
i n : Proc. 6emes Journees Bases de Donnee 
Avancees (BDA'90), M o n t p e l l i e r , Fran 
Sept. 25-28, 1990 

Upside-down Deduction 

Francis Bry 

ECRC, Arabellastr. 17, 8000 München 81, West Germany 
fb@ecrc.de 

ABSTRACT Over the recent years, several proposals 
were made to enhance database systems with automated 
reasoning. In this article we analyze two such enhance­
ments based on meta-interpretation. We consider on the 
one hand the theorem prover Satchmo, on the other hand 
the Alexander and Magic Set methods. Although they ach-
ieve different goals and are based on distinct reasoning 
paradigms, Satchmo and the Alexander or Magic Set 
methods can be similarly described by upside-down 
meta-interpreters, i.e., meta-interpreters implementing one 
reasoning principle in terms of the other. Upside-down 
meta-interpretation gives rise to simple and efficient im­
plementations, but has not been investigated in the past. 
This article is devoted to studying this technique. We show 
that it permits one to inherit a search strategy from an 
inference engine, instead of implementing it, and to com­
bine bottom-up and top-down reasoning. These properties 
yield an explanation for the efficiency of Satchmo and a 
justification for the unconventional approach to top-down 
reasoning of the Alexander and Magic Set methods. 

1. Introduction 

During the last years, several proposals were made to en­
hance database systems by applying artificial intelligence 
techniques, in particular automated reasoning. One can dis­
tinguish two types of extensions. On the one hand, artificial 
intelligence is applied to improve the implementation of 
some components of database systems. On the other hand, 
the database systems themselves are extended with deduc­
tive capabilities in order to manage general, non-factual 
knowledge. Examples of the first type of extensions are, 
among others, the procedures for improving integrity 
checking (e.g., [KSS 87], [BDM 88]) and the rule-based 
approaches to query optimization (e.g., [PRE 87], [GDW 

87]). Extensions of the second type are query evaluation 
procedures for deductive databases like the Alexander [R* 
86] and the Magic Set [B* 86, BR 87] methods, or the 
theorem prover Satchmo [MB 88] which was developed for 
checking the consistency of integrity constraints [BM 86]. 

These extensions are not always slavishly imitated from 
artificial intelligence. Some of them introduce new ideas 
and techniques that are applicable to automated deduction 
in general. So do Satchmo, the Alexander, and the Magic 
Set methods. -They rely on meta-interpretation for im­
plementing one reasoning principle - bottom-up or top-
down processing - in terms of the other. Although meta-
interpretation is a common technique in functional and 
logic programming, its use for 'reversing' inferences does 
not seem to have received much attention in the past We 
call 'upside-down meta-interpretation' this unconventional 
use of meta-interpretation. 

This paper is devoted to studying upside-down meta-
interpretation. We consider two different applications of 
this technique, in Satchmo on the one hand, in the 
Alexander and Magic Set methods (short, AMS methods) 
on the other hand. These applications of upside-down meta-
interpretation are symmetrical in many ways. Satchmo per­
forms bottom-up reasoning, the AMS methods compute 
top-down deductions. Satchmo aims at managing rather 
small data while the AMS methods are query evaluation 
procedures for large databases. Being implemented in 
Prolog, Satchmo relies on the hierarchical data structure 
classically retained for linear resolution. In contrast, the 

mailto:fb@ecrc.de


AMS methods rely on relational, normalized data struc­
tures. Satchmo is implemented in the top-down language 
Prolog, while the AMS methods rely on a language of rules 
intended for bottom-up evaluation. 

Despite of their differences, Satchmo and the AMS 
methods benefit from the same properties of upside-down 
meta-interpretation. They do not re-implement search 
strategies - depth-first for Satchmo, breadth-first for the 
AMS methods - but inherit them from the inference engine 
- Prolog for Satchmo, the semi-naive procedure for the 
AMS methods. Moreover, Satchmo as well as the AMS 
methods give rise to combine bottom-up and top down 
reasoning during the same process. We rely on the sym­
metry and complementarity of Satchmo and the AMS 
methods for investigating these properties of upside-down 
meta-interpretation. 

Satchmo consists of a collection of Prolog programs that 
are variations on two bottom-up reasoning procedures to be 
applied in different cases. These programs are very short-
Each of them consists of seven to nine Prolog clauses with 
no more than eight literals. In the article [MB 88], we 
published them and reported about their good performance 
on more than eighty benchmark problems recently 
proposed in the theorem proving literature. In the present 
article, we study the implementation technique of Satchmo 
and we submit an explanation for its efficiency. 

The Alexander and and the Magic Set methods implement 
a top-down evaluation of the database rules by means of 
auxiliary rules that are processed bottom-up. Because they 
combine bottom-up and top-down deductions in an uncon­
ventional manner, they were often misunderstood. In [BRY 
89], these methods have been formalized in terms of meta-
interpretation. In particular, it has been shown that their 
auxiliary rules result from the specialization of a meta-
interpreter. Here, we rely on the meta-interpretative for­
malization of the Alexander and Magic Set methods for 
justifying their 'magic', i.e., the use of bottom-up reasoning 
for implementing top-down evaluation. We argue that this 
'upside-down* approach is preferable to conventional im­
plementations based on linear resolution, e.g., relying on 
Prolog. 

This article consists of seven sections, the first of which is 
this introduction. We give background notions and nota­
tions in Section 2. In Section 3, we briefly recall the meta-
interpretation technique. Satchmo is briefly described in 
Section 4. The meta-interpretative formalization of the 
Alexander and Magic Set methods is outlined in Section 5. 
In Section 6 we investigate the advantages of upside-down 
meta-interpretation. In Section 7 we summarize the article 
and we indicate open research problems. 

2. Background 

A deductive database is a finite set of deduction rules and 
facts. Facts are ground atoms and deduction rules are ex­
pressions of the form 

Η L | Λ ... Λ L n 

where η £ 1, Η is an atom, and the L{s are literals. This rule 
denotes the formula 

V x 1 . . . V x k ( L 1 A . . . A L n ) => Η 

where the XjS are the variables occurring in Η or in the I^s. 
Η is the head of the rule, Lj Λ ... Λ L n is its body. Rules 
and databases are function-free i f they contain no function 
symbols. 

In this article, we consider Horn rules, i.e., rules such that 
the L{s are atoms. A database with Horn rules is a Horn 
database. A Horn rule is safe or range-restricted if each 
variable occurring in its head also occurs in its body. 

A ground atom A is an immediate consequence of a 
database DB if it is derivable from DB by modus ponens, 
i.e., if there exist: 

• a rule Η <- L x Λ ... Λ L n e DB 
• a most general substitution σ 

such that 
• Ησ = A 
• Ι^σ 6 DB for i = 1 , n . 

Generating immediate consequences is called forward or 
bottom-up reasoning. 

The immediate consequence operator Τ is the function as­
sociating with a database DB the set T(DB) of its im­
mediate consequences. Τ is monotonic on Horn databases. 

2 



Therefore, Τ has a unique least fixpointfTAR 55] 
τΤ ω(ϋΒ) on a Horn database DB. We recall that: 

Τ ί ω ( ϋ Β ) = u n 6 N T t n ( D B ) 
where: 

TT°(DB) = D B 

TT n + 1(DB) = TCr l^CDB))uTT"(DB) fo rneN 

If τΤω(ΟΒ) is finite - for example if DB is function-free -
then there exists η e Ν such that: 

Τ ί ω ( ϋ Β ) = Tt^DB) 
Tt k (DB) * ΤίωΟ>Β) fork<η 

The semantics of a Hem database DB is formalized by 
defining its true facts as the facts in the least fixpoint 
τΤω(ΟΒ). They can be obtained by iteratively computing 
the sets T i ^ D B ) for increasing m. This approach to 
bottom-up reasoning is often called the naive method. 

Bottom-up reasoning by computing the sets TT^DB) leads 
to redundant computations: While computing T t m + 1 (DB) , 
all immediate consequences of Tt l(DB) for 0 < i < m are 
re-computed. Since Τ is monotonic on Horn databases, it 
suffices to generate those elements of TT m + 1(DB) that have 
at least one premise in T t ^ D B ) \ Τ ί ^ φ Β ) . This ap­
proach is called the semi-naive method. 

An alternative to bottom-up reasoning is backward or 
top-down reasoning. A top-down evaluation of an atomic 
query Q consists in generating η subgoals L{a (1 <* i ^ n) 
for each rule Η <- Lj Λ ... Λ L n e DB such that σ is a most 
general unifier of Η and Q. A subgoal Lp in turn similarly 
induces new subgoals, or evaluates to (Ι^σ)τ if there exists 
a fact F ε DB and a most general substitution τ such that 
Ρ = ^ σ ) τ . 

Top-down significantly differs from bottom-up reasoning 
as it generates two sorts of data, namely facts and goals. 
Moreover, top-down reasoning makes use of the relation­
ship between a goal and its subgoals for collecting the sub­
stitutions inherited from the evaluations of the latter. 

Several strategies have been investigated for top-down 
reasoning. The implementation of Satchmo relies on one of 
them, the linear, depth-first strategy of SLD-Resolution. 
This strategy processes one (sub)goal at a time and 

generates new subgoals from one rule at a time. Choice-
points indicate the remaining alternatives. 

This strategy gives rise to use a stack for storing the goals, 
the choice-points, and for expressing the 
ancestor/descendant relationship between goals. It was in­
dependently proposed in [LOV 68] and in [LUC 68] for 
general clauses. It is especially well-suited to automated 
theorem proving because an efficient stack management is 
easily implemented in main memory. The linear, depth-first 
strategy and the stack data structure have been retained for 
Prolog interpreters [G* 85]. 

r i :p(x)<-q(x)Ar(x) f^qia) f3:r(b) 
r 2: p(x) <- s(x) Λ t(x) f2: q(b) f4: r(c) 

(1) query: p(x) 

f-> r2 
(2) query: q(x) I query: r(x) I query: p(x) 

[ -* f 2 Γ*Γ2 
(3) query: q(a) I query: r(a) I query: p(a) 

f* f 2 f* r 2 
(4) query: q(a) I query: r(a) I query: p(a) 

the query r(a) fails 

(5) query: qfb) I query: r(b) I query: p(b) 

r> f 4 Γ*Γ2 
(6) query: qfb) I query: r(b) I query: p(b) 

Figure 1 gives a simplified representation of the evaluation 
stack during the first steps of a linear top-down evaluation. 
A goal is annotated 'query' and a choice-point is 
represented by a pointer to the next rule or fact: This 
representation assumes that rules and facts are ordered. A 
goal expanded with a rule is underlined and its subgoals are 

query: p(x) 

f-> r2 
query: q(x) I query: r(x) I query: p(x) 

[ -* f 2 Γ*Γ2 
query: qfa) I query: r(a) I query: p(a) 

f* f 2 f* r 2 
query: q(a) I query: r(a) I query: pfa) 

the query r(a) fails 

query: q(b) I query: r(b) I query: p(b) 

r> f 4 Γ*Γ2 
query: qfb) i query: r(b) I query: p(b) 

the query r(b) succeeds yielding the solution p(b) 

Fig.l 

3 



pushed in the stack. In this example, we assume a left-to-
right selection function, i.e., the leftmost non-underlined 
goal is processed first. 

3. Top-down and Bottom-up Meta-interpreters 

A database DB defines a first-order language L(DB) which 
is defined as follows. The predicates of L(DB) are the 
relations of DB. Its constants and function symbols are 
those occurring in the facts or in the rules of DB. Variables 
in L(DB) range over the terms that can be constructed from 
the constants and function symbols. 

One can also consider formulas in L(DB) as terms. This 
gives rise to define new predicates expressing properties of 
these formulas. Such predicates are called meta-predicates. 
For example, the rules of Figure 2 define a meta-predicate 
'proven* which defines the conjunctions and facts that are 
true in the database under consideration. 

proven(x) <- fact(x) 
proven(x) rule(x <- y) Λ proven(y) 

proven(xj A X 2 ) <— proven(xj) A proven(x2) 

Fig. 2 

We assume that the 'fact* meta-predicate of Figure 2 ranges 
over the facts in the database, the 'rule' meta-predicate, 
over the database rules. Meta-predicates such as 'fact9 and 
'rule* are implictly used in relational database systems. 
These systems usually store in auxiliary relations the infor­
mation about user-defined relations, e.g., names, arities, 
etc. Such auxiliary relations corresponds in logic to meta-
predicates. 

The facts that are true in a database DB - i.e., the facts in 
the fixpoint τΤ ω φΒ) - can be generated through the rules 
of Figure 2. It is worth noting, however, that a bottom-up 
processing of these rules would never stop, even if 
τ Τ ω φ Β ) is finite. Indeed, conjunctions with unbounded 

lengths would be constructed. In contrast, an exhaustive 
top-down reasoning method would construct τΤω(ΟΒ) and 
stop if this fixpoint is finite. 

fact(x) <- rule(x <- y) A evaluate(y) 

Fig. 3 

The rule of Figure 3 is a bottom-up counterpart to Figure 2. 
Its bottom up evaluation generates τΤω(ϋΒ) and stops if 
this fixpoint is finite. We assume that the 'evaluate' meta-
predicate expresses the evaluation of atomic and conjunc­
tive queries against the facts only, without considering the 
rules, 'evaluate' can be implemented by calling a relational, 
non-deductive query evaluator. 

Rules whose variables range over formulas are called 
meta-rules. If in addition they specify the evaluation of 
other rules - the object rules - , the meta-predicate they 
define is called a meta-interpreter. Meta-interpretation is 
commonly used in functional and logic programming, for 
formal specifications as well as for implementations. We 
shall speak of bottom-up and top-down meta-interpreters 
for refering to the reasoning principle which is intended for 
evaluating the meta-rules. 

proven(x since true) <— fact(x) 
proven(x since (y since z)) <— rule(x <- y) 

A proven(y since z) 
proven((xj A X ^ since (yx A y 2)) <- proven(xj since yx) 

A proven(x2 since y 2) 

Fig. 4 

The meta-interpreters of Figures 2 and 3 are not really use­
ful, for they do not achieve more than the considered in­
ference engine and induce an undesirable overhead. 
However, slight modifications yield interesting meta-

4 



interpreters. Figure 4 gives an example of such a modifica­
tion of the rules of Figure 2. The new meta-interpreter 
generates not only the facts that are true in a database, but 
also the associated proof trees, 'since* denotes an infixed 
binary function symbol. 

Meta-interpretation is usually used like in Figure 4 for 
refining an inference engine. Conventional meta-
interpreters are intended for top-down computation and 
reflect top-down reasoning on the object rules - see, 
e.g., [STS 86]. In this paper, we consider meta-interpreters 
of a different kind, namely meta-interpreters that rely on 
one inference principle - bottom-up or top-down - for im­
plementing the other. 

4. Satchmo: Proving Theorems by Building 
Databases 

Most theorem provers proceed by refutation, i.e., in order 
to prove that a formula F is a theorem in a theory or set of 
axioms T, they establish the inconsistency of Τ u h F). 
One approach to refutation consists in trying to build 
models - more precisely Herbrand models - of the set of 
formulas to refute. If there are no models, the set is proven 
inconsistent. 

We shall assume that formulas are in clausal form, i.e., they 
are in prenex conjunctive normal form and existentially 
quantified variables are represented by Skolem functions. 
A clause 

C 1 v . . v q i v n A 1 v . . . v n A B 1 

with positive literals C{s will be represented by the ex­
tended rule 

C l V . . . v C n <- Α 1 Λ . . . Λ Α Π 1 

Completely positive clauses (m = 0) are represented by 
Cj ν ... ν C n <- true 

Similarly, completely negative clauses (n = 0) are ex­
pressed as 

false <r- A t Λ ... Λ A m 

Thus negation never occurs explicitly. 

Every model Μ of a set of first-order formulas can be 
represented by the factual database DB(M) consisting of 

the positive ground literals that are true in M. By the closed 
world assumption, the negative literals of Μ are implicit in 
DB(M). 

An extended rule 
c i v . . . v C n < - A 1 A . . . A A m 

is satisfied in a database DB if for every substitution σ such 
that [A{ Λ ... Λ Α ι η]σ holds in DB, Cp e DB for some i . 
Conversely, this extended rule is violated in DB if there is 
an instance [Ax A ... Λ Α ι η]σ which is true in DB and if 
none of the C ^ hold in DB. 

This suggests to prove consistency by constructing factual 
databases instead of full models. Consider for example the 
database of Figure 5 and the following two rules: 

1. p(y) <r- p(x)Aq(x,y) 

2. q(x,z) <- q(x, y) Λ q(y, z) 
Rule 1 is satisfied because if its body holds for some values 
of χ and y, then its head holds for the same value of y. In 
contrast, Rule 2 is violated: The substitution [x.a, y:b, z:a] 
yields a solution for the body but no solutions for the head. 
A database expressing a model of the two rules can be 
constructed by adding the missing fact, namely q(a, a). 

p(a) q(a,b) 
p(b) q(b, a) 
p(c) q(b,b) 

Fig. 5 

This approach extends to non-Horn rules by considering 
the various ways to satisfy disjunctions. Consider for ex­
ample the following extended rule: 

3. [q(x, ζ) ν r(x, z)] <- q(x, y) Λ q(y, z) 
The database of Figure 5 can be extended into a represen­
tation of a (minimal) model of Rule 3 in two ways, by 
inserting either q(a, a) or r(a, a). 

The Prolog program of Figure 6 (on next page) performs 
such a case analysis. It uses the following data structures. 
A fact is directly stored as a Prolog fact. An extended rule: 

[ C , v . . . v C m ] <- Α , Λ . , . Λ Α , , 

5 



is stored in a Prolog binary relation 'rule' as: 
ru le((C i ; . . . ;C m ) , ( A l f \ ) ) 

We recall that';' and V are the Prolog notations for ν and 
Λ, respectively. The Boolean variable 'true' is a Prolog 
built-in which is always satisfied. 

consistent :-
rule(H, B), 
B, not H,! , 
component(C, H), 
assume(C), 
not false, 
consistent, 

consistent. 

component(Cl, ( C I ; D)). 
component(C, (B ; D)) :-

!,component(C, D). 
component(C, C). 

assume(A) :-
asserta(A). 

assume(A) :-
retract(A),!, fail. 

Fig. 6 

The procedure 'consistent' first searches the rules Η <- Β. 
When a rule is found such that its body holds in the already 
constructed database (test 'B'), its head is evaluated (test 
Ή ' ) over this database. If Η is not already satisfied, then 
one of its components C is determined. The call 
'assume(C)' inserts it into the Prolog database. On back­
tracking, it is removed, and the next component of Η is 
tried. The test 'not false' forces backtracking when 'false' 
is generated. Otherwise, the recursive call to 'consistent' 
pursues the database building. Processing the rules for 
'consistent' top-down performs a bottom-up evaluation of 
the rules in the meta-predicate 'rule'. 

As soon as no new conclusions can be generated, i.e., when 
the test 

*rule(H, B),B,not H' 
fails, the second clause for 'consistent' is evaluated: It suc­
ceeds meaning that a database expressing a model has been 
built. When all alternatives yield to inconsistency, i.e., they 
all induce the fact 'false', the procedure fails. 

The disjunctions generated by bottom-up reasoning on the 
extended rules are not explicitly stored in the Prolog 
database. Instead, the program of Figure 6 relies on the 
Prolog evaluation stack for expressing them. This is ach­
ieved by calling the procedures 'component' and 'assume'. 
Calling *component(C, D)' with a variable C and with D 
instantiated to a disjunction successively binds C to the 
components of D - by the last clause, to D itself if it is an 
atom. Calling 'assume(A)' with A instantiated to a fact 
inserts A into the Prolog database. During backtracking, 
this fact is removed. 

The use of Prolog's backtracking for exploring the various 
alternatives is illustrated on Figure 7. This figure traces the 
procedure of Figure 6 on an inconsistent set of non-Horn 
rules. The procedure fails since all alternatives imply false. 

p(a) <r- true 
[q(x) ν r(x)] «- p(x) 
[q(x) ν s(x)] <- r(x) 

t(x) <-s(x) 
false <- q(a) 
false <— p(x) Λ t(x) 

p(a) since true 
q(a) ν r(a) since p(a) 
- assumption: q(a) 

false since q(a) 
- assumption: r(a) 

q(a) ν s(a) since r(a) 
- assumption: q(a) 

false since q(a) 
- assumption: s(a) 

t(a) since s(a) 
false since p(a) Λ t(a) 

Fig. 7 

Incorrect assumptions could be generated from rules that 
are not range-restricted. Consider for example the follow­
ing extended rules: 

a. ρ <- true c. false <- q(a) 
b. [q(x) ν r(x)] <- ρ d. false <- r(b) 

6 



Assuming 'q(x)* or *r(x)* means in fact assuming 'Vx q(x)' 
or *Vx r(x)\ By Rules c and d no models satisfy these 
universal statements. However, the database {p, r(a), q(b)} 
is a model. If the considered extended rules are range-
restricted, only ground facts and ground disjunctions are 
generated and the program of Figure 6 makes valid as­
sumptions. Range-restricted versions of general rules can 
be obtained by relying on an auxiliary predicate expressing 
the database domain [MB 88]. 

The procedure of Figure 6 implements the naive method. 
The article [BDM 88] gives a semi-naive version. 
However, the overhead resulting from the management of 
difference sets T T ^ D B ) \ T T ^ D B ) is in theorem prov­
ing often greater than the redundant computations it avoids. 
This is because of the small data considered in theorem 
proving. 

Satchmo is a collection of Prolog programs that are based 
on the basic procedure of Figure 6. Although this procedure 
is not a complete theorem prover, it solves a large class of 
problems with considerable efficiency. Completeness is 
achieved by a refinement given in [MB 88]. The other 
programs of Satchmo are not much longer than that of 
Figure 6. They are surprisingly efficient - see [MB 88]. In 
Section 6, we submit an explanation for this efficiency 
which refers to the upside-down meta-interpretative nature 
of Sachmo. 

5. Alexander and Magic Set Methods: Queries as 
Facts 

The semi-naive method is an attractive inference engine for 
databases. From a theoretical viewpoint, it is very close to 
the fixpoint semantics of deductive databases. Moreover, it 
is by essence amenable to set-oriented query processing. In 
addition, it is a complete procedure for querying recursive 
databases and always terminates when there are finitely 
many answers, e.g., in function-free databases. From a 
practical viewpoint, the semi-naive method is simple and 
easily implemented by relying on relational, non-deductive 
query evaluators. The semi-naive method does not require 
non-first-normal-form data structures like, e.g., the evalua­
tion stack of Prolog. 

Despite of these important features, the semi-naive method 
has a serious drawback: Because it performs bottom-up 
reasoning, it might compute more intermediate results than 
necessary. This point is illustrated by Figure 8 which gives 
two rules defining the transitive closure t of a direct rea­
chability relationship ρ represented by a graph, an arc 
Cj -» c 2 denoting a fact p(Cj, c 2). 

In order to answer the query t(a, x), i.e., to compute all the 
nodes χ directly or indirectly reachable from a in the graph 
of Figure 8, the semi-naive method computes the whole 
transitive closure t. In particular, it computes the rea­
chability relationships within the connected component 
containing f, g and h. 

In contrast, the subgoals generated during top-down 
reasoning inherit some restrictions from the initial goal 
t(a, x). These subgoals are p(a, y), t(b, z), t(d, z), etc. Each 
generated subgoal refers to a constant in the connected 
component containing a. Therefore, no reachability 
relationships between constants in the other connected 
component are computed. 

(ι) t(x,y) <- p(x,y) 
(n) t(x,z) <- p(x, y) Λ t(y, z) 

Fig. 8 

Intuitively, restrictions present in a query can be used for 
recursively inducing new restrictions when the proof trees 
are constructed from the query - i.e., top-down - but not if 
they are built from the leafs - i.e., bottom-up. 

The Alexander and the Magic Set methods (short, AMS 
methods) retain the advantages of both, the semi-naive 
method and top-down reasoning. They implement top-

7 



down reasoning by means of auxiliary rules intended for 
bottom-up processing. 

We formalized the AMS methods with upside-down meta-
interpretation in [BRY 89] in order to show that they are 
basicaly identical with the extension of SLD-Resolution 
proposed under various names - ET* algorithm in [DIE 
87], OLDT-Resolution in [TS 86], QSQ or SLDAL-
Resolution in [VIE 87], RQA/FQI strategy in [NEJ 87], etc. 

Here, we consider the AMS methods as examples of 
upside-down meta-interpretation. They are somehow com­
plementary to Satchmc While Satchmo implements 
bottom-up reasoning in the top-down language Prolog, the 
AMS methods specify top-down reasoning by means of 
bottom-up rules. In the rest of this Section, we informally 
recall the formalization of the AMS methods as upside-
down meta-interpreters. 

In contrast with bottom-up reasoning, top-down reasoning 
generates data of two sorts, facts and queries. The genera­
tion of both types of data can be similarly formalized by 
means of the meta-rules of Figure 9. These rules are in­
tended for bottom-up processing. 

As in the program of Figure 6, the binary predicate 'rule' in 
Figure 9 refers to the database (non-rewritten) rules. The 
predicate 'evaluate* represents access to the facts. Given a 
query Q, 'evaluate(Q)' expresses the evaluation of Q on the 
already generated facts. 

1. fact(Q) <- query(Q) Λ rule(Q.B) Λ evaluate(B) 

2. query(B) <- query(Q) Λ rule(Q, Β) 

3. query(Qj) <- queryiQj Λ Q 2) 

4. query(Q2) <- query(Qj Λ Q 2) Λ evaluate^) 

Fig. 9 

The bottom-up evaluation of Rule 1 on a database DB 
produces an answer Qa to a query Q if Qa e T(DB), i.e., if 

Qa is an immediate consequence of DB. Answers that are 
not immediate consequences are obtained through Rules 2, 
3 and 4 as follows. The bottom-up processing of Rule 2 
generates a new subgoal 'query(Ba)' in presence of a goal 
'query(Q)* if Q unifies by σ with the head Η of a database 
rule Η <- B. Processing bottom-up Rules 3 and 4 evaluate 
conjunctive subgoals from left to right. Figure 10 illustrates 
how processing the meta-rules of Figure 9 bottom-up per­
forms top-down reasoning from the goal *query( t(a, x ) ) ' 
on the database of Figure 8. 

The sets A{ of Figure 10 denote the difference sets 
Tt^DB) \ T? l l (DB) 

generated by applying the semi-naive method on the meta­
rules of Figure 9 and the following meta-facts: 

query( t(a, x t ) ) 
rule(t(x,y) , p(x,y)) (i) 
rule(t(x,z) , p(x, y) Λ t(y, z)) (n) 
p(Cj, c2) for each arc c{ -» c 2 of Figure 8 

fact( t(a, b)) from rules 1-0) 
fact( t(a, d)) HO 
query( p(a, y) Λ t(y,z)) 2-(ii) 

Δ 2: query( p(a, y) ) 3 
query( t(b, z) ) 4 
query( t(d, z)) 4 

Δ 3: fact( t(b, c)) 1-0) 
fact( t(d, c)) 1-0) 
lact( t(d, e)) 1-0) 

Δ 4: fact( t(a, c)) 1-00 
fact( t(a, e)) 1-00 

Fig. 10 

Facts in A i + 1 follow from facts in Δ^ In particular, 
'fact( t(a, c) )* in Δ 4 is derivable by Rules 1 and (π) since 
fact( t(b, c)) G Δ 3 . Indeed, this implies that 

evaluate( p(a, b) Λ t(b, c)) 

8 



is true in Tt 3(DB). Since Tt 5(DB) C TT4(DB), Δ 5 = 0 
and the generation of facts and queries stops. 

The meta-interpreter of Figure 9 generates non-first-
normal-form tuples such as *query( t(b, z) ) \ Normalized 
tuples can be obtained by specializing this meta-interpreter 
with respect to the rules of the considered database, i.e., by 
applying partial evaluation [SES 87] on the rules of Figure 
9. Consider for example Rule 1. If the database under con­
sideration is the one of Figure 8, the expression 
*rule(Q, B)' denotes either rules (ι) or (n). Therefore, the 
relevant instances of Rule 1 are: 

fact(t(x, y)) <- query( t(x, y)) Λ rule( t(x, y) , p(x, y)) 
Λ evaluate( p(x, y)) 

fact(t(x, z)) <- query( t(x, z)) 
Arule(t(x,z) , p(x, y) Λ t(y, z)) 

Λ evaluate( p(x, y) Λ t(y, z)) 
These instances can be simplified into: 

t(x,y) «- query(t(x, y)) Λ p(x, y) 
t(x, z) <- query( t(x, ζ)) Λ p(x, y) Λ t(y, z) 

Specializing the relation 'query' with respect to t and ρ 
normalizes tuples like *query( t(x, y) ) ' and 
*query( p(x, y) )* into 'query-t(x, y)' and *query-p(x, y)*, 
respectively. The specialized query predicates are called 
'problem' in the Alexander method, and 'magic' in the 
Magic Set method. 

Finally, the AMS methods avoid the generation of non-
ground tuples such as 'query-t(d, z)' by pre-encoding the 
variables appearing in the heads of the specialized versions 
of Rules 3 and 4 by means of so-called adornments. For 
example, a non-ground head magic-t(d, z) is expressed as 
magic-t^(d) where the adornment bf means that the con­
stant 'd' is the first attribute. It is worth noting that al­
though a reordering of the body literals in the adorned rules 
is often desirable for improving efficiency, it is not neces­
sary for achieving soundness, completeness, or termination 
of the AMS methods. 

The above-defined specialization of the meta-rules of 
Figure 6 results in the rewriting algorithm of the Magic Set 
method [B* 86]. The more efficient rewriting of the 

Alexander method [R* 86] - re-discovered with the Sup­
plementary Magic Set method [BR 87] - requires to refine 
the partial evaluation - see, e.g., [BRY 89]. 

6. Advantages of Upside-down 
Meta-interpretation 

How efficient Satchmo, the AMS methods might be, it 
seems that direct implementations of their reasoning prin­
ciples - i.e., bottom-up for Satchmo, top-down for the 
AMS methods - should be even more efficient. In this 
section, we refute this iniuiüou. We show that Satchmo 
and the AMS methods efficiently rely on the search 
strategy of the underlined inference engine and give rise to 
combine bottom-up and top-down reasoning in a same 
process. Finally, we investigate other advantages of the 
AMS approach to top-down reasoning. 

6.1. Inheriting Search Strategies 

Model building ä la Satchmo extends bottom-up reasoning 
with a processing of disjunctions by case analysis. Due to 
the simplicity of bottom*up reasoning, procedures like the 
naive or semi-naive methods are - up to unification -
easily implemented in any programming language. Since 
Prolog is non-deterministic and provides us with a unifica­
tion procedure, it is especially convenient for this task. The 
case analysis, however, is much more complex and, at first, 
seems rather difficult to implement efficiently in Prolog. 

There are two basical approaches to case analysis: The 
various cases can either be considered at the same time, or 
the one after the other. The first approach is a breadth-first 
search of the various possibilities. The second corresponds 
to a depth-first search. It is retained by Satchmo. The 
deapth-first strategy requires to set up pointers to the yet 
non-explored cases, in order to allow searching them later. 

Implemented of top-down reasoning systems are faced to a 
similar alternative. The various rules whose heads match 
the goal under consideration can, on the one hand, be con­
sidered at once. On the other hand, they can be considered 

9 



the one after the other. The first strategy performs a 
breadth-first expansion of proof trees, the second proceeds 
depth-first. The depth-first strategy is usually retained for 
top-down reasoning system, e.g., for Prolog interpreters. 
Indeed, the depth-first strategy gives rise to use the stack 
data structure for storing the subgoals, and this data struc­
ture can be very efficiently managed in main memory. For 
conventional automated reasoning applications, storing 
subgoals in main memory is not a serious restriction. In 
particular, it is a reasonable choice in theorem proving. 

The programs of Satchmo are based on the analogy be­
tween depth-first case analysis and depth-first top down 
reasoning. With the procedure 'component' Satchmo 
searches the various cases - i.e., the various components of 
disjunctions - by relying on the Prolog ability to search for 
clauses whose heads unify with a goal. The procedure 
'component' does not explicitly set pointers to the next 
component of a disjunction. This is done by the Prolog 
interpreter itself. By the procedure 'assume', components 
of disjunctions are represented as Prolog facts. The back­
tracking facility of Prolog restores the context while 
moving from one case to the next Thus, Satchmo uses 
Prolog like a programming language dedicated to specify­
ing case analyses. 

The shortness of Satchmo's programs results from this un­
conventional use of Prolog: The complex part of model 
building - i.e., case analysis - is not really implemented, 
but merely inherited from the Prolog interpreter. The ef­
ficiency of Satchmo comes to a large extend from the fact 
that Prolog interpreters are especially designed for an ef­
ficient search of clauses, for an efficient backtracking. Im­
plementing a model building method in a conventional 
manner would force one to implement data structures and 
search mechanisms similar to those of Prolog. Considered 
from this angle, Satchmo is a more direct implementation! 

Like Satchmo, the AMS methods inherit the search strategy 
of the considered inference engine. In contrast with im­
plementations based on SLD-Resolution, they do not ex­
plicitly implement the component of breadth-first search 
which ensures termination in presence of recursive rules. 

They inherit it from the semi-naive method. Therefore, the 
AMS methods should be viewed as more direct implemen­
tations than the procedures based on SLD-Resolution. 

6.2. Combining Bottom-up and Top-down 
Reasoning 

Another important feature of upside-down meta-
interpretation - ä la Satchmo as well as ä la Alexander and 
Magic Set - is to permit one combining bottom-up and 
top-down reasoning. Consider the rules of Figure 7. Most 
of them are Horn rules, Therefore, it is possible to write 
them as Prolog rules instead of relying on the 'rule' meta-
predicate. This approach often dramatically improves the 
efficiency of Satchmo [MB 88]. 

This is in particular the case if the example considered 
above is augmented with some facts for s. If the rule 
't(x) <— s(x)' is processed bottom-up, these additional facts 
would induce new t facts. These facts are not needed for 
proving inconsistency since the original example is itself 
inconsistent. If the rule 't(x) <- s(x)' is evaluated top-down, 
then only the query t(a) is posed during model building. 
Less deductions are performed. 

Similar examples can be given for the AMS methods, for 
which processing certain rules bottom-up - i.e., keeping 
them unchanged instead of rewriting them - is preferable. 
An upside-down meta-interpreter always gives rise to 
process some rules bottom-up, others top-down. One 
reasoning principle is offered by the inference engine and 
the other by the meta-rules. 

6.3. Top-down Reasoning with Relational Data 
Structures 

Relying on the semi-naive method for implementing top-
down reasoning has other important advantages. First, this 
yields a normalized data structure more suited to the 
database context than the evaluation stack of Prolog. Stor­
ing queries as facts in relations helps searching for redun­
dant queries. Relying on the hierarchical stack data struc-

10 



ture would make this search more expensive. Moreover, 
using a relational data structure makes possible to rely on 
database facilities for storing queries on secondary 
memory, if necessary. Finally, relying on the semi-naive 
method is prefereable from an engineering viewpoint. In 
many cases, e.g., for completely computating a transitive 
closure, bottom-up processing is more efficient than top-
down reasoning. Therefore, database systems need a semi-
naive evaluator. As the AMS methods rely on such an 
evaluator they give rise to rather simple implementations. 
In contrast, other implementations of the same top-down 
reasoning principle make use of another, slightly different 
evaluator [LV 89]. We think that they are more complex. In 
addition, these implementations induce some redundancies 
in the database system since two versions of a same 
evaluator are needed. 

7. Conclusion 

In this article, we have analyzed methods that were 
proposed for enhancing database systems with automated 
reasoning. We have considered on the one hand the 
theorem prover Satchmo, on the other hand the Alexander 
and Magic Set methods. Satchmo was developed for verify­
ing the consistency of database integrity constraints. The 
Alexander and the Magic Set methods were proposed for 
evaluating queries on recursive databases. These methods 
introduce new ideas, some of them inspired from databases. 
In particular, Satchmo makes use of safety or range-
restriction and treats negation by failure. As opposed to 
conventional automated reasoning procedures, the 
Alexander and Magic Set (AMS) methods rely on rela­
tional, normalized data structures. 

However, the most original characteristic of Satchmo and 
of the AMS methods is the use of a technique we called 
upside-down meta-interpretation. Satchmo implements a 
bottom-up reasoning theorem prover in the top-down lan­
guage Prolog. The AMS methods can be formalized as a 
meta-interpreters that rely on the bottom-up semi-naive 
method for implementing top-down reasoning. This uncon­
ventional use of meta-interpretation has not deserved much 

attention in the past. The article [GCS 88], which describes 
an approach similar to that of the AMS methods, seems to 
be a noticeable exception. We have investigated upside-
down meta-interpretation by refering to Satchmo on the 
one hand, and to the AMS methods on the other hand. 

Upside-down meta-interpretation gives rise not to re­
implement the desired search strategy - depth-first or 
breadth-first - but to inherit it from the considered in­
ference engine - Prolog for Satchmo, the semi-naive proce­
dure for the AMS methods. It also permits one to combine 
the bottom-up and top-down reasoning principle during a 
same deductive process. This appioacli, which was shown 
very successful with Satchmo, seems to be promising for 
optimizing query evaluation in databases. An open ques­
tion is the definition of strategies for deciding when to 
reason bottom-up, and when to proceed top-down. 

With the AMS methods, upside-down meta-interpretation 
benefits from partial evaluation. However, this technique 
does not seem to be relevant for Satchmo. It would be 
interesting to know under which conditions it is beneficial 
to specialize by partial evaluation an upside-down meta-
interpreter. 

Another open question is the use of upside-down meta-
interpretation in other contexts than those considered in this 
article. First experiments let us think that this technique can 
also be applied for other automated reasoning tasks, yield­
ing simple and efficient implementations. 

Finally, the approach of Satchmo for handling rules with 
disjunctive heads could be applied for querying disjunctive 
databases. Although the Prolog implementation of Satchmo 
does not seem to be applicable in such a context, the ex­
perience we made with Satchmo could be of interest for 
large databases as well. 

Acknowledgements 

The research reported in this article has been partially sup­
ported by the European Community in the framework of 
the ESPRIT Basic Research Action "Compulog" No. 3012. 

11 



I am indebted to Alexandre Lefebvre, Catriel Beeri, Rainer 
Manthey, and my colleagues in "Compulog" for helpful 
discussions. 

References 

[B* 86] F. Bancilhon, D. Maier, Y. Sagiv, and 
J. Ullman. Magic Sets and Other Strange Ways to Imple­
ment Logic Programs. In Proc. 5th ACM SIGMOD-
SIGACT Symp. on Principles of Database Systems (PODS). 
1986. 

[BDM88] F. Bry, H. Decker, and R. Manthey. A 
Uniform Approach to Constraint Satisfaction and Con­
straint Satisfiability in Deductive Databases. In Proc. 1st 
Int. Conf Extending Database Technology (EDBT). 1988. 

[BM 86] F. Bry and R. Manthey. Checking Consistency 
of Database Constraints: A Logical Basis. In Proc. 12th 

Int. Conf. on Very Large Data Bases (VLDB). 1986. 

[BR 87] C. Beeri and R. Ramakrishnan. On the Power 
of Magic. In Proc. 6th ACM SIGACT-SIGMOD-SIGART 
Symp. on Principles of Database Systems (PODS). 1987. 
[BRY 89] F. Bry. Query Evaluation in Recursive 
Databases: Bottom-up and Top-down Reconciled. In Proc. 
1st Int. Conf. on Deductive and Object-Oriented Databases 
(DOOD). 1989. 

[DIE 87] S.W. Dietrich. Extension Tables: Memo Rela­
tions in Logic Programming. In Proc. Symp. on Logic 
Programming (SLP). 1987. 

[FRE87] J.C. Freytag. A Rule-Based View of Query 
Optimization. In Proc. ACM SIGMOD Int. Conf. on 
Management of Data (SIGMOD). 1987. 

[G* 85] J. Gabriel, T. Lindholm, E.L. Lusk, and R.A. 
Overbeek. A Tutorial on the Warren Abstract Machine. 
Technical Report ANL-84-84, Argonne National 
Laboratory, 1985. 

[GCS88] J. Gallagher, M. Codish, and E. Shapiro. 
Specialisation of Prolog and FCP Programs Using Abstract 
Interpretation. New Generation Computing 6:159-186, 
1988. 

[GDW 87] G. Graefe and DJ. DeWitt. The EXODUS 
Optimizer Generator. In Proc. ACM SIGMOD Conf on the 
Management of Data (SIGMOD). 1987. 

[KSS 87] R. Kowalski, F. Sadri, and P. Soper. Integrity 
Checking in Deductive Databases. In Proc. 13th Int. Conf 
on Very Large Data Bases (VLDB). 1987. 

[LOV68] D.W. Loveland. A Linear Format for Resolu­
tion. In Proc. IRIA Symp. on Automatic Demonstration. 
1968. 

[LUC 68] D. Luckham. Refinements Theorems in 
Resolution Theory. In Proc. IRIA Symp. on Automatic 
Detnonsttation 1963. 

[LV 89] A. Lefebvre and L. Vieille. On Deductive 
Query Evaluation in the Dedgin* System. In Proc. 1st Int. 
Conf. on Deductive and Object-Oriented Databases 
(DOOD). 1989. 

[MB 88] R. Manthey and F. Bry. SATCHMO: A 
Theorem Prover Implemented in Prolog. In Proc. 9th Int. 
Conf. on Automated Deduction (CADE). 1988. 
[NEJ 87] W. Nejdl. Recursive Strategies for Answering 
Recursive Queries - The RQA/FQI Strategy. In Proc. 13th 

Int. Conf. on Very Large Data Bases (VLDB). 1987. 
[R* 86] J. Rohmer, R. Lescoeur, and J.-M. Kerisit The 
Alexander Method, a Technique for the Processing of 
Recursive Axioms in Deductive Databases. New Genera­
tion Computing 4(3), 1986. 

[SES 87] P. Sestoft and H. S0ndergaard. A Bibliog­
raphy on Partial Evaluation. SIGPLAN Notices 23(2), 
1987. 

[STS 86] L. Sterling and E. Shapiro. The Art of Prolog. 
The ΜΓΓ Press, Cambridge, Mass., 1986. 

[TAR 55] A. Tarski. A Lattice-theoretical Fixpoint 
Theorem and its Applications. Pacific Journal of 
Mathematics 5,1955. 

[TS 86] Η. Tamaki and T. Sato. OLD Resolution with 
Tabulation. In Proc. 3rd Int. Conf. on Logic Programming. 
1986. 

[VIE 87] L. Vieille. A Database-complete Proof Proce­
dure Based on SLD-resolution. In Proc. 4th Int. Conf. on 
Logic Programming. 1987. 

12 


