experiment by Lafuma et al.(20,21).
The isotonic regression curves are, in actuality, step functions. However,

as with the estimates for right-censored data, it is convenient to connect

the midpoints of the vertical steps to obtain better readability of the

graph. The initial part of the first step is retained to indicate more clearly

the first death of an animal with tumor.

+)

For partially lethal tumors the concept of prevalence differs from that

of cumulative incidence, as it depends on the mean survival time.
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Figure 5. Prevalence of lung carcinomas in fission neutron
irradiated Sprague-Dawley rats from a current
experiment by Lafuma et al.(20,21). The curves
are separate isotonic regression estimates for
the dose groups with completed observation. The
control incidence of lung cancer is small (=.003
life—time incidence).
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Figure 6. Analogous graph to Fig.5 with a joint maximum
likelihood solution based on the accelerated
time model.



k.2 Tests for Double-Censored Data

It would be very desirable to obtain a non-parametric test for the comparison
of prevalences in two groups with double-censored data, particularly if such
a test were valid for different degrees of censoring in the two groups. No
analogon to the log-rank or to the Breslow test for double-censored data
appears to exist, at present. For sufficiently large samples suitable test
procedures can, of course, be established; but the development of a generally

applicable test remains a challenge of particuiar interest.

4.3 Joint Maximum Likelihood Estimates of the Prevalence

As with right-censored data, one will frequently encounter a situation where
the time dependence of the prevalence is to be estimated in a number of groups
differently exposed. Isotonic regression, applied separately to the groups,

will then be helpful but need not always provide a sufficiently consistent
picture of the time and dose dependence. The data in Fig.5 illustrate the point.
The arguments in section 3.3 apply equally to double-censored data. One deals
with the same problem of estimating a common base-line function for the pre-
valence, I(t), and individual parameters, according to an assumed model, for

the individual groups. The likelihood has the form:

L = 2 I(tz) g (1-I(Tk)) (16)

The products extend over all death times, t_, of animals with the tumor and

l
all death times, Ty of animals without the tumor. The computational details

are somewhat different, but the same essential models, expressed by Eas(10,
12,13) can be utilized, i.e., possible approaches are again the proportional

hazards model, the time-shift model, and the accelerated time model.

The determination of the maximum likelihood solutions, i.e. of the best base-
line function, I(t), and the best set of parameters, A(Di), S(Di)’ or a(Di)
(see Eqs(10,12,13)), requires relatively powerful non-linear optimization

procedures (see for example (24)), and convergence of the solution is not
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always without problem. Such complications are, however, in no way commensurable
with the over-all efforts invested in radiation-carcinogenesis experiments.
There is, therefore, little justification for making inadequate use of available
numerical methods in the analysis of the experiments. Details of the computa-
tional procedures are described in a recent analysis of radon inhalation studies

with Sprague-Dawley rats by Lafuma et al.(6).

The same results from the current fission-neutron experiments that have been
utilized for Fig.5, can serve to exemplify the joint maximum likelihood‘Fit.
The solutions in Fig.6 are obtained for the accelerated time model. It is
apparent that these results provide a more consistent picture of the time
and dose dependence of the prevalence of pulmonary carcinomas in the fission
neutron exposed animals. These preliminary and incomplete results from an on-
going study are given for illustration. It is evident that evaluation of the

ultimate results in terms of all three basic models will be required.

Parametric maximum likelihood fits will not be considered because there is
rarely enough readily recognizable evidence in double-censored observations

to justify the a przori choice of a particular analytical expression for the
prevalence. A more reliable approach is, therefore, the non-parametric analysis
that identifies the best solution among a much broader spectrum of possible
dependences of prevalence on time. The adoption of a parametric model may,
however, be an eventual second step after an exploratory investigation by

non-parametric methods.

5. Concluding Remarks

The subsequent table indicates some of the statistical concepts and tools that
have been considered. It is evident that there are various complexities and

problems that have not been treated.

The emphasis has been on the need to employ available estimates, tests, and
maximum likelihood algorithms. While competing risk corrected methods are
essential, it must be kept in mind, that they have limitations. The most serious
limitation can arise from a lack of statistical independence between the ob-
served effect and the competing risks. When interdependence exists, difficult

statistical problems result; they are encountered generally in the case of
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partially lethal diseases. There are no fully adequate solutions, but the

existing reviews (1-5) will be helpful even in these cases.

NATURE OF  COMPETING JOINT
TYPE OF DATA  gceRryATION RISKS ESTIMATES TESTS MAX [MUM LIKEL IHOOD FIT
UNCENSORED MANIFEST NO TRIVIAL U-TEST PROPORTIONAL | PROPORTIONAL
HAZARDS HAZARDS MODEL
MODEL
1(t): PRODUCT- LOG-RANK T'SSDEE'FT
LIMIT TEST
-~ ESTIMATE ( SIMPLE ACCELERATED
CENSORED MANIFEST YES BRESLOW | OPTIMIZATION TIME MODEL
R(t): SUM-LIMIT TEST ROUTINE FOR
ESTIMATE COX SOLUTION )
DOUBLE- . ( COMPLEX
CENSORED occuLt VES I(t): Ré§§23§:ﬁn OPT IM1ZAT |ON
ROUTINES )
Table 1 Synopsis of Concepts and Methods
APPEND IX

The Algorithm for Isotonic Regression:

The subsequent explanation follows closely the more detailed treatment of
Barlow et al.(23).

Let T be the times where deaths occur, that may or may not be sacrifices.

The number of animals that die at T is n., the number with tumor m, . Further-
more let Ni be the total number of deaths, and Mi be the total number of animals
dead with tumor up to and including time T, All n, are equal to 1, if the times

of deaths are individually resolved.

The following table gives a simple fictitious data set with 13 deaths. As with
the sum-limit or product-limit estimates the numerical values of the time do
not enter the actual calculations. In Fig.Al the total number, Mi’ of animals

dead with tumor is plotted versus the total number, Ni’ of animals dead.
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Each dot corresponds to a time, T and the slope of the line segment to the

preceding dot is equal to the naive estimate, mi/ni, of the prevalence at the
time T The naive estimates do not fulfill the required condition that the

prevalence be an increasing function of time.

To obtain the isotonic regression, an irregular pair of adjacent segments,
i.e. one with decreasing slopes, is replaced by a single segment joining the
end points. |f further irregular pairs are left, the procedure is repeated.
In a computer routine one may go from left to right, and repeat the procedure
until full regularity is achieved. It is evident from Fig.Al, that the final

result is the shortest convex curve (taut string) below the dots.
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The slopes of the resulting curve (broken line in Fig.Al) are the isotonic
estimates of the prevalence at the corresponding times. The inflections are

still assigned the preceding sliope.

"//////— i Figure A2.

7 Isotonic regression for the

r//’ data from Table 2.
0

T T T

200 400 600
TIME /days

PREVALENCE ,|(t)
o

The estimated prevalences are given in Fig.A2 as a step function (broken
line). For easier readability of a graph with several curves the step func-
tion may be replaced by a polygon (solid line) interpolating the steps. In
Fig.A2, as in the earlier Fig.5, the midpoints of the vertical steps have
been connected. This is an ad-hoc convention that need not be the optimal

procedure for isotonic estimates.
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