James Arechter

PROTEIN AND POLYPEPTIDE HORMONES

PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM LIÈGE, MAY 19-25, 1968

> Honorary President M. DUBUISSON Rector of the University of Liège

> > President

H. VAN CAUWENBERGE Professor of Internal Medicine, University of Liège

> *Editor* M. Margoulies Liège

1969

EXCERPTA MEDICA FOUNDATION

Amsterdam

1Ja16917763

HENRY VAN CAUWENBERGE: General Introduction

PART 1 MAIN REPORTS AND INVITED PAPERS

I. Radioimmunoassay of Protein and Polypeptide Hormones	
S. A. BERSON: Introduction to symposium on radioimmunoassay	3
Session 1: Specificity of Radioimmunoassay	
W. M. HUNTER: Control of specificity in the radio-immunoassay	5
R. FRASER, C. LOWY and A.H. RUBENSTEIN: Radioimmunoassay on urine samples	14
HJ. QUABBE: Sources of error in the immunoprecipitation system of radioimmunoassays	21
G. D. BRYANT, M. HUXSTER and F. C. GREENWOOD: Immuno-reactive fragments of endo- genous protein hormone in plasma	26
F.A. STEPHENSON and F.C. GREENWOOD: A new hormone of lactation or an artefact of radioimmunoassay	28
J. LANDON, J. GIRARD and F.C. GREENWOOD: The specificity of a radioimmunoassay for human plasma ACTH	29
B.R. WEBSTER and F.C. GREENWOOD: Relative measurements of H-TSH obtained by radioimmunoassay	32
J.P. MONJARDINO, G.D. BRYANT, F.L. STEPHENSON and F.C. GREENWOOD: Density gradient analysis of labelled and unlabelled peptide hormones and of exogenous plasma hormones	34
Session 2: Labelling-Separation of Free Labelled Hormone from Antibody-bound Hormo	one
R.S. YALOW and S.A. BERSON: Topics on radioimmunoassay of peptide hormones .	36
K.J. CATT and G.W. TREGEAR: Solid-phase radioimmunoassay	45
C.R. MORGAN: A two antibody system for radioimmunoassay of protein hormones . V. HERBERT: Coated charcoal separation of free labelled hormone from hormone bound	49
to antibody	55
L.E.M. MILES and C.N. HALES: An immunoradiometric assay of insulin	61
Session 3: Special Problems in the Radioimmunoassay of Small Polypeptides	
R.S. YALOW and S.A. BERSON: Special problems in the radioimmunoassay of small poly- peptides	71

K.J. CATT, M.D. CAIN and J.P. COGHLAN: Radioimmunoassay of angiotensin 11 in blood	77
S. M. GLICK, P. KUMARESAN, A. KAGAN and M. WHEELER: Radioimmunoassay of oxy- tocin	81
R.H. UNGER and A. EISENTRAUT: Special problems of the radioimmunoassay for glu- cagon	84
R. ASSAN, G. ROSSELIN and G. TCHOBROUTSKY: Glucagon in blood and immunological specificity of glucagon molecule	87
TH. L. GOODFRIEND: Radioimmunoassay of bradykinin and angiotensin	91
R.C. TALAMO, K.F. AUSTEN and E. HABER: Effect of carrier and method of coupling on the immunogenicity of bradykinin	93

Session 4: Assays of Gonadotrophins

P. FRANCHIMONT: Radio-immunoassay of gonadotropic hormones	99
A.R. MIDGLEY, JR. and L.E. REICHERT, JR.: Specificity studies on a radioimmunoassay for human follicle stimulating hormone	117
W.D. ODELL, L.E. REICHERT and R.W. BATES: Pitfalls in the radioimmunoassay of car- bohydrate containing polypeptide hormones	124
R.J. RYAN and CH. FAIMAN: Radioimmunoassay of human follicle stimulating hormone: A comparison of several FSH antisera	129
W.R. BUTT and S.S. LYNCH: Some observations on the radioimmunoassay of follicle stimulating hormone	134

II. Lipolysis and Lipogenesis. Mode of Action of ACTH

E.W. SUTHERLAND and R.W. BUTCH	ER:	Ir	ntr	od	luc	tic	on	to	ch	ap	te	r o	n j	pro	ote	ein	aı	nd	pc	ly	pe	p-	
tide hormone and metabolism		•				•	•				•			•	•			•	·		•	•	141

Session 1 and 2 Lipolysis — Lipogenesis

L.A. CARLSON: Lipolysis of adipose tissue triglycerides. Regulation, physiological and clinical significance	143
C. H. HOLLENBERG and A. VOST: Regulation of adipose tissue mass. Origin of adipose lipid and control of fat cell formation (See Part 2)	
R.W. BUTCHER and E.W. SUTHERLAND: The role of cyclic AMP in the lipolytic and anti- lipolytic actions of hormones on adipose tissue	150
P.R. BALLY and K.L. TILBURY: Hormone-induced fatty acid (FFA)-release from isolated fat cells: Role of calcium ion concentration in the incubating medium	154
K. STOCK and E. WESTERMANN: Interactions between ACTH, adrenolytic drugs and pros- taglandin E ₁ in the lipolytic system	159
J. ÖSTMAN: Hormones and lipid metabolism of human adipose tissue	162
E. WALAAS, O. WALAAS and A. WICK: Effect of ouabain on insulin stimulation of ³² P labelling of adenosine triphosphate and guanosine triphosphate in the isolated rat	
diaphragm	164
J.L. SKOSEY: Influence of adrenocorticotropin upon lipogenesis by isolated adipose tis-	
sue	166

Session 3: Mode of Action of ACTH

S.B. KORITZ: On the mechanism of action of adrenocorticotropin	171
R.W. BUTCHER and E.W. SUTHERLAND: The role of cyclic AMP in the steroidogenic actions of ACTH and LH	176
R.V. FARESE: ACTH-induced changes in the steroidogenic activity of cell-free prepara- tions of the rat adrenal	181
J.J. FERGUSON, JR.: Studies on the steroidogenic effect of adrenocorticotropin	185
L. D. GARREN: Studies on the possible role of protein synthesis in the regulation of steroi- dogenesis by ACTH	189
M. STAEHELIN and R. MAIER: The effect of inhibitors of protein synthesis on various para- meters of ACTH action in the adrenal	193

III. Relationship of Structure to Activity of Protein and Polypeptide Hormones

C.H. L1: Remarks on the studies of structure-function relationships of protein and poly-	
peptide hormones	199
R. SCHWYZER: Relationship of structure to activity of polypeptide hormones	201
J. LÉONIS: Protein conformation and biological activity	208
B.T. PICKERING: A comparative endocrinologist's approach to structure-action relation-	
ships	214
J. RUDINGER, I. KREJČÍ, I. POLÁČEK and B. KUPKOVÁ: Neurohypophysial hormone anal- ogues with inhibitor properties: Structure-activity relationships	217
F. MOREL, S. JARD, J. BOURGUET and F. BASTIDE: Neurohypophysial peptides. Relation of molecular structure to activity	219
B. BERDE: Relationship of structure to activity of neurohypophysial hormones	222
E. SCHNABEL and A. OBERDORF: Analogues of physalaemin derivatives and their activities	224
P. DE LA LLOSA and M. JUTISZ: Quaternary structure and biological activity of ovine pituitary interstitial-cell stimulating hormone (ICSH or LH)	229
R. GRATTAROLA: Effects of human gonadotropins on ovulation in women	234
E.A. KOLLI, A.L. SINITSYNA and YU. M. KEDA: The effect of enzymatic hydrolysis and aggregation on the biological activity of the bovine growth hormone	239

IV. Mode of Action of Protein and Polypeptide Hormones on the Mechanisms of Transport

T .1	R. RIGGS: Introduction to the chapter on transports	•	•	·	·	•	•	•	. 2	245
	Session 1: Transport of Ions									
н	RASMUSSEN: Influence of polypentide hormones upon ion transport	. 91	nd	1 10	าท	bi	nd	lin	σ	747

H. RASMOSSEN. Influence of polypeptide normones upon ion transport and ion officing	241
F. BASTIDE, J. BOURGUET, S. JARD and F. MOREL: Mode of action of neurohypophysial	
hormones on active sodium transport by isolated frog skin	257
J. CRABBÉ: Stimulation of active sodium transport by insulin	260
I.L. SCHWARTZ and R. WALTER: Neurohypophyseal hormone-calcium interrelationships	
in the toad bladder	264

Session 2: Transport of Glucids

R.K. CRANE: Comments on insulin and the membrane transport of sugars	270
M. RODBELL: A possible mechanism for the primary action of insulin	277
W. D. STEIN: A possible cytoplasmic form of the permease concerned in galactoside trans-	
port in Escherichia coli	280
T. CLAUSEN, J. LETARTE and M. RODBELL: Cations, glucose transport, and insulin action	282

Session 3: Transport of Amino Acids

I.G. WOOL: Insulin and amino acid transport in muscle	285
K.L. MANCHESTER: Contribution to the discussion on hormones and amino acid trans-	
port	296
E. SCHOFFENIELS: The fluxes of amino acids across the intestinal epithelium of the tortoise	300
B. JEANRENAUD, R. J. HO and M. TOUABI: Aspects of intermediary metabolism in the	
isolated fat cells. I. Lipolysis and antilipolysis. II. Amino acid metabolism	303

Session 4: Transport of Lipids

A. ANGEL: The composition and transport of newly synthesized lipid in isolated white	
adipose cells	307
T.J. FIDDLER and I.R. FALCONER: Effect of prolactin on mammary gland lipoprotein	
lipase activity	320
J. WINAND, J. FURNELLE and J. CHRISTOPHE: The heterogeneity of the NEFA pools in	
epididymal and liver tissue of normal mice	324

PART 2

FREE COMMUNICATIONS

I. Radioimmunoassay of Protein and Polypeptide Hormones

Session 1: Specificity of Radioimmunoassay

R.P. EKINS and G.B. NEWMAN: The optimisation of precision and sensitivity in the radioimmunoassay method	329
J. GIRARD and F.C. GREENWOOD: Radioimmunoassay for human growth hormone in urine. Aspecific factors imitating the presence of growth hormone	332
J.I. THORELL: Improved accuracy of standard curves in radioimmunoassay	335
P.H. WRIGHT and W.J. MALAISSE: A routine method for the assay of insulin antibodies and some applications	337
TH. LEMARCHAND-BÉRAUD and A. VANNOTTI: Variations of human plasma TSH in thyroid diseases by a radioimmunoassay and study of its specificity	340
J. M. LOWENSTEIN, A.S. BLUM, F.S. GREENSPAN and J.R. HARGADINE: Immunofluores- cent assay of TSH and LATS	343
N.F. CUNNINGHAM: The radioimmunoassay of bovine and ovine growth hormones .	345

P. FREYCHET, G. ROSSELIN and J. DOLAIS: Radioimmunological study of cross-reactions presented by the human thyrotropin	348
Session 2: Labelling—Separation of Free Labelled Hormone from Antibody-bound Horm	10ne
A.E. FREEDLENDER: Practical and theoretical advantages for the use of I ¹²⁵ in radio- immunoassay	351
M.L. MITCHELL, S. COLLINS, J. BYRON and M. ERNESTI: Immunoassay of human growth hormone or insulin by enzyme proteolysis.	354
H. BRAUMAN: Technical observation on radioimmunoassay of H.G.H	356
Session 3: Special Problems in the Radioimmunoassay of Small Polypeptides	
E. HABER, M. B. VALLOTTON, A. KIMURA and L. B. PAGE: Immunoassay for Angiotensin II	359
G.W. BOYD, J. LANDON and W.S. PEART: Some problems encountered in the radio- immunoassay of circulating angiotensin II.	365
H.J.G. HOLLEMANS, J. VAN DER MEER and J.L. TOUBER: A radioimmunoassay of angiotensin, its use in the measurement of renin activity in plasma	370
JP. FELBER and M.L. AUBERT: Study on the specificity of antisera used for the radio- immunological determination of ACTH. Measurement of the circadian rhythm	
of plasma ACTH	373
radioimmunochemical method.	377
V. K. VANCE, J. J. SCHNURE and M. REICHLIN: Induction of antibodies to porcine ACTH	200
In raddits with nonsteroid ogenic polymers of BSA and ACTH	200
J.E. SOKAL: Bioassay of glucagon	383
R. M. BUCKLE, G. D. AURBACH and J.T. POTTS: The use of radioimmunoassay of parathyroid hormone in the assessment of adaptation of parathyroid glandular	
activity	389

Session 4: Assays of Gonadotrophins

S.W. ROSEN, S. SCHLAFF and J. ROTH: Anti-human follicle stimulating hormone: Complete cross reactivity with three other human glycoprotein trophic hormones, luteinizing hormone, human chorionic gonadotropin and thyrotropin.	396
R. B. SNOOK: Immunological and biological properties of antiserum to bovine LH \ldots	398
P. M. STEVENSON and A.C. SPALDING: Experiences with a radio-immunoassay for luteinising hormone	401
R.E. DOLKART, B. HALPERN, E. TOROK, J.I. BREWER, J.H. SKOM and A.B. GERBIE: Parallel immuno-assay and bio-assays on 76 patients with choriocarcinoma	404
P.G. CROSIGNANI, F. POLVANI and R. SARACCI: Characteristics of a radioimmunoassay for HCG-LH	409
H.G. BURGER, J.B. BROWN, K.J. CATT, B. HUDSON and J.R. STOCKIGT: Physiolo- gical studies on the secretion of human pituitary luteinising hormone and gonadal steroids.	412
H. KARG and D. SCHAMS: Attempts to determine LH in bovine blood	415

II. Lipolysis and Lipogenesis. Mode of Action of ACTH

Sessions 1 and 2: Lipolysis—Lipogenesis

C.H. HOLLENBERG and A. VOST: Regulation of adipose tissue mass. Origin of adipose lipid and control of fat cell formation.	421
C.N. HALES, T.M. CHALMERS, M.C. PERRY and D.R. WADE: Investigations of the hormonal control of lipolysis	432
M. BENUZZI-BADONI and JP. FELBER: Purification of a factor from guinea-pig serum which potentiates the lipolytic activity of ACTH in isolated fat cells	444
E. GOTH, G. CSEH, J. FÖVÉNYI and L. GRÁF: The effect of epinephrine and human pituitary polypeptides on adipose tissue of obese subjects	448
G. POZZA, A. GHIDONI and G. SORGATO: Insulin effect on lipogenesis in human adipose tissue in vitro	451
A. ELEWAUT, J. PARIJS, A. DE WEERDT and F. BARBIER: Influence of insulin on lipid metabolism	455

Session 3: Mode of Action of ACTH

M.K. BIRMINGHAM, S. HUBERMAN and L. RIVEN: Stimulation of aerobic glycolysis in mouse adrenal glands by ACTH and by adenosine-3',5'-monophosphate	458
R.A. LEVINE: Studies on the mechanism of the steroidogenic response to exogenous cyclic 3',5'-AMP in man	461
E.K. MATTHEWS and M. SAFFRAN: Effect of ACTH and of ions on the membrane poten- tial of adrenocortical cells.	465
M. MARGOULIES, P. CONINX and G. PLOMTEUX: Some observations on the effects of calcium, potassium and chloramphenicol on the adrenal response to ACTH in vitro	467
P.C. SCRIBA and O.A. MÜLLER: On the adrenal subcellular distribution of ³ H-ACTH .	472

III. Relationship of Structure to Activity of Protein and Polypeptide Hormones

T.C. WUU and M. SAFFRAN: A neurohypophysial polypeptide that binds lysine vaso- pressin and oxytocin.	477
D. BRANDENBURG and H.A. OOMS: Des-glycine ^{A1} -des-phenylalanine ^{B1} -insulin and related insulin derivatives	482
H.A. OOMS, Y. ARNOULD and J.R.M. FRANCKSON: Comparison between the immuno- logical and metabolic behaviours of crystalline insulin and labelled iodo-insulins .	485
A. WALSER and TH. MÜLLER: The adrenocorticotropic effect in humans of several synthetic peptides related to β^{1-24} corticotrophin	487
P.A. DESAULLES, B. RINIKER and W. RITTEL: High corticotrophic activity of a short- chain synthetic corticotrophin analogue.	489
L. SZPORNY, GY. T. HAJÓS, SZ. SZEBERÉNYI and GY. FEKETE: Comparative pharma- cology of some synthetic human ACTH sequences	492
G. LUGARO, M. M. CASELLATO, M. MOTTA, F. PIVA and L. MARTINI: Cerebral cortex principles and the control of ACTH secretion	495
G. CSEH and L. GRÁF: Species characteristics in lipid mobilizing peptides of pig pituitary	498

A. PEKKARINEN and U.K. RINNE: Bioassays of prolonged corticotropin preparations on living guinea pig and their clinical comparison in the two-day corticotropin test	
in man	500
A. SAKAMOTO and K.N. PRASAD: The newly-observed catecholamine-like actions of	
β -melanocyte-stimulating hormone	503
L. OLIVER and A. STOCKELL HARTREE: Amino acid sequences in horse growth hormone	505
F.J.A. PROP: Action of prolactin and human placental lactogen (HPL) on human mammary gland in vitro	508
G. HENNEN and J.G. PIERCE: Further characterization of the human chorionic thyroid- stimulating factor (HCTSF)	511

IV. Mode of Action of Protein and Polypeptide Hormones on the Mechanisms of Transport

Session 1: Transport of Ions

R.S. SNART, N.N. SANYAL and T. DALTON: Adsorption of octapeptide hormones onto	
artificial membranes in relation to their effect on ion transport	519
J.H. CORT, B. LICHARDUS, V. PLIŠKA, V. UHRÍN, T. BARTH and J. RUDINGER: The	
origin, nature and mechanism of action of natriuretic hormone	523

Session 2: Transport of Glucids

J. R. CARTER, JR. and D. B. MARTIN: The effect of N-ethylmaleimide on insulin-mediated glucose transport in isolated fat cells	526
L.L. MADISON, R. LUFT and W.A. SEYFFERT, JR.: Acute effect of physiologic and	
glucose utilization	529
J. M. SOWERBY: Effect of luteinising hormone on the in vitro penetration of D-xylose into luteinised rat ovary	539

Session 3: Transport of Amino Acids

W.J. POZNANSKI: Hormonal influences on plasma amino acid(s) levels in man	542
E. BERNARD-WEIL, C. DA LAGE, C. PIETTE and L. OLIVIER : Action of lysine vasopre	essin
on the protein content of HeLa cell culture and on the RNA and DNA cor	cen-
tration of tissue incubations	547

PART 3

DISCUSSIONS

Session 1: Specificity of Radioimmunoassay

A. Non-hormonal non-specificity

Interference with primary hormone-antibody reaction by salts and other solutes 554 Damage to labelled hormone, preparation damage, incubation damage 562

	Damage to endogenous hormones
B.	Hormonal non-specificity
	Cross reacting biologically distinguished hormones
	Isohormones
	Hormonal fragments, derivatives, metabolic products, etc
С.	Species specificity

Session 2: Labelling and Separation

Α.	Preparation and stability of labelled preparations
	Methods
	Limitations of specific activity
	Purification
	Incubation damage
B.	Separation methods
	Double antibody
	Charcoal
	Solid-phase
	Labelled antibody
	Comparative study of methods

Session 3: Special Problems in the Radioimmunoassay of Small Polypeptides

Α.	Discussion of guest speakers' contributions
B.	Immunization procedures
C.	Problems of sensitivity with special reference to optimal conditions
	Concentrations of tracer and antiserum, time and temperature of incubation, volume of incubation, etc
D.	Specificity. Cross-reactivity of isohormones
E.	Generation of hormones in plasma
F.	Correlation of neutralizing and binding activity of antisera

Session 4: Assays of Gonadotropins

A.	State of purification of gonadotropins: evidence for contamination (biochemical and biological).	693
B.	Immunochemical cross-reactivities of FSH, LH, HCG, TSH Reaction with antigenic determinants common to all hormones or contamination	
	in the system?	697 7′01
C.	Suppression of cross-reactions by addition of loading quantities of other hormones. Selection of antisera for enhanced specificity.	705
D.	Immunochemical identity or lack of identity of glandular, plasma and urinary gonadotropins.	714

E.	Correlation of bioassay and immunoassay results. Dissociation of biological and	
	immunochemical activities	718
F.	Separation techniques for bound and free hormones	719
G.	Physiological evidence for specificity of radioimmunoassay. Appropriate responses of plasma hormone to suppression by target hormones, e.g., thyroid, estrogens, etc	723

Session 5: Lipolysis

A.	Why do so many hormones stimulate lipolysis?		•			•					735
B.	Do all lipolytic agents work through cyclic AMP?						•				736
C.	Do various hormones act on the same or on different sites?		•								737
D.	Prostaglandins. A role in physiologic lipolysis?	•	•			•				•	739
E.	Role of the ions, chiefly K and Ca			•			•	•	•	•	740
F.	Species differences: human versus experimental animals? .										741

Session 6: Lipogenesis

Α.	What is the importance of in situ fatty acid synthesis versus deposition from plasma? 747
B.	The cell duplication question
C.	By what mechanism is insulin a 'lipogenetic' factor?
D.	Other lipogenetic factors or antilipolytic factors, including ILA
E.	Questions of compartmentalization

Session 7: Mechanism of Action of ACTH

Α.	Outer membrane - ACTH interaction
	Formation of 3',5'-AMP
	ACTH and electrolytes
	ACTH penetration in the adrenal cell
B.	Action on steroidogenesis
	Increased protein synthesis
	Enzyme activation, steroid enzyme and NADPH formation
	Cholesterol ester and fatty acids
	Increased transformation of cholesterol into pregnenolone and mitochondrial
	membrane phenomena

Session 8: Structure—Activity

Α.	General topics	•				•	•			•	•	•	•		•	•		•	•	•	•		777
B.	Neurohypophyseal hormone	s				•			•	•		•	•	•	•	•	•	•	•	•	•	•	780
C.	Insulin-proinsulin	•		•	•	•	•		•		•		•	•	•					•	•	•	782
D.	Physealamin		•			•						•			•				•				784
E.	ACTH-MSH																						785

F.	GH, lipotropin,	HCS,	HC	Г					•			•				•	792
G.	Gonadotropins																798

Session 9: Ion Transport

Α.	Properties of membranes	•	•		•		•	•		•	•	•	•	•		•	•	·	·	·	·	·	•	•	•	•	807
В.	Comments on properties of	f	m	en	۱b	ra	nes	s a	nd	l ic	n	tr	an	sp	ort	:.		•							•		808

Session 10: Glucid Transport

Α.	Discussion of Dr. R.K. Crane's report	818
B.	On the suggested insulin receptors	
	Hexokinase?	822 826 832
	Interaction of insulin with membrane lipids	832
C.	Insulin-like effects of ions	834
D.	Effect of insulin on the activity of glucose-6-phosphate dehydrogenase, guanosine- triphosphatase and ribonuclease in the liver mitochondria of alloxan-diabetic	
	animals	837
E.	Action of other polypeptide hormones on sugar metabolism	
	Growth hormone	840 840

Session 11: Amino Acid Transport

Relation to protein synthesis	14
Interrelations of amino acid transport with other transports	
Relation of amino acid transport to ions	56
Relation to other transports	59
Problems of specificity	
Tissue specificity 86 Specificity of transport systems 86	51 52
	Relation to protein synthesis 84 Interrelations of amino acid transport with other transports 84 Relation of amino acid transport to ions 85 Relation to other transports 85 Problems of specificity 86 Specificity of transport systems 86

Session 12: Lipid Transport

A.	Discussion of Dr. A. Angel's report	•	•	•	•	•	•			•		867
B.	The role of lipoprotein lipase in transport.							•	•		•	869
C.	The fatty acid acceptor in the interstitial space				•						•	871
D.	The rate of triglyceride disappearance from the blood											872

Stop Press Session 1

I. FØLLING and N. NORMAN: Circulating insulin antibody in a case without previous	
insulin treatment. Plasma protein studies	877
M. RODBELL and L. BIRNBAUMER: Adenyl-cyclase: a single enzyme activated via separate	
hormone-sensitive receptor molecules	878

R.A. LEVINE: Stimulation of plasma insulin and growth hormone in man by cyclic	
3',5'-AMP	879
K.L. MANCHESTER: Action of insulin and intracellular pH	882
A.S. LUYCKX and P.J. LEFEBVRE: Release of glucagon or a glucagon-like immuno-reactive material by rat jejunum incubated in vitro	884
L.A. FROHMAN, J.E. SOKAL and M. REICHLIN: Inhibition of biologic activity of glucagon by anti-glucagon serum	887
J.S. INCZE and H. ANTONIADES: Relation between morphologic changes in pancreatic islets and insulin levels in blood of alloxan-diabetic normal and hypophysectomized rats	888
W.D. ODELL, W.D. DAVIDSON, C. CHARTERS and J.C. THOMPSON: Radioimmunoassay for human gastrin using unconjugated gastrin as an antigen	894
G.W. BOYD, A.E. FITZ and W.S. PEART: The measurement of plasma renin by radioim- munoassay of generated angiotensin I	896

Stop Press Session 2

JG. RAUSCH-STROOMANN, G. TRENKNER and R.PETRY: The influence of human chori- onic gonadotropic hormone (HCG) on metabolism of obese persons on restricted diet	903
B.L. PIMSTONE, S.J. SAUNDERS, J.D.L. HANSEN and B. BUCHANAN-LEE: Observations on the serum albumin and plasma amino acids in association with the elevated growth hormone levels found in protein deficiency states	906
G. NISWENDER, L. REICHERT Jr. and A.R. MIDGLEY Jr.: Radioimmunoassay for lutein- izing hormone in cattle and sheep	908
N. MUNTEANU IVĂNUS, C. LEPĂDATU and B. SARA: Interrelation between insulin and lipolysis	909
G. HENNEN: Thyroid-stimulating activity in serum of pregnant women	911

Addendum

L.K. STAROSELTSEVA: A study of insulin activity in healthy persons, patients with diabetes and patients with insulinoma	917
M.I. BALABOLKIN: Acromegaly in relation to protein and lipid metabolism	918
E.A. VASIUKOVA, G.S. ZEFIROVA, M.I. BALABOLKIN and A.S. VDOVICHENKO: Changes in growth hormone secretion under the influence of anabolic steroids in certain endocrine diseases	920

Subject Index	•	•	•							•	•	•	•	•	•	•	•			•	•	•	•	922
Authors Index						•	•	•	•			•	•							•		•	•	937

ON THE ADRENAL SUBCELLULAR DISTRIBUTION OF ³H-ACTH*

P.C. SCRIBA and O.A. MÜLLER

II. Medizinische Klinik der Universität, Munich, German Federal Republic

Introduction

Studies performed on the biochemical mechanism of stimulation of adrenal protein synthesis (Scriba and Reddy, 1965) revealed that after ACTH treatment of rats a protein factor of the soluble cell fraction from the adrenals ($105,000 \times g$ supernatant) was doubled in activity. This factor was shown to be non-dialysable, heat labile $(55^{\circ}C)$, inactivated by trypsin and rate limiting for ${}^{14}C$ -glycine incorporation by the 15,000 \times g soluble cell fraction of adrenal homogenates (Farese and Reddy, 1963; Scriba and Reddy, 1965) and by adrenal polysomes (Scriba and Fries, 1967). This protein factor is probably aminoacyltransferase (Scriba and Reddy, 1965). The stimulation by ACTH in vivo of the adrenal protein factor, rate limiting adrenal protein synthesis *in vitro* and the stimulation of corticosterone synthesis in vivo appeared to be dissociable 30 hours and 8-14 days after hypophysectomy (Scriba, Fries and Kluge, 1967). Such dissociation after hypophysectomy has been reported for other adrenal effects of ACTH (Harding and Nelson, 1964; Staehelin, Barthe and Desaulles, 1965). With regard to mechanisms of actions of ACTH, it therefore appeared attractive to leave the investigations of events in the adrenal following ACTH and to turn to the problem of the subcellular distribution of 3 H-ACTH in the adrenal. Information about adrenal receptor(s) for ACTH might possibly be obtained from such studies.

Methods

Synthetic β^{1-23} corticotropin-23-amide-acetate catalytically labelled with tritium was generously supplied by Farbwerke Hoechst AG. The material was purified using dextran gel filtration (v. Werder, Schwarz and Scriba, 1968) resulting in parallel elution of radioactivity and biological activity upon rechromatography. Purified ³H-ACTH, 300-450 mU \equiv 3-4.5 µg \equiv 1.1-1.65 µCi, in 1.0 ml saline (0.025 N HCl) was infused for 95 sec. into the thoracic aorta of rats 90 min. after hypophysectomy. Corticosterone increment in adrenal vein plasma was assayed fluorimetrically (Scriba et al., 1966), and found to be maximal from 4 to 11 min. after the start of the ³H-ACTH infusion. At times indicated (Table I) both adrenals were removed, carefully cleaned and homogenized for 3×5 sec. (Potter-Elvehiem) at 26 mg/ml 0.25 M sucrose-electrolyte solution (Scriba and Reddy, 1965) within 5 min. Preparation of subcellular fractions was achieved by differential centrifugation (Schneider and Hogeboom, 1951) of homogenates: supernatants: nuclear fraction (15 min. \times 1,000 \times g sed.), mitochondrial fraction (10 min. \times 15,000 \times g sed.), microsomal fraction (90 min. \times 105,000 \times g sed.) and soluble cell fraction (SN). Nuclear fractions, averaging 54% of the total adrenal weight, contained 76% 'intact' nuclei, 7% ruptured nuclei, 14% nuclei with adherent cellular material, 3% erythrocytes and practically no unbroken cells.

^{*} Supported by Deutsche Forschungsgemeinschaft and Studienstiftung des Deutschen Volkes.

TABLE I

Adrenal subcellular distribution of ³ H-ACTH	
a. Activity (CPM) of subcellular fractions given a	15
b. % of total adrenal activity. Results given as mean -	<i>⊾S.E</i> .

Minutes after start of a infusion	³ H-ACTH	3	12	40	120
Number of experiment	s (N)	19	17	17	17
Total activity (CPM) p adrenals	per pair of	407.8±54.0	337.6±78.0	215.7±31.8	220.0±18.4
Nuclear fraction	<i>a</i> . CPM	105.3 ± 13.6	84.1 ± 12.9	85.4 ± 16.8	78.5 ± 5.5
	<i>b</i> . %	27.37 + 2.38	30.86+2.42	37.95 ± 2.05	37.41 ± 2.41
Mitochondrial fraction	a. CPM	48.2 ± 9.3	521 ± 10.8	35.0 ± 5.6	17.7 ± 2.5
	b. %	13.69+3.04	17.01 ± 1.89	16.54+1.63	8.49 + 1.16
Microsomal fraction	a. CPM	77.2 ± 18.5	38.7 ± 7.1	16.9 ± 2.1	6.9 ± 1.1
	b. %	17.93 ± 3.13	12.97+0.84	8.85 + 1.14	3.39 ± 0.54
Soluble cell fraction	a. CPM	177.2 ± 39.5	162.7 ± 58.2	78.4 ± 14.2	116.8 ± 16.3
	b. %	41.02 ± 4.21	39.15 ± 3.32	36.67 ± 2.68	50.71 ± 3.03

Colorimetric determination (Scriba and Reddy, 1965) showed an RNA/DNA ratio (Siebert, 1966) of 0.52, and no detectable DNA in the $1,000 \times g$ SN. Subcellular fractions were solubilized with NCS and analyzed by liquid scintillation counting at 24% efficiency using the I.S. method for quench correction.

Results

Distribution of adrenal radioactivity was first studied 3 min. after the beginning of 3 H-ACTH infusion, corticosterone release into adrenal vein being already stimulated at this time. Subsequently, 12, 40 and 120 min. intervals were chosen, corticosterone release being maximally stimulated at 12 and still elevated at 120 min. The yield of radioactivity in both adrenals, calculated as % of infused radioactive ACTH, was remarkably low and showed a continuous decline (0.134-0.034%) with time. Surprisingly, the actual activities (CPM) per pair of adrenals remained constant from 40-120 min., indicating prolonged retention of the label from 3 H-ACTH.

In nuclear fractions a remarkably large amount of radioactivity was found. The possibility that the radioactivity in the nuclear fraction (54% of adrenal weight) was due to contamination with soluble cell fraction can be excluded, since the latter was diluted approx. 1:50 during the homogenization-centrifugation procedure. Initial (3 min.) radioactivity in the nuclear fraction may be falsely high due to microsomal contaminations, the radioactivity of the latter however decreased significantly with time. Nuclear radioactivity (CPM) was constant from 12-120 min., but showed a relative (%) increase with time. The % values at 40 and 120 min. were significantly higher than at 3 min. (p < 0.0025 and p < 0.05, respectively).

Mitochondrial radioactivity decreased continuously from 12-120 min. (p<0.0025) both absolutely (CPM) and relatively(%). The same decrease was found in the *microsomal* fraction (3 vs. 12 min.: p<0.05; 12 vs. 40 min.: p<0.005; 40 vs. 120 min.: p<0.005). Microsomal radioactivity was surprisingly high at 3 min. Since microsomal material may well be lost to nuclear and mitochondrial fractions, microsomal radioactivity appears to be at this time in excess of microsomal contribution to cell volume. The decline of radioactivity (CPM) in the *soluble cell fraction* parallels the decrease of total adrenal radioactivity and probably represents removal of label from the adrenals. The relative radioactivity (%) remained there-

fore approximately constant from 3-40 min. Slight increases (p < 0.05) of radioactivity (CPM) in soluble cell fractions at 120 min. may be due to decreases in microsomal and mitochondrial counts.

Discussion

The results present, among others, the following unanswered questions:

- 1. Is the radioactivity found in adrenal cell fractions (e.g. nuclei) still part of ³H-ACTH or of fragment(s) of ACTH?
- 2. What is the zonal distribution of ³H-ACTH throughout the adrenal cortex?
- 3. What is the relation of binding sites and of site(s) of action of ³H-ACTH?
- 4. Are there more than one adrenal cellular receptor for ACTH and what is their nature?

Summary

Subcellular distribution of ³H-ACTH in the adrenals after infusion for 95 sec. in hypophysectomized rats, was studied 3, 12, 40 and 120 min. after the start of the infusion, using homogenization and differential centrifugation. Considerable amounts of radioactivity (CPM) were still found 40 and 120 min. after ³H-ACTH infusion in nuclear fractions. Nuclear radioactivity (%) increased relatively from 3-40 min. A comparably large amount of radioactivity was detected 3 min. after the start of the ³H-ACTH infusion in the microsomal fraction. The results are to be discussed in relation to mechanisms and sites of actions of ACTH.

REFERENCES

- FARESE, R.V. and REDDY, W.J. (1963): Effect of adrenocorticotrophin on adrenal protein synthesis. Endocrinology, 73, 294.
- HARDING, W. B. and NELSON, D. H. (1964): Effect of hypophysectomy on NADP and NADPH concentration and corticosteroid secretion in rat adrenal. *Endocrinology*, 75, 501.
- SCHNEIDER, W.C. and HOGEBOOM, G.H. (1951): Cytochemical studies of mammalian tissues: The isolation of cell components by differential centrifugation: A review. *Cancer Res.*, 11, 1.
- SCRIBA, P.C. and FRIES, M. (1967): Aminoacyltransferase stimulation of protein synthesis by pig adrenal polysomes. *Nature (Lond.)*, 214, 91.
- SCRIBA, P.C., FRIES, M. and KLUGE, F. (1967): Dissociated stimulation by ACTH of adrenal corticosterone and protein synthesis. Acta endocr. (Kbh.), Suppl. 119, 178.
- SCRIBA, P.C., HACKER, R., DIETERLE, P., KLUGE, F., HOCHHEUSER, W. and SCHWARZ, K. (1966): ACTH-Bestimmungen im Plasma aus dem Bulbus cranialis venae iugularis. *Klin. Wschr.*, 44, 1393.
- SCRIBA, P.C. and REDDY, W.J. (1965): Adrenocorticotrophin and adrenal protein synthesis. Endocrinology, 76, 745.

SIEBERT, G. (1966): Gewinnung und Funktion isolierter Zellkerne. Z. klin. Chem., 4, 93.

- STAEHELIN, M., BARTHE, P. and DESAULLES, P.A. (1965): On the mechanism of the adrenal gland response to adrenocorticotrophic hormone in hypophysectomized rats. Acta endocr. (Kbh.), 50, 55.
- v. WERDER, K., SCHWARZ, K. and SCRIBA, P.C. (1968): Über Serumproteinbindung von ACTH. Klin. Wschr., in preparation.