Biological Chemistry Hoppe-Seyler

Volume 366 – First half year

THE OFFICIAL ORGAN OF THE GESELLSCHAFT FÜR BIOLOGISCHE CHEMIE Editors: K. Decker, W. Stoffel, H.G. Zachau
Editorial Board: H. Eggerer, J. Engel, H. Fritz, E. Habermann, E. Helmreich, A. Henschen, B. Hess, N. Hilschmann, H. Hilz, P.W. Jungblut,
K. Jungermann, P. Karlson, H. Kleinkauf, H.L. Kornberg, K. Kühn, D. Oesterhelt, K. Rajewsky, K. Sandhoff, R. Schauer, J. Seelig, G. Siebert, H. Sies, H. Simon, E. Truscheit, H. Tschesche, H. Tuppy, V. Ullrich, E. Wecker, H. Wiegandt, B. Wittmann-Liebold, H. Zahn Editorial Office: A. Dillmann, G. Peters

WALTER DE GRUYTER · BERLIN · NEW YORK

Biological Chemistry Hoppe-Seyler

This Journal was founded in 1877 as Zeitschrift für Physiologische Chemie by F. Hoppe-Seyler and was continued after his death under the editorship of A. Kossel, F. Knoop, K. Thomas, F. Lynen, A. Butenandt and G. Weitzel as Hoppe-Seyler's Zeitschrift für Physiologische Chemie [Volume 21 (1895)–Volume 365 (1984)].

Volume 366	April 1985 Number 4
Inhaltsverzeichnis	Contents
Ausgewählte Kapitel aus der Neurobiochemie	Selected Topics of Neurobiochemistry
36. Mosbacher Kolloquium der Gesellschaft für	36th Mosbach Colloquium of the Gesellschaft für
Biologische Chemie	Biologische Chemie
Anionische Înhibitoren der Pankreas- und Leukozy-	Anionic inhibitors of pancreatic and leukocyte elas-
ten-Elastase. Alkylamide von 3-Carboxypropionyl-	tase. Alkylamides of 3-carboxypropionyl- and
und 4-Carboxybutyrylalanin-Peptiden	4-carboxybutyrylalanine peptides
E. Kasafirek, P. Frič und J. Slabý	. E. Kasafirek, P. Frič and J. Slabý
Umkehrbare Helix/Knäuel-Umwandlung von links- händigen DNA-Strukturen: Vergleich der thermo- dynamischen Eigenschaften von poly(dG) • poly(dC), poly[d(G-C)] • poly[d(G-C)] und poly(dG-m ⁵ dC) • poly(dG-m ⁵ dC) H. H. Klump und R. Löffler	Reversible helix/coil transition of left-handed Z-DNA structures. Comparison of the thermodynamic proper- ties of poly(dG) • poly(dC), poly[d(G-C)] • poly- [d(G-C)] and poly(dG-m ⁵ dC) • poly(dG-m ⁵ dC) . H.H. Klump and R. Löffler
Phosphorylierung und Ausscheidung einiger Nucleo-	Metabolic phosphorylation and excretion of some
sidanaloga im Stoffwechsel bei Insekten	nucleoside analogues in insects
A. Holý, I. Rosenberg, I. Votruba und K. Sláma	A Holý I Rosenberg I Votruba and K Sláma 355
Verminderung der Antikörper-Aktivität von Immun- globulinen durch nichtenzymatische Glucosierung R. Dolhofer, E.A. Siess und O.H. Wieland	 Non-enzymatic glycation of immunglobulins leads to an impairment of immunoreactivity R. Dolhofer, E.A. Siess and O.H. Wieland
Das lectinbindinde Protein aus Erbsen (Pisum sativum); Eigenschaften und Wechselwirkungen J. Schurz und H. Rüdiger	The lectin-binding protein from the pea (Pisumsativum); Properties and interactionsJ. Schurz and H. Rüdiger367
Induktion der γ-Glutamyltransferase bei Hirnzellen in	Induction of γ-Glutamyltransferase in brain cells
Kultur	in culture
W. H. Müller und B. Freimüller-Kreutzer	. W. H. Müller and B. Freimüller-Kreutzer
Die vollständige kovalente Struktur des Hirudins.	The complete covalent structure of hirudin. Locali-
Anordnung der Disulfidbrücken	zation of the disulfide bonds
J. Dodt, U. Seemüller, R. Maschler und H. Fritz	. J. Dodt, U. Seemüller, R. Mashler and H. Fritz 379
Isolierung der ribosomalen Proteine L3 and L2 von	Isolation of yeast ribosomal proteins L3 and L2 for
Hefen für immunologische Studien	immunological studies
KD. Irrgang, Ch. Kreutzfeld und	KD. Irrgang, Ch. Kreutzfeld and
FR. Lochmann	FR. Lochmann 387
Primärstruktur der Hämoglobine des großen Kudu	Primary structure of the hemoglobins from the
(Tragelaphus strepsiceros)	greater kudu antelope (Tragelaphus strepsiceros)
K. Rodewald und G. Braunitzer	. K. Rodewald and G. Braunitzer
Hämocyanine bei Spinnen, XX. Sulfhydrylgruppen und Disulfidbrücken der Untereinheit d des Hämo- cyanins aus Eurypelma californicum F. Eyerle und W. Schartau	 Hemocyanins in spiders, XX. Sulfhydryl groups and disulfide bridges in subunit d of Eurypelma californicum hemocyanin F. Eyerle and W. Schartau
Identifizierung und Messung saurer (spezifischer)	Identification and measurement of acid (specific)
Histidin-Decarboxylaseaktivität in der Magenschleim-	histidine decarboxylase activity in rabbit gastric
haut des Kaninchens: Ende einer alten Kontroverse?	mucosa: ending an old controversy?
E. Neugebauer und W. Lorenz	. E. Neugebauer and W. Lorenz

Die Bestimmung der vollständigen Aminosäuresequenz von Subtilisin DY und der Vergleich mit dem Primär- strukturen von Subtilisin BPN', Carlsberg und Amylo- sacchariticus	Determination of the complete amino-acid sequence of subtilisin DY and its comparison with the primary structures of the subtilisins BPN', Carlsberg and Amylosacchariticus
P. Nedkov, W. Oberthür und G. Braunitzer	P. Nedkov, W. Oberthür and G. Braunitzer 421
Homologie zwischen den Primärstrukturen von β -	
Lactoglobulinen und menschlichem Retinol-binden-	Homology between the primary structures of β -
dem Protein: Hinweis für eine ähnliche biologische	lactoglobulins and human retinol binding protein:
Funktion?	evidence for a similar biological function?
J. Godovac-Zimmermann, A. Conti, J. Liberatori und G. Braunitzer	J. Godovac-Zimmermann, A. Conti, J. Liberatori and G. Braunitzer
Primärstruktur der Schweine Cu Zn Supersvid Dismu	The primery structure of persing Cu 7n superoxide
tase: Nachweis von Alloenzymen der Cu-Zn-Superovid	dismutase: evidence for alloenzymes of superoxide
Dismutase hei Schweinen	dismutase in nigs
K Hering S-M A Kim A M Michelson F Ötting	K Hering S-M A Kim A M Michelson F Ötting
K. Puget, G.J. Steffens und L. Flohé	K. Puget, G.J. Steffens and L. Flohé

Indexed in Current Contents

Instructions to authors after page 446

Authors

Braunitzer, G. 395, 421, 431	Godovac-Zimmermann, J. 431	Löffler, R. 345 Lorenz, W. 411	Rodewald, K. 395 Rosenberg, I. 355
Conti, A. 431 Dodt. J. 379	Hering, K. 435 Holý A. 355	Maschler, R. 379 Michelson, A.M. 435	Schartau, W. 403
Dolhofer, R. 361	Irrgang, KD. 387	Müller, W.H. 375	Seemüller, U. 379
Eyerle, F. 403	Kasafírek, E. 333	Nedkov, P. 421	Siess, E.A. 361 Slabý, J. 333
Flohé, L. 435 Freimüller-Kreutzer, B.	Kim, SM.A. 435 Klump, H.H. 345 Kreutzfeld Ch. 387	Oberthür, W. 421	Sláma, K. 355 Steffens, G.J. 435
375 Frič, P. 333	Liberatori, J. 431	Ötting, F. 435	Votruba, I. 355
Fritz, H. 379	Lochmann, ER. 387	Puget, K. 435	Wieland, O.H. 361

Authors of the Mosbach Colloquium

Anderton, T. 326	Falkensammer, G. 327 Faucon Biguet, N. 325	Jackson, J.F. 326	Muhn, P. 328 Murato, K. 323
Barchi, R.L. 331 Barde, YA. 324	Fischer-Colbrie, R. 327 Fukada, K. 324	Kiene, M.L. 326 Kühn, H. 327	Patzak, A. 327
Barkas, T. 329 Barnard, E.A. 326 Bauer, K. 326 Beeson, D.M.W. 326	Goldstein, M. 323 Greene, L.A. 323	Lamouroux, A. 325 Lauffer, L. 328 Lazdunski M. 330	Richards, J.G. 329 Richter, D. 325 Rowland, E.A. 323
Bell, L.G. 326 Betz, H. 328 Boni, C. 325	Grima, B. 325 Guenther, J. 323	Levitan, I.B. 331 Lindner, J. 323 Lindsay, R.M. 324	Sandhoff, K. 330 Schachner, M. 323 Schoch, P. 329
Brodbeck, U. 325	Häring, P. 329 Harlos, P. 326	Lundberg, J.M. 327	Stadler, H. 326 Stähli, C. 329
Cockcroft, V.B. 326 Conti-Tronconi, B.M. 326	Hellmann, S. 328 Hofmann, F. 331 Horellou, P. 325	Mallet, J. 325 Möhler, H. 329 Monard, D. 323	Takacs, B. 329 Thoenen, H. 324
Fahr, A. 328	Hucho, F. 328	Müller, T.H. 323	Winkler, H. 327

Primary Structure of the Hemoglobins from the Greater Kudu Antelope (*Tragelaphus strepsiceros*)*

Karin RODEWALD^a, Henning WIESNER^b and Gerhard BRAUNITZER^a

^a Max-Planck-Institut für Biochemie, Abt. Proteinchemie, Martinsried bei München

^b Tierpark Hellabrunn, München

(Received 17 January 1985)

Summary: The adult greater Kudu antelope has two hemoglobin components, Hb A and Hb B, with one α and two β chains. The complete amino-acid sequences of these three chains are presented. The two β chains differ only in one residue at position 16 (Gly \rightarrow Ser) and may be the product of two allelic genes. The primary structure of the chains was determined by sequencing the tryptic peptides after their isolation from the tryptic digest of the chains by high performance liquid chromatography. The alignment of these peptides was deduced from homology with the chains of bovine hemoglobin. Between the Kudu hemoglobins and those of cattle a high degree of homology was found.

Primärstruktur der Hämoglobine des großen Kudu (Tragelaphus strepsiceros)

Zusammenfassung: Die Erythrozyten des großen Kudu enthalten zwei Hämoglobin-Komponenten, A und B, mit einer α - und zwei β -Ketten. Die vollständige Aminosäuresequenz der drei Ketten wird angegeben. Die zwei β -Ketten unterscheiden sich nur in einer Aminosäure in der Position 16 (Gly \rightarrow Ser) und könnten das Produkt zweier Allelgene sein. Die Primärstruktur der Ketten wurde durch Sequenzierung der tryptischen Peptide bestimmt. Diese konnten mit Hilfe der Hochdruckflüssigkeitschromatographie aus den tryptischen Hydrolysaten der Ketten gewonnen werden. Die Zuordnung dieser Peptide erfolgte aufgrund der Homologie zu den Ketten vom Rind. Die Kudu-Hämoglobine und die der Rinder erwiesen sich als sehr homolog.

Key words: Tetrameric hemoglobin, greater Kudu antelope, primary structure, evolution.

The systematic investigation of hemoglobins has provided important progress in solving questions such as the control of gene expression, structure-function relationships of proteins, and the pathophysiology of abnormal hemoglobins. Moreover, the physiological and structural differences can be related to the evolutionary development; such information was used to construct evolutionary trees which affirm or contradict the classical taxonomy. The greater Kudu antelope (*Tragelaphus strepsiceros*) was classified, based on its morphology and behavioural pattern, as a member of the order of Artiodactyla, suborder Ruminantia, family Bovidae, genus Tragelaphini; i.e., the Kudu antelope appears to be a close relative of

Abbreviations:

Hb = Hemoglobin; TosPheCh₂Cl = (*N*-tosyl-L-phenylalanyl)chloromethane; Tp = tryptic peptide; Quadrol = N, N, N', N'-tetrakis-(2-hydroxypropyl)ethylenediamine, Reagent I = 4-(isothiocyanato)benzenesulphonate, sodium salt; Reagent IV = 7-(isothiocyanato)naphthalene-1,3,5-trisulfonate, trisodium salt; 2,3-Glyc- P_2 = D-glycerate-2,3-bis-(phosphate).

^{* 78}th Communication on hemoglobins; for 77th communication see ref.^[1].

the cow and goat. Expressed in terms of molecular evolution, the hemoglobins of all these animals should have a great degree of homology and similar physiologic properties. The primary structures of the chains from bovine hemoglobins with variants and from goat have already been reported^[2-7]. The present investigation was designed to determine the relationship between Kudu hemoglobins and other ruminant hemoglobins.

Material and Methods

Isolation of hemoglobin and chain separation

Blood of an adult Kudu antelope was obtained from the Hellabrunn Zoo in Munich. After separation of the erythrocytes from the plasma by centrifugation and three washings with physiological saline, hemolysis was performed by lysing the cell with distilled water containing 5% CCl₄. After centrifugation of the cell debris, the hemoglobin solution was analysed by disc electrophoresis with Triton X-100 and $urea^{[8]}$ for the number of chains (Fig. 1). The polypeptides were isolated directly from hemoglobin by reversed-phase high performance liquid chromatography on a RP2 Lichrosorb (Merck) column (4.6×250 mm), equilibrated with 30%acetonitrile (Baker) in 50mM ammonium acetate with 5% formic acid. The concentration of acetonitrile was increased linearly from 30 to 60% for 60 min (0.5%)min) at a flow rate of 0.5 ml/min (Fig. 2). After the evaporation of acetonitrile, the protein peaks were first lyophilized and then desalted on Sephadex G-25 medium in 1M acetic acid and again freeze-dried.

Enzymatic cleavage and separation of peptides

The chains (1 μ mol) were digested at pH 9 with 2% (w/w) trypsin (Worthington, TosPheCH₂ Cl-treated) at room temperature for 4 h. The reaction was stopped with 0.5M HCl. At pH 6.6 for the α and 6.5 for the β chains the "cores" were precipitated, removed by centrifugation and lyophilized after washing with water. The tryptic digests from both chains were titrated to pH 3 with 0.5M HCl and then prefractionated on a Sephadex G-25 fine column $(1.6 \times 180 \text{ cm})$ equilibrated and eluted with 0.1M acetic acid. The peaks containing several peptides were rechromatographed on a RP2 Lichrosorb column (4.6×250 mm), equilibrated with 50mM ammonium acetate pH 6 and eluted with a gradient of acetonitrile from 0 to 60% in 60 min at a flow rate of 1 ml/min. The "core" peptides were also isolated by reversed-phase high performance liquid chromatography on a RP18 Vydac column (4.6 x 250 mm) as follows:

- 1) The α -peptides in 50mM ammonium acetate, adjusted with ammonia to pH 7, and a gradient of 0 to 60% acetonitrile with a change in the concentration rate of 1.2%/(min \times ml) (Fig. 3);
- 2) The β -peptides in 0.1% trifluoroacetic acid and a gradient of 0 to 60% acetonitrile in 30 min at a flow rate of 1 ml/min.

In addition preparative thin-layer electrophoresis on plates at pH $5^{[9]}$ was the subsequent purification step of

Fig. 1. Acidic disc electrophoresis with Triton and urea^[8] of the Kudu hemoglobins.

peptides. In Tables 1 and 2 the amino-acid analyses of the tryptic peptides of both chains are shown.

Like Schroeder et al.^[3] we also observed the unanticipated tryptic cleavage of the Asn-Ala bond at position 139-140 of the β chains, but already after 4 h of enzymatic digestion.

Chemical cleavage and isolation of the peptides Asp-Pro cleavage of the chains

In order to obtain overlapping peptides in the C-terminal region of the chains, the polypeptides were also cleaved with 70% formic acid in the presence of 6M guanidine/ HCl^[10]. The separation of the peptides was achieved by gel filtration on a Sephadex G-50 fine column (2.5 \times 180 cm) with 8M urea in 10% formic acid. The isolation of a pure β Pro-peptide was possible only by chromatography of the acidic digest (0.7 μ mol) on a CM-Sephacel column (0.6×20 cm), equilibrated with 50mM sodium acetate/HCl buffer in 8M urea pH 5, containing 100 mg dithiothreitol/l, and eluted with a linear gradient of 100 ml equilibrating buffer and 100 ml of equilibrating buffer plus 0.1M NaCl. The flow rate was 7.5 ml/h. This method permitted the separation of the Pro-peptide (pos 100-146) from fragment 58-98, produced by the unexpected cleavage of the Asn-Pro bond, position 57-58; this cleavage has been observed previously (T. Kleinschmidt, personal communication). The two Pro-peptides were partially sequenced using Method B (see below).

Analytical techniques

Amino-acid analysis

1-5 nmol peptides were hydrolysed at 110 °C with 6M HCl for 20 h. The acidic hydrolysates were dried in a speed vac concentrator connected to a refrigerated condensation trap (both from Bachofer) and a high vacuum pump, and after solubilisation in 0.1N citrate buffer pH 2.2, analysed in an amino-acid analyser LC 5000 from Biotronik.

Fig. 2. Separation of the chains of Kudu hemoglobins by reversed-phase high performance liquid chromatography. Column (4.6 × 250 mm); Lichrosorb RP2; 50mM ammonium acetate with 5% formic acid plus 30% acetonitrile as the start buffer; acetonitrile gradient from 30% to 60% in 60 min. Flow rate 0.5 ml/min. Sample: 1.2 mg hemoglobin/ 20 μl protein solution diluted to 100 μl with start buffer.

Fig. 3. Separation of the "core" peptides of the α chains by reversed-phase high performance liquid chromatography. Column (4.6 x 250 mm); Vydac RP18; 50mM ammonium acetate adjusted with NH₃ to pH 7; acetonitrile gradient from 0 to 60% with an increase in concentration of 1.2%/(min x ml). Sample: 20nmol "core" peptides/20 μ l 50mM ammonium acetate buffer pH 7.5 (with NH₃).

Thin-layer electrophoresis

This technique was used to check the purity of peptides and in some cases to purify them preparative as previously described^[9].

Sequence analysis

The partial sequences of the intact chains and the entire sequences of the peptide were determined by automatic Edman degradation^[11] in a Beckman sequencer (Palo Alto, Calif.) using two programs:

a) Method A, sequencer 890 C and quadrol concentration of 0.25M for intact chains, large peptides and lysine peptides which have been reacted with reagent $IV^{[12]}$. b) Method B, sequencer 890 B and 3-(diethylamino)propyne^[13] for arginine peptides and lysine peptides which have been reacted with reagent I^[14].

The identification of the phenylthiohydantoin derivatives of amino acids was achieved by thin-layer^[15,16] and reversed-phase high performance liquid chromatography^[17] using a Hewlett Packard 1084 B Liquid Chromatograph.

Results and Discussion

Triton urea gel electrophoresis (Fig. 1) revealed three bands corresponding to one α and two β chains. The β chain bands migrate close to each Tp7+8 57-61

-

-

1.92

1,06

.

0.96

1.06

5

Tp14

140-141

-

-

_

1.07

.

0.93

2

Tp6 41-56

0.96

1.03

1.97

1.00

1.12

1.01

1.01

1.07

0.90

1.96

1.88

0.99

16

Tp13

128-139

1.19

1.70

2.06

1.23(1)

1.50(2)

1.43(1)

1.77

1.16

12

-

0.99

Table 1. Amino-acid composition of tryptic peptides of α chains determined after 20 h hydrolysis.

Tp4 17-31

-

1.00

2.94

1.94

3.84

1.08

1.07

1.02

1.06

1.02

15

Tp11

93-99

1.87

-

1.06

-

2.02

-

0.98

1.04

7

Tp5 32-40

1.87

1.05

1.13

0.70(1)

1.07

1.83

1.00

9

Tp12

100-127

1.93

2.04

2.20

2.74

1.74

1.21

2.74

28

1.27(1)

1.45(1)

7.38(7)

Table 2. Amino-acid composition of the tryptic peptides of β chains determined after 20 h hydrolysis.

The Tp1 peptide is a heptapeptide with one deletion in position two. The Tp2* corresponds to the second β chain (β^B) with Ser in position 16 instead of Gly.

Pos.	Tp1 1-8	Tp2 9-17	Tp2* 9-17	ТрЗа 18-19	Tp3t 20-30	o Tp4) 31-40	Tp5 41-59	Tp6 60-61	Tp7 62-65	Тр8 66
Asp	-	•	-	-	1.04	+ -	3.64	(4) -	-	-
Thr	1.03	0.99	1.00	-	-	1.09	0.96	-	-	-
Ser	-	-	1.05	-	-	-	1.67	(2) -	-	-
Glu	1.73	•	-	-	1.84	1.16	1.05	-	-	-
Pro	-	-	-	-	-	1.05	1.11	-	-	-
Gly	-	1.17	-	-	2.82	2 -	1.25	(1) -	0.96	-
Ala	1.12	2.90	2.86	-	1.19) -	2.02	-	0.70	-
Cys	-	-		-	-	-	-	-	-	-
Val	-	0.98	1.01	1.01	1.99	9 1.74	0.99	1.01	-	-
Met	0.49(1) -	-	-	-	-	0.70	-	-	-
lle	-	•	-	-	-	-		-	-	-
Leu	1.08	-	-	-	1.22	2 2.13	1.09	-	-	-
Tyr	-	-	-	-	-	0.71		-	-	-
Phe	-	0.97	1.02	-	-	-	3.25	-	-	-
Trp	-	(1)	(1)	-	-	(1)	-	-		
HIS					-	-		•	1.17	
Lys Arg	1.05	-	1.04	0.99	0.8	1.09	1.1/	0.99	1.16	(1)
Sum	7	9	9	2	11	10	19	2	4	1
Pos.	Tp9a 67-76	Tp9b 77-82	Tp 10+ 83-10	11 T 04 10	p12a 5-116	Tp12b 117-120	Tp13 121-132	Tp14 133-144	Tp15 145-146	
Asp	1.94	2.00	2.5	5(3)	0.91	-	0.99	1.02	-	
Thr	-	-	1.2	9(1)	-	-	0.97	0.98	-	
Ser	1.90	-	1.24	\$(1)	-	-	-	-	-	
Glu	-	-	2.04	1	-	-	3.75	-	-	
Pro	-	-	1.0	5	-	-	0.99	-	-	
Gly	1.06	-	1.4	3(1)	1.09	1.05	-	1.02	-	
Ala	-	-	2.0	4	1.15	-	1.08	3.22	-	
Cys	-	-	(1)		-	-	-	-	-	
Val	0.98	-	0.9	2	3.83	-	•	2.69	-	
Met	0.81	-	-		-	-	-	-	-	
He	•		-	_	-	-	-	•	-	
Leu	1.23	2.00	2.9	5	3.99	-	0.98	1.02	-	
lyr		-	-	_	-		0.96	-	1.00	
Phe	1.06	-	1.9	4	-	1.03	1.07	-	-	
Irp	-		• •	•	-		-			
HIS		0.96	1.9	9	-	0.85		1.02	1.00	
Arg	1.03	1.00	1.6	0(2)	0.99	1.0/	1.10	1.02	-	
Sum	10	6	22		12	4	12	12	2	

other, suggesting only very few neutral exchanges in their primary structures. Using the RP2 Lichrosorb HPLC-support for the chain separation, we could resolve only the α from the β polypeptides, but not the two β chains. Therefore the β polypeptides were sequenced together.

The determination of the chain sequences was carried out according to the usual scheme: sequencing of the N-terminal sections of the chains (42 steps) and of the Pro-peptides (35 steps for the α and 23 steps for the β chains) and sequencing of the tryptic peptides from the middle and the C-terminal end of the chains. The isolation of the β tryptic peptides permitted the identification of the single difference between these two chains, β^{A} and β^{B} . This is located at position 16 in the chain. The two tryptic peptides could be separated without difficulty by reversed-phase high performance liquid chromatography (Fig. 4) and were sequenced by Method A. At position 16 (8 in the Tp2 peptides) Gly and Ser were determined. The two peptides were isolated in roughly equal

quantities, indicating that the two β chains are also produced in roughly equal amounts. Thus the Kudu erythrocytes contain hemoglobins with one α and two β chains.

Owing to the fact that hybrid hemoglobins of type $\alpha_2 \beta^A \beta^B$ are not stable in mammals^[18], we can assume that the Kudu antelope contains only two hemoglobin components, Hb A and Hb B.

The same ambiguity: Gly/Ser is found in the bovine β chains and constitutes one of the three differences between the two polypeptides of cow hemoglobins. The Kudu chains have the same lengths as the bovine chains, 141 residues for the α and 145 for the β chains (Fig. 5). A comparison of the sequences of Kudu and bovine chains (Tab. 3 and 4) reveals only few differences. The α chain from Kudu differs from that of the cow only in five positions: 9 His→Asn. 19 Ser→Gly, 71 Asp→Glu, 82 Asp→Glu, and 115 Gly→Ser. The Kudu α chain contains no cysteine. The cysteine at position 104 of the

Pos.

Asp

Thr

Ser

Glu

Pro

Gly

Ala

Cvs

Val

Met

lle

Leu Tyr Phe

Tro

His

Lys

Arg

Sum

Pos.

Asp

Thr

Ser

Glu

Pro Gly

Ala Cys

Val

Met

He

Leu

Tyr

Phe

Trp

His

Lys

Arg

Sum

Tp1 1-7

1.07

1.07

1.96

0.91

-

1.05

7

Tp9a

62-68

1.01

-

2.88

0.97

1.04

1.10

7

0.75(1)

Tp2 8-11

_

-

1.06

0.90

0.98

1.02

4

Tp9b

69-90

4.51(5)

2.01

1.21

1 21

2.94

1.01

4.84

-

2.77

1.06

22

Tp3

12-16

.

-

.

1.23(1)

1.81

-

.

(1)

0.94

5

Tp10

91-92

.

_

.

-

-

-

1.10

_

_

0.99

2

Fig. 4. Separation of the two Tp2 peptides of the β chains by reversed-phase high performance liquid chromatography. Column (4.6 x 250 mm); Lichrosorb RP2; 50mM ammonium acetate pH 6; acetonitrile gradient from 0 to 60% in 60 min with a hold of 15 min at the 23rd min. Flow rate 1 ml/min. Sample: the Sephadex fraction SIV (see Materials and Methods) 15 nmol/100 μ l.

human α chain is substituted for a serine in the Kudu and bovine chains.

The β^A chains from Kudu show five differences as compared to bovine β^A chains (Tab. 4) at positions 73 Asn→Asp, 117 His→Asn, 125 Glu→ Val, 130 Tyr \rightarrow Phe, and 135 Thr \rightarrow Ala. The same chains differ from the bovine β^{B} chain by three additional exchanges at positions 16 Gly \rightarrow Ser, 19 Lys \rightarrow His, and 120 Lys \rightarrow Asn. The β^{B} chains of Kudu contain six and seven different residues, as compared with the bovine β^{A} and β^{B} chains, respectively. (According to Schimenti and Duncan^[31], the code triplett in the DNA sequence for the amino-acid residue in position 73 of the bovine β chains is one coding for an asparagine. Consequently the number of exchanged residues can be reduced by one in all the cases).

None of these residues is involved in the heme or $\alpha 1\beta 2$ contacts and all substitutions, except the change at position β 19, could have taken place by single base substitutions in the triplets coding for these amino acids. Assuming that nucleotide substitutions in the globin genes occur randomly, a preponderance of neutral and conservative substitutions would be expected. In fact the exchanged residues in the Kudu hemoglobin do not seem to influence the functioning of the molecule, as compared with the other hemoglobins from Bovidae. It is interesting to note that more differences were found between the two β chains of hemoglobins of the domesticated bovine than between the two β chains of Kudu, a wild animal. Another fact to be pointed out is the presence of threonine in position β 135 of Kudu hemoglobin, as in all γ chains of

fetal hemoglobins of bovine^[32], goat^[33], sheep^[30,33] and human^[34], in the β^{B} chain of the adult aoudad^[35] and in the β^{II} , β^{IV} and β^{V} chains of the adult white-tailed deer^[22].

In the Kudu β chains β 2 His is also deleted, as in the bovine chains. It is known that among the Artiodactylis species the Bovidae and Cervidae have low levels of red cell 2,3-Glyc- P_2 as well as hemoglobins with a low affinity for this compound and oxygen. The lack of response to 2,3-Glyc- P_2 can be explained by two facts:

- a) the deletion of one of the binding sites for organic phosphates^[36], β 2 His, and
- b) the N-termini of the β polypeptides of the deoxyhemoglobin, as a result of this chain shortening, are too far apart to bind 2,3-Glyc- P_2 ^[37].

The oxygen affinity of the Kudu hemoglobins has not yet been determined, but we suppose that their respiratory characteristics could not be very different from those of other ruminants. Recently the investigations of Vyazova et al.^[38] and those of Fronticelli et al.^[39,40] showed that the allosteric effectors of the bovine hemoglobins in vivo are most probably the Cl^e ions. The lower oxygen affinity of these hemoglobins under normal physiological conditions is due to an enhanced sensitivity of this system to concentrations of Cl° ions below 0.07M. It seems that in the bovine hemoglobin tetramer some additional salt bridges, formed via Cl^e ions in the deoxy form, especially stabilise this structure. Thus, these anions together with the steric effect of the N-terminal methionine of the β chains^[37] may substitute for the organic phos-

Fig. 5. The amino-acid sequences of α and β chains of Kudu hemoglobins (*Tragelaphus strepsiceros*).

The sequences are aligned in homology to those of human hemoglobin^[19]: the absence of helix D in the α chains is marked by a gap of 5 amino acids in the CD region; the β chains of Kudu are shorter by one residue than the human β chains. This is marked by a gap of one amino acid at the N-terminus in the NA region; another gap of one residue in α NA2 and a gap of two amino acids at the end of the β A helix were also necessary to align the α and β chains.

phates in their role as intracellular allosteric effectors. Due to the very similar primary structures of the bovine and Kudu hemoglobins (Tab. 3 and 4), this may be a common property of all these proteins.

The heterogeneity among the hemoglobins of Bovidae has been investigated thoroughly during the past 35 years. The screening studies on hemoglobin in several populations, as well as the comparative analyses of the primary structures of the globin chains led to the assumption that all these hemoglobin variations are the products of different genetic mechanisms, including allelism, nonallelism and activation of a silent nonallelic gene. It is well known today that the bovine hemoglobins are the products of allelic genes, but in the case of the Kudu, the lack of a screening investigation on more animals does not permit such a conclusion. We can only suppose, based on the striking homology of their hemoglobins and the similarity of their morphology with that of Bovidae, that the two Kudu hemoglobins could also have been pro-

Table 3. Exchanges in the α chains of hemoglobins of the Ruminantia species as compared with the Kudu hemoglobins.
The amino-acids in parentheses indicate that as no complete sequences were available, the residues obtained from the amino-acid
analysis were taken for these positions according to the homology with the other chains. The chains of the animals below the dotted
line have more substitutions than the other polypeptides, but these additional replacements were not taken into consideration because
of their random distribution and small number. Abbreviations: Ku = Kudu α or β chains; Bo = Bovine chains $[2-5]$; Yak = Yak chains $[1]$;
Gay = Gayal chains ^[20] ; Bis = European Bison chains (manuscript in preparation, G. Mazur & G. Braunitzer); Elk = Elkdeer chains ^[21] ;
WTD = White-tailed Deer chains ^[22,23] ; GO = Goat chains ^[6,7,24,25] ; She = Sheep chains ^[26–30] .

Pos. in the chain	8	9	15	19	20	23	50		60	71	75	79	82	104	111	115
Ku Bo Yak I Yak II Gay Bis I	Gly	Hís Asn Asn Asn Asn Asn	Gly	Ser Gly Gly Gly Asp Asp	His	GIu	HI: Gl	s n	Ala	Asp Glu Glu Gly Gly Gly	Asp	Ala	Asp Glu Glu Glu Glu Glu	Ser	Ser	Gly Ser Ser Ser Asn Asn
Elk WTD I WTD II Go I Go IB Go II She I She ID	Ser () (Ser) (Ser) Ser Ser Ser Ser	Asn ()) (Asx) Asx Asx Asx Asx Asx Asx Asx	() () Asp	Gly (Gly) (Gly) Gly Gly Gly Gly Gly	Asn (Asn) (Lys) Asx Asx Asx Asx Asx Asx	Ala (Pro) (Pro) (Gly) Gly Gly Gly Gly	(() } }	Glu (Glx) () Glx Glx Glx Glx Gln Gln	Gly (Gly) (Gly) (Gly) Gly Gly Gly Gly	() () (Asx) Tyr	Thr (Thr) (Thr) (Thr) Thr Thr Thr Thr	(Asx) (Asx) (Asx) Asx Asx Asx Asx Asx Asx	Thr (Thr) (Thr) Thr Thr	Ala () Cys Cys Cys Cys Cys Cys	Ser (Asx) (Asx) (Asx) Asx Ser Asx Asx

Table 4. Exchanges in the β -chains of hemoglobin of Ruminantia species as compared with the Kudu hemoglobin.

Pos.* in the chain	16	19	21	44	50	73	117	120	125	130	1:	32	135
Ku A	Gly	Lys	Asp	Ser	Thr	Asn	His	Lys	Glu	Tyr	L	ys	Thr
BoA	261					Asn	Asn		Val	Phe			Ala
Bo B	Ser	His				Asp	Asn	Asn	Val	Phe			Ala
Bo C						Asp	Asn		Val	Phe	G	ln	Ala
Bo D			Gly	Thr		Asp	Asn		Val	Phe			Ala
BOX		His				Asp	Asn		Val	Phe			Ala
Yak I Vak II					Son		Asn		Val	Phe			Ala
Gav		His			261				Val	Phe			Ala
Bis		His			Ser				Val	Phe			All
Elk				His		Glu							
WTD II		Asn		(His)	(Ser)	Glu	(Asx)	(Gly)	(Leu)	(Phe)	()	
WTD III		Asn		His	Ser	Glu	Asn	Gly	Leu	Phe			Ala
	5 a m	Asn		(H1S)	(Ser)	(GIX)	(Asx)	(GIY)	(Leu)	(Phe)	· (,	
	Ser			Hic	$\{$	(ASX)	(Asy)	(Acv)	(Leu)	(Prie)	ł	{	
Go A	561			His	Ser	(137)	(437)	Ser	(Leu)	Phe	('	
Go D			His	His	Ser			Ser	Leu	Phe			Ala
Go E				His	Ser			Ser	Val	Phe			Ala
She A				His	Ser	Asx		Ser	Val	Phe			Ala
She B				His	Asx	Asx		Asn	Val	Phe			Ala

* Numbering as for human β chains. Abbreviations and meaning of the dotted line as in Table 3.

duced by allelic genes. If this is true, the animal investigated in this study was a heterozygote.

Another question to be clarified is the evolutionary path of the Bovidae hemoglobins. The eldest known bovide is the Eotragus from the Early-Miocene (Burdigal) of Europe. From this ancestor several families and genera developed of which the Tragelaphini spread mainly in Asia and Africa. Today these animals live only in Africa. From the biological point of view the Tragelaphini are very close relatives of the cow. The very low number of mutations in the sequences of the globin chains of several Bovidae, such as $\cos^{[2-5]}$, yak^[1,41,42], gayal^[20], European bison (G. Mazur, personal communication) and greater Kudu (Tab. 3 and 4) is one of the evidences for this. Furthermore, the majority of the differences in Tables 3 and 4 are located at the same positions in the chains of Bovidae and in those of Cervidae. Regarding the replacements at 16, 19, 21, 44, 120 and 132, which constitute the differences between the bovine β chains, Table 4 shows that with one exception of position 132, exchanges can be found in all positions mentioned above of the other hemoglobins. This suggests that the β chain variants could have existed in wild species before the domestication of these animals was completed^[5]. For this reason we regard the primary structure of Kudu hemoglobins as an additional evidence of the common origin of these animals.

We thank Ms B. Schrank, Mr C. Krombach, Mr A. Stangl and Ms R. Gautsch for their excellent technical work.

Literature

- 1 Lalthantluanga, R., Wiesner, H. & Braunitzer, G. (1985) *Biol. Chem. Hoppe-Seyler* **366**, 63–68.
- 2 Schroeder, W. A., Shelton, J. R., Shelton, J. B., Robberson, B. & Babin, D. R. (1967) Arch. Biochem. Biophys. 120, 1-14.
- 3 Schroeder, W. A., Shelton, J. R., Shelton, J. B., Robberson, B. & Babin, D. R. (1967) Arch. Biochem. Biophys. 120, 124-135.
- Schroeder, W. A., Shelton, J. R., Shelton, J. B., Apell, G., Huisman, T.H.J., Smith, L. L. & Carr, W. R. (1972) Arch. Biochem. Biophys. 152, 222-232.
- 5 Namikava, T., Takenaku, O. & Takahashi, K. (1983) Biochem. Genet. 21, 787-796.
- 6 Huisman, T. H. J., Brandt, G. & Wilson, J. B. (1968) J. Biol. Chem. 243, 3675-3686.
- 7 Schon, E. A., Cleary, M. L., Haynes, J. R. & Lingrel, J. B. (1981) Cell 27, 359-369.
- 8 Alter, B.P., Goff, S.C., Efremov, G.D., Gravely,
 M.E. & Huisman, T.H.J. (1980) Br. J. Haematol.
 44, 527-534.
- 9 Bieber, F.A. & Braunitzer, G. (1984) Hoppe-Seyler's Z. Physiol. Chem. 365, 321-334.
- 10 Jauregui, J. & Martin, J. (1975) Anal. Biochem. 69, 468-473.
- 11 Edman, P. & Begg, G. (1967) Eur. J. Biochem. 1, 80-91.
- Braunitzer, G., Schrank, B., Ruhfus, A., Petersen, S. & Petersen, U. (1971) Hoppe-Seyler's Z. Physiol. Chem. 352, 1730-1732.
- 13 Braunitzer, G. & Schrank, B. (1970) Hoppe-Seyler's Z. Physiol. Chem. 351, 417.
- 14 Braunitzer, G., Schrank, B. & Ruhfus, A. (1970) Hoppe-Seyler's Z. Physiol. Chem. 351, 1589-1590.
- 15 Braunitzer, G., Schrank, B., Stangl, A. & Scheithauer, U. (1978) Hoppe-Seyler's Z. Physiol. Chem. 359, 137-146.

- 16 Pfletschinger, J. & Braunitzer, G. (1980) Hoppe-Seyler's Z. Physiol. Chem. 361, 925-931.
- 17 Zimmerman, C. L. & Pisano, J. J. (1977) Methods Enzymol. 47, 45-51.
- 18 Macleod, R.M. & Hill, R.J. (1973) J. Biol. Chem. 248, 100-103.
- 19 Braunitzer, G., Gehring-Müller, R., Hilschmann, N., Hilse, B., Hobom, G., Rudloff, V. & Wittmann-Liebold, B. (1961) Hoppe-Seyler's Z. Physiol. Chem. 325, 283-286.
- 20 Lalthantluanga, R. & Braunitzer, G. (1984) Hoppe-Seyler's Z. Physiol. Chem. 365, 737-741.
- 21 Aschauer, H., Wiesner, H. & Braunitzer, G. (1984) Hoppe-Seyler's Z. Physiol. Chem. 365, 1323-1330.
- 22 Shimizu, K., Wong, S.C., Wilson, J.B., Lam, H., Reynolds, A.E., Singh, P., Huisman, T.H.J., Charles, N.G. & Amma, E.L. (1983) *Hemoglobin* 7, 15-45.
- 23 Harris, M.J., Wilson, J.B. & Huiman, T.H.J. (1972) Arch. Biochem. Biophys. 151, 540-548.
- Wrightstone, R. N., Wilson, J. B., Miller, A. & Huisman, T.H.J. (1970) Arch. Biochem. Biophys. 138, 451-456.
- Adams, H. R., Boyd, E. M., Wilson, J. B., Miller, A. & Huisman, T. H. J. (1968) Arch. Biochem. Biophys. 127, 398-405.
- Wilson, J.B., Brandt, G. & Huisman, T.H.J. (1968)
 J. Biol. Chem. 243, 3687-3692.
- Huisman, T.H.J., Dozy, A.M., Wilson, H.J., Efremov,
 G.D. & Vaskov, B. (1968) *Biochim. Biophys. Acta* 160, 467-469.
- 28 Beale, D. (1967) Biochem. J. 103, 129–140.
- Boyer, S.H., Hathaway, P., Pascasio, F., Bordley, J., Orton, C. & Naughton, M.A. (1967) *J. Biol. Chem.* 242, 2211-2232.
- 30 Kretschmer, P.J., Coon, H.C., Davis, A., Harrison, M. & Nienhuis, A.W. (1981) J. Biol. Chem. 256, 1975-1982.
- 31 Schimenti, J.C. & Duncan, C.H. (1984) Nucleic Acids Res. 12, 1641-1655.
- Babin, D.R., Schroeder, W.A., Shelton, J.R., Shelton, J.B. & Robberson, B. (1966) *Biochemistry* 5, 1297-1310.
- 33 Kleinschmidt, T. & Braunitzer, G. (1982) Hoppe-Seyler's Z. Physiol. Chem. 363, 789-796.
- 34 Schroeder, W.A., Shelton, J.R., Shelton, J.B., Cormick, J. & Jones, R.T. (1963) *Biochemistry* 2, 992-1008.
- 35 Wilson, J.B., Miller, A. & Huisman, T.H.J. (1970) Biochem. Genet. 4, 677-688.
- 36 Arnone, A. (1972) Nature (London) 237, 146-149.
- 37 Perutz, M.F. & Imai, K. (1980) J. Mol. Biol. 136, 183-191.
- 38 Vyazova, E.P., Azhigirova, M.A., Fetisova, L.V., Khachatur'yan, A.A. & Rozenberg, G.Ya. (1983) Bull. Exp. Biol. Med. (USSR) 95, 50-52.
- 39 Fronticelli, C., Bucci, E. & Orth, C. (1984) Biophys. J. 45, 370a.
- 40 Fronticelli, C., Bucci, O. & Orth, C. (1984) J. Biol. Chem. 259, 10841-10844.
- 41 Lalthantluanga, R. & Braunitzer, G. (1981) Hoppe-Seyler's Z. Physiol. Chem. 362, 1405–1409.
- 42 Lalthantluanga, R. & Braunitzer, G. (1982) Indian J. Biochem. Biophys. 19, 418-420.

Dr. Karin Rodewald and Prof. Dr. Gerhard Braunitzer, Max-Planck-Institut für Biochemie, Abteilung Proteinchemie, D-8033 Martinsried bei München.

Priv.-Doz. Dr. Henning Wiesner, Tierpark Hellabrunn, D-8000 München 90.