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Every infinite locally finite graph with exactly one l-factor is at most 2-
connected is shown. More generally a lower bound for the number of 1-factors in
locally finite n-connected graphs is given.

1. INTRODUCTION

Kotzig has shown in |8] that every factorizable 2-edge-connected finite
graph has at least two 1-factors. This result does not extend to infinite graph:
there are 2-edge-connected infinite locally finite graphs with exactly one 1-
factor (see Example 3.2). However, the following theorem holds:

Every locally finite graph with exactly one 1-factor is at most 2-connected.
(Theorem 3.3), and then at most 2-edge-connected since the n-connectivity is
a strengthening of the n-edge-connectivity.

Kotzig’s theorem is actually a first step in the study of the number f(G) of
I-factors of a finite graph G. Other contributions are due to Beineke and
Plummer [1])(f(G) > n if G is n-connected) and Zaks [14}(f(G) > n!!' if G
is n-connected). Lovasz 9] improved Zaks’ theorem in certain cases. Mader
[11] has given an exact lower bound depending on the minimal degree.
Previously M. Hall [7] has given such a bound in the special case of
bipartite graphs (f(G) >> n! if G is a bipartite graph with minimal degree n).

Other results presented in this note estimate the number of 1-factors of
locally finite infinite graphs:

For all n there are n-connected locally finite infinite graphs with a finite
number of 1-factors.

* This research was supported by a grant of the D.G.R.8.T., Contract 79317.
' For a positive integer n, n!! denote n- (n —2)---4.2.1ifnisevenand n . (n —2)--- 5.3.1
if n is odd.
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A factorizable locally finite n-connected graph has at least n!!/2 1-factors
if n is even, and at least $n\! 1-factors if n is odd.

This last theorem is improved in certain cases.

A new proof of Zaks’ theorem is given.

2. NOTATIONS AND TERMINOLOGY

Graphs considered in this article are undirected without loops or multiple
edges.

Let G = (V, E) be a graph. A l-factor, or perfect matching, of G is a set of
pairwise disjoint edges of G containing all vertices [2]. We say that G is
factorizable if it contains at least one [-factor, and uniquely factorizable if it
contains exactly one 1-factor.

A finite graph is said to be 1-factor critical if by deleting any vertex one
obtains a factorizable graph. A 1-factor critical graph has clearly an odd
number of vertices.

We denote by C,(G) the number of connected components with odd
cardinalities of G, and by C,,(G) the number of connected components of G
which are 1-factor critical.

Given S < V, we denote by G|S] the subgraph of G induced by S. If no
confusion results we abbreviate C,(G[S]) and C_(G|S]) to C,(S) and
C..(S), respectively.

A graph is locally finite if every vertex is incident to finitely many edges.

A locally finite graph is said to be bicritical if it is factorizable and if by
deleting any two (distinct) vertices one obtains a factorizable graph. Clearly
every edge of a bicritical graph G belongs to some 1-factor of G.

3. LocaLLy FiNniTE GRAPHS wiTH ExactLy ONE 1-Factor

ProrosiTiON 3.1. Let G= (V, E) be a locally finite graph with exactly
one l-factor F. Then the following three properties are equivalent:

(1) There is a finite nonempty subset S of V such that

C\(N\S) =S|

(2) There is an isthmus {x,y} of G which belongs to F.
(3) There is an isthmus {x,y} of G which belongs to F such that

C,(N\ixPh=1 o C,(WiyD=1

Proposition 3.1 is an extension to locally finite graphs of a theorem of
Kotzig characterizing uniquely factorizable finite graphs [8]:
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(A) If a finite graph is uniguely factorizable, then it has an isthmus
belonging to the unique 1-factor.

Property (1) holds trivially in any factorizable finite graph. We note that
our proof of Proposition 3.1 uses Kotzig’z theorem. A proof of this theorem
is given (Remark 3.4). To prove Proposition 3.1 we also use Tutte’s 1-factor
theorem [12]:

(B) A locally finite graph G = (V,E) is factorizable if and only if
C,(V\S) < |S| for all finite subsets S of V.

Proof. We have clearly (3)=>(1) and (3)= (2). We next show that
()= (3). i

Let Cy,...,C, (|S|=p) be the odd components of G[V'\S]. Set X =S
(U2, C)) and G' =GIX]. If {s,t} EF and s € S, necessarily t € (J/_, C,.
Therefore G’ has exactly one I-factor F' and F’ < F. Because of the odd
cardinalities of the C)’s, there is no edge of F joining two vertices of S.
Therefore we can assume that two vertices of S are adjacent in G’, without
forming another 1-factor of G'.

Since G’ is finite, by (A) there is an edge {x, y} of F' which is an isthmus
of G’ and therefore an isthmus of G. If x& § and y € S, x and y are in the
same component, say C;. Since {x, y} is an isthmus of G’', there is a partition
C,=X+Y with x€ X and y € Y, and one and only one of the two sets X
and Y is adjacent to S. If X is adjacent to S, we have

Ci(G'[X\{x}])) =1
and then

C(G[N\{x]) =1,
If x € S, then y € C, and we have

CiGIN\{x}]) =1.

So property (3) holds.

We finally show that (2)=(1). Let e={x,y} be an isthmus of G
belonging to F. Let X and Y denote the connected components of
G —e=(V,E\[e}) such that x € X and y € Y. If (1) does not hold, we have

C(GNS U xH <IS|

for all finite subsets S of V\{x}. Therefore by the l-factor theorem (B),
G{V\|x}| has a l-factor L,. The connected component of (V, L \JF)
containing x is necessarily an infinite alternating path P, issued from x.
Clearly P, has no other vertex in X than x. Similarly G{V\{y}] has a 1-
factor L, and the connected component of (¥, L, F) containing y is an
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FIGURE 1

infinite alternating path P, issued from y. The only vertex of P, contained in
Y is y. It follows that P, U P, is an infinite elementary F-alternating path
without end. This contradicts the uniqueness of the 1-factor F. Therefore (1)
holds, achieving the proof of Proposition 3.1.

ExAaMmpLE 3.2. The locally finite graph depicted in Fig. 1 is 2-edge-
connected and has exactly one 1-factor.

THEOREM 3.3. Every locally finite graph with exactly one 1-factor is at
most 2-connected.
Qur proof uses a strengthening of the I-factor theorem proved in [3].

(C) A locally finite graph G= (V,E) has a l-factor if and only if
C..(V\S) < |S| for all finite subsets S of V.

In the finite case, this result seems to be well known. However, we have
been unable to find an explicit reference in the literature. Papers {4, 6] can
be given as implicit references.

Proof. Let G=(V,FE) be a 3-connected infinite locally finite graph.
Assume that G has exactly one 1-factor F. Let e = {x, y} be an edge of F,
and let G’ denote the subgraph (V, E\le}). G’ is not factorizable, and hence
by (C) there exists a finite subset T of ¥ such that

CalG' T 2 |T] + 1.
Since G is 3-connected and uniquely factorizable, by Proposition 3.1 we have
CGINT)) < C(GINT)LIT| - 1.

Hence e connects two 1-factor critical components 4 and B of G'|V\T], and
we have

Ce(G' [Ty =|T| + 1
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and

Note that T separates 4 \U B, finite, from the (infinite) remaining of G; hence
|T| >3, since G is 3-connected. Let C,,..., C,((T|=p+ 1,p>2) be the 1-
factor critical components of G[V\T]. There is exactly one edge of F joining
T and C; for i = 1,..., p. Otherwise, since all |C,| are odd, one C; would be
joined to T by at least 3 edges of F and there would be at least p + 2 edges
of F incidents to T, which is impossible.

Let ¢; be the vertex of T incident to the edge of F touching C,. Consider
the bipartite graph H on vertex set {C,,..., C,} U {¢;,...,1,} with an edge
{Ci» t;} if and only if C, is adjacent to ¢; in G. Since G is 3-connected, the
degree of each C; in H is at least 2, and hence by a theorem of Hall [7], H
has at least two 1-factors. Now each of them can be enlarged into a 1-factor
of G[C,U--- UC,U {t,.., t,}], since the C/s are l-factor critical, and
hence into a 1-factor of G. It follows that G has more than one I-factor,
contradicting our assumption.

Remark 3.4. The proof of Theorem 3.3 contains a proof due ta Mader
[10] of Kotzig’s theorem (A), which we give for completeness.

Let G= (V, E) be a finite 2-connected graph. Assume that G has a unique
1-factor F. Let e € F and let G' denote the subgraph (V, E\{e}). G’ is not
factorizable, therefore by Theorem (C) there is a subset 7 of V such that

ColG'[V\T]) 2| T| + 1.

Since G is factorizable, we have C .(G[V\T])<|T| and hence e connects
two 1-factor critical components of G’'[V\T] and we have C (G’|V\T])=
|T|+ 1. Since e is not an isthmus of G, we have T# @. Since G is 2-
connected, we have | T| > 2 and every 1-factor critical component of G| V\T}]
is adjacent to at least two vertices of 7. The proof is achieved as above.

Remark 3.5. For all n, there are locally finite 2-connected graphs of
minimal degree n with exacctly one 1-factor.

Proof. We first construct a finite graph G, as follows: The graph G, is
composed of two vertices joined by an edge (i.e., G, = K,). Suppose G; has
been constructed. Let G; and G} be two disjoint suspensions of G; obtained
by joining two vertices v and v} to all vertices of two disjoint copies of G;.
The graph G, is obtained by joining G| and G/ by the edge {v;, v/}.

As is easily seen G, is a uniquely factorizable finite graph with minimal
degree n.

Let G= (V,E) be a locally finite 2-connected graph with exactly one 1-
factor F (Example 3.2). If x is a vertex of G with degree k< n—l,lety€ V
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such that {x,y} € E\F. By joining x to every vertices of G}_,_, and y to
every vertices of GJ_,_,, we obtain a locally finite graph in which x is of
degree at least n. Since G and G, are factorizable, the constructed graph is
also factorizable. One can easily prove that this graph has no more than one
1-factor.

4. NUMBER OF 1-FACTORS OF n-CONNECTED LOCALLY FINITE GRAPHS

First we give examples of n-connected locally finite infinite factorizable
graphs with a finite number of 1-factors.

ExamrLE 4.1. For n > 3, we define a locally finite graph T, as follows:
Let (X,,/m € N) be a sequence of pairwise disjoint sets, each of them with
cardinality n. Put X, = {x{,..,xy}. T, is the graph on vertex set (J oy X
and edge set E defined by: for m odd or m=0

{x}",x}”‘“}EE, 1<ign, 1€jgn
for m even and m# 0 k
{x™ xm* 1 € E, 1€ign.

The graph T, is clearly n-connected and factorizable. It can easily be
proved that T, has exactly n! 1-factors. See Fig. 2.

Remark 4.2. The conjecture of Van der Waerden [13], recently proved
by Falikman [5] yields the lower bound (n/p)” p! on the number of 1-factors
of a finite n-regular bipartite graph on p vertices.

In particular the number of 1-factors is not bounded when p tends to
infinity for given n > 3.
The example T, , below shows that this result cannot be extended to
bipartite graphs with degrees at least n. The graph T, , is n-connected on

2n(p + 1) vertices and has exactly (n!)? 1-factors.

& 5 - -
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1
!
L

— -

Fic. 2. The graph T,.
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Fi1G. 3. The graph T, ,.

We point out that by a slight modification of T, , one can obtain a similar
(not bipartite) graph with exactly n! 1-factors,

Let (X,/0< m< 2p+ 1) be a finite sequence of pairwise disjoint sets of
cal;dinalities n. Put X, ={x{,..,x;}. T,, is the graph on vertex-set

p+1.

w0 X, with edge set E defined by: for m =0, m = 2p or for m odd
(X', xmt 'y € E, 1<ign, 1€jgn

for m even and m+# 0, m# 2p
IxroxrtheE, 1gign

See Fig. 3.
The following result extends Theorem 3.3, and is related to a theorem of
Lovasz.

THEOREM 4.3. The number of 1-factors of a factorizable locally finite n-
connected and not bicritical graph is at least (n — 1)!

Lovasz has proved in [9] the following theorem: The number of 1-factors
of a factorizable finite n-connected and not bicritical graph is at least n!
Our proof of Theorem 4.3 makes no use of this theorem of Lovasz.

Proof. Let G = (V, E) be a factorizable locally finite n-connected and not
bicritical graph. Since G is factorizable we have C_(V\S) < |S| for all finite
subsets S of V.

Since G is not bicritical there is, by Theorem (C), a finite subset S of V'
such that C_(V\S) > |S|— 1.

Case 1. There is a finite nonempty subset S of V' such that

Ca(N\S)=|S].

Since S separates G and since G is n-connected, we have |S|>n. Let
Ciss C, (p=|S]) be the 1-factor critical connected components of G| V\S|.
Consider the bipartite graph H on vertex set {C,,.., C,} U S with an edge
{C;, s} (s € S) if and only if C; is adjacent to s in G. Since G is n-connected,
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the degree of each C; in H is at least n. By a theorem of M. Hall [7], H has
at least n! 1-factors. Since the C;’s are 1-factor critical every 1-factor of H
can be enlarged into a 1-factor of G[C, U .- U C,U S}, and hence into a 1-
factor of G. Therefore G has at least n! 1-factors.

Case 2. There is a finite nonempty subset S of V such that
C..(V\S)=|S|— 1. As above |S|>n. Let F be a l-factor of G. There is
exactly one vertex s of S which is not joined by F to a l-factor critical
component of G[V\S|. Let C,,..,C, (p=|S§|—1) denote the I-factor
critical components of G[V\S]. One can prove as above that
GIC U UC,US\{S}] has at least (n— 1)! 1-factors. It follows that G
has at least (n — 1)! I-factors.

THEOREM 4.4. The number of 1-factors of a factorizable locally finite n-
connected bicritical graph is at least n!'/2 if n is even, and at least 3n!! if n
is odd.

Proof. Let f(n) denote the minimum number of I-factors of a
factorizable locally finite bicritical n-connected graph. Trivially, f(2) > 1
and by Theorem 3.3, f(3) > 2. By induction on n we prove that

f(n)>nf(n—2)
for each n > 4.

Let G=(V,E) be a locally finite bicritical n-connected graph. If v is a
vertex of G there are at least n pairwise distinct vertices v,,..., v, adjacent to
v, since G is n-connected. Since G is bicritical, all the edge {v, v;} belong to
some l-factor of G. Let F; be a 1-factor of G containing the edge {v, v }.
F!=F\|v,v;} is clearly a 1-factor of the subgraph G;= G[V\{v,v,;}], and
every 1-factor of G, can be enlarged to a 1-factor of G containing the edge
{v, v;}. Since two 1-factors obtained from I-factors of two distinct G;s are
clearly different, and since the G;’s are (n — 2)-connected, it follows that G
has at least nf(n — 2) 1-factors.

Therefore we have f(n)>n-(n—2)---4.1, if n is even, and we have
Sf(M)yzn-(n=2)---5.2,if nis odd.

Remark 4.5. Our proof of Theorem 4.4 is an extension to infinite graphs
of a lemma due to Zaks [14].

Remark 4.6. In order to prove that every n-connected factorizable finite
graph has at least n!! l-factors, Zaks needed to prove that in every n-
connected factorizable finite graph there is a vertex v such that at least n
edges incident to v belong to some I-factor. This proof is fong. One can
easily prove Zaks’ theorem by some slight modificatons of the proof of
Theorem 4.3.

Let G = (V, E) be a finite n-connected factorizable graph.
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Case 1. There is a nonempty subset T of ¥ such that. C,(V\T)=|T]|. By
[3] there is a nonempty subset S of ¥ such that C.(V\S) —|S| > C,(V\T) —
|T| = 0. Hence we have V_(V\S)=|S|.

If [S]=1, put S = {s}. Therefore G[V\{s}] is 1-factor critical, and then
every edge incident to s belongs to some 1-factor of G. Since G is n-
connected there are at least n edges incident to s. Hence, by induction, since
G[V\e] is (n — 2)-connected for each edge e, G has at least n- (n —2)!! >
n!! 1-factors.

If |S|> 2, then S separates G. Since G is n-connected, we have | S| > n.
One can prove by the argument used in the proofs of Theorems 3.3 and 4.3
that the subgraph induced by S and the 1-factor critical components of
G[V\S] has at least n! 1-factors, and therefore G has at least n! > n!! 1-
factors,

Case 2. For parity reason, since G is finite, there is no subset S of V'
such that C,(V\S)=|S| - 1.

Case 3. For every nonempty subset § of V we have C,(¥\S)<|S]|—2.
The graph G is bicritical: see the proof of Theorem 4.4,

5. QUESTIONS

(1) It follows from Example4.] and Theorem4.3 that
/2 f(n)< n! if n is even, and $n!! < f(n) < n! if n is odd. What is the
exact value of f(n)?

(2) Using Theorem (A), one can easily construct every finite graph
with exactly one l-factor. Is there any construction of every locally finite
2-connected graph with exactly one 1-factor?

(3) An infinite locally finite bicrital graph seems to have an infinite
number of 1-factors. It would be useful to prove this property.
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