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SATCHMO: a theorem prover implemented in Prolog

Rainer Manthey and Frangois Bry

ECRC
Arabellastr. 17, D-8000 Muenchen 81
West Germany

Abstract
Satchmo is a theorem prover consisting of just a few short and simple Prolog
programs. Prolog may be used for representing problem clauses as well. SATCHMO
is based on a model-generation paradigm. It is refutation-complete if used in a level-
saturation manner. The paper provides a thorough report on experiences with
SATCHMO. A considerable amount of problems could be solved with surprising
efficiency.

1. Introduction

In this article we would like to propose an approach to theorem proving that exploits the potential
power of Prolog both as a representation language for clauses and as an implementation
language for a theorem prover. SATCHMO stands for 'SATisfiability CHecking by MOdel
generation’. It is a collection of fairly short and simple Prolog programs to be applied to different
classes of problems. The programs are variations of two basic procedures: the one is incomplete,
but allows to solve a wide range of problems with considerable efficiency; the other is based on a
level-saturation organization thus achieving completeness but partly sacrificing the efficiency of
the former.

Horn clause problems can be very efficiently solved in Prolog provided they are such that the
Prolog-specific limitations due to missing occurs check and unbounded depth-first search are
respected. As an example we mention Schubert’s Steamroller [WAL 84], a problem recently
discussed with some intensity: the problem consists of 27 clauses, 26 of which can be directly
represented in Prolog without any reformulation and is checked for satisfiability within a couple of
milliseconds by any ordinary Prolog interpreter. The idea of retaining Prolog’s power for Horn
clauses while extending the language in order to handle full first-order logic has been the basis of
Stickel's "Prolog Technology Theorem Prover" (PTTP) [STI 84]. Stickel proposes to overcome
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Prolog’s limitation to non-Horn clauses by augmenting its backward reasoning mechanism by the
model-elimination reduction rule. In addition he employs unification with occurs check and
consecutively bounded depth-first search for achieving a complete inference system.

We propose a different way of overcoming Prolog's limitations. We introduce a second type of
rules in order to be able to represent those clauses that cannot be handled by Prolog. SATCHMO
can be viewed as an interpreter for this kind of rules treating them as forward rules in view of
generating a model of the clause set as a whole.

A crucial point with respect to the feasibility of the approach was the observation that range-
restriction of clauses may be favorably exploited when reasoning forward. A clause is called
range-restricted if every variable occurs in at least one negative literal. (The notion ‘range-
restricted’ was first introduced in the context of logic databases in [NIC 79]). When reasoning
forward, all negative literals are resolved first. For range-restricted clauses this leads to a
complete instantiation of the remaining positive literals. Ground disjunctions can be split into their
component literals as has been done, e.g., in early proof procedures based on tableaux calculus
[SMU 68]. The case analysis-like style of treating non-Horn clauses introduced by splitting can
lead to very elegant solutions as compared with the way they are handled by PTTP. Range-
restriction in combination with forward reasoning overcomes Prolog's deficencies for Horn
clauses as well: infinite generation due to recursive clauses can be prevented by a subsumption
test for ground atoms that is very cheap compared to 'ancestor test' and bounded search. No
occurs check is needed because at least one of two literals to be unified is always ground.

A major advantage of our solution is the fact that one can afford to implement the necessary
additions very easily on top of Prolog itself, whereas the additional features for the PTTP have to
be implemented by extending a Prolog system. This does not prevent our approach from being
implemented on a lower level as well.

A principle drawback of the approach lies in the fact that clauses which are not range-restricted
may require a full instantiation of certain variabies over the whole Herbrand universe. In the
presence of functions this may lead to the well-known combinatorial explosicn of instances.
Recursive problems with functions in particular will hardly be solvable efficiently in presence of
non-range-restricted clauses. As arbitrary clause sets can be transformed into range-restricted
form while preserving satisfiability, one can handle instantiation naturally within the framework of
range-restriction.

There are, however, much more cases than one might expect where the limitations mentioned do
not harm. The efficiency SATCHMO obtains in such cases is remarkable and surprising. In order
to give evidence to this claim we devote a major part of the paper to reporting about our
experience with a fairly huge collection of example problems taken from recent publications. The
full Steamroller, e.g., has been solved in 0.3 secs.
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In an earlier paper [MB 87] we have described our model generation approach on the basis of
forward rules only. In this context, model generation can be explained and justified on the basis
of hyperresolution. This paper is an informal one in the sense that we don’t give proofs or formal
definitions. Instead we thoroughly motivate our proposal and provide full Prolog code as a
specification.

Throughout the paper we employ the Prolog style of notation: Variables are represented by
uppercase letters, Boolean connectives and/or by means of '’ and ’;’ respectively. Only a very
basic knowledge about Prolog is required; as an introduction refer, e.g., to chapter 14 in [WOS
84].

In order to represent the new kind of rules inside Prolog we assume that a binary operator *--->'
has been declared. Clauses that are not represented as Prolog rules may then be represented in
implicational form as (A,, ... ,Ap, ---> Cy; ... |C,) where ~A, to ~A_ are the negative, C, to C the
positive literals in the clause. Completely positive clauses are written as (true ---> Cy; ... ;C),
while completely negative clauses are implicationally represented by (A;, ... ,A, ---> faise). Thus
negation never occurs explicitly. We call the left-hand side of an implication its antecedent and
the right-hand side its consequent.

2. Model Generation in Prolog

2.1 A basic procedure

It is well-known that every model of a set of clauses can be represented by a set M of positive
ground atoms. The elements of M are those ground literals that are satisfied in the model, the
remaining ones are - by default - assumed violated. A ground conjunction/disjunction is satisfied
in M, if M contains all/some of its components. A clause (A ---> C) is satisfied in M, if Co is
satisfied for every substitution ¢ such that Ac is satisfied. Conversely, (A ---> C) is violated in M if
there is a substitution ¢ such that Ac is satisfied in M, but Co is not. 'True’ is satisfied, 'false’ is
violated in every model.

It seems to be a very natural choice to implement model construction by asserting facts into
Prolog's internal database and the test for satisfaction in a model by means of Prolog goal
evalution over the "program" that consists of the facts asserted. Consider, e.g., a Prolog database
containing

p(1). q(1,2).
P(2). q(2,1).
P(3). a(2,2).



418

The clause (p(X),q(X,Y) ---> p(Y)) is satisfied in this database, because evaluation of the Prolog
goal 'p(X),q(X,Y),not p(Y) fails. On the other hand, the clause (q(X,Y),a(Y,Z) ---> q(X,2)) is
violated, as the goal 'q(X,Y),q(Y,Z),not q(X,Z2)’ succeeds and returns bindings X=1,Y=2,Z=1.
These bindings represent a substitution such that the corresponding ground instance
(q(1,2),q9(2,1) ---> q(1,1)) is not satisfied in the current database.

Violated clauses can be applied as generation rules in order to further extend the database so far
constructed. Initially, the database is empty and therefore clauses of the form (true ---> C) are the
only ones that are violated. If there is a clause (A ---> C) and a substitution ¢ such that Ac is
satistied and Co is violated, the clause can be satisfied by satisfying Co, i.e., by

¢ asserting Co, if Co is an atom

e creating a choice point, chosing a compenent atom of Co and adding it to the database,
if Co is a disjunction.

Generation of ‘'false’ indicates that the current database contradicts at least one of the completely
negative clauses and thus cannot be extended into a model. One has to backtrack to a previouély
established choice point (if any) and to choose a different atom there (if any remains). All facts
asserted between this choice point and the point where ‘false’ has been generated have to be
retracted from the database on backtracking.

If all possible choices lead to a contradiction, the process terminates with an empty database and
reports that a model could not be created. The clause set under consideration is unsatisfiable. If
on the other hand a database has been constructed in which every clause is satisfied, this
database represents a mode! of the clause set and satisfiability has been shown. In certain cases
generation will never stop, because 'no finite database satisfies all clauses, but a contradiction
does not arise either. This is due to the undecidability of satisfiability.

The model generation process outlined above can be implemented in Prolog by means of the
following very simple program:

satisfiable :- satisfy(C) :-
is_violated(C), !, component(X,C),
satisfy(C), asserta(X),
satisfiable. on_backtracking(retract(X)),
satisfiable. not false.

is_violated(C) :-
(A ---> C), component(X,(Y;Z)) :-
A, not C. I, (X=Y ; component(X,Z)).
component(X,X).

on_backtracking(X).
on_backtracking(X) :-
X, 1, fail.
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Note that 'true’ is a built-in Prolog predicate that always succeeds, whereas ‘'false’ does not
succeed unless assened.

The following example is intended to illustrate model generation in Prolog. Consider the clause
set S1:

true --->p(a) ; q(b) p(X) --->q(X) ; r(X)
q(X) ---> s(f(X)) q(X) , s(Y) ---> false
r(X) --->s(X) p(X) , s(X) ---> false

The choices and assertions made during execution of 'satisfiable’ can be recorded in form of a
tree:

true
I l )
p(a) q(b)
q(a) r(«l’i) s(f(b))
s(f(a)) s(a) false
false false

When executing ’satisfiable’, this tree is traversed in a left-to-right, depth-first manner. Every
possible path towards a model of S1 is closed because ‘false’ is finally generated. Thus, S1 has
been shown unsatisfiable. If the clause (p(X),s(X) ---> false) were missing, ‘false’ could not be
generated along the middle branch and the database constructed along this branch - consisting
of p(a), r(a) and s(a) - would represent a model of the reduced clause set.

2.2 How to achieve soundness for unsatisfiability

If *satisfiable’ fails - when applied to a particular set S of clauses - this should always coincide
with S being unsatisfiable. Conversely, if 'satisfiable’ terminates successfully, S should in fact be
satisfiable. While the latter is achieved, the former aim is not always reached: There are cases
where ’satisfiable’ fails although a model of S exists. This happens when a disjunction is
generated that still contains uninstantiated variables shared by different components of the
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disjunction. Consider, e.g, the following clause set S2:

true ---> p(X) ; q(X)
p(a) ---> false
q(b) ---> false

Initially 'p(X) ; q(X)’ is generated. If 'p(X)’ is asserted, the disjunction is satisfied, but false’ will be
generated in the next step. The same is the case if 'q(X)' is asserted. Thus, 'satisfiable’ fails.
However, the set {p(b),q(a)} represents a finite model of S2 which the program was unable to
find.

Soundness for unsatisfiability can be guaranteed if all disjunctions generated are completely
instantiated. This is the case iff all clauses are range-restricted, i.e., if every variable in the
consequent of a clause occurs in its antecedent as well. In particular, completely pasitive clauses
- those having 'true’ as their antecedent - have to be variable-free in order to be range-restricted.
The example set S1 given above is range-restricted, while S2 is not. Range-restriction requires
that for every variable in a clause the subset of the universe over which the variable ranges is
explicitly specified inside the clause. Variables implicitly assumed to range over the whole
universe are not allowed. One can expect many clauses to be range-restricted if the problem
domain is somehow naturally structured. This is in particular the case if a problem is (inherently)
many-sorted.

If a set S contains clauses that are not range-restricted, S nevertheless can be transformed into a
set S that is range-restricted and that is satisfiable iff S is co. For this purpose an auxiliary
predicate 'dom’ is introduced and the following transformations and additions are performed:

e gvery clause (true ---> C) that contains variables X; to X, is transformed into
(dom(Xy),...,dom(X,) ---> C)

* every other clause (A ---> C) such that C contains variables Y, to Y, not occuring in A is
transformed into (A,dom(Y),....dom(Y ) ---> C).

o for every constant ¢ occurring in S, a clause (true ---> dom(c)) is added; if S does not
contain any constant a single clause (true ---> dom(a)) is added where 'a’ is an artificial
constant

« for every n-ary function symbol f occurring in S one adds a clause
(dom(Xy),....dom(X_) ---> dom(f(X,,..,.X,)))

The 'dom’ literals added to non-range-restricted clauses explicitly provide for an instantiation of
the respective variables over the Herbrand universe of S. The transformation of S into its range-
restricted form S* can be compared with the transformation of a formula into its Skolemized form:
although the transformed set is not equivalent to the initial set in the strict sense, a kind of weak
equivalence can be observed. If the relation assigned to ‘dom’ (the functions assigned to the
Skolem function symbols, resp.) is removed from any model of the transformed set, a model of



421

the initial set is obtained. There is a one-to-one correspondence between the models of both sets
of clauses up to the relation (functions, resp.) assigned to the additional predicate (function
symbols, resp.). Therefore the transformation described preserves satisfiability. Transformation
of S2 into range-restricted form yields S2":

true ---> dom(a) p(a) ---> false
true ---> dom(b) q(b; ---> false
dom(X) ---> p(X) ; q(X)

If "satisfiable’ is applied to S2” the program terminates successfully with the facts dom(a), dom(b),
q(a) and p(b) in the database.

If applied to range-restricted clauses only, 'satisfiable’ will be sound for unsatistiability as well. For
the rest of the paper we assume that all problems mentioned have been transformed into range-
restricted form prior to checking them for satisfiability.

2.3 How to achieve refutation-completeness

As satisfiability is undecidable no theorem prover is able to successfully terminate for every
satisfiable set of clauses. Unsatisfiability, however, is semi-decidable. Therefore, our program
should terminate with failure for every unsatisfiable clause set. The following example set S3 is
unsatisfiable:

true ---> p(a) P(X) --> p((X))
p(f(X)) , p(g(X)) ---> false P(X) -—> p(g(X))

When applied to S3, 'satisfiable’ will generate an irfinite sequence of p-atoms: p(a), p(f(a)),
p(f(f(a))), ... etc. The example shows that 'satisfiable’ is not complete for unsatisfiability!

This is due to the fact that the Prolog-like search strategy employed by the program is inherently
unfair: at each recursive call of 'satisfiable’ the database of problem clauses is searched from the
top and the first violated clause found is tried to satisfy. There are problems - like S3 - where
some violated clauses are never considered and thus a contradiction is never reached.
Sometimes a proper ordering of clauses suffices for controlling the order in which facts are
generated. In our example, however, ordering does not help!

Completeness can be achieved if clauses are generated systematically level by level. First, all
atoms/disjunctions that can be generated from a given database are determined without
modifying the database. Then all facts needed in order to satisfy these atoms/disjunctions are
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asserted altogether. If S3 would have been treated this way, the following facts would have been
asserted:

level 1:  p(a)
level 2:  p(f(a)) q(f(a))
level 3: p(f(f(a))) p(f(g(@))) pla(f(a)) pla(g(a)) false

A contradiction would be detected on level 3 and the attempt to generate a model for S3 would
fail. The following program implements model generation on a level-saturation basis:

satisfiable_level :- satisfiable_level(1).

satisfiable_level(L) :- is_violated_level(L) :-
is_violated_level(L), !, is_violated(C),
on_backtracking(clean_level(L)), not generated(L,C),
satisfy_level(L), assert(generated(L,C)),
L1is L+1, fail.
satisfiable_level(L1). is_violated_level(L) :-

satisfiable_level(L). generated(L,X).

satisfy_level(L) :- clean_level(L) :-
generated(L,C), retract(generated(L,X)),
not C, |, fail.
satisfy(C), clean_level(L).

satisfy_level(L).
satisfy_level(L).

The program works with an intermediate relation 'generated’ used for storing atoms/disjunctions
violated on a level in order to be able to satisfy them after the generation process for that level
has been finished. Generation of a level can be efficiently organized by means of a backtracking
loop, whereas levels have to be satisfied recursively. This is because the choice points created
when satisfying a disjunction have to be kept "open" to backtracking.

Although ’satisfiable’ - as opposed to 'satisfiable_level’ - is not complete, most of the problems to
be considered in the following section will in fact turn out to be solvable by ’satisfiable’. In cases
where both programs are applicable one will usually observe that the former is much more
efficient than the latter.

2.4 Enhancing efficiency through Prolog derivation rules

Prolog is known to be a powerful interpreter for Horn clauses. Some design decisions made for
the sake of efficieny, however, prevent Prolog from being able to handle arbitrary Horn problems.
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The missing occurs check requires to avoid certain unification patterns, the unbounded depth-first
strategy prevents certain recursive problems from being tractable in Prolog. For the remaining
cases Prolog's power can very well be exploited if those problem clauses that are in the scope of
Prolog are represented as Prolog rules, i.e., by (C :- A) instead of (A ---> C). The four Horn
clauses in example set S1, e.g., can all be treated this way:

true ---> p(a) ; q(b) s(X) - p(X)

pP(X) ---> q(X) ; r(X) s(f(X)) - a(X)
false :- p(X), s(X)
false - q(X), s(Y)

When applied to this representation of S1, 'satisfiable’ will initially work as before, i.e., p(a) and
q(a) are asserted into the database in order to satisfy the two "--->’-clauses. As soon as g(a) has
been assenrted, however, 'false’ becomes derivable. The test 'not false’ performed after assertion
of gq(a) fails and backtracking is immediately initiated: s(f(a)) and ‘'false’ need no more be asserted
in order to run into a contradiction. Similarly the two other branches can be cut earlier due to
derivability of 'false’. The tree of facts asserted has become considerably smaller than before:

true
|
ﬁ |
p(a) q(b)
| l X
q(a) r(a)
X X

Crosses "X’ indicate that the respective branch has been closed because ‘false’ has become
derivable.

If part of a clause set is directly represented in Prolog, 'satisfiable’ can be applied without any
change, provided inconsistency of the Prolog part of the problem has been tested before. This
can be done by simply evaluating ‘false’ once before calling 'satisfiable’. The same applies to
‘satisfiable_level’.

What has changed, however, is the way the model under construction is represented and
satisfaction of clauses is determined. The problem clauses that have been directly represented in
Prolog now serve as derivation rules. f the requirement for clauses to be range-restricted is
respected, only ground literals will be derivable through these rules. Ground atoms that are
required for satisfying the '--->’-clauses need not be explicitly asserted anymore, if they are
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derivable from the already existing facts. Thus, the model under construction is no longer
represented by explicitly stored facts alone, but by all facts derivable via those problem clauses
that have been represented directly in Prolog. As the Prolog goal evaluation mechanism solves
goals not only over facts but through rules as well, nothing has to be changed in the programs
given.

In every clause set at least the positive ground units and the completely negative clauses can
always be formulated directly in Prolog. There are even problems where all clauses can be
represented this way. In this case satisfiability checking reduces to a single ‘false’ evaluation.
When using Prolog rules for clause representation one nevertheless has to be very careful in
order to avoid recursion and occurs check problems. (A set of clauses is recursive, if its
connection graph contains a cycle that has a unifier) Although a complete syntactic
characterization of such cases is not easy, there are relatively simple sufficient conditions, like,
e.g., to avoid literals with more than one occurrence cf the same variable (static occurs check) in
order to avoid dynamic occurs check problems. If in doubt, the option to represent a Horn clause
as a generation rule always remains. Because of range-restriction this representation will never
lead to any occurs check problem.

2.5 Further variations and optimizations

The basic model generation paradigm - as outlined above - may, of course, exhibit serious
inefficiencies in special situations. However, one can easily incorporate several variations into the
basic procedure that may lead to considerable optimizations in certain undesirable cases. In the
following we will shortly discuss three such variations that are optionally available in SATCHMO.
They are intended to speed up the search for violated clauses, or permit to derive contradictions
earlier. Whereas the first - called clause-set compaction in [BUT 86] - will always result in some
benefit, others will pay off only if applied to problems that in fact exhibit the inefficiency they are
intended to cure. Otherwise these variations may even lead to some overhead compared with
the basic procedures.

1. clause-set compaction:

Search for violated clauses may be fairly expensive in cases where the clausal
formulation of a problem is highly redundant, as is the case, e.g., with

p(X,Y), q(Y,Z) ---> h(X)
p(X,Y), a(Y,Z) ---> h(Y)
p(X.Y), s(Y,2) > h(X)
p(X.Y), s(Y.2) > h(Y)

The p- and h-relations have to be searched four times, the g- and s-relations twice in
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order to determine all instances of the clauses that are violated in a given database. If we
would allow ’;’ to occur in the antecedent, and ’,’ to occur in the consequent of a rule as
well, these four clauses could be compactified into the single rule

pP(X,Y), ta(Y.2) ; s(Y.,2)) ---> h(X), h(Y)
If this expression is tested for violation, the p-, g-, and s-relation are searched only once,
the h-relation twice. In order to handle non-clausal generation rules as well, the following
has to be added on top of 'satisfy":

satisfy((A,B)) :- |, satisfy(A), satisfy(B).

. clause compilation:

When testing for contradictions by evaluating 'false’, the test is performed globally over
the whole database of facts. One does not take into consideration the specific fact
asserted just before. As ‘false’ has not been derivable before this update, it can be
derivable now only if the most-recently introduced literal is able to participate in a
derivation of ‘false’. Therefore it is possible to "focus" the contradiction test by
precompiling the completely negative problem clauses into local test clauses. Consider,
e.g., a set of clauses containing

false - p(X,Y

), a(Y.2).
q(A.B) :-s(B,A).

Precompilation would result in the following local test clauses being generated:

incompatible(p(X,Y)) - q(Y,Z). incompatible(q(Y,Z)) - p(X,Y).
incompatible(p(X,Y)) - s(Z,Y). incompatible(s(Z,Y)) :- p(X,Y).

Once negative clauses have been compiled this way one can exploit them by slightly
modifying the 'satisfy’ predicate again: instead of 'assert(X),..,not false’ one performs 'not
incompatible(X),assert(X),... Thus, facts the assertion of which would directly lead to a
contradiction are never asserted. Precompilation of the incompatibility rules can easily
and efficiently be programmed in Prolog. A similar precompilation idea may be applied
for the remaining clauses as well possibly speeding-up the search for violated clauses.
We have reported about this in [BRY 87].

. complement splitting:

When the assertion of an atom A; chosen from a disjunction has resulted in a
contradiction one may try to benefit from the information thus obtained while trying the
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remaining components. This can be achieved by temporarily asserting the rule
(false :- A). This way any attempt to re-assert A; while trying to satisfy the respective
disjunction are immediately blocked. The size of the search tree may be considerably cut
down in case several occurrences of big subtrees are avoided this way. Exploiting
information about attempts that have already failed for avoiding redundant work has
already been suggested by Davis and Putnam in their early proof procedure. The feature
can be implemented by modifying the ‘component’ predicate as follows:

component(X,(Y;Z)) -,
(X=Y;
assert((false :- Y)),
on_backtracking(retract((false :- Y))),
component(X,2)).

3. Experiences with SATCHMO

When reporting about experiences with a new method, one of course tends to start with
"showcase" examples that are particularly well handled by the approach proposed. In our case, it
turns out that several examples recently discussed in the literature are suitable for'this purpose.
Thus, we begin this section with discussing these examples in some detail. Then we shortly
address combinatorial puzzles - a class of problems preferably taken for demonstrating the power
of a theorem prover. The third and most comprehensive section will be devoted to Pelletier's
"Seventy-five Problems for Testing Theorem Provers" [PEL 86]. As this collection covers a wide
range of problem classes, we regard it as particularly well suited for exhibiting the potential power
as well as the limits of the approach suggested.

All examples discussed have been run under interpreted CProlog Vers. 1.5 on a VAX 11/785.
The solution times that will be given have been measured using the built-in predicate 'cputime’.
The authors are very much aware of the fact that comparing theorem provers on the basis of cpu
times is hardly ever able to do justice to the particular approaches except if all conditions are
respected absolutely fairly. Reporting cpu times in this paper is not intended to compete with
others, but to show which kind of examples are hard for model generation and which are easy.
Moreover, we would like to demonstrate this way that theorem proving in Prolog is feasible and
that the efficiency obtained when doing so may be remarkable.

3.1 Schubert’s Steamroller

The steamroller problem has been presented by Len Schubert nearly a decade ago. Mark
Stickel's article "Schubert’s Steamroller Problem: Formulations and Solutions" [STI 86] provides
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an excellent overview of various attempts to solve this problem. We use the (unsorted)
formulation that Stickel has proposed as a standard. As already mentioned in the introduction,
this problem can be completely expressed in Prolog except for one non-Horn clause:

wolf(w). animal(X) :- wolf(X).

fox(f). animal(X) :- fox(X).

bird(b). animal(X) :- bird(X).
snail(s). animal(X) - snail(X).
caterpillar(c). animal(X) :- caterpillar(X).
grain(g). plant(X) :- grain(X).
smaller(X,Y) :- fox(X) , wolf(Y). plant(i(X)) :- snail(X).
smaller(X,Y) :- bird(X) , fox(Y). likes(X,i(X)) :- snail(X).
smaller(X,Y) :- snail(X) , bird(Y). plant(h(X)) :- caterpillar(X).
smaller(X,Y) :- caterpillar(X) , bird(Y). likes(X,h(X)) :- caterpillar(X).

likes(X,Y) :- bird(X) , caterpillar(Y).

false :- wolf(X), (fox(Y) ; grain(Y)) , likes(X,Y).
false :- bird(X) , snail(Y) , likes(X,Y).
false :- animal(X) , animal(Y) , likes(X,Y) , grain(2) , likes(Y,2).

animal(X) , animal(Y) , smaller(Y,X) , plant(W) , likes(Y,W) , plant(Z) ---> likes(X,Y) ; likes(X,Z).

Satisfiability of the Prolog part of the problem formulation can be demonstrated within 0.05 secs
by evaluation of the goal 'false’. Unsatisfiability of the whole problem is proved by means of
‘satisfiable’ after 0.3 secs. (The best time reported in Stickel's paper was 6 secs for the unsorted
version of the problem.) The choices and assertions performed during execution are as follows:

l

likes(b,s) likes(b,g)
|
X
I
likes(f,b) likes(f,g)

« I

[ 1
likes(w,f) likes(w,g)

X X

The way 'satisfiable’ solves the problem corresponds pretty well to the natural language solution
given by Stickel.
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3.2 Lewis Carroll’s "Salt-and-Mustard problem"

This problem - which stems from Lewis Carroll's "Symbolic Logic" of 1897 - has been discussed
in a publication by Lusk and Overbeek in the problem corner of the Journal of Automated
Reasoning [LO 85]. It is about five friends who have imposed certain rules governing which
condiment - salt or mustard - to take when the five are having beef together. The problem is to
check whether these rules are compatible, i.e., satisfiable. The major part of the problem consists
of if-and-only-if conditions for each friend and each condiment. Each of these can be expressed
by means of a non-Horn generation rule and a Horn derivation rule. Our formulation is as follows
(note that some ‘false’-rules have been compactified):

friend(barry). salt(X) :- both(X).
friend(cole). mustard(X) :- both(X).
friend(dix).

friend(lang). salt(X) , mustard(X) ---> both(X).
friend(mill).

salt(barry) - oneof(cole) ; oneof(lang).
mustard(barry) :- neither(dix) ; both(mill).
salt(cole) - oneof(barry) ; neither(mill).
mustard(cole) - both(dix) ;  both(lang).
salt(dix) - neither(barry) ; both(cole).
mustard(dix) - neither(lang) ; neither(mill).
salt(lang) - oneof(barry) ; oneof(dix).
mustard(lang) - neither(cole) ; neither(mill).
salt(mill) - both(barry) ; both(lang).
mustard(mill) - oneof(cole) ; oneof(dix).

salt(barry) ---> oneof(cole) ;  oneof(lang).
mustard(barry) ---> neither(dix) ;. both(mill).
salt(cole) ---> oneof(barry) ; neither(mill).
mustard(cole) ---> both(dix) ; both(lang).
salt(dix) ---> neither(barry) ; both(cole).
mustard(dix)  ---> neither(lang) ; neither(mill).
salt(lang) ---> oneof(barry) ; oneof(dix).
mustard(lang) ---> neither(cole) ; neither(mill).
salt(mill) --->  both(barry) ; both(lang).
mustard(mill)  ---> oneof(cole) ;. oneof(dix).
oneof(X) ---> salt(X) ; mustard(X). false :- oneof(X) ,(both(X) ; neither(X))

friend(X) ---> both(X) ; neither(X) ; oneof(X). false :- oneof(X), salt(X) , mustard(X).
false :- neither(X) , (both(X) ; salt(X) ; mustard(X)).

The problem has a single model:

salt(barry)  mustard(barry) neither(dix) oneof(lang) both(barry)
salt(mill) mustard(lang)  neither(cole) oneof(mill)
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"Satisfiable’ finds it within 1.1 secs. Lusk and Overbeek have judged this problem to be especially
hard as their theorem prover has produced 32 000 clauses for solving the problem. Although the
tree to be searched before a solution is found is considerably bigger than for the Steamroller the
problem is still a simple one for a model generation approach.

The two other problems discussed in the article by Lusk and Overbeek are in fact much easier:
"truthtellers and liars" are dismantled within 0.1 secs, while a model for the “schoolboys problem"
is found after 0.2 secs.

3.3 A non-obvious problem

Pelletier and Rudnicki [PR 86] have recently discussed a problem that is simple to state, but hard
to prove. Because of its brevity we give their problem formulation as well: “"Suppose there are
two relations, P and Q. P is transitive, and Q is both transitive and reflexive. Suppose further the
‘'squareness’ of P and Q: any two things are either related in the P manner or in the Q manner.
Prove that either P is total or Q is total.”

Our formalization of the problem - requiring a transformation into range-restricted form - is as
follows:

dom(a). pX,Y), p(Y,Z) ---> p(X,2).

dom(b). a(x,y), q(v,2) ---> q(X,2).

dom(c). q(x,)Y) ---> q(Y,X).

dom(d). dom(X),dom(Y) ---> p(X.,Y) ; q(X,Y).
false :- p(a,b).
false :- q(c,d).

The tree to be searched by ’'satisfiable’ is already quite big: 348 facts are asserted and
subsequently retracted again, 52 choice points are estabiished and 53 branches are closed. The
theorem is proved within 16 secs.

Pelletier/Rudnicki report about a solution time just under 2 mins, McCune reports just under 1 min
[McC 86]. Just recently Walther has obtained 31.1 secs [WAL 88]. If complement splitting is
applied for this example, the search tree can be considerably reduced such that the solution time
goes down to 9.5 secs.
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3.4 Some combinatorial puzzles

In Pelletier's collection, to be discussed below, there is another problem (number 55) posed by
Len Schubert. This problem is a simple combinatorial puzzle where the murderer of aunt Agatha
has to be found. Equality (or identity) is used in order to express that the murderer has to be
found among the three people living in the house. We conjecture that the following formulation of
the problem (not using '=’) is simpler and more natural than Pelletier's:

lives(agatha). false :- killed(X,Y) , richer(X,Y).

lives(butler). false :- hates(agatha,X) , hates(charles,X).

lives(charles). false :- hates(X,agatha) , hates(X,butler) , hates(X,charles)
hates(agatha,agatha). hates(X,Y) :- killed(X,Y).

hates(agatha,charles). hates(butler,X) :- hates(agatha,X).

true ---> killed(agatha,agatha) ; killed(butler,agatha) ; killed(charles,agatha).
lives(X) ---> richer(X,agatha) ; hates(butler,X).

After 0.05 secs a model for the problem is found indicating that aunt Agatha has killed herself.
After 0.1 secs all other possibilities have been ruled out proving that Agatha indeed must have
committed suicide.

Using this style of formulation, i.e., expressing the different choices that are existing over the finite
domain of the puzzle by means of disjunctions and expressing the remaining conditions directly in
Prolog, one can solve quite a lot of similar puzzles efficiently. We just would like to mention as
examples

o Lewis Carroll’'s "lion-and-unicorn" puzzle (discussed recently in the Journal of Automated
Reasoning [OHL 85]): 20 Prolog clauses, 1 non-Horn clause - solved in 0.1 secs

or a more substantial one:

o the full "jobs" puzzle taken from [WOS 84]: 31 Prolog clauses, 2 non-Horn clauses -
solved in 4.5 secs

Again the incomplete program ’satisfiable’ has been sufficient.

3.5 Pelletier’s seventy-five problems

All problems discussed in the following have been solved with 'satisfiable’ as well, unless stated
differently.

The propositional problems 1-17 are all very easy once clausal form has been obtained. Eight of
them can be completely represented in Prolog and are all solved under 0.01 secs. Problem 12 is
the hardest among the remaining ones - a solution requires 0.15 secs.
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The monadic problems 18-33 (34 has been omitted because the authors did not want to perform
the "exercise" of computing 1600 clauses) are simple as well, with one exception namely problem
29. This problem - consisting of 32 clauses - requires 33 secs! (Attention: Pelletier's clausal
version contains two typing mistakes.) A clause-set compaction as described above results in 23
compactified clauses and unsatisfiability of the compactified set can be shown within 4.3 secs. If
in addition complement splitting is applied, the time needed goes down to 1.1 secs.

Problems 19,20,27,28, and 32 are completely expressable in Prolog and solvable in less than
0.02 secs (problem 28 is satisfiable!).

The full predicate logic problems without identity and (non-Skolem) functions 35-47 do not impose
particular problems either. Problem 44 is the only one that can be completely represented in
Prolog (solved under 0.01 secs). Problem 35 is the first problem for which 'satisfiable’ would run
forever. 'Satisfiable_level’ solves it within 0.07 secs. In problem 46 the clause 'f(X) ---> f(f(X)) ;
g(X)' has to be "hidden" at the end of the clause list in order to maintain applicability of
‘satisfiable’. The most difficult problem in this section is problem 43, requiring 0.65 secs. Problem
47 is the Steamroller discussed earlier.

Among the remaining problems 48-69 there are nine functional problems without identity.
Problems 57,59 and 60 (Pelletier’s faulty clausal form corrected) can be solved by 'satisfiable’
under 0.1 secs, problem 50 requires 0.55 secs (0.28 with complement splitting).

For problem 62 once again the clausal form given by Pelletier does not correspond to the non-
clausal form of the theorem. If corrected the clausal form can immediately be shown satisfiable as
no completely positive clauses exist.

Problems 66-69 cannot be solved by any of the two SATCHMO programs! These problems are
variations of a hard recursive Horn-problem with functions. There is a single predicate ranging
over the whole domain. As the problems are not range-restricted instantiation over the Herbrand
universe has to be provided through the 'dom’-predicate. Consider, e.g., problem 66:

(i(X),i(Y,X)) :- dom(X) , dom(Y).

‘(i(X,i(Y,Z)),n(( Y),i(X,Z))) :- dom(X), dom(Y), dom(Z).
(i Y)n(Y X)) :- dom(X), dom(Y).

( ) > H(Y)

alse :- t(i(a,n(n(a))))-

dom(X) ---> dom(n(X)).
dom(X) , dom(Y) ---> dom(i(X,Y)).

Satchmo fails because the generation of new Herbrand terms via the two 'dom’-rules interferes
with the generation of the necessary ‘t'-facts. The number of ‘dom’-facts generated explodes and
the comparatively few 't'-facts that can be generated on each level are “buried" by them. The only
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way towards possibly solving problems of this kind seems to be a careful control of Herbrand
term generation: 'dom’-rules should not be applied before the other rules have not been
exhaustived. As such a control feature has not yet been implemented, we do not further elaborate
on this point.

Prolog's implementation of '=' cannot be used for correctly representing logical identity (except in
very restricted cases). In order to represent the remaining problems with identity there are two
possibilities:
1.to introduce a special equality predicate and to add the necessary equality axioms
(transitivity, substitutivity etc.): this has been done for problems 48,49,51-54,56, and 58

2. to recode the problems without explicitly using identity as done in the original formulation
of the three group theory problems 63-65 by Wos; problem 61 has been ¢oded this way
too

Of the problems thus augmented or recoded, 'satisfiable’' was able to solve problems 48, 49, 61,
64, and 65 in less than 1 sec each. For the remaining problems 'satisfiable_level' had to be
employed: of these, problem 58 was solved in 0.15 secs and problem 63 in 0.75 secs; problem
55 has been discussed above. Problems 51-54 and 56 could not be solved by either programs,
due to deficiencies very similar to those responsible for failure in case of 66-69.

The last section in Pelletier's collection provides problems for studying the complexity of a proof
system. The following figures are given without further comment as we have not really studied
their relevance yet. Pigeonhole problems (72,73):

n | 1 2 3 4 5
secs | 0.05 013 0.7 38 255 ..

Times are given for our formulation of the predicate logic version (73): the times clearly indicate
exponential growth. The expository arbitrary graph problem 74 is solved in 0.18 secs.

For U-problems (71) coded as arbitrary graph problems (75) growth seems to be at most cubic:

n | 1 2 3 4
secs | 0.05 0.2 0.75 2.15 ..
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4. Conclusion

In this paper SATCHMO, a theorem prover based on model generation, is presented and
experiences are described. Prolog has been used as a representation language for expressing
problem clauses as well as for the implementation of SATCHMO. The approach extends Prolog
while retaining its efficiency for Horn clauses as has been done by Stickel's PTTP. The additions
we are proposing are, however, considerably different from Stickel's. As a consequence,
SATCHMO can be implemented on top of Prolog without causing too severe inefficiencies by
doing so.

As an extension of the work reported here, we would like to investigate more deeply how to
benefit from further compilations of problem clauses and how to control term generation. Some
considerable gain in efficiency can also be expected from investigations in more sophisticated
solutions to controlling recursive Prolog-rules. Apart from this, we would like to know how
SATCHMO behaves when implemented in up-to-date Prolog-systems. The simplicity of its code
should make it extremely portable. Due to the splitting feature especially forthcoming paraliel
implementations of Prolog should be promising.
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