

Fig. 1. Cytopathological features of adrenal carcinoma. (a) Malignant cells arranged in follicular or trabecular appearance along fibrous and vascular structures (May–Grünwald–Giemsa stain, \times 100). (b) Multinucleated cells with giant nuclei, prominent nucleoli and abundant, vacuolated, clear and badly delimited cytoplasm (May–Grünwald–Giemsa stain, \times 400).

HIV-related ocular microangiopathic syndrome and neuropsychological functioning

Wilkie *et al.* [1] recently reported that cognitive alterations occur in HIV-1-infected individuals before the manifestation of AIDS, and appear to be independent of the clinical status and degree of immunosuppression as measured by CD4 cell count and immunoglobulin A (IgA) level. The association between HIV-1 serostatus and cognitive impairment has not been completely explained by known potentially confounding factors, such as age, education and psychopathological status [1].

The fact that not all HIV-infected patients develop cognitive impairment or progress to a dementia syndrome suggests that factors other than HIV-1 are responsible for this condition. Dunbar *et al.* [2] showed that neuropsychological changes are not exclusively associated with progression from AIDS-related complex (ARC) to AIDS. The aetiology of cognitive symptoms may be multifactorial; pathological findings in computed cranial tomography or magnetic resonance imaging do not necessarily relate to neurocognitive decline [3], psychogenic versus somatogenic reasons are to differentiate.

In our study of 237 seropositive subjects we found that HIV-1-seropositives showed reduced cognitive functioning compared with HIV-negative controls, and detected significant correlations between psychopathological impairment and neuropsychological functioning [4]. To look for other influences on or possible explanations for a decrease in the memory functions of HIV-1-infected patients, a subgroup of 37 seropositive subjects underwent ophthalmological and neuropsychological examination. We examined these patients to evaluate a possible association between HIV-1-related ocular microangiopathic syndrome and cognitive functioning [5]. Ocular microangiopathic syndrome is common in patients with AIDS or at an advanced stage of HIV infection [6]. Symptoms of this microvascular syndrome can include retinal cottonwool spots, haemorrhages and Roth's spots [7].

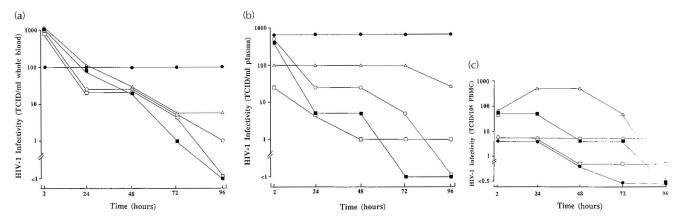
There was a strong correlation between HIVrelated ocular microangiopathic syndrome, measured by counting the number of cotton-wool spots, and a decrease in cognitive functioning, determined by neuropsychological examination including five standardized tests (Auditory Verbal Learning Test, Benton Test, Vocabulary, Stroop Colour Word Test, Trail-Making Test part B), in AIDS patients. The multiple correlation between the number of cottonwool spots and the five neuropsychological tests was r = 0.70 (P < 0.001). Ocular microangiopathic syndrome was also strongly associated with cerebral blood flow as measured by hexamethyl-propyleneamine oxime single-photon emission computed tomography (HMPAO-SPECT) of the brain [8].

These correlations between ocular microangiopathic syndrome, HMPAO-SPECT and cognitive performance do not prove a causal relationship, but indicate that there may be a close association between cerebral blood flow and functional cerebral impairment. HIVrelated microangiopathic syndrome may thus be involved in the aetiology of cognitive alterations in HIVinfected individuals.

C. Perro, S.A. Geier*, D. Naber, V. Klauß*, U. Kronawitter[†], J.R. Bogner[†] and E.D. Goebel[†], Department of Psychiatry, *University Eye Hospital and [†]Medizinische Poliklinik, University of Munich, Nußbaumstr. 7, 8000 Munich 2, Germany.

Date of receipt: 19 November 1992; accepted: 2 December 1992.

Sponsorship


Supported by Bundesministerium für Forschung und Technologie FQZ BGA III-2-89/FVP.

References

- 1. WILKIE FL, MORGAN R, FLETCHER MA, *ET AL*: Cognition and immune function in HIV-1 infection. *AIDS* 1992, 6:977–981.
- DUNBAR N, PERDICES M, GRUNSEIT A, COOPER DA: Changes in neuropsychological performance of AIDS-related complex patients who progress to AIDS. *AIDS* 1992, 6:691–700.
- SELNES OA: Predictors of neurocognitive decline with progression to symptomatic HIV-1 infection. In *HIV-1 Infection of the Central Nervous System: Clinical, Pathological, and Molecular Aspects.* Edited by Weis S, Hippius H. Göttingen: Hogrefe and Huber; 1992:87–103.
- NABER D, PERRO C, SCHIELKE E, GOEBEL FD, HIPPIUS H: Neuropsychological deficits and other psychiatric symptoms in HIV-1-infected patients. In HIV-1 Infection of the Central Nervous System: Clinical, Pathological and Molecular Aspects. Edited by Weis S, Hippius H. Göttingen: Hogrefe and Huber; 1992:67–86.
- GEIER SA, PERRO C, KLAUSS V, ET AL.: HIV-related ocular microangiopathic syndrome and cognitive functioning. J Acquir Immune Syndr 1993, 6:252–258.
- KLAUSS V, LUND OE: Augenveränderungen bei AIDS. Fortschr Med 1988, 106:27–31.
- HOLLAND GN, GOTTLIEB MS, FOOS RY: Retinal cotton-wool patches in acquired immunodeficiency syndrome [letter]. N Engl J Med 1982, 307:1704.
- 8. GEIER SA, SCHIELKE E, KLAUSS V, *ET AL*: Retinal microvasculopathy and reduced cerebral blood flow in patients with the acquired immunodeficiency syndrome [letter]. *Am J* Ophthalmol 1992, 113:100–101.

Decay of HIV-1 infectivity in whole blood, plasma and peripheral blood mononuclear cells

Accurate quantitation of the level of HIV-1 *in vivo* is important in understanding AIDS pathogenesis and viral transmission, as well as in monitoring the efficacy of antiviral agents given to patients. We have previously defined the infectious levels of HIV-1 in plasma and peripheral blood mononuclear cells (PBMC) from infected subjects [1]. We have also determined the infectious titers in sequential blood samples from patients with primary HIV-1 infection [2]. These studies were performed in real time (i.e., immediately after any transport and processing delays) with freshly obtained blood samples, and it is unclear whether the time de-

Fig. 1. Decay of HIV-1 infectivity for whole blood (a), plasma (b) and peripheral blood mononuclear cells (PBMC); (c) from five patients with AIDS. \bigcirc , patient 1; \bigcirc , patient 2, \square , patient 3; \blacksquare , patient 4; \triangle , patient 5. TCID, tissue culture infective dose.