## ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Volume 633

# **GLIAL-NEURONAL INTERACTION**

Edited by N. J. Abbott



The New York Academy of Sciences New York, New York 1991

#### ANNALS OF THE NEW YORK ACADEMY OF SCIENCES

#### Volume 633 December 15, 1991

## **GLIAL-NEURONAL INTERACTION**<sup>a</sup>

Editor

N. J. Abbott

Conference Organizers N. J. Abbott, E. M. Lieberman, and M. C. Raff

| CO | N | ΓЕ | N7 | ГS |
|----|---|----|----|----|
|    |   |    |    |    |

| Preface. By N. JOAN ABBOTT and MARTIN C. RAFF                 | xiii |
|---------------------------------------------------------------|------|
| John Treherne (1929–1989): An Appreciation. By N. JOAN ABBOTT | xvii |
| Special Lecture: The Concept of Neuroglia. By J. Z. YOUNG     | 1    |

#### Part I. Vertebrate Glial Subtypes, Lineage, and Morphology

| Introduction. Vertebrate Glial Classification, Lineage, and Heterogeneity. By<br>BRUCE R. RANSOM                                                                                                                                         | 19 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Glial Cells in the Rat Optic Nerve. The Search for the Type-2 Astrocyte. By<br>BARBARA P. FULTON, JULIA F. BURNE, and MARTIN C. RAFF                                                                                                     | 27 |
| Development, Regeneration, and Neoplasia of Glial Cells in the Central<br>Nervous System. By MARK NOBLE, PARIS ATALIOTIS, SUSAN C. BARNETT,<br>KAREN BEVAN, OLIVER BÖGLER, ANDREW GROVES, PARMJIT JAT, GUUS<br>WOLSWIJK, and DAMIAN WREN | 35 |
| Lineage and Differentiation of Oligodendrocytes in the Brain. By ROBERT P.<br>SKOFF and PAMELA E. KNAPP                                                                                                                                  | 48 |
| Analysis of Cell Lineage in the Rat Cerebral Cortex. <i>By</i> JACK PRICE, BRENDA WILLIAMS, ROBERT MOORE, JOANNE READ, and ELIZABETH GROVE                                                                                               | 56 |
| Physiological Properties of Oligodendrocytes during Development. By H.<br>KETTENMANN, G. V. BLANKENFELD, and J. TROTTER                                                                                                                  | 64 |
| Role of Cyclic AMP and Proliferation Controls in Schwann Cell<br>Differentiation. By K. R. JESSEN, R. MIRSKY, and L. MORGAN                                                                                                              | 78 |
| Discussion Paper: Macroglial Cell Types, Lineage, and Morphology in the CNS. By ARTHUR M. BUTT                                                                                                                                           | 90 |
|                                                                                                                                                                                                                                          |    |

#### Part II. Glial-Neuronal Interaction during Development

| Introduction. Glial Cells in Development. In Vivo and In Vitro Approaches. |    |
|----------------------------------------------------------------------------|----|
| By PASKO RAKIC                                                             | 96 |

<sup>a</sup>This volume is the result of a conference entitled Glial-Neuronal Interaction, which was sponsored by the New York Academy of Sciences and held on September 4–7, 1990 at the University of Cambridge, Cambridge, England.

| β <sub>1</sub> -Integrin-Mediated Neuronal Responses to Extracellular Matrix Proteins.<br>By KEVIN J. TOMASELLI                                                                               | 100 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Cell Surface Recognition and Neuron-Glia Interactions. By MELITTA<br>SCHACHNER                                                                                                                | 105 |
| Molecular Mechanisms of Glial-Guided Neuronal Migration. <i>By</i> TREVOR N.<br>STITT, U. E. GASSER, and MARY E. HATTEN                                                                       | 113 |
| Boundaries and Wounds, Glia and Glycoconjugates. Cellular and Molecular<br>Analyses of Developmental Partitions and Adult Brain Lesions. <i>By</i> ERIC<br>D. LAYWELL and DENNIS A. STEINDLER | 122 |
| Role of the Midline Glia and Neurons in the Formation of the Axon<br>Commissures in the Central Nervous System of the <i>Drosophila</i> Embryo.<br>By CHRISTIAN KLÄMBT and COREY S. GOODMAN   | 142 |
| Platelet-Derived Growth Factor in Central Nervous System Gliogenesis. By<br>N. PRINGLE, E. J. COLLARINI, I. K. HART, M. C. RAFF, and W. D.<br>RICHARDSON                                      | 160 |
| Discussion Paper: Glial-Neuronal Interaction during Development. By JOHN<br>SCHOLES                                                                                                           | 169 |

### Part III. Myelin and Demyelination

| Introduction. Myelin Structure and Demyelination in Multiple Sclerosis. <i>By</i><br>A. N. DAVISON                                                                                    | 174 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Posttranscriptional Regulation of Myelin Protein Gene Expression. <i>By</i><br>Anthony T. Campagnoni, Joseph M. Verdi, A. Neil Verity, Shashi<br>Amur-Umarjee, and Sujatha Byravan    | 178 |
| Expression and Activity of the Transcription Factor SCIP during Glial<br>Differentiation and Myelination. <i>By</i> GREG LEMKE, RAINER KUHN,<br>EDWIN S. MONUKI, and GERRY WEINMASTER | 189 |
| Immune-Mediated Oligodendrocyte Injury. By D. A. S. COMPSTON and N. J. SCOLDING                                                                                                       | 196 |
| Discussion Paper: Myelin and Demyelination. By PETER J. BROPHY                                                                                                                        | 205 |

## Part IV. Glial-Neuronal Interaction in Regeneration

| Introduction. Glia, Neurons, and Plasticity. By G. RAISMAN                                                                                                                                                                                   | 209 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Neuronal and Nonneuronal Influences on Retinal Ganglion Cell Survival,<br>Axonal Regrowth, and Connectivity after Axotomy. <i>By</i> GARTH M. BRAY,<br>MARIA PAZ VILLEGAS-PÉREZ, MANUEL VIDAL-SANZ, DAVID A. CARTER,<br>and ALBERT J. AGUAYO | 214 |
| Schwann Cells in Central Regeneration. By RICHARD P. BUNGE                                                                                                                                                                                   | 229 |
| Myelin-Associated Inhibitors of Neurite Outgrowth and Their Role in CNS Regeneration. By D. S. CADELLI and M. E. SCHWAB                                                                                                                      | 234 |
| Discussion Paper: Is Functional Repair in the CNS a Realistic Possibility? By<br>NIGEL HOLDER                                                                                                                                                | 241 |

#### Part V. Glial Electrophysiology and Transport

| Introduction. Glial Electrophysiology and Transport. By RICHARD K.   |     |
|----------------------------------------------------------------------|-----|
| ORKAND                                                               | 245 |
| Five Electrophysiological Properties of Glial Cells. By B. A. BARRES | 248 |

| Membrane-Associated Sodium Channels and Cytoplasmic Precursors in Glial<br>Cells. Immunocytochemical, Electrophysiological, and Pharmacological<br>Studies. By J. E. MINTURN, H. SONTHEIMER, J. A. BLACK, K. J.<br>ANGELIDES, B. R. RANSOM, J. M. RITCHIE, and S. G. WAXMAN | 255 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Glial K <sup>+</sup> Permeability and CNS K <sup>+</sup> Clearance by Diffusion and Spatial<br>Buffering. <i>By</i> ANDREAS REICHENBACH                                                                                                                                     | 272 |
| Glial H <sup>+</sup> Transport and Control of pH. By WR. SCHLUE, R. DÖRNER, L. REMPE, and B. RIEHL                                                                                                                                                                          | 287 |
| Glial Ion Transport and Volume Control. By O. KEMPSKI, S. VON ROSEN, H. WEIGT, F. STAUB, J. PETERS, and A. BAETHMANN                                                                                                                                                        | 306 |
| Axon-Glia Exchange of Macromolecules. By ROBERT M. GROSSFELD                                                                                                                                                                                                                | 318 |
| Discussion Paper: Current Perspectives in Glial Electrophysiology. By J.<br>MURDOCH RITCHIE                                                                                                                                                                                 | 331 |
| Part VI. Glia and the Blood-Brain Barrier                                                                                                                                                                                                                                   |     |
| Introduction. Implication of Astroglia in the Blood-Brain Barrier. By MILTON<br>BRIGHTMAN                                                                                                                                                                                   | 343 |
| Morphology of Glial Blood-Brain Barriers. By NANCY J. LANE                                                                                                                                                                                                                  | 348 |
| Modulation of a Glial Blood-Brain Barrier. By ARTHUR M. BUTT                                                                                                                                                                                                                | 363 |
| Permeability and Transport of Glial Blood-Brain Barriers. By N. JOAN<br>ABBOTT                                                                                                                                                                                              | 378 |
| Astrocytic Induction of Endothelial Tight Junctions. <i>By</i> Z. NAGY and K. MARTINEZ                                                                                                                                                                                      | 395 |
| Induction of Blood-Brain Barrier Endothelial Cell Differentiation. By<br>WERNER RISAU                                                                                                                                                                                       | 405 |
| Differentiation of Brain Endothelial Cells in Cell Culture. By L. L. RUBIN, K.<br>BARBU, F. BARD, C. CANNON, D. E. HALL, H. HORNER, M. JANATPOUR,<br>C. LIAW, K. MANNING, J. MORALES, S. PORTER, L. TANNER, K.<br>TOMASELLI, and T. YEDNOCK                                 | 420 |
| Discussion Paper: Astrocytes, Cerebral Endothelium, and Cell Culture. The Pursuit of an <i>in Vitro</i> Blood-Brain Barrier. <i>By</i> JOHN GREENWOOD                                                                                                                       | 420 |
| Part VII. Glial Receptors, Signaling, and Second Messengers                                                                                                                                                                                                                 |     |
| Introduction. Glia As Targets for Neuroactive Substances. By BRIAN PEARCE.                                                                                                                                                                                                  | 432 |
| Mechanisms of Axon-Schwann Cell Signaling in the Squid Nerve Fiber. By<br>PETER D. EVANS, VINCENZINA REALE, ROSA MARIA MERZON, and<br>JORGE VILLEGAS                                                                                                                        | 434 |
| Role of Glutamate in Axon-Schwann Cell Signaling in the Squid. <i>By</i><br>EDWARD M. LIEBERMAN                                                                                                                                                                             | 448 |
| Glutamate-Receptor Channels in Mammalian Glial Cells. <i>By</i> STUART G.<br>CULL-CANDY and DAVID J. A. WYLLIE                                                                                                                                                              | 458 |
| Receptor Activation and Its Biochemical Consequences in Astrocytes. By<br>G. P. WILKIN, D. R. MARRIOTT, A. J. CHOLEWINSKI, J. N. WOOD, G. W.<br>TAYLOR, G. J. STEPHENS, and M. B. A. DJAMGOZ                                                                                | 47: |
| Astrocyte Taurine. By GARY R. DUTTON, MARYANN BARRY, MARTHA L. SIMMONS, and ROBERT A. PHILIBERT                                                                                                                                                                             | 48  |
| Discussion Paper: Glial Receptors, Signaling, and Second Messengers. By<br>ANNE MUDGE                                                                                                                                                                                       | 50  |

## **Poster Papers**

| Origin, Growth Factor Responses, and Ultrastructural Characteristics of an Adult-Specific Glial Progenitor Cell. <i>By</i> GUUS WOLSWIJK, PETER M. G. MUNRO, PETER N. RIDDLE, and M. NOBLE                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Studies Relating Differentiation to a Mechanism That Measures Time in O-2A Progenitor Cells. By OLIVER BÖGLER and MARK NOBLE                                                                                                                                                                                                  |
| Expression of Myelin Glycolipids and Proteins in Mitotic and Postmitotic<br>Murine Oligodendrocytes. By P. E. KNAPP and R. P. SKOFF                                                                                                                                                                                           |
| Protein Kinase C in Astrocytes. Phosphorylation and the Regulation of Cell<br>Morphology. <i>By</i> PHILIP L. MOBLEY and BETH C. HARRISON                                                                                                                                                                                     |
| Regulation of Glial Development by Cell Line Derived Factors. <i>By</i> JOEL M. LEVINE and CHANGLIN DOU                                                                                                                                                                                                                       |
| Differentiation of Aminergic Neurons <i>in Vitro</i> Is Not Paralleled by Glial<br>Maturation. <i>By</i> CORDIAN BEYER, JÜRGEN ENGELE, CHRISTOPH PILGRIM,<br>and INGRID REISERT                                                                                                                                               |
| Astrocytes and O-2A Progenitors Migrate Toward Distinct Molecules in a<br>Microchemotaxis Chamber. By REGINA ARMSTRONG, LIANA HARVATH,<br>and MONIQUE DUBOIS-DALCQ                                                                                                                                                            |
| Synthesis and Action of Extracellular Proteases in Rat Hippocampus. <i>By</i><br>MYRNA A. R. DENT, DAVINA E. OWEN, PETER J. ANDREWS, and P. JOHN<br>SEELEY                                                                                                                                                                    |
| Relation of Axons to Patterns of Glia in the Rat Barrel Field Cortex. By LEI<br>ZHANG and NIGEL G. F. COOPER                                                                                                                                                                                                                  |
| Influence of Grafted Neurons on Glial Enzyme Expression. By MARILYN<br>FISHER                                                                                                                                                                                                                                                 |
| Adhesion-Induced Differentiation of Oligodendrocytes Signals the Synthesis<br>and Polarization of Heparan Sulfate Proteoglycans and Sulfated<br>Glycoproteins. <i>By</i> S. SZUCHET and S. H. YIM                                                                                                                             |
| The Axon May Control Schwann Cell Responses to Growth Factors. <i>By</i> J. B. DAVIS and A. D. J. GOODEARL                                                                                                                                                                                                                    |
| Mitogenic Response and Phenotype of Short- and Long-Term Cultured<br>Schwann Cells. Relationship to Intracellular cAMP Levels. <i>By</i> H. J. S.<br>STEWART, P. A. ECCLESTON, K. R. JESSEN, and R. MIRSKY                                                                                                                    |
| Effect of EGF on DNA Labeling in Rat Cerebellar Immature Astrocytes<br>Maintained Under Different Culture Conditions. Presence or Absence of<br>Polylysine, Serum, or Both. <i>By</i> R. AVOLA, G. MAGRÌ, F. INGRAO, L.<br>INSIRELLO, P. CARPANO, V. G. NICOLETTI, D. F. CONDORELLI, N.<br>RAGUSA, and A. M. GIUFFRIDA STELLA |
| A Molecular Approach to Myelination Using Recombinant Retroviruses. By<br>GEOFFREY C. OWENS                                                                                                                                                                                                                                   |
| Defining Critical Regions in the Promoter for Myelin Basic Protein Gene<br>Transcription. <i>By</i> ARUNA ASIPU and G. ERIC BLAIR                                                                                                                                                                                             |
| Myelin Sheath Maintenance in the Absence of Axons. By G. J. KIDD, J. W. HEATH, B. D. TRAPP, G. J. LITTLE, and P. R. DUNKLEY                                                                                                                                                                                                   |
| Differential Regulation of Nerve Growth Factor and Brain-Derived<br>Neurotrophic Factor Expression in the Peripheral Nervous System. By<br>ICHIRO MATSUOKA, MICHAEL MEYER, M. HOFER, and HANS THOENEN                                                                                                                         |

| Adhesion of Primary Schwann Cells to HNK-1 Reactive Glycosphingolipids.<br>Cellular Specificity. <i>By</i> LEILA K. NEEDHAM and RONALD L. SCHNAAR                                                                                | 553 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Expression of the 14E Antigen in Glial Cells in Human Normal and<br>Pathological Central Nervous System Tissues. By J. NEWCOMBE, A.<br>BRAR, H. LI, and M. L. CUZNER                                                             | 556 |
| Isolation and Characterization of the Myelin-Like Membranes Ensheathing<br>Giant Axons in the Earthworm Nerve Cord. <i>By</i> BETTY I. ROOTS,<br>BEATRICE CARDONE, and PEDRO PEREYRA                                             | 559 |
| A Growth Cone Collapsing Activity in Chicken Gray Matter. <i>By</i> ROGER J.<br>KEYNES, ALAN R. JOHNSON, CAROLINE J. PICART, OLGA M. DUNIN-<br>BORKOWSKI, and GEOFFREY M. W. COOK                                                | 562 |
| Transplantation of Normal and Genetically Engineered Glia into Areas of Demyelination. <i>By</i> A. J. CRANG, R. J. M. FRANKLIN, W. F. BLAKEMORE, J. TROTTER, M. SCHACHNER, S. C. BARNETT, and M. NOBLE                          | 563 |
| Components of Astrocytic Extracellular Matrix Are Regulated by Contact<br>with Axons. <i>By</i> MARCH D. ARD and ANDREAS FAISSNER                                                                                                | 566 |
| Effects of X-Irradiation on Proximal Nerve Stump Reaction after Nerve<br>Crush and Axonal Regeneration. <i>By</i> M. BRESJANAC, J. SKETELJ, and D.<br>LINDHOLM                                                                   | 570 |
| Glial Cells Transplanted to the Rat Optic Tract. Influence on the Regrowth of Retinal Axons. <i>By</i> A. R. HARVEY, M. CHEN, and S. E. DYSON                                                                                    | 573 |
| Nerve Regeneration <i>in Vivo.</i> A Blind-Ended Tube Model for Studying<br>Environmental Effects. <i>By</i> ROBERT W. VAN BOVEN, MARK R. GILBERT,<br>and BEVERLY L. HARDING                                                     | 577 |
| Induction of Blood-Brain Barrier Characteristics in Bovine Brain Endothelial<br>Cells by Rat Astroglial Cells in Transfilter Coculture. <i>By</i> JOCHEN<br>NEUHAUS, WERNER RISAU, and HARTWIG WOLBURG                           | 578 |
| Molecular Mechanisms Leading to Lesion-Induced Increases in Nerve<br>Growth Factor Synthesis. By ROLF HEUMANN, BASTIAN HENGERER,<br>MICHAEL BROWN, and HUGH PERRY                                                                | 581 |
| Anion Conductance Blocked by Divalent Cations in Cultured Rat Astrocytes.<br>By T. JALONEN, V. VARGA, K. HARTIKAINEN, R. JANÁKY, and S. S. OJA                                                                                   | 583 |
| Ultrastructure and Voltage-Dependent Sodium Currents at the Glia<br>Limitans of the Frog Optic Nerve before and after the Axons Degenerate.<br><i>By</i> PAULA M. ORKAND, ROSA BLANCO, HECTOR MARRERO, and<br>RICHARD K. ORKAND. | 586 |
| Accumulation of Intracellular Bicarbonate Accounts for the Missing Anion<br>during Potassium-Evoked Swelling of Cortical Type-1-Like Astrocytes. <i>By</i><br>WOLFGANG WALZ                                                      | 589 |
| Cell Coupling Is Restricted to Subpopulations of Astrocytes Cultured from<br>Rat Hippocampus and Optic Nerve. <i>By</i> H. SONTHEIMER, J. E. MINTURN,<br>B. R. RANSOM, J. A. BLACK, A. H. CORNELL-BELL, and S. G. WAXMAN         | 592 |
| Endothelin Increases Rubidium Uptake through Calcium-Activated<br>Potassium Channels in C6 Glioma Cells. <i>By</i> SURACHAI SUPATTAPONE and<br>CHRISTOPHER C. ASHLEY                                                             | 597 |
| Single Ion Channel Currents from Vesicles in Teased Rat Spinal Roots. By S. QUASTHOFF and P. GRAFE                                                                                                                               | 599 |

| Properties of Ion Channels in Cultured Adult Human Schwann Cells. By<br>JAMES MCLARNON and SEUNG KIM                                                                                                                                                  | 603 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Electrophysiological Properties of Squid Giant Axon Schwann Cells.<br>Relevance to K <sup>+</sup> Clearance. By N. JOAN ABBOTT, Y. PICHON, E. R.<br>BROWN, I. INOUE, F. KUKITA, PATRICIA A. REVEST, and I. C. H. SMITH                                | 607 |
| Electrogenic Glutamate Uptake. Basic Properties, Modulation, and Failure<br>in Anoxia. By DAVID ATTWELL, BORIS BARBOUR, HELEN BREW,<br>MONIQUE SARANTIS, and MAREK SZATKOWSKI                                                                         | 610 |
| The Inducible Blood-Brain Barrier Endothelium-Specific Antigen HT7, A<br>Novel Immunoglobulin-Like Membrane Glycoprotein. <i>By</i> HARALD<br>SEULBERGER, CAROLIN UNGER, URSULA ALBRECHT, and WERNER<br>RISAU                                         | 611 |
| Blood-Brain Barrier Function in Central Demyelinating Lesions Repaired by<br>Schwann Cell Remyelination. By P. A. FELTS, K. J. SMITH, and E. TILT                                                                                                     | 615 |
| Development of Nonneural Elements in the Central Nervous System of<br>Drosophila. By J. S. EDWARDS, L. S. SWALES, and C. M. BATE                                                                                                                      | 617 |
| Inhibition of Potassium-Activated Release of D-Aspartate from Astrocytes by<br>an Anion Transport Inhibitor. <i>By</i> H. K. KIMELBERG and S. GODERIE                                                                                                 | 619 |
| Peptidylglycine Amidating Monooxygenase (PAM), an Enzyme Required for<br>Neuropeptide Biosynthesis, Is Present in Schwann Cells and Some Glia.<br>By C. HARKER RHODES, RUTH H. ANGELETTI, and F. ARTHUR<br>MCMORRIS                                   | 623 |
| Fluoroacetate, a Selective Inhibitor of the Glia Tricarboxylic Acid Cycle,<br>Attenuated the Release of Luteinizing Hormone-Releasing Hormone<br>from the Hypothalamus of Ovariectomized Rats. <i>By</i> T. J. WU, N. H.<br>MCARTHUR, and P. G. HARMS | 626 |
| Capsaicin-Induced c-fos in Peripheral Nervous System Glial Cells. By JANET<br>WINTER and CAROLINE EVISON                                                                                                                                              | 628 |
| Neuron-Glia Interaction. Effect of Serotonin and DBcAMP on the<br>Expression of GFAP and Its Encoding Message. By M. TARDY, G. LE<br>PRINCE, C. FAGES, B. ROLLAND, J. NUNEZ, and M. F. BELIN                                                          | 630 |
| Closing Remarks. By J. G. NICHOLLS                                                                                                                                                                                                                    | 633 |
| Index of Contributors                                                                                                                                                                                                                                 | 637 |

#### Financial assistance was received from:

#### Supporter

- NATIONAL SCIENCE FOUNDATION
- Contributors
  - ABBOTT LABORATORIES
  - BAYER UK plc
  - BRISTOL-MEYERS SQUIBB (USA)
  - ELSEVIER PUBLISHERS (TRENDS IN NEUROSCIENCES)
  - FISONS PHARMACEUTICALS (USA)
  - FISONS plc (UK)
  - GENENTECH, INC. (USA)

- GLAXO RESEARCH LABORATORIES (USA)
- HEFFERS BOOKSHOP, CAMBRIDGE
- HOFFMANN-LA ROCHE INC. (USA)
- ICI AMERICAS INC.
- LILLY RESEARCH CENTRE (UK)
- MERCK SHARPE & DOHME plc (UK)
- MULTIPLE SCLEROSIS SOCIETY (UK)
- NATIONAL MULTIPLE SCLEROSIS SOCIETY (USA)
- PFIZER CENTRAL RESEARCH (UK)
- SMITH KLINE & BEECHAM (UK)
- THE COMPANY OF BIOLOGISTS (UK)
- THE WELLCOME TRUST (UK)

The New York Academy of Sciences believes it has a responsibility to provide an open forum for discussion of scientific questions. The positions taken by the participants in the reported conferences are their own and not necessarily those of the Academy. The Academy has no intent to influence legislation by providing such forums.

## Differential Regulation of Nerve Growth Factor and Brain-Derived Neurotrophic Factor Expression in the Peripheral Nervous System

# ICHIRO MATSUOKA, MICHAEL MEYER, M. HOFER, AND HANS THOENEN

Department of Neurochemistry Max-Planck-Institute for Psychiatry 8033 Planegg-Martinsried, FRG

Whereas intact sciatic nerves of adult rats synthesize very low levels of nerve growth factor (NGF) *in vivo*, a massive increase of NGF synthesis is observed after a nerve lesion.<sup>1</sup> Application of interleukin 1 (IL-1) increases the level of NGF mRNA in cultured sciatic nerve explants as well as in fibroblasts isolated from the nerve.<sup>2,3</sup> However, the mechanisms regulating NGF synthesis in Schwann cells, the major nonneuronal cell type of the nerve, have not been clarified.

We found that forskolin (FK), a reversible activator of adenylate cyclase, rapidly increased the level of NGF mRNA without affecting its stability in highly enriched cultures of Schwann cells, whereas IL-1 and several peptide growth factors known to increase the NGF mRNA level in fibroblasts and astrocytes<sup>4</sup> failed to do so in Schwann cells. Forskolin was also effective in nerve explant cultures. The effects of FK were mimicked by cAMP analogs, but not by a cGMP analog or dideoxyforskolin, a forskolin derivative that does not activate adenylate cyclase. Transforming growth factor- $\beta$ 1 decreased the NGF mRNA levels in Schwann cells, in contrast to its effects on astrocytes.<sup>5</sup> A Ca<sup>2+</sup> ionophore and a phorbol ester potentiated the effect of FK on the NGF mRNA level. Pretreatment of Schwann cells with H-8, an inhibitor of cyclic nucleotide-dependent protein kinases, reduced both basal and induced NGF mRNA levels, suggesting an essential role of cAMP-dependent protein kinase for NGF mRNA regulation in Schwann cells.

Brain-derived neurotrophic factor (BDNF) is a recently cloned member of the family of NGF-like neurotrophic proteins,<sup>6</sup> which is mainly synthesized in the central nervous system.<sup>67</sup> So far no nonneuronal cell type capable of BDNF synthesis has been identified. We found that BDNF is expressed at very low levels in the rat sciatic nerve and at much higher levels in rat Schwann cell cultures (FIG. 1). In contrast to its effects on NGF mRNA, expression of BDNF in sciatic nerve explants is not changed by administration of IL-1 (FIG. 2). Opposite to its effects on NGF mRNA, forskolin decreased the basal as well as the ionomycin-induced levels of BDNF mRNA in cultured Schwann cells. Details of the mechanisms of BDNF regulation *in vivo* and *in vitro* remain to be investigated. It is not clear why both proteins are differentially regulated.




FIGURE 1. Northern blot analysis of NGF and BDNF mRNAs in cultured rat sciatic Schwann cells. Cells were incubated with 1  $\mu$ g/ml ionomycin (Ion), 0.1  $\mu$ g/ml TPA, and 20  $\mu$ M forskolin (FK) for 3 hours.

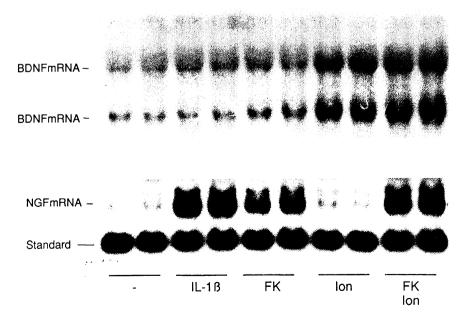



FIGURE 2. Northern blot analysis of NGF and BDNF RNAs in sciatic nerve explants. Sciatic nerve segments prepared from newborn rats (3 days in culture) were incubated with 60 U/ml IL-1 $\beta$ , 20  $\mu$ M forskolin (FK), and 1  $\mu$ g/ml ionomycin (Ion) for 3 hours. Nerve explants prepared from adult animals gave similar results.

#### REFERENCES

- 1. HEUMANN, R., S. KORSCHING, C. BANDTLOW & H. THOENEN. 1987. J. Cell. Biol. 104: 1623-1631.
- 2. LINDHOLM, D., R. HEUMANN, M. MEYER & H. THOENEN. 1987. Nature 330: 658-659.
- LINDHOLM, D., R. HEUMANN, B. HENGERER & H. THOENEN. 1988. J. Biol. Chem. 263: 16348– 16351.
- 4. Spranger, M., D. Lindholm, C. Bandtlow, R. Heumann, H. Gnahn, M. Näher-Noe & H. Thoenen. 1990. Eur. J. Neurosci. 2: 69–76.
- 5. LINDHOLM, D., B. HENGERER, F. ZAFRA & H. THOENEN. 1990. Neuro. Rep. 1: 9–12.
- 6. LEIBROCK, J., F. LOTTSPEICH, A. HOHN, M. HOFER, B. HENGERER, P. MASIAKOWSKI, H. THOENEN & Y.-A. BARDE. 1989. Nature 341: 149–152.
- 7. HOFER, M., S. R. PAGLIUSI, A. HOHN, J. LEIBROCK & Y.-A. BARDE. 1990. EMBO J. 9: 2459–2464.