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Abstract

Archetypal analysis has the aim to represent observations in a multivariate data set
as convex combinations of extremal points. This approach was introduced by Cutler and
Breiman (1994); they defined the concrete problem, laid out the theoretical foundations
and presented an algorithm written in Fortran, which is available on request. In this paper
we present the R package archetypes which is available on the Comprehensive R Archive
Network. The package provides an implementation of the archetypal analysis algorithm
within R and different exploratory tools to analyze the algorithm during its execution and
its final result. The application of the package is demonstrated on two examples.

Keywords: archetypal analysis, convex hull, R.

1. Introduction

The Merriam-Webster Online Dictionary (2008) defines an archetype as the original pattern
or model of which all things of the same type are representations or copies. Then, the aim
of the archetypal analysis is to find “pure types”, the archetypes, within a set defined in a
specific context. The concept of archetypes is used in many different areas, the set can be
defined in terms of literature, philosophy, psychology and also statistics. Here, the concrete
problem is to find a few, not necessarily observed, points (archetypes) in a set of multivariate
observations such that all the data can be well represented as convex combinations of the
archetypes.

In statistics archetypal analysis was first introduced by Cutler and Breiman (1994). In their
paper they laid out the theoretical foundations, defined the concrete problem as a nonlinear
least squares problem and presented an alternating minimizing algorithm to solve it. It has
found applications in different areas, with recently grown popularity in economics, e.g., Li,
Wang, Louviere, and Carson (2003) and Porzio, Ragozini, and Vistocc (2006). In spite of the
rising interest in this computer-intensive but numerically sensitive method, no “easy-to-use”
and freely available software package has been developed yet; the only implementation is the
original Fortran code by Cutler and Breiman (1994) which is available upon request only. In
this paper we present the software package archetypes within the R statistical environment (R
Development Core Team 2008) which provides an implementation of the archetypal analysis
algorithm. Additionally, the package provides exploratory tools to visualize the algorithm
during the minimization steps and its final result. The newest released version of archetypes

!These are examples of archetypes in different contexts; see Wikipedia (2008).
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is always available from the Comprehensive R Archive Network at http://CRAN.R-project.
org/package=archetypes.

The paper is organized as follows: In Section 2 we outline the archetypal analysis with its
different conceptual parts. We present the theoretical background as far as we need it for a
sound introduction of our implementation; for a complete explanation we refer to the original
paper. Section 3 demonstrates how to use archetypes based on a simple artificial data set,
with details about numerical problems and the behavior of the algorithm. In Section 4 we
show a real word example — the archetypes of human skeletal diameter measurements. Section
5 concludes the article with future investigations.

2. Archetypal analysis

Given is an n X m matrix X representing a multivariate data set with n observations and
m attributes. For a given k the archetypal analysis finds the matrix Z of & m-dimensional
archetypes according to the two fundamentals:

(1) The data are best approximated by combinations of the archetypes, i.e., they minimize
RSS = | X — ZT x a2

with «, the coefficients of the archetypes, a k x n matrix; the elements are required
to be greater equal 0 and their sum must be 1, i.e., Z?Zl aj; = 1 with o;; > 0 and
1=1,...,n.

(2) The archetypes are mixtures of the data points:
Z=X"xp

with (3, the coefficients of the data set, a n X k matrix where the elements are required
to be greater equal 0 and their sum must be 1, i.e., > ;" B; = 1 with 3 > 0 and
i=1,... k.

These two fundamentals define the basic principles of the algorithm: it alternates between
finding the best « for given archetypes Z and finding the best archetypes Z for given «;
at each step several convex least squares problems are solved, the overall RSS is reduced
successively.

With a view to the implementation, the algorithm consists of the following steps:

Given the number of archetypes k:

1. Data preparation and initialization: scale data, add a dummy row (see below) and ini-
tialize (8 in a way that the the constraints are fulfilled to calculate the starting archetypes
Z.

2. Loop until RSS reduction is sufficiently small or the number of maximum iterations is
reached:
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2.1. Find best « for the given set of archetypes Z: solve n convex least squares problems
(t=1,...,n)

k
1 ,
min §HZ * a;; — X;||2 subject to a; > 0 and z;aij =1,
‘7:

2.2. Recalculate archetypes Z: solve system of linear equations X = « A

2.3. Find best (3 for the given set of archetypes Z: solve k convex least squares problems
(j=1,...,k)

1 B n
r%iniﬂX * 3; — Zj||2 subject to 3; > 0 and Zﬂji =1,
I i=1

2.4. Recalculate archetypes Z: Z = X x 3.

2.5. Calculate residual sum of squares RSS.
3. Post-processing: remove dummy row and rescale archetypes.

The algorithm has to deal with several numerical problems, i.e. systems of linear equations
and convex least squares problems. In the following we explain each step in detail.

Solving the convex least squares problems: In Step 2.1 and 2.3 several convex least
squares problems have to be solved. Cutler and Breiman (1994) use a penalized version of
the non-negative least squares algorithm by Lawson and Hanson (1974). The penalization is
done by adding an extra observation, the dummy row, to X containing a “huge” value M at
each element (see, e.g., Luenberger 1984). The hugeness of the value M varies from problem
to problem and thus can be seen as a hyperparameter of the algorithm. Default value in the
package is 200.

Solving the system of linear equations: In Step 2.2 the system of linear equations

Z=a"1%xX

has to be solved. A lot of methods exist, one approach is the Moore-Penrose pseudoinverse
which provides an approximated unique solution by a least square approach: given the pseu-
doinverse at of «,

Z=atxX,

is solved. Another approach is the usage of QR decomposition: o = QR, where () is an
orthogonal and R an upper triangular matrix, then

Z=Q"+X xR,

is sovled. Default approach in the package is the QR decomposition using the solve()
function.
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Calculating the residual sum of squares: In Step 2.5 the RSS is calculated. It uses
the spectral norm (see, e.g., Golub and Loan 1996)). The spectral norm of a matrix X is the
largest singular value of X or the square root of the largest eigenvalue of X X

HXHZ =V Amax(XHX)a

where X is the conjugate transpose of X.

Avoiding local minima: Cutler and Breiman (1994) shows that the algorithm converged
in all cases, but not necessarily to a global minimum. Hence, the algorithm should be started
several times with different initial archetypes. It is important that these are not too close
together, this can cause slow convergence or convergence to a local minimum.

Choosing the correct number of archetypes: As in many cases there is no rule for
the correct number of archetypes k. A simple method the determine the value of k is to run
the algorithm for different numbers of k and use the “elbow criterion” on the RSS where a
“flattening” of the curve indicates the correct value of k.

Approximation of the convex hull: Through the definition of the problem, archetypes
lie on the boundary of the convex hull of the data. Let N be the number of data points
which define the boundary of the convex hull, then Cutler and Breiman (1994) showed: if
1 < k < N, there are k archetypes on the boundary which minimize RSS; if £ = N, exactly
the data points which define the convex hull are the archetypes with RSS = 0; and if k£ =1,
the sample mean minimizes the RSS. In practice, these theoretical results can not always be
achieved as we will see in the following two sections.

3. Using archetypes

The package is loaded within R using the 1ibrary() or require() command:

> library(archetypes)
Loading required package: nnls

It requires the packages nnls (Mullen and van Stokkum 2007) for solving the convex least
square problems.

We use a simple artificial two-dimensional data set to explain the usage of the implementation,
and the behavior of the archetypal analysis at all. The advantage is that we can imagine the
results and simply visualize them, Section 4 then shows a more realistic example. Note that
in the following the plot commands do not produce exactly the shown graphics concerning
primitives coloring, width, etc.; due to readability we have reduced the presented commands
to the significant arguments.

> data(toy)
> plot(toy)
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Data set toy consists of the two attributes x and y, and 250 observations. According to
the shape of the data, it seems to be a good idea to apply archetypal analysis with £ = 3
archetypes.

> set.seed(1986)
> a <- archetypes(toy, 3)

1: rss = 0.02177873, improvement = 0.05689221
2: rss = 0.01411290, improvement = 0.00766583
3: rss = 0.01101285, improvement = 0.00310005
4: rss = 0.00915121, improvement = 0.00186164
5: rss = 0.00790619, improvement = 0.00124502
6: rss = 0.00741714, improvement = 0.00048906
7: rss = 0.00756394, improvement = -0.00014681

During the fit, the function reports its improvement and stops after a maximum number
of iterations (default is maxIterations = 100) or if the improvement is less than a defined
value (default is minImprovement = sqrt(.Machine$double.eps)). As basis for our further
research, the implementation is a flexible framework where the problem solving mechanisms of
the individual steps can be interchanged. The default values are the “original ones” described
in the previous section (family = archetypesFamily()). The result is a S3 archetypes
object,

> a
Archetypes object
archetypes(data = toy, k = 3)

Convergence after 7 iteratioms
with RSS = 0.007563943.
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containing the three final archetypes:

> atypes (a)

X y
[1,] 14.696091 2.310303
[2,] 2.860579 9.935227
[3,] 18.810086 18.629479

The plot () function visualizes archetypes for two-dimensional data sets; for higher-dimensional
data sets parallel coordinates are used.

> plot(a, toy, chull=chull(toy))
> plot(a, toy, adata.show=TRUE)

o _| o _

N N

n  _| o _

— —

> S - > S

[To R n —

o — o —
| | | | | | | | | |
0 5 10 15 20 0 5 10 15 20

X X

The left plot shows the archetypes, their approximation of the convex hull (red dots and lines)
and the convex hull (black dots and lines) of the data. The right plot additionally shows the
approximation of the data through the archetypes and the corresponding a values (green
symbols, and grey connection lines); as we can see, all data points outside the approximated
convex hull are mapped on its boundary. This plot is based on an idea and Matlab source
code of Bernard Pailthorpe (Pailthorpe 2008).

With saveHistory = TRUE (which is set per default) each step of the execution is saved and
we can examine the archetypes in each iteration using the ahistory() command; the initial
archetypes, for example, are ahistory(a, step=0). This can be used to create an “evolution
movie” of the archetypes,

> movieplot(a, toy)
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The figure shows the plots of the eight steps (the random initialization and the seven itera-
tions) from top to bottom and left to right. In each step the three archetypes move further
to the three corners of the data set. A movie of the approximated data is shown when setting
parameter show = ’adata’l.

In the previous section we mentioned that the algorithm should be started several times
to avoid local minima. This is done using the stepArchetypes() function; it passes all
arguments to the archetypes() function and additionally has the argument nrep which
specifies the number of repetitions.

> set.seed(1986)
> a4 <- stepArchetypes(data=toy, k=3, verbose=FALSE, nrep=4)

The result is a S3 stepArchetypes object,

> a4

'Real animations are as Flash movies available from http://www.statistik.lmu.de/ eugster/
archetypes/.
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StepArchetypes object

stepArchetypes(data = toy, k = 3, nrep = 4, verbose = FALSE)

where summary () provides an overview of each repetition by showing the final residual sum

of squares and number of iterations:

> summary (a4)

StepArchetypes object

stepArchetypes(data = toy, k = 3, nrep = 4, verbose = FALSE)

k=3:

Convergence after 7 iteratioms
with RSS = 0.007563943.
Convergence after 12 iteratioms
with RSS = 0.007254754.
Convergence after 9 iteratioms
with RSS = 0.007248349.
Convergence after 13 iteratioms
with RSS = 0.007255585.

There are no huge differences in the residual sum of squares, thus if there are different local
minima then they are all equally good. But the following plot shows that the repetition starts
all nearly found the same final archetypes (and thus the same local minima),

> plot(a4, toy)

20

15

However, the model of repetition 3 has the lowest residual sum of squares and is the best

model:
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> bestModel (a4)

Convergence after 9 iteratioms
with RSS = 0.007248349.

At the beginning of the example we decided by looking at the data that three archetypes may
be a good choice. It is not given that this is the right choice, and with higher-dimensional
data this is not possible at all. As already mentioned in the previous section, one simple
way to choose the correct number of archetypes is to run the algorithm for different numbers
of k and use the “elbow criterion” on the residual sum of squares. The stepArchetypes()
function allows a vector as value of argument k and executes for each k; the archetypes()
function nrep times.

> set.seed(1986)
> as <- stepArchetypes(data=toy, k=1:10, verbose=FALSE, nrep=4)

There were 23 warnings (use warnings() to see)

The occurred warnings indicate that errors occured during the execution, in this case, singular
matrizes in solving the linear equation system in Step 2.2 as from k = 4:

> warnings ()

Warnings:
1: In archetypes(..., k = k[i], verbose = verbose)

k=4: Error in qr.solve(alphas %*% t(alphas)): singular matrix 'a' in solve
2: In archetypes(..., k = k[i], verbose = verbose)

k=5: Error in qr.solve(alphas %*J t(alphas)): singular matrix 'a' in solve
3: In archetypes(..., k = k[i], verbose = verbose)

k=5: Error in qr.solve(alphas %*), t(alphas)): singular matrix 'a' in solve

[...]

In these cases the residual sum of squares is NA:

> rss(as)

rl r2 r3 r4
k1 0.075569637 0.075569637 0.07556964 0.075569637
k2 0.047510402 0.047510490 0.04751053 0.047510417
k3 0.007370711 0.007370705 0.00737070 0.007630078

k4 0.005124407 NA 0.00594061 0.004970437
k5 0.005249507 NA NA NA
k6 NA NA NA NA
k7 NA 0.001216508 NA NA
k8 NA NA NA NA
k9 NA NA NA NA

k10 NA NA NA NA
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And all errors occured during the first iteration,

> iters(as)

rl r2 r3 rd
k1 3 3 3 3
k2 14 9 6 20
k3 73 7374 8

k4 20 1 9 22
kb5 69 1 1 1
k6 1 1 1 1
k7 1100 1 1
k8 1 1 1
k9 1 1 1
k10 1 1 1

which is an indication for an afflicted random initialisation. But up to k = 5 there is always
at least one start with a meaningful result and the residual sum of squares curve of the
best models shows that by the “elbow criterion” three or maybe seven is the best number of
archetypes:

> screeplot(as)

RSS
0.04 0.06 0.08
| | |

0.02
I

0.00
|

Archetypes

We already have seen the three archetypes in detail; the seven archetypes of the best repetition
and their approximation of the data are:

> a7 <- bestModel(as[[7]])
> plot(a7, toy, chull=chull(toy))
> plot(a7, toy, adata.show=TRUE)
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The approximation of the convex hull is now clearly visible.

As we mentioned in Section 2, there are many ways to solve linear equation systems. One
other possibility is the Moore-Penrose pseudoinverse:

> set.seed(1986)
> gas <- stepArchetypes(data=toy, k=1:10, family=archetypesFamily('ginv'),
+ verbose=FALSE, nrep=4)

Loading required package: MASS
There were 23 warnings (use warnings() to see)

We use the ginv() function from the MASS package to calculate the pseudoinverse. The
function ignores ill-conditioned matrizes and “just solves the linear equation system”, but
the archetypes function throws warnings of ill-conditioned matrices if the matrix condition
number « is bigger than an upper bound (default is maxKappa = 1000):

> warnings ()

Warnings:

1: In archetypes(..., k = k[i], verbose = verbose)
k=4: alphas > maxKappa

2: In archetypes(..., k = k[i], verbose = verbose)
k=5: alphas > maxKappa

3: In archetypes(..., k = k[i], verbose = verbose)
k=5: alphas > maxKappa

[...]

In comparison with the QR decomposition, the warnings occured for the same number of
archetypes k; during the same repetition. In most of these cases the residual sum of squares
is about 12,
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> rss(gas)

rl
k1 0.075569637
k2 0.047510402
k3 0.007370711
k4  0.005124407
k5  0.005249507
k6 0.005425348
k7 12.462270024
k8 12.219617787
k9 12.055954228
k10 12.378985500

o O O

r2

.075569637
.047510490
.007370705
.144453252
.0056396092
.391490573
.001216508
.440727546
.364046902
.548477210

O O+ OO O O

r3

.075569637
.047510530
.007370701
.005940610
.556157268
.004787822
.001210484
12.
12.
12.

314599508
372383424

O O O O O

12.
0.
12.
0.

564166317 12

and the randomly chosen initial archetypes “collapse”
plarily see for k=9, r = 3:

> movieplot(gas[[9]1[[3]], toy)

20

15

10

y
10
|

20

15
|

20

15

10
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rd
.075569637
.047510417
.007630078
.004970437
.005121638
162114653
004136435
537250751
005218947
.464162790

to the center of the data as we exem-

20

15

10

The figure shows the four steps (from top to bottom and left to right), the random initialization

and the three iterations until all archetypes are in the center of the data.

All other residual sum of squares are nearly equivalent to the ones calculated with Q R decom-
position. Further investigations would show that three or maybe seven is the best number of
archetypes, and in case of kK = 3 nearly the same three points are the best archetypes. An
interesting exception is the case k = 7,r = 2; the residual sum of squares is exactly the same,
but not the archetypes. The plots of the archetypes and their approximation of the data:

> ga7 <- bestModel (gas[[7]])
> plot(ga7, toy, chull=chull(toy))

> plot(ga7, toy, adata.show=TRUE)
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Interesting is the one archetype in the center of the data set and especially the approximation
of the data in the right area of it. As the data are approximated by a linear combination of
archetypes and non-negative «, the only possibility for this kind of approximation is when «
for this archetype is always zero:

> apply(alphas(ga7), 2, range)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.0000000
[2,] 0 0.999986 0.9636323 1.000027 0.9844227 0.9999634 0.9925399

As we can see, « of archetype 1 (column one) is 0 for all data points. Theoretically, this is not
possible, but ill-conditioned matrices during the fit process lead to such results in practice.
The occurred warnings (k=7: alphas > max.kappa) notify that solving the convex least
squares problems lead to the ill-conditioned matrices. Our simulations showed that this
behavior mostly appears when requesting a relatively large number of archetypes in relation
to size of the data set.
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4. Example: Skeletal archetypes

In this section we apply archetypal analysis on an interesting real world example: in Heinz,
Peterson, Johnson, and Kerk (2003) the authors took body girth measurements and skele-
tal diameter measurements, as well as age, weight, height and gender on 247 men and 260
women in their twenties and early thirties, with a scattering of older man and woman, and
all physically active. The full data are available within the package as data(body), but we
are only interested in a subset, the skeletal measurements and the height (all measured in
centimeters),

> data(skel)
> skel2 <- subset(skel, select=-Gender)

The skeletal measurements consist of nine diameter measurements: biacromial (Biac), shoul-
der diameter; biiliac (Biil), pelvis diameter; bitrochanteric (Bitro) hip diameter; chest depth
between spine and sternum at nipple level, mid-expiration (ChestDp); chest diameter at nip-
ple level, mid-expiration (ChestDiam); elbow diameter, sum of two elbows (ElbowDiam); wrist
diameter, sum of two wrists (WristDiam); knee diameter, sum of two knees (KneeDiam); ankle
diameter, sum of two ankles (AnkleDiam). See the original publication for a full anatomical ex-
planation of the skeletal measurements and the process of measuring. We use basic elements of
Human Modeling and Animation to model the skeleton and create a schematic representation
of an individual, e.g., skeletonplot (skel2[1,]) for observation number one. The function
jd () (for “John Doe”) uses this plot and shows a generic individual with explanations of the
measurements:

> jd0O)
8
-~ .
<— Height
3 — )
- Diameter between
sho i i
° ulders (biacromial) |\ /|
<t —
—
Depth of chest
g 4 /
- Diameter of chest
g o < Diameter of elbow
~—' o p—
= —
,'T—_m Diameter of pelvis
T 8 — (biiliac)
o . < Diameter of wrist
© Diameter between
hips (bitrochanteric)
S & Diameter of knee
o _|
N
o — <& Diameter of ankle
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For visualizing the full data set, parallel coordinates with axes arranged according to the

“natural order” are used,

> pcplot(skel2)

ir2 23 133 Fi kLN 16T BE s i 1%

QIB 1Ei.T 3|.1 Zii.T 13|T QIB 22|2 Hi.:i 32|.l- 113
= = = 2 = = = = = =
= = = = @ & & Q 2 =
o o 0 @ 0 0 o m >
o o W = i = T
= ) = o i} T

[= = = = =

L = Y [

At first view no patterns are visible and it is not possible to guess a meaningful number of
archetypes. Therefore, we calculate the archetypes for k = 1,...,15 with three repetations

each time,

> set.seed(1981)
> as <- stepArchetypes(skel2, k=1:15, verbose=FALSE, nrep=3)

There were 12 warnings (use warnings() to see)

The warnings indicate ill-conditioned matrices as from k£ = 11, but, not as in the previous
section, the residual sum of squares contains no NA values. The corresponding curve of the

best model in each case is:

> screeplot(as)
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RSS

0.04 0.06 0.08 0.10

0.02

Archetypal Analysis in R

Archetypes

10 11 12 13 14 15

And according to the “elbow criterion” k = 3 or maybe k = 7 is the best number of archetypes.
Corresponding to Occam’s razor we proceed with three archetypes,

> a3 <- bestModel (as[[3]])

The three archetypes are (transposed for better readability):

> t(atypes(a3))

AnkleDiam
KneeDiam
WristDiam
Bitro
Biil
ElbowDiam
ChestDiam
ChestDp
Biac
Height

13.
18

9.
34.
31.
12.
26.
18.
36

[,1]
198350

.652792

804258
541469
306794
289295
201939
402293

.378991
167.

15.
21.
12.
34.
29.
15.
32.
22.
43.

250532 186

[,2]
96623
06616
23864
51450
40766
74556
80120
93809
88447

11.
.390670
9.
27.
22.
11.
24.
16.
34.
.70914 157.

16

[,3]
987396

241163
165757
179091
224216
219513
059033
363785
355366

Or as a barplot in relation to the original data:

> barplot(a3, skel2, percentage=TRUE)
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AnkleDiam
KneeDiam
WristDiam
Bitro
Biil
ElbowDiam
ChestDiam
ChestDp
Biac
Height

Archetype 2 (gray) represents individuals which are “huge” in all measurements; on the other
hand, archetype 3 (lightgray) represents individuals which are “small”. Archetype 1 (dark-
gray) represents individuals with average measures except the bitrochanteric and biiliac — the
meaning of this is best visible when looking at the data with gender information (men are
blue, women are green colored, with alpha transparency) and the archetypes (red),

> pcplot (a3, skel2, data.col=as.numeric(skel$Gender))

T2 3 133 =0 LN 16T L s i 155

-

Height —=

I
=
o1
1=
=
=
=]
=

Bitro —
Biil

Biac —-?f

AnkleDiarm &
kneeDiarm —f
WristDiarm —
ElbowDiam &
ChestDiam 3
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Archetype 2 reflects the primary difference between men and women in body structure — the
comparatively wider hip and pelvis of women. A verification of this interpretation can be
done by looking at the coefficients o and see how much each archetype contributes to the
approximation of each individual observation. For three archetypes, a ternary plot is a usable
graphical representation (e.g., package ved by Meyer, Zeileis, and Hornik (2008)):

> ternaryplot (alphas(a3), col=as.numeric(skel$Gender))

&R > 3
SRS <

Clearly, men observations cluster close to archetype 2 and women mixes mainly the first and
the third archetype. For more than three archetypes parallel coordinates with an axis for each
archetype projecting the corresponding coefficients (in range [0, 1]) can be used to investigate
the coefficients «.

Finally, the skeletonplot () visualizes the three skeleton archetypes:

> skeletonplot (atypes(a3))
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5. Summary and outlook

In Section 2 we explained the different steps of the algorithms according to the original paper.
However, for each problem a number of methods exist and the choice of the right method often
depends on the concrete data set. In Section 3 we have already used the archetypesFamily ()
function to use different linear equations solver, but the function has to be extendend to allow
abritary problem solving blocks for each step of the algorithm.

Additionally, the two fundamentals defined in Section 2 can be generalized to allow for example
arbitrary loss functions, arbitrary conditions on the coefficients a or arbitrary matrix norms.
As the algorithm strategy is similar to the least squares formulation of the k-means algorithm,
this leads to a general framework for this class of k-means-like algorithms (k-means, k-median,
Fuzzy k-means, etc.; see, e.g., Steinly (2006)).

Altogether, the short-term goal for the package archetypes was the implementation of a
general framework with interchangeable blocks for the concrete problem solving mechanisms
of each algorithm step. Now, further work is the design of a clean archetypes family object,
especially with a view to our long-term goal, the generalization towards the class of k-means-
like algorithms.

Computational details

All computations and graphics in this paper have been done using R version 2.7.1 with the
packages archetypes 0.1, MASS 7.2-43, nnls 1.1 and tools 2.7.1.

The newest released version of archetypes is always available from the Comprehensive R
Archive Network at http://CRAN.R-Project.org/package=archetypes. The development
version is hosted on R-Forge as project Archetypal Analysis (archetypes) and available from
http://r-forge.r-project.org/projects/archetypes. The source code is documented
using the Roxygen documentation system for R (Danenberg and Eugster 2008).
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