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M E M B R A N E T R A N S L O C A T I O N A N D R E F O L D I N G O F 
M I T O C H O N D R I A L P R O T E I N S 

Franz-Ul r ich Hartl and Walter Neupert 

Institute of Physio logica l Chemist ry , University of Munich, 
Goethes t rasse 33 , 8000 München 2, F R G 

A B S T R A C T The b iogenesis of mitochondria involves the 
transport of severa l hundred different proteins synthes ized 
as precursors in the cytosol into the preexistent organel les. 
Membrane translocat ion occurs at t ranslocat ion contact 
Sites between outer and inner membranes through a 
hydrophil ic membrane environment. T h e s e translocat ion 
Sites can be env isoned as proteinaeeous pores or Channels 
and are present in limited number per mitochondrion. 
Precursor proteins arrested during translocat ion as 
membrane-spann ing intermediates serve as molecular 
tools to study translocation contact Sites. Recent ev idence 
demonstrates that the membrane spanning portions of such 
intermediates can be in a rather extended conformat ion. 
This then implies that proteins have to refold once they 
reach the trans-side of the membranes to become 
functionally act ive. Refolding of imported proteins inside 
mitochondria and assemb ly into supramolecu la r comp lexes 
is not a spontaneous process but is mediated by a matrix-
local ized "assembly -complex" in an ATP-dependen t 
manner. A major constituent of the mitochondrial machinery 
for the folding of proteins is the evolutionari ly conserved 
heat-shock protein hsp60. 

I N T R O D U C T I O N 

Mitochondr ia, like chloroplasts, are a s s u m e d to have 
originated from procaryotic endosymbiot ic ancestors . During 
evolution the organel les have lost their autonomy. Most 
mitochondrial proteins are coded for by nuclear genes and are 
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post-translationally imported into the preexistent organel les (1,2). 

Over recent years transport of proteins into mitochondr ia 
has been d issec ted into a number of distinct Steps which can be 
descr ibed as fol lows: i) Mitochondrial proteins are syn thes ized as 
precursors on cytosol ic r ibosomes. The interaction with 70 kD 
heat-shock proteins and probably with addit ional factors is 
required to keep precursors in a loosely- fo lded t ranslocat ion-
competent conformat ion. The requirement for nuc leos ide 
tr iphosphates of the import reaction is probably connec ted to 
these Steps (3-10). ii) Precursors contain speci f ic targeting Signals 
(in most c a s e s located at the amino-terminus as c leavab le 
presequences) and interact v ia these Signals with receptors at the 
sur face of the outer mitochondrial membrane. Mitochondr ia l 
targeting s e q u e n c e s are posi t ively-charged and are rieh in 
hydroxylated amino-ac ids . Severa l of them have the potential to 
form amphiphi l ic hel ices upon insertion into membranes or when 
reaching contact with the phosphol ip ids of membranes (11-13). 
iii) A component of the outer membrane, the "general insert ion 
protein" (GIP), facil itates membrane insertion of precursor proteins 
(13). iv) Proteins of the outer membrane then directly reach their 
final location while proteins of all other submitochondr ia l 
compartments are directed into translocation contact Sites 
between outer and inner membranes. This latter reaction is 
dependent on the electrical potential ac ross the inner 
mitochondrial membrane (14-17). v) Amino- terminal 
p resequences of precursors are c leaved during or after 
t ranslocat ion by the matr ix- local ized meta l -dependent p rocess ing 
pept idase ( M P P ) in Cooperat ion with the process ing enhanc ing 
protein ( P E P ) (18-20). vi) Fol lowing membrane t ranslocat ion, 
precursors have to refold and in many c a s e s to a s s e m b l e into 
supramolecu lar comp lexes . Protein folding in the matrix is an 
ATP-dependen t reaction mediated at the sur face of the 14mer 
complex of the heat-shock protein hsp60 (21,22). vii) Prote ins of 
the intermembrane s p a c e follow an evolutionari ly c o n s e r v e d 
route to their target compartment. Their precursors are first 
t ranslocated into the matrix and are then re-translocated ac ross 
the inner membrane in a p rocess which has similarity to bacterial 
protein export ("conservative sorting") (23-25). The mitochondrial 
inner membrane is unique in that it conta ins two independent 
machiner ies translocat ing proteins in opposi te di rect ions. F igu re l 
shows a model of the complex import and sorting pathway of 
cytochrome b2 to the intermembrane s p a c e of yeast mitochondria. 
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In the present article we review recent advances made in 

our laboratory towards an understanding of the mechan isms of 
translocation of proteins ac ross the mitochondrial membranes 
and their subsequent folding and assemb ly inside the organel les. 

Figure 1: Working hypothesis for the translocat ion of 
cytochrome b2 to the intermembrane space . (1) . 
Cytochrome b2 is made as a precursor (p-Cyt b2) in the 
cytosol carrying an 80 amino ac id residue p resequence of 
bipartite structure. p-Cyt b2 binds to a speci f ic receptor (R) 
on the outer surface of the outer membrane, and, (2) , is 
subsequent ly transported into translocat ion contact Sites, 
v ia interaction with the "general insertion protein" (GIP) in 
the outer membrane. Transport into contact si tes is 
dependent on the electrical component of the total 
protonmotive force. Complet ion of translocat ion is 
independent of A ^ b u t requires A T P probably for keeping 
precursor portions still outside the mitochondrion in an 
"unfolded" conformation. (3) . p-Cyt b2 interacts with the 
hsp60-complex in the matrix and c leavage of the first part of 
the p resequence (the posi t ively-charged mitochondrial 
targeting sequence) occurs by the action of M P P in 
Cooperation with P E P resulting in the formation of 
intermediate-sized cytochrome b2 (i-Cyt b2). (4) . The 
prepeptide of i-Cyt b2 (which resembles a bacterial type 

(Continued on page 60.) 
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M I T O C H O N D R I A L T R A N S L O C A T I O N C O N T A C T S I T E S 

Most imported mitochondrial proteins have to be 
t ranslocated at least partially into or ac ross the inner membrane 
Transport ac ross outer and inner membranes occurs in a Single 
step at translocat ion contact Sites. Morphologica l s tud ies have 
revealed these Sites of d o s e contact between the mitochondrial 
membranes for many years (26). First b iochemical ev idence tha 
translocat ion of proteins p roceeds v ia contact Sites c a m e from // 
v i t r o exper iments in which precursor proteins spann ing both 
mitochondrial membranes were accumula ted a s t ranslocat ion 
intermediates (14). Precursor proteins which had ant ibodies 
bound to carboxy-terminal parts of the protein were arrested 
during translocat ion in a posit ion reaching into the matrix with the 
amino-terminus (which w a s proteolytically p rocessed) but with 
other parts of the molecule still being outside the mitochondrion 
where they were access ib le to added protease. Apparent ly , the 
two membranes had to be d o s e enough to be spanned by a 
Single Polypeptide cha in . Performing the import reaction at low 
temperature or at dec reased levels of nuc leos ide t r iphosphates 
(NTPs) a lso c a u s e d arrest of precursors in translocat ion contact 
Sites (8,9,14). W e a s s u m e that these procedures render the 
mature protein part of the precursor incompetent for translocat ioi 
by conferr ing a more stably-folded structure. N T P s are probably 
required to keep precursors in the cytosol in a loosely- fo lded, 
translocat ion competent conformation v ia the action of 70 kD 
heat-shock proteins and maybe addit ional factors (3-10). A s 
demonst ra ted by immuno-gold label ing of t ranslocat ion 
intermediates the b iochemical ly-def ined t ranslocat ion contact 
Sites are identical with the morphologica l ly-descr ibed Sites of 
d o s e contact between the two membranes (15). 

Contact Sites appear to be stable structures. 
Submitochondr ia l fractions enr iched in contact Sites could be 

export Signal) directs the re-translocation of the protein back 
ac ross the inner membrane. A T P is probably necessary for 
the re lease of i-Cyt b2 from hsp60. (5). C l e a v a g e by a 
second process ing enzyme (SP) at the outer sur face of the 
inner membrane generates the mature-s ized protein (m-Cyt 
b2), a soluble component of the intermembrane s p a c e . O M , 
outer membrane; IMS, intermembrane s p a c e ; IM, inner 
membrane; M, matrix. 
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obtained by sonicat ion of isolated mitochondria and sucrose 
gradient centrifugation. Low concentrat ions of digitonin, a sterol 
speci f ic detergent, were able to remove large parts of the outer 
membrane except at regions where outer and inner membranes 
were attached to each other (15). Precursors spann ing the 
mitochondrial membranes as translocat ion intermediates were 
extractable with protein denaturants such as urea or alkal ine pH 
indicating that the membrane spanning intermediates were in a 
hydrophil ic, probably prote inaceous environment (27). 

Only the transport of precursors from the cytosol into 
translocat ion contact Sites is dependent on the membrane 
potential across the inner membrane. The complet ion of 
translocat ion across the inner membrane is independent of the 
membrane potential but requires N T P s for keeping precursor 
portions still outside the mitochondrion in an "unfolded" 
conformation (see above) (8,14). The insertion of the positively-
charged p resequences into the inner membrane s e e m s to be the 
membrane-potent ial dependent step of the import pathway. The 
electrical component A ^ of the total protonmotive force and not 
the chemica l component A pH is required (17). The role of A y is 
unclear. It might be specula ted that the membrane potential 
(negative inside) exerts an electrophoretic effect on the positively-
charged regions of the precursor proteins. 

Fus ion Proteins to Study Translocat ion Contact S i tes. 

In col laborat ion with B. Guiard (Gif-sur-Yvette) we have 
recently des igned a mitochondrial fusion protein which can be 
used as a molecular tool to study translocat ion contact Sites. The 
amino-terminal 167 amino ac id residues of the precursor of yeast 
cytochrome b2 were fused to the amino-terminus of the complete 
sequence of mouse dihydrofolate reductase ( p b 2 l 6 7 - D H F R ) (16). 
In this construct the cytochrome b2 part and the D H F R moiety fold 
independent ly of each other. Binding of the folate antagonist 
methotrexate stabi l izes the folded structure of D H F R (28). Under 
these condit ions p b 2 - D H F R is only partially t ranslocated and is 
arrested as translocation intermediate spanning the two 
membranes . The cytochrome b2 part of the fusion protein reaches 
into the matrix where c leavage by the process ing pept idase 
occurs whi le the folded D H F R stays outside of the outer 
membrane and can be removed by externally added protease. In 
the p resence of methotrexate D H F R is not d igested by protease 
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and is recovered in the soluble supernatant of the react ion. If the 
methotrexate is removed from the translocat ion intermediate by 
washing of the reisolated mitochondria the D H F R moiety of the 
construct is unfolded at the sur face of the outer membrane 
probably by the action of a prote inaceous component and the 
fusion protein is completely t ranslocated into the interior of 
mi tochondr ia. 

The fusion protein p b 2 - D H F R was used in the p resence of 
methotrexate to titrate translocat ion contact Sites of mi tochondr ia 
(16). Around 70 pmoles of translocat ion intermediates had to be 
accumulated per mg of mitochondrial protein to reach Saturation. 
It was calcu lated that a Single mitochondrion accomoda ted about 
4000 translocat ion intermediates. Morphometr ic ana lys is of the 
mitochondria of N e u r o s p o r a c r a s s a revealed that the total a rea of 
d o s e contact between the mitochondrial membranes 
cor responded to about 7 % of the total outer membrane sur face. At 
present it is unknown whether contact Sites are po in t -shaped 
structures or whether they are narrow str ipes extending over 
longer d is tances at the origin of cr istae. B a s e d on the three-
d imensional structure of D H F R we est imated that saturat ing 
amounts of translocat ion intermediates occup ied about 1% of the 
outer membrane sur face thus potentially leaving enough room in 
contact Sites for prote inaceous components involved in the 
translocat ion p rocess . Mi tochondr ia which had accumu la ted 
saturating amounts of the translocat ion intermediate were unable 
to import the precursor of the ß subunit of F i A T P a s e and the 
precursor of the R ieske F e / S protein of complex III which is 
local ized at the outer surface of the inner membrane. T h e rates of 
import of these proteins dec reased in correlation to the degree of 
presaturation of mitochondria with contact Site intermediates. 
Apparent ly, t ranslocat ion contact Sites occur in limited number. 
The s a m e translocat ion Sites are used by different precursor 
proteins dest ined to different submitochondr ia l compar tments 
(16,29). 

How many amino acid res idues are conta ined in the 
segment of a precursor which spans the two membranes at 
translocation contact Si tes? To address this quest ion a ser ies of 
fusion proteins der ived from the p b 2 l 6 7 - D H F R construct were 
engineered by s tepwise shortening its cytochrome b2 part 
(Rassow et a l . , in preparation). In the absence of methotrexate 
also the shortest fusion protein, p b 2 4 7 - D H F R , was readily 
t ranslocated ac ross the mitochondrial membranes and 
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proteolytically p rocessed . In the presence of methotrexate, 
however, p b 2 7 6 - D H F R was the shortest construct which was still 
able to span the two membranes and to expose the proteolytic 
c leavage Site at position 30 of the presequence to the matrix-
local ized process ing pept idase. Shorter fusion proteins did no 
more accompl ish stable accumulat ion in translocat ion contact 
Sites. This al lowed the conc lus ion that about 46 amino acid 
res idues were sufficient to span the two mitochondrial 
membranes at contact Sites. O n electron micrographs of isolated 
mitochondria the distance from outer surface of outer membrane 
to inner surface of inner membrane at membrane contacts was 
determined to be 15-17 nm. This could cor respond well to the 
diameter of two protein rieh membranes . Al though the two lipid 
bi layers a lways appeared to be separa ted by a narrow gap we 
cannot completely rule out the possibil ity that fus ions between the 
bi layers might occur at very distinet areas. Never the less, our data 
would indicate that the region of a stable translocat ion 
intermediate spanning contact Sites is essent ia l ly devo id of 
tertiary strueture. The conformation of the spanning Polypeptide 

might be even more extended than oc-helical. The necessi ty for 
cytosol ic precursor proteins to a s s u m e an "unfolded" 
conformation may therefore directly reflect mechanis t ic 
requirements at the molecular level of the translocat ion process 
itself. 

R O L E O F H S P 6 0 IN R E F O L D I N G A N D A S S E M B L Y O F 
M I T O C H O N D R I A L P R O T E I N S 

O n c e t ranslocated ac ross the mitochondrial membranes 
proteins remaining in the mitochondrial matrix have to refold and 
in many c a s e s to assemb le into supramolecu lar comp lexes (22). 
Severa l intermembrane space proteins are first imported into the 
matrix and are then re-exported ac ross the inner membrane (23-
25). Their precursors carry bipartite amino-terminal targeting 
s e q u e n c e s whose second parts have character ist ics of bacterial 
export Signals (24,30). It has to be a s s u m e d that these proteins 
have to remain in a loosely-folded conformation prior to the 
s e c o n d membrane translocat ion event. Very likely this is a lso the 
c a s e for inner membrane proteins including those coded for by 
the mitochondrial genome, which insert into the membrane from 
the matrix space . 
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In contrast to the v iew general ly held so far, folding and 

assembly of imported mitochondrial proteins does not occur 
spontaneous ly , but is mediated by prote inaceous componen ts . 
The recently descr ibed matr ix- local ized stress-protein hsp60 
plays an essent ia l role in these p rocesses (22). Hsp60 is a 
constitutively exp ressed heat-shock protein which is functional ly 
and structurally related to the E. c o l i heat-shock protein g r o E L and 
to the a-component of the Rub isco subunit-binding protein of 
chloroplasts (21,22,31). Hsp60 , the Rub isco binding protein and 
g roEL have been grouped into a subc lass of "molecular 
chaperones" termed "chaperon ins" (31), componen ts ass is t ing in 
ol igomeric protein assembly . Interestingly, the "chaperon ins" 
reside in macromolecu lar 14mer comp lexes consis t ing of two 7-
mer rings one put on top of the other. 

In an attempt to identify components of the mitochondrial 
machinery for protein translocat ion and assemb ly , Horwich and 
co l leagues se lec ted temperature-sensi t ive yeast mutants with 
speci f ic defects in mitochondrial protein import (19,22). O n e 
nuclear mutation, mif4 (mif for mitochondrial import function), 
affecting the gene for hsp60 enab led the identification of hsp60 
function (22). At the non-permiss ive temperature mutant ce l ls 
showed a def ic iency in the assemb ly of severa l mitochondrial 
proteins of matrix, inner membrane and in termembrane s p a c e . 
For example, the precursor of the ß- subunit of the F i - A T P a s e 
was completely t ranslocated ac ross the mitochondrial 
membranes and proteolytically p rocessed but fai led to a s s e m b l e 
into the F 0 F 1 -ATPase complex. L ikewise, the matrix e n z y m e 
Ornithine t ranscarbamylase w a s not able to form the functional ly 
active homotrimer. Proteins of the intermembrane s p a c e , such as 
cytochrome b2 and the R ieske F e / S protein, apparent ly misfolded 
in the matrix s p a c e and did not reach their target compartment. It 
was found that in the mutant the struetural integrity of the hsp60 
complex was affected. Hsp60 complex isolated from cel ls grown 
at the non-permiss ive temperature appeared to have denatured 
and sed imented into a low s p e e d pellet. 

Imported Proteins Fold in an ATP-dependen t React ion . 

W e have now ana lyzed the sequence of Steps during the 
refolding of proteins imported into the mitochondrial matrix. Us ing 
a fusion protein consist ing of the mitochondrial p resequence of 
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subunit 9 of F o - A T P a s e and the complete mouse D H F R we were 
able to determine the folding State of the imported protein by 
measur ing the protease resistance of the D H F R moiety 
(Ostermann et a l . , in preparation). Unfolding of the D H F R part 
occurr ing at the surface of the outer membrane has been shown 
to be the rate limiting step for the translocation of simi lar fusion 
proteins ac ross the mitochondrial membranes . To ach ieve fast, 
ATP- independen t membrane translocat ion we therefore used 
precursor preparat ions in our import exper iments which were 
artificially unfolded by incubation in 8 M urea. Under these 
condit ions, the kinetics of refolding of the imported protein in the 
matrix were s lower than its translocation v ia contact Sites. If 
mitochondria were depleted of A T P prior to import, the refolding 
of D H F R was completely b locked ("folding arrest"). The 
incompletely folded fusion protein could be extracted from the 
matrix of mitochondria as a high molecular weight "assemb ly 
complex" which migrated on s iz ing co lumns with an apparent 
molecular weight of 800 kD. Us ing non-denatur ing 
Polyacry lamide gel e lectrophoresis hsp60 was identified as a 
major constituent of this "assembly complex" . In the absence of 
A T P the fusion protein assoc ia ted to hsp60 was completely 
sensi t ive towards digest ion by protease while the hsp60 complex 
itself was protease resistant. Apparent ly, the incompletely folded 
Polypept ide cha ins of the imported protein were exposed at the 
sur face of hsp60. Readdi t ion of A T P to the assemb ly complex 
initiated folding of the assoc ia ted Polypeptide and re lease from 
hsp60. G T P and the non-hydrolyzable A T P analog A M P - P N P 
were ineffective. A very similar sequence of react ions was 
observed for authentic imported mitochondrial proteins including 
the ß-subunit of F i - A T P a s e and the R ieske F e / S protein. 

S o far it is unknown how hsp60 functions in folding and 
assemb ly of mitochondrial proteins. It s e e m s obvious that hsp60 
recogn izes s o m e struetural motif of the "unfolded" Polypept ide 
cha ins entering the mitochondrial matrix v ia contact Sites. O n e 
important function of the "chaperonin" hsp60 could be to capture 
these Polypept ides thereby preventing their aggregat ion in the 
high protein concentrat ion of the matrix space . Both, the hsp60 
homologue g r o E L and the 70 kD heat-shock proteins are weak 
A T P a s e s . The initial binding of the protein Substrate to hsp60 is 
ATP- independen t . A s proposed for the interaction of proteins with 
70 kD heat-shock proteins (32), ATP-hydro lys is by hsp60 could 
c a u s e a conformational change of the hsp60 complex 
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which is transferred to the assoc ia ted Polypept ide chain(s). Th i s 
could loosen the interaction with the unfolded Polypept ide thus 
al lowing for its ordered, domain-wise folding. At the s a m e t ime, 
the protein Substrates interacting with hsp60 could expose 
compl imentary sur faces facilitating the assemb ly with other 
subuni ts to homo- or heterool igomeric comp lexes . It is unc lear 
whether addit ional components are involved in these p r o c e s s e s 
In E. c o l i the g r o E S protein has been shown to cooperate with 
g roEL in functions such as assemb ly of prokaryotic r ibulose-
b isphosphate carboxy lase and assembly of phage part icles 
(33,34). A n equivalent to g r o E S has not been detected in either 
mitochondr ia or chloroplasts. 

P E R S P E C T I V E S 

Despi te the progress made over the recent years , the 
mechan isms involved in t ranslocat ion of proteins ac ross 
biological membranes are still enigmatic. The machinery for 
protein translocat ion has not yet been identified in any of the well 
studied membrane Systems. Clear ly , one of the major tasks for the 
future will be the isolation of the mitochondrial t ranslocat ion 
contact Sites and their molecular character izat ion. To ach ieve this 
goal , the mitochondrial fusion proteins which can be accumula ted 
as stable membrane-spann ing intermediates are currently being 
used as "molecular handle". 

It is an emerging theme in present-day cel l biology that the 
folding and assemb ly of proteins, for a long time been v iewed as 
spontaneous p rocesses , are protein ca ta lyzed react ions in every 
cel lular compartment i n v i v o . For example , the Immunoglobul in 
heavy chain binding protein (BiP) of the endop lasmic reticulum 
appears to have functions very similar to those descr ibed for the 
mitochondrial hsp60 (32). T h e s e findings may a lso be of 
cons iderab le b iotechnological re levance. O n e might specu la te 
that in the future components like hsp60 or the g roE proteins will 
be used as "folding catalysts" to solve the problem of active 
reconstitution of proteins obtained by overexpress ion in bacter ia. 
However , a more detai led understanding of how these 
components function at the molecular level will be required to 
make this a feasible approach. 
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muscle compartmentation, 221 
non-uniform distribution, 221 
phosphofructokinase, 215 

Glycolytic intermediate, 215 
Glycolytic pathway, 215, 247 
Glycolysis, 341, 390 
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metabolization, 215 
requirement, 220 

Gl nuclear maturation, 45 
Gonadotrophic Stimulation, 331, 334, 338, 

341 
in vivo, 335 

G6PDH. See Glucose-6-phosphate-dehy-
drogenase 

G-protein, 2, 7 
Grana 

and stroma membrane, 115 
thylakoid, freeze-etched, jl 19 

Guanosine diphosphate, incubated, 97 
Gyrase 

and DNA replication, 154 
and superhelical tension, 154 

Hard particle calculated, 296 
hCG. See Human choriogonadotropin 
Heart 

extract, ,3C NMR spectra, 369 
Perfusions, 365 

Heat-shock protein hsp60 5 7 - 5 8 
Helical repeat, 307, 314 
Hepatocyte, 352 

ATP, 349 
mapping, 345 

Heterogeneous enzyme System, 324 
Heterologous 

aggregation, 324 
enzyme-enzyme associations, 324 

Hexokinase, 357 
associated with porin, 221 

Higher plant thylakoid, 116 
HisRS mutant, 208 
Histidyl-tRNA synthetase, mammalian, 205 
Holobiochemisty, 291 
Homeostatic 

model supercoiling, 155 
regulation, 154 

Homologous State, enzyme Organization, 
325 

Homonuclear coupling, 3 6 7 - 3 6 8 
Hormone interaction, 192 
Hsp60, 58 

"chaperonin" function, 65 
complex, isolated, 64 
or groE, protein folding catalyst, 66 

Human choriogonadotropin (hCG), 332 
action, 338 

Human synthetase, 204 
Hummel-Dryer Chromatographie technique, 

392 
Hydrophobie interaction chromatography, 

199, 202 

3-hydroxyacyl-CoA dehydrogenase, 232 , 
233 

activity, 236 
and complex I, 236 

3-hydroxybutyryl-CoA, 234 
mitochondria, 235 

Hydroxyprogesterone 
and androgen, 334 
formation, 337 
intermediary, 338 
leakage, 341 
retention, 340 

Hydroxyurea inhibition, 150 
I-band 

enrichment, 216 
thin filament region, 215 

Idiotype antibody, 185 
IGA-65, 50, 52 

containing complex, 54 
isolated from nuclear extract and matrix. 

53 
IgG 

anti-Trp and anti-idiotype, 189 
pool component, 192 

Immunoblot, PCNA-independent DNA 
Polymerase, 167 

Immunoblotting, 182, 189, 194 
protein, 185 

Immunoelectroblotting, 183 
Immunoelectrophoretic analysis, E. coli, 

190-191 
Immunofluorescence microscopy, 200, 208 
Inhibiting gyrase, 156 
Inner membrane 

binding sensitivity, 394 
correlated, 393 

Interaction dissection, 186-187 
Interchromatin granule Cluster, 54 
Intermediary metabolites, 273 
Intermolecular sandwich strueture, 310 
Intracellular ATP incorporation, 21 
Intramolecular DNA loop, 310 
Ionic interaction, 347 
2n isotopomer, 366 
Isotopomer, 368 

analysis, 370 
glutamate concentrations, 367 

Isozyme in aromatic metabolism, 34 
J/C ratio, 347 
Kacser-Burns-Heinrich-Rapoport (KBHR) 

model, 3 2 1 - 3 2 7 
analysis paradigm, 328 

assumptions, 3 2 2 - 3 2 3 
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64 kda protein 

level, change, 90 
purification, 91 , 92 

Kinetic 
analysis, 183 
coupling, 141-143 
rate constants, 326 

Krebs citric acid cycle, 215, 364, 365 
Krebs tricarboxylic acid (TCA) cycle, 376, 

3 8 9 - 3 9 1 
enzyme, 395 

association, 393 
binding, 393 
metabolon coupled, kinetic effect, 

396 
stabilize interaction, 395 

interactions, specific, 3 9 1 - 3 9 3 , 399 
Lac expression, 308 
Lac Operator, 310 

loop formation, 313 
repression, 309 

Lac Operon, 308 
Lac promotor, 317 
Lac repression modulation, 310 
Lac repressor, 308, 313, 316 

Operator binding reaction, 308 
Symmetrie, 310 

Leucine and histidine Operon, 158 
LH/hCG action, 332 
Lignin plant, struetural component, 27 
Lipid interaction, 206 
Lipophilic plastoquinone (PQ), 115 
Lipoprotein complex, 71 
Liver 

cell cytochrome P450, 349 
microsome, 350 

and kidney cell gradients, 347 
Loop formation, 3 1 2 - 3 1 3 

analysis , 316 
efficient, 309 
extent, 313 
model, 312 
process, 307 

L-tryptophan System, 2 5 9 - 2 6 0 
Macromolecular 

association, 294 
component concentration, 87 
concentration effect, 299 
Organization, 113 

Malate-aspartate Shuttle cycle, 376 
Malate dehydrogenase 

(MDH), 376, 391 
function, mitochondria, 384 

lack, 384 
lactate, dehydrogenase, 131 
specific activity, 382 

(MDH1) 
disruption, 383 
locus and plasmid strueture, 377 
mutation effect, growth and function, 

383 
Malate and oxaloacetate interconversion, 

375 
Mammalian synthetase, 204 
Matrix dehydrogenase, bind to complex I, 

130-131 
Membrane 

-adsorbed enzyme Clusters 322 
architecture and function, 113 
compartment differentiation, 334 
composition, 113 
lipid binding, 230 
protein Bacillus, 93 

binding, 230 
complex assembly, 71 
gene code, 78 
genome binding, 85 
inner, 230 

translocation, 57 
Metabolie 

chain transfers, 341 
channeling, 274 
compartmentation interface, 36 
condition and 0 2 dependence, 350 
control, 321 

analysis, 321 
theory, 321 

flux, 275 
pathway, 390, 391 
regulation strueture, 358 

Metabolism, yeast CS mutant, 397 
Metabolite 

channeling, 324 
and ion concentration, 347 

and ion flux comparison, 348 
Metabolon, 234, 247, 252 

disruption, 231 
Krebs TCA cycle, 400 
permeable, 239 
rat liver, 233 
TCA cycle enzymes, 389 

Methionyl-tRNA synthetase, 208 
Microcompartmentation, 338, 345, 347, 354 

and channeling, 331 
investigation, 334 

Microenvironment, 322, 331, 354 
Microtrabecular lattice, 356 
Missense mutations, E. coli, 264 
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Mitochondria, 57 

biogenesis, 57, 79 
or chloroplast groE detected, 66 
disruption, 229 
inner membrane, 71 
intermyofibrillar, 352 
and 0 2 consumption, 384 
rat liver, 231 
redcx carrier, 72 
respiratory chain, 72 

Mitochondrial 
binding, 130-131 
citrate synthase (CS), lack, 389 
Cluster, 355 
complex, integral components, 78 
cytochrome, 349 
cytosolic yeast homology, 398 
DNA 

code, 72 
encoding, 72 

enzyme-enzyme interaction, 241 
enzyme subunit, 72 
fusion protein, 62 
genome, 63, 72 
inner membrane, 393 
malate dehydrogenase (MDH), 129, 375, 

381, 382 
mammal, 384 

matirix, 63, 229 
enzyme, 391 
enzyme-enzyme interactions, 230 
protein refolding, 65 

membrane, 59, 61 
inner, 389 
0 2 concentration, 351 
span, 63 

metabolic pathway channeling, 241 
microsomal membrane fraction, 334 
0 2 consumption, 385 
organelle, 73 
oxidation rate, 398 
oxidative interaction, 3 9 9 - 4 0 0 
oxygen consumption measured, 398 
protein, 205 

interaction, 241 
nuclear gene, coded, 57 
reaction sequence, 65 
synthesis, 58 73 

respiratory control, 350 
translocation contact site, 66 
yeast function, 398 

Molecular 
democracy, 322 
society, 322 

weight 
Aid, 303 
synthetase, 200 

Molecule IgG, 186-188 
Monomer-oligomer, 324 

equilibrium, 325 
mRNA translation, 74 
Multicopy plasmids in vivo, 310 
Multienzyme complex, 95, 140, 246, 322 
Multiplet, 368 

strueture differences, 370 
Mutagenesis, 146 
Mutant 

CS growth rate and lag period, 397 
deficiency, cytochrome oxidase, 76 
enzyme, 381 
iron-sulfur protein and cytochrome c,, 

74 
MDH1, 383 

construetion, 380 
protein importance, 399 Saccharomyces 

cerevisiae, 270 
shift aerobic condition, 157 
transcription, 159 
trpR deletion, 185 
yeast cells, 389 

Mutation obtained as suppressor, 157 
Myoglobin, 352 

oxygenation, 355 
NADH 

channeling, 129 
fluorescence titrations, 132 
oxidation, 229 

rate, 234 
ubiquinone oxidoreduetase (Complex I), 

234 
NADPH, 114 

presence, 334 
Na + , K + , ATPase, in plasma 

membrane, 353, 355 
Negative flux-control, 276 
Negative supercoiling, 154, 160 
Nitrogen fixation gene, 156 
NrdA mutation effect, 142 
NTP precursor role, 61 
Nuclear domain, RNA splicing, 54 
Nuclear gene, ubiquinolxytochrome c reduc-

tase assembly, 74 
Nuclear matrix 

and component role, 52 
rat liver, 47 

Nuclear maturation, 44 
Nucleoside 
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triphosphate (NTP), 58, 60 
sequence, 153 

Nucleotide triphosphates, 200 
0 2 concentration, 349 

gradient hepatocyte, 345 
0 2 consumption and gradient, 356 
Oligomerization, 324 
Oligomycin-sensitive ATPase, 73 
Oligonucleotide-directed mutagenesis, 380 
Operon, 158 
Organelle 

folding and assembly, 59 
preexistent, 58 

Outer membrane fraction of E. coli, 85 
Oxaloacetate equilibrium, 375 
2-oxoglutarate dehydrogenase complex, 

246, 252 
Oxygen 

activation site, 332 
diffusion, 356 
tension, 156 

Parallel pathway, 31 
Pb2-DHFR translocation, 61 
PCNA. See Proliferating cell nuclear antigen 
P-coumaric acid formation, 36 
P-coumaryl-CoA Substrate, cinnamic acid 

ester, 30 
P450-dependent testicular androgen produc

tion response, 338 
P450-XXII and XVII difference, 333 
PDC. See Pyruvate dehydrogenase complex 
Pellet activity, 219 
Periodic oscillation, 312 
Peripheral LHCII contribution, 119 
Permeabilized cell, 13, 20, 350 

centrifuged during assay, 21 
enzyme, efflux rate, 23 

Permeabilized egg, electrically, 18 
PEST sequence, 207 
Pet mutant, 73 
Pet strain, 73 
Phage DNA component, 5-hydroxymethyl-

cytosine, 140 
Phenylalanine, 27 

ammonia-lyase, 27 
channeled, 36 
and flavonoid, section induction, 36 
preferential utilization, 35 
production, 38 

cinnamic acid, 29 
scheme, 28 

Phenylpropanoid 

section, 27 
channeling, 35 

segment, 27 
feature, 31 
pathway, 29 

Phosphofructokinase (PFK) enzyme, 281 
Phosphorylated membrane in vitro, 123 
Phosphorylation 

casein kinase I, 208 
and cellular reorganization, 15 
-dephosphorylation, 246 
experiment, 123 
pLHCII, 120 
proteins, 14 

Photosynthesis 
efficiency, 119 
electron transport chain, 114 
membrane, 113 

Photosystem I (PSI) and II (PSII), 113 
domains 114, 117 

pH in proximal tubule cell, 349 
P450XVII hypothesis, 334 
Pi-elasticity, 324 
Pituitary lutropin (LH), 332 
Plant aromatic pathway, 28, 37 
Plasma testosterone 

concentrations, 334 
level reponse, 335 

Plasmid, 310 
constructs, 309, 312 
DNA 

membrane complex activity, 99 
synthesis profile, 103 

encoded protein 
distribution, 105 
location, 104 

molecule bound CAP protein, 316 
reporter change and helicity, 156 
RK2 

membrane associated, 106 
small, 83 

synthesis, dnaA gene effect, 101 
P450XXII levels, 334 
Poly(ADP-bosyl)ated AppppA, 207 
Polyethylene glycol (PEG), 391 

molecular crowding agent, 220 
Polypeptide, 120, 121 

chains, 261 
composition analysis, 123 
multifunctional protein, 246 
pattern, nuclear extract and matrix, 50 

Pool behavior, 273, 282, 323 
Pool concept, 274 
Pool ratio, dNTP, CHO, whole cell and 
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nuclei, 149 

Pool repression, 312 
Pregnenolone production, 332 
Progesterone 

increase effect, 337 
incubation, 334 

Prokaryote and gene expression, 194 
Prokaryotic 

cell, 140 
enzyme, 384 
System, 307 

Proliferating cell nuclear antigen (PCNA), 
165 

absence, 175 
auxilliary protein, 166 
controversial role, 176 
dependent DNA Polymerase 8, 167, 170 

products, 174 
DNA Polymerase A, 168 

processivity, 175 
effect, 173 

DNA Polymerase 811, 174 
Polymerase conformation in vivo, 176 
purification, 172 

Propionate, 366, 368 
Prosthetic group, 72 
Protein 

association rate, 297 
biosynthetic machinery, 200 
concentration, weight dependence, 295 
content, inner membrane, 230 
couple, lack of association, 249 
- D N A complex, 154 
encoded by COX10 and COX11, 77 
equilibrium and transport properties, 292 
folding, 57 
fractionation, 183 
land II, 186-187 
imported refolding, 57 
integral membrane, 392 
machine component, 182 
membrane, localized E. coli, 84 
mixture examination, 193 
phosphorylation, 14 

-dependent precursor mobilization, 
339 

-protein interaction, 144, 147, 194, 209, 
230, 375, 376 

detection 392 
enzyme 384 
investigation 379 
in situ 231 
web 182 

strueture 

model, 200 
quaternary, 209 

translocation, biological membrane, 66 
whole cell lysate, 18 

Proteolysis, 202 
Proton 

Channel base, 115 
decoupling, 372 

Protonated glutamate carbon spectra, 371 
PSI 

complex, 122 
and PSII transport, 116 

PSII complex, 115, 119 
and EF particle, 117 
-enriched grana Stack, 120 

Pyridoxal phosphate, 267 
binding site, 268 

Pyruvate, 366, 368, 370, 385 
dehydrogenase complex (PDC), 230, 

390, 395, 398 
immunological PDC, 238 
inner membrane interaction, 239 
labeling, 232 
mammalian strueture, 236 
molecular mass, 237 
molecule size, 237 
size, 241 

distribution, 354 
kinase binding, 222 
presence, 384 

Rate constant scheme, 299 
Reaction center Chlorophylls of PSI, 115 
Reeeptor site(s) competition, 129 -130 
Reducing center differences, 118 
Reducing complex excitation energy, 118 
Reductase activity in vitro, 147 
Reduction ribonucleotide reductase T4, 146, 

147 
Replication protein, 146 
Repression 

dependence, 3 1 1 - 3 1 2 
Operator orientation, 312 

enhancement, 3 1 1 , 3 1 2 
Repressor 

binding, 308 
- l ike activity, 64 kda membrane, 86 
-Operator binding, 308 

Resonance, 368 
Respiration 

-dependent oxidation, acyl-CoA, 232 
-l inked, oxidation, crotonyl-CoA, 233 

Respiratory 
chain bacterial and chloroplast, 72 
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complex, protein involvement, 78 
control, 350, 351 
pathway enzyme, 71 

Reversible 
enzyme-cytomatrix association, 325 
monomer-oligomer association, 325 

Ribonucleoprotein particle (RNP) 44, 45 
Ribonucleoside diphosphate reductase, 

incorporated, 95 
Ribonucleotide reductase, 139, 140, 142, 

146 
interaction, 147 
T4 encoded, 146 
virus encoded, 149-150 

Ribosome, mRNA and synthetase associa
tion, 200 

RK2 
DNA replication, 101 
plasmid in vivo, 102 

RNA 
complex, 48 
Polymerase, 158 
processing, 46 
splicing, 48 

Saccaromyces cerevisiae gene disruption, 
376 

Sandwich model, 311 
Sandwich strueture, high DNA concentration 

313 
SDS-Polyacrylamide gel electrophoresis, 

194 
Sea urchin 

egg enzyme, 20 
metabolism, 24 

Sequence homology, 265 
Shikimate and phenylpropanoid interface, 36 

dehydrogenase, 34 
metabolism 

aromatic, section, 32 
aromatic, segment, 27 
catalyzed, 34 

pathway, 27 
chloroplast and cytoplasm, 38 
dual, 31, 33 
segment, 31 

Somatostatin inhibition, 9 
Spectroscopy analysis, 363 
Spliceosome assembly, 54 

intermediate, 50 
Steady-State importance, 365 
Stromal membrane region, 120 

mutant, 400 
strain, transformed, 3 7 7 - 3 7 9 
to study metabolic processes, 396 
and topoisomerase I, 160 

Substrate 
binding site, 332 
channeling, 131, 132 

vs coupled reactions, 130 
NADH to complex I, 133-134 
in vivo, 134 

elasticity equation, 323 
Succinate dehydrogenase, 252, 390 
Supercoiling 

chromosomal, 155 
growth phase and nutrients, 156 
increased anaerobic condition, 157 
negative, 158 
nucleoid, 156 

SV40 DNA replication in vitro, 207 
Synaptosome, 222 
Synthetase, 199 

complex, 199, 202, 203, 205, 207 
and endoplasmic reticulum, 208 

composition, 201 
dissociation, 202 
free and complex forms, 200 
sequence, 205 
-synthetase interaction, 202, 206 
weight difference, 200 

Tandem chromosomal arrangement, 380 
T4 dCMP hydroxymethylase, 144 
T4 dNTP synthetase complex, 140 
Telophase, late, 44 
Ternary complex formation, 251 
Testicular 

androgen biosynthesis, 334 
hCG effect, 335 

homogenates, 334 
microsomal Suspension in vitro, 336, 337 
P450XVII system, 338 

Thermal stability study, 207 
Three-dimensional 

DNA view, 307 
strueture, 259 

Threonine residue, 120 
Thylakoid 

development, 120 
inner chloroplast membrane, 114 
lumen, 115 
membrane, 114, 115, 120 

functional complex diagram, 118 
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lateral heterogeneity, 116 
and peripheral LHCII, 119 
region appressed and non-appressed, 

117 
pea plant, 119 

T4 model, 140 
Topoisomerase 

I 
activity, 154 
negative supercoiling, 158 

and bacterial chromosome, 155 
and helical tension, 159 

Torsional rigidity, 314 
T4 phage-infected E. coli, 140, 146 
Tracer 

diffusion coefficient, 296, 298 
Sedimentation equilibrium, 295 

Transcript expression, methotrexate-ampli-
fied clones, 6 

Transcription 
complex, 159 
control, 181 
initiation influence in vitro, 157 
supercoiling 

affect, 158 
change, 159 
factor, 152 

tet gene, 159 
Transduction, proton-mediated, 283 
Translational diffusion 

coefficents, 296 
protein, 296 

Translocation 
contact site, tool, 61 
cytochrome b2, 59 
site, 57 

Transmembrane primary reeeptor site, 130 
Triphosphate synthesis, lack, 97 
TROP Syndrome, 183, 185 
Trp repressor 

binding protein, 189, 194 
and cytoplasmic protein, 185 
electrophoetically purified, 183 
level mechanism, 194 
protein E. coli, 181, 183 

replicas, 182 
Tryptophan, 27 

synthase, 259, 341 
a/ß barrel fold, 263 
a2 complex, 262 
Channel ability, 267 
complex channeling, 260 
complex tunnel, 269 

Tryptophanyl synthetizing complex, 246 
Tubulin, 215 
Tunnel connecting aß subunit, 269 
Turnover elasticity coefficent, 282 
Tyrosine, 27 
Ubiquinolxytochrome c 

deficiency, 79 
reductase, 7 1 - 7 3 

analysis, 78 
stable, 78 
synthesis, 75 

Ultracentrifugation, 392 
Vaccinia virus 

growth, 149 
plaque-forming ability, 150 

Volume, equilibrium association, 2 9 3 - 2 9 4 
Volume occupancy 

fractional, 299 
protein concentration, 292 

Volume theory predictions, excluded, 292 
Western blot 

analysis 
dehydrogenase, 381 
Polymerase detection by, 175 

antibody purity check, 232 
64 kda protein, 89, 90 

X-ray 
crystallography, 260, 399 
strueture, tryptophan synthase, 270 

Yeast 
enzyme, 384 


