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Preface 
The central role that membranes play in cellular processes is becoming in-

creasingly apparent. The present Symposium contains contributions on vari-
ous aspects of involvement of membranes in growth and development. These 
include genetic determinants and the synthesis and assembly of membrane 
constituents such as transport proteins and receptors during cell differentia-
tion and cell growth. Neuromuscular and epithelial development together with 
intracellular organelles are considered. The interplay between various mem
brane Systems and their modulation by cellular control mechanisms are a con-
stant theme of the various chapters. Each contributor considers the historical 
perspectives and the current Status of that particular field. The subjects are 
timely, and it is hoped that others will be stimulated by the new concepts of 
this emerging field. It should also be mentioned that the contributions in this 
volume were presented at the biennial International Conference on Biological 
Membranes held at Crans-sur-Sierre, Switzerland, June 15-19, 1981. 

J.F. Hoffman 
G.H. Giebisch 

L. Bous 

xix 
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Biogenesis of Mitochondrial Membrane Proteins 
Martin Teintze, Bernd Hennig, Manfred Schleyer, Bernd Schmidt, 
and Walter Neupert 

INTRODUCTION 

Eukaryotic cells, in contrast to prokaryotic cells, are divided into a number 
of compartments. By creating these compartments (ie, organelles), the eukary
otic cell gains a host of new properties and capabilities. The presence of specif
ic reaction vessels enclosed by membranes within the cell allows, for instance, 
that metabolic pathways can be used simultaneously in opposite directions or 
that substances (such as Ca+ +) can be sequestered within the cell and released 
when needed to initiate reactions. Ion or proton gradients can also be gener-
ated across the membranes of the organelles to drive the synthesis of sub
stances such as ATP. However, this increase in capabilities brings with it a se-
ries of new problems for the eukaryotic cell. A major one is that the proteins of 
the intracellular organelles are, with few exceptions, synthesized on cytoplas-
mic ribosomes [Chua and Schmidt, 1979]. They must be transported into the 
organelles during or after translation. This immediately raises a series of ques-
tions. The membranes of the organelles are impermeable to most low molecu
lar weight Compounds and practically completely impermeable to macromole-
cules such as proteins. On the other hand, cytoplasmic ribosomes synthesize 
proteins for a number of different organelles in the cell. The cell must there-
fore have mechanisms that specifically insert newly synthesized proteins into 
the proper organeile. 

An explanation of the molecular mechanisms of intracellular protein trans-
port can only be achieved if Single, well-defined proteins that can be assigned 
to one particular cell compartment are followed over the entire path from the 
synthetic origin to the functional site. This requires the isolation and purifica-
tion of these proteins and the preparation of specific antibodies, so that the 
very small quantities of precursors or intermediates involved in the transfer 
process can be found. 
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POST-TRANSLATIONAL TRANSFER OF PROTEINS INTO 
MITOCHONDRIA 

The intracellular transport of quite a few proteins into mitochondria and 
chloroplasts has been studied in this manner [Chua and Schmidt, 1979; Neu-
pert and Schatz, 1981]. Some work has also been done recently on glyoxyso-
mal and peroxisomal proteins [Zimmermann and Neupert, 1980; Frevert et al, 
1980; Roberts and Lord, 1981; Goldman and Blobel, 1978; Lazarow, 1980]. 
The results have shown that the transport into these organelles is posttransla-
tional [Hallermeyer et al, 1977; Harmey et al, 1977; Korb and Neupert, 1978; 
Maccechini et al, 1979; Raymond and Shore, 1979; Morita et al, 1981; Conboy 
and Rosenberg, 1981]. This is in contrast to the cotranslational transfer that 
takes place in the endoplasmic reticulum (ER) to insert proteins into ER mem
branes and into plasma membrane, and to transfer secretory proteins into the 
inner of the ER [Palade, 1975; Blobel and Dobberstein, 1975]. 

There is not one unique mechanism by which proteins are inserted into mi
tochondria after synthesis on free ribosomes; different proteins, even if they 
are subunits of the same enzyme complex, will often use a somewhat different 
mechanism to insert into the mitochondria. There are, however, several unify-
ing features of the transport pathway that have been observed. First of all, ev-
ery protein that has been studied thus far is synthesized as a precursor that is in 
some way different from the mature functional protein. This is of course a 
necessary feature, both for membrane proteins, which must change from a 
form soluble in the cytosol to one soluble in the membrane, and for proteins 
solubilized inside the organeile, which must be irreversibly altered to prevent 
them from leaving their compartment. 
IMPORT OF PROTEINS INTO MITOCHONDRIA OCCURS WITH 
AND WITHOUT PROTEOLYTIC PROCESSING 

Many of the proteins whose transport has been studied are synthesized as 
larger precursors. Their apparent molecular weights exceed those of the ma
ture proteins by anywhere from 500 daltons for subunit VII of the Neurospora 
cytochrome bd complex to 6,000 daltons for cytochrome d and some of the 
mitochondrial ATPase subunits. This additional sequence is then removed by 
a proteolytic enzyme during or after the transfer process. This form of post-
translational transfer with proteolytic processing has been observed, for in-
stance, for ribulose-l,5-bisphosphate carboxylase in chloroplasts [Dobber
stein et al, 1977] and for subunit 9 of the mitochondrial oligomycin sensitive 
ATPase (OS-ATPase) [Michel et al, 1979; Zimmermann et al, 1981] as well as 
many of the subunits of the cytochrome bd complex [Nelson and Schatz, 
1979; Cote et al, 1979] (Teintze et al, unpublished) and subunits of cytochrome 
oxidase [Lewin et al, 1980; Mihara and Blobel, 1980; Schmelzer and Heinrich, 
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1980]. In the case of cytochrome d, the proteolytic processing seems to take 
place in two separate Steps via a form of intermediate molecular weight that is 
already located somewhere within the mitochondria (Teintze et al, unpub-
lished; Ohashi and Schatz, personal communication). On the other hand, sub
unit VI of the cytochrome bd complex appears not to be synthesized as a lar-
ger precursor (Teintze et al, unpublished). 

For proteins that do not have a precursor with a larger molecular weight 
such as cytochrome c, ADP/ATP carrier, and mitochondrial porin [Korb and 
Neupert, 1978; Zimmermann et al, 1979a,b] (Freitag and Neupert, unpub
lished), something eise must trigger a conformational change. In the most ex-
tensively studied example, cytochrome c, it is the attachment of the heme 
group to apocytochrome c that results in a conformational change when the 
protein transverses the outer mitochondrial membrane [Hennig and Neupert, 
1981] (Fig. 1). The fact that apocytochrome c changes its conformation upon 
attachment of the heme group to form holocytochrome c is demonstrated by 
the absence of cross-reactivity between antibodies prepared against apo- and 
holocytochrome c in our laboratory [Korb and Neupert, 1978] and by the fact 
that cold excess holocytochrome c cannot compete with radioactive apocyto
chrome c for binding to and transfer into Neurospora mitochondria [Hennig 
and Neupert, 1981]. In the cases of the ADP/ATP carrier and ATPase subunit 
9, the precursors synthesized in vitro in a heterologous cell-free system were 
found to be present as soluble aggregates with molecular weights in the ränge 
of 100,000 to 500,000 [Zimmermann and Neupert, 1980b] (Schmidt and Neu
pert, unpublished). The mature proteins are soluble only in the presence of de-
tergents and cannot be used to inhibit the transfer of the precursors into 
mitochondria. 

MUTUAL RECOGNITION OF PRECURSORS AND ORGANELLES IS 
MEDIATED BY RECEPTORS ON THE MITOCHONDRIAL SURFACE 

The precursor proteins, which are synthesized on free cytoplasmic ribo
somes, must have a method of recognizing the organeile for which they are in-
tended and a method of entering into or transversing a membrane which is 
normally impermeable to proteins. The most logical mechanism for such a 
process is the presence of a specific receptor in the outer membrane of the or
ganeile. There is, in fact, considerable evidence to support the existence of 
such receptors (although none have been isolated thus far). Neurospora pro
teins can be synthesized in vitro and the postribosomal supernatant incubated 
with Neurospora mitochondria under conditions where the precursors to the 
mitochondrial proteins are transferred into the mitochondria. When the mito
chondria are then reisolated, washed, and lysed, and antibodies to a specific 
protein are added, precursors bound to the mitochondria are immunoprecipi-
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Fig. 1. A possible mechanism for the assembly of cytochrome c. Apocytochrome c is synthe
sized on free cytoplasmic ribosomes and then bound to a receptor in the outer mitochondrial 
membrane in such a way that the heme group can be attached by a heme lyase in the intermem-
brane space. Attachment of the heme group causes a conformational change that completes the 
transfer and results in mature, functional holocytochrome c. 
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tated along with the mature protein (Fig. 2). If the mitochondria are treated 
with Proteinase K prior to lysis, the precursors are degraded whereas the ma
ture proteins are not. The preferential sensitivity of precursor proteins to 
added proteases enables one to distinguish the bound precursor from the ma
ture protein when both have the same molecular weight, as in the case of the 
ADP/ATP carrier. If the transfer in the reconstituted system is blocked by the 
presence of energy inhibitors such as valinomycin and carbonyl Cyanide 
m-chlorophenyl hydrazone (CCCP), only the bound precursor is found [Zim
mermann et al, 1981]. 

This suggests that the precursors are bound by some type of receptor in the 
outer membrane and that the transfer is energy-dependent, whereas the bind-
ing of the precursor is not. It is possible that in vivo a precursor may be recog-
nized by its receptor before synthesis is completed [Ades and Butow, 1980], 
but the transfer appears to be always posttranslational. In the case of cyto
chrome c, the presence of specific saturable binding sites can be shown because 
excess unlabeled apocytochrome c, but not holocytochrome c, will compete 
with labeled apocytochrome c and inhibit its transfer into the mitochondria 
[Hennig and Neupert, 1981]. The transfer of apocytochrome c does not seem 
to be energy-dependent, but it can be inhibited by deuterohemin, which cannot 
be covalently attached to the protein because it lacks the vinyl groups of the 
natural prosthetic group protoheme. In the presence of excess deuterohemin, 
bound apocytochrome c accumulates on the mitochondria. If these are then 
reisolated and resuspended in a medium containing protohemin, but no addi-
tional precursor, the bound apocytochrome c is transferred into the mitochon
dria and converted to holocytochrome c [Hennig and Neupert, 1981] (Table I). 

THE TRANSPORT OF MANY PROTEINS INTO MITOCHONDRIA IS 
DEPENDENT ON THE MEMBRANE POTENTIAL 

The import of many cytoplasmically synthesized proteins into mitochon
dria is energy-dependent. This was shown for the ADP/ATP carrier and sub
unit 9 of the OS-ATPase [Zimmermann et al, 1981] and for cytochrome d and 
subunit V of the cytochrome bei complex (Teintze et al, unpublished) in in vi
tro transfer experiments using Neurospora mitochondria. In addition, the ener
gy dependence of the transfer of subunits a and ß of FrATPase, cytochrome 
d, and subunit V of the cytochrome bd complex has been investigated using 
pulse-chase experiments in vivo with yeast cells, and it was concluded that pro-
cessing of the precursor proteins was dependent on the ATP level in the mito
chondria, rather than on the membrane potential [Nelson and Schatz, 1979]. 
All these proteins are located within or on the matrix side of the inner mito
chondrial membrane. The energy dependence of the transfer of the ADP/ATP 
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TABLE I. Binding of Apocytochrome c to Receptor Sites on Mitochondria8 

Cytochrome c bound to mitochondria 
Counts/min per % Total 3H-cyto-

mitochondrial protein chrome c of control 
Apocyto- Holocyto- Apocyto- Holocyto-

Additions chrome c chrome c chrome c chrome c 

None (control) 682 4168 14 86 
4- Deuterohemin (10 nmol/ml) 4330 1185 89 24 
Deuterohemin (10 nmol/ml), then 

mitochondria washed with 0.44 M 
sucrose, 1 mM EDTA, 10 mM 
Tris/HCl, pH 7.4 3752 1120 77 23 

+ Deuterohemin (10 nmol/ml), then 
incubation with protohemin 
(10 nmol/ml) 1917 2934 40 60 

+ Deuterohemin (10 nmol/ml), then 
incubation with apocytochrome c of 
Neurospora crassa (10 nmol/ml) 710 1160 15 24 

4- Deuterohemin (10 nmol/ml), then 
incubation with holocytochrome c of 
Neurospora crassa (10 nmol/ml) 3742 1200 77 25 

aApocytochrome c was synthesized in a cell-free System of Neurospora crassa in the presence of 
3H-leucine. A postribosomal supernatant was prepared which contained the 3H-labeled apocy
tochrome c. Mitochondria were isolated from Neurospora cells and incubated with the postribo
somal supernatant in the absence or presence of deuterohemin for 15 min at 25°C. Then 
mitochondria were reisolated. When indicated they were resuspended in fresh unlabeled postri
bosomal supernatant. Then protohemin, apocytochrome c, or holocytochrome c was added and 
incubation was continued for 15 min. Mitochondria were then reisolated. From one-half of each 
of the various mitochondrial samples apocytochrome c was immunoprecipitated, and from the 
other half holocytochrome c, employing specific antibodies. Immunoprecipitates were analyzed 
by SDS gel electrophoresis, and radioactivity in the cytochrome c peak was determined. The sum 
of the radioactivities in apocytochrome c and holocytochrome c in the sample without any addi-
tion was set at 100%. 

Fig. 2. Transfer in vitro and proteolytic processing of cytochrome bc, complex subunits. Ra-
dioactive precursors to cytochrome bc, complex subunits were synthesized in a reticulocyte 
lysate cell-free System, and the postribosomal supernatant was incubated with Neurospora mito
chondria for 1 h at 25°C. The mitochondria were then separated from the supernatant by centri-
fugation and both fractions were adjusted to 1 °7o Triton, 0.3 M NaCl. Immunoprecipitation was 
then carried out using antibodies against the individual subunits, foilowed by SDS gel electro
phoresis and autoradiography. The antibodies precipitated both the precursors (open arrows) 
and the mature proteins (black arrows); the arrow labeled I points to the intermediate form of 
cytochrome c, (see text). 
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carrier (Fig. 3) and of subunit 9 of the OS-ATPase was studied in detail in a 
reconstituted System employing isolated Neurospora mitochondria and the 
postribosomal supernatant of a rabbit reticulocyte lysate incubated with Neu
rospora RNA and (35S)methionine (Schleyer et al, unpublished). In these ex
periments, the uncoupler CCCP and the ionophore valinomycin (which break 
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Fig. 3. The transport of the ADP/ATP carrier is dependent on the membrane potential. La
beled precursors were synthesized in a reticulocyte lysate cell-free system, and the postribosomal 
supernatant was incubated with Neurospora mitochondria for 1 h at 25 °C. The mitochondria 
were reisolated and then lysed in 1% Triton, 0.3 M KCl. The ADP/ATP carrier was immunopre-
eipitated, electrophoresed on SDS gels, and autoradiographed. One or more of the following 
were present during the incubation when indicated: 2.6 mM ATP, 2.4 fM carboxyatraetyloside 
(CAT), 12.5/iMCCCP, 5/iMoligomycin. ProteinaseK(1 mg/ml, 30min, 25°C)wasused todi
gest the precursor bound to the mitochondria. The mature protein after transfer is protease-
resistant. 
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down the membrane potential) inhibited the transfer of these proteins into the 
mitochondria. When oligomycin (which blocks the OS-ATPase) was used to-
gether with valinomycin to ensure that the ATP in the mitochondria was not 
being hydrolyzed, the transfer was still blocked. CCCP together with oligomy
cin and ATP also had the same effect, showing that even when ATP is present 
at a high level in the mitochondrial matrix, the transfer will not take place in 
the absence of a membrane potential [Heidt et al, 1972]. Carboxyatractyloside 
(which blocks the ADP/ATP carrier) together with oligomycin cannot inhibit 
the transfer, although the mitochondria should be depleted of ATP [Klingen
berg, 1976]. This confirms that it is the membrane potential, rather than ATP, 
that is required for the import of the proteins into the mitochondria. Cyto
chrome c, located in the intermembrane space on the cytoplasmic side of the 
inner membrane, and the outer membrane porin both do not seem to require 
energy for their import [Zimmermann et al, 1981] (Freitag and Neupert, un
published). This is to be expected, since they are located outside the potential 
across the inner membrane. 

TRANSFER OF NEUROSPORA PROTEINS INTO RAT LIVER 
MITOCHONDRIA 

When labeled precursors to Neurospora proteins (in the postribosomal su
pernatant of a rabbit reticulocyte lysate incubated with Neurospora RNA) 
were incubated with isolated rat liver mitochondria, the results were similar to 
those obtained with Neurospora mitochondria. The precursors of the ADP/ 
ATP carrier and the mitochondrial porin were transferred to a protease-resis-
tant location in the mitochondria (Freitag and Neupert, unpublished; Schleyer 
et al, unpublished). The precursor of subunit 9 of the OS-ATPase and subunits 
I and V of the cytochrome bd complex were processed to the molecular 
weights of the mature proteins (Teintze et al, unpublished; Schleyer et al, un
published); the precursor to cytochrome c, seems to have been processed only 
to the molecular weight of the intermediate form (see above) (Teintze et al, 
unpublished). 

The energy dependence of the import into rat liver mitochondria also ap-
peared to be similar to that in Neurospora. These results indicate that the 
structures of the receptors and proteases involved in the transfer of proteins in
to mitochondria, as well as the proteins themselves, must be highly conserved. 

CONCLUSION 
In summary, proteins appear to be transported into mitochondria by the 

following mechanism. First, the protein is synthesized on free cytoplasmic ri
bosomes as a precursor with or without an additional sequence, but definitely 
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with a conformation different from that of the mature functional protein. 
Next, the precursor protein is bound to a receptor on the outer mitochondrial 
membrane. The protein is then translocated across the membrane into the in-
termembrane space, or possibly into the inner membrane or the matrix by way 
of a contact site between the two membranes. If the protein enters or crosses 
the inner mitochondrial membrane, this process is dependent upon the potential 
across this membrane and may also involve an additional protein in the mem
brane to catalyze the translocation. Düring or after the transfer from the outer 
membrane receptor to the functional site, any additional sequences are re-
moved from the precursor and prosthetic groups are attached, if required. The 
components of this mechanism seem to be common to mitochondria from spe-
cies as varied as yeast, Neurospora, and rat. 
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surface and cytoplasmic, 89-103 

Dopamine-/3-hydroxylase (BDIT), 340 

Echinoderms, sperm binding in, 192-
195 

Eel, electric, 261, 264-265, 287-294 
Egg(s) 

activation by calcium influx, 171-
173 

activation by sperm in sea urchin, 
185, 195-207 

attraction to sperm in siphono-
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phores, 185-195 
fish, 171-172 

Ektacytometry, 121-133 
Elastase, 24-29 
Electric eel (Electrophorus electricus), 

261, 264-265, 287-294 
Electric ray (Torpedo, Narcine), 240-

244, 274, 287-294 
Electrical qualities of muscle mem

brane, 321-326 
Elliptocytosis, 121, 125, 131-133 
Embryo(s) 

sea urchin, gastrulation, 420 
tissue interactions, 430 

Endocytosis, receptor-mediated, and 
iron metabolism, 495-518 

Endoplasmic reticulum (ER), 479-489 
membranes, 329-334 
rough (RER), 4, 261-262, 283 
translocation of nascent peptides 

across, 24-27 
Endotoxins, 311 
Energy requirements in protein trans

port, 18-20, 41-46, 50 
Enzyme, heme, 496; see a l s o specific 

enzymes 
Epidermal growth factor (EGF), 212-

216, 359-371, 393-395 
Epithelium 

glandulär, 413-426 
leaky, 551 
tight vs leaky, 529 

Epithelial cells 
assymetry, 525-535 
polarized, 89-103 

Erythrocyte membrane protein deficien-
cy, 121-133 

Erythroid cell differentiation, 60-61 
Escherechia coli, 4-10, 15-20 
17 ß Estradiol, 393 
Exocrine glands, morphogenesis of, 

414-421 
Extracellular matrix (ECM), and kidney 

differentiation, 429-439 

F-actin, 122 
Ferriheme, 506 

Ferritin, 99-102, 241, 496-518 
Fertilization 

calcium release in, 176-177 
cytoplasmic alkalinization at, 179 
intracellular calcium in, 171-181 
in marine invertebrates, 185-207 
model for cell-surface mediated 

change, 171-181 
potassium in, 174-175 

Fetal calf serum, 212-215 
Fibroblasts, 374-376 

human foreskin, 364-365 
mouse, 459-476 
rat, 459-476, 497-501 

Fibronectin, 292, 416, 430, 432-439 
Fish eggs, 171-172 
Fluorescent lipid probes, 527-535 
Fluoride, 159-160 
Frog neuromuscular Synapse, 239-244 
Furosemide, 585-587 
G/F protein, 160-161 
/3-Galactosidase, 4-5 
Galactosyltransferase, 508-509 
Gangliosides, 307-308, 311-317 
Gene fusion in protein localization, 4 -

10 
Germinal vesicle breakdown (GVBD), 

139-150, 158-163, 166 
Globin, 506 
Glucagon, 578 
Glucocorticoids, 339, 389-390 
Glucose-6-phosphohydrolase, 329-334 
Glycogen, 330-331 
Glycophorin A, 480 
Glycoproteins 

plasmalemmal, 413-426 
Tamm-Horsfall, 437 
viral envelope, 480 

Glycosaminoglycans, 414, 430 
Golgi 

apparatus, 79, 608 
locus of ACh receptors, 261-262, 

282-283 
complex, 103, 479-489 
region, 445 

Growth control 



Index / 617 

by cell-cell contact, 373-385 
regulation in MDCK cell line, 565-

595 
and transport function, 569-595 

Guanosine diphosphate (GDP), 159 
Guanosine triphosphate (GTP), 159 
Haptoglobin, 496 
Heme enzymes, 496 
Heme-hemopexin complexes, liver up-

take of, 505-506, 511-516 
Hemoglobin-haptoglobin complexes, 

liver uptake of, 505-511, 517 
Hemoplexin, 496 
Hemosiderin, 496 
Hepatoma, cultured cells, 460-476 
Hexamethylene bisacteamine (HMBA), 

555-558 
ß-Hexosaminidase, 81 
Hexose transport, sodium-cation-

dependent, 551-566 
Hormone(s), 311 

and growth, 573 
responsiveness, and cell shape, 389-

400 
thyroid-stimulating, 403-410 

Hydrocortisone, 390, 394-400, 578, 
581, 592 

Hydrogen, 215-216 
cation, 584-595 
role in egg activation, 200-206 

Hyppocampus, 340 

Immunoglobulin(s) 
IgA, 507, 510-511 
IgM, 490-491 

Immunologie identification of intra
cellular postsynaptic protein, 
239-244 

Innervation, polyneuronal, 247-256 
Insulin, 82-83, 362 

action on oocytes, 163-167 
and cell shape in cultured mammary 

cells, 389-390, 393-395 
and growth regulation in MDCK cell 

line, 573, 578-581, 592, 594 
-like growth factor (IGF), 167 

Interferon, 311 
Intestinal mueosa, 89-103 
Intramembrane particles (IMP), 220-

224 
Inulin, 500 
Invertebrates, marine, fertilization in, 

185-207 
Iodide, 409 
Ions. See specific ions 
Iron 

metabolism, and receptor mediated 
endocytosis, 495-518 

overload, 495, 516 
Isobutylmethylxanthine, 578 
Isozymes, BB, rabbit, 387-388 

Junction, tight, 525-535, 553, 575 

Kidney 
cortex, 89-103 
morphogenesis of, 431-439 
see a l s o Cell line(s) 

a-Lactalbumin, 390, 392-400 
0-Lactamase, 17-18 
Lactogen, placental, 390 
Lactoperoxidase, 61-62 
Lambda receptor, 3-13 
Laminin, 292, 420, 424, 430-439 
Lipids, and acetylcholine reeeptors, 

287-294 
Lipoxygenase, 177-178, 181 
Liver 

rat, 459-476, 479-491 
uptake of heme-hemopexin com

plexes, 505-506, 511-516 
uptake of hemoglobin-haptoglobin 

complexes, 505-511, 517 
Lobuloalveolar differentiation, 389-400 

Magnesium cation, 584-595 
Maleyl, 107 
Maltose, 3, 5, 16-20 
Mammals, brain development, 337-345 
Mammary gland, 389-400 
Manganese, 52, 160, 584-595 
Mannose, 445-455 
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Marine invertebrates, fertilization in, 
185-207 

Mechanism of calcium release at fertili
zation, 176-177 

Meiosis, oocyte, 139-150 
Membrane(s) 

acetylcholine receptors, localization 
of, 287-294 

erythrocyte, protein deficiency, 121-
133 

growth in neuroblastoma cell cycle, 
217-234 

inhibition of cell growth, 375 
mitochondrial membrane, biogenesis 

of, 37-46 
muscle, electrical qualities of, 321 — 

326 
plasma 

glycoconjugate metabolism, 459-
476 

lateral diffusion, 525-535 
steroid-growth hormone interac-

tion with, 157-167 
potential and permeability in neuro

blastoma, 224-227 
protein assembly, 23-34 
see a l s o Endoplasmic reticulum, 

Intramembrane particles 
Metabolism 

brain, slow-wave sleep, 329-334 
glycoconjugate, in plasma mem

brane, 459-476 
iron, and receptor mediated endo-

cytosis, 495-518 
Metahemoglobin, 480-481 
Methimazole (MMI), 407-410 
Methionine, 349, 353, 593 
Methylamine, 498-504, 514-516 
ce-Methylaminoisobutryic acid (meAIB), 

556 
ot-Methylglucoside, 551-555, 559-565 
Methylisobutyl xanthine (MIX), 555-

559, 562-565 
Mitochondria, 479-489 

membrane protein of, biogenesis of, 
37-46 

protein transport in, 49-58 
rat liver, 45-46 
surface receptors, 39 
yeast, 49-58 

Moliuscs, 140-142 
Monensin, 186, 271, 278, 280-284 
Monoclonal antibodies. See Antibodies, 

monoclonal 
Morphogenesis 

exocrine glands, 414-421 
kidney, 431-439 
pancreas, 413-426 

Morphogenesis, nornal exocrine gland, 
414-421 

Mouse 
athymic nude, 569-575 
fibroblasts, 459-476 
myeloma (NSI), 363 
teratocarcinoma cells, 501 
Ii chains, 490 

Mucosa, intestinal, 89-103 
Muggiaea kochi, 188-191 
Muscle(s) 

cultured 
acetylcholine receptors in, 259-

264, 278-284 
acetylcholinesterase in, 259, 

264-284 
EDL, 322-326 
extensor digitorum longus, rat, 299-

308 
membrane, electrical qualities of, 

321-326 
rat, 247-256 
reinnervation, Synapse formation 

and repression in, 299-308 
Mutations, signal sequence, suppres-

sors of, 10-13 
Myeloma, mouse, 363 
Myosin, 96-98, 388 
Myotonia, hereditary, 321 

NAD, 179 
NADH-cytochrome b5 reductase, 479-

491 
Nafenopin (carcinogen), 422 
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Narcine. See Electric ray 
Nerve condition, pharmacologic block 

of, 321-326 
Nerve growth factor (NGF), 315, 338-

339 
Nerve regeneration, 299-308 
Neuraminidase, 601-605 
Neuroblastoma cells, 211-234, 312-315, 

317 
Neuromuscular junction in developing 

rat, 247-256 
Neuromuscular Synapse, frog, 239-244 
Neuronal cell differentiation, 311-317 
Neurones, 339-343 
Neurospora, 38-46 
Nigericin, 271, 278, 280-284 
Norepinephrine, 340-345, 578 

Oligomeric protein assembly and trans
port, 27-34 

Oligosaccharides, high-mannose, 445-
455 

Oncogenic RNA viruses, 367 
Oocyte(s) 

insulin action on, 163-167 
maturation in Xenopus laevis, 157-

167 
meiosis reimitation, calcium in, 139— 

150 
as model for growth regulation, 167 
sea urchin, 171-181 

Ornithine decarboxylase, 370, 593 
Ouabain, 367 

binding, 72-74, 79-84 
-sensitive potassium ion uptake, 

228-229 
Pancreas, morphogenesis of, 413-426 
Papaverine, 157 
Paracentrotus lividus. See Sea urchin 
Peptides, nascent, translocation across 

ER, 24-27 
Permeability, membrane, in neuro

blastoma cells, 224-227 
Pharmacologic nerve block, 321-326 
Phenothiazines, 548 

Phenylhydrazine-induced anemia, 61, 
64-67 

Pheochromocytoma cells (PC 12), 308, 
315-317 

Phloretin, 331 
Phlorizin, 331 
Pholas, 140-142 
Phosphatidyl ethanolamine, 116-117 
Phosphatidylcholine, 116-117 
Phosphatidylserine, 115-117 
Phospholipase, 177-178 
Phosphodiesterase, 148-149, 157 
Phosphoglucomutase, 514 
Photoreceptor cells, 352-353 
Pig, kidney cell line LLC-PK,, 526-535, 

543-549, 551-566 
Placental lactogen, 390 
Plasma membrane 

glycoconjugate metabolism, 459-476 
lateral diffusion, 525-535 
steroid-growth hormone interaction 

with, 157-167 
Plasmalemmal glycoproteins, 413-426 
Platymonas, 191 
Pleurodeles, 147 
Polarization of cultured thyroid cells, 

403-411 
Polyneuronal elimination, 247-256 
Polyneuronal Innervation, 247-256 
Polypeptide transmembrane transfer, 9 
Potassium 

ions, 278 
and growth control in neuro

blastoma cells, 214-216, 
224-231 

role in egg activation, 201-207 
and salt transport in MDCK cells, 

584-595 
uptake, ouabain-sensitive, 228-

229 
see a l s o Sodium 

Prekeratin, 92-93, 96-98 
Progesterone, 141-149, 157-167, 389-

390 
Prolactin, 390, 393-400 
Proline, 420 
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Prostaglandin(s), 578, 580-581, 590-
594 

E2, 314 
F 2 a , 393 

Protein A, 487 
Protein(s) 

anion transport, 59-69 
band4„ 121-133 
deficiency, erythrocyte membrane, 

121-133 
export in E. coli, 15-20 
G/F, 160-161 
intracellular postsynaptic, 239-244 
localization, 4-10, 20 
membrane, assembly in, 23-34 
mitochondrial 

membrane, biogenesis of, 37-46 
transport, 49-58 

NADH-cytochrome b5 reductase, 
479-491 

oligomeric, assembly and transport, 
27-34 

-phospholipid interaction, 113-117 
transport, signal hypothesis of, 3-13 
see a l s o Glycoproteins 

Proteoglycans, 430, 435 
Puromycin, 269-270, 278 
Pyridoxal-P, 331 
Pyrophosphatase, 489 
Rabbit 

BB isozyme, 387-388 
mammary cell hormone responsive-

ness, 389-400 
Rana pipiens, 143, 148 
Rat 

extensor digitorum longus muscle, 
299-308 

fibroblasts, cultured, 497-501 
hepatic cells, 459-476 
liver, 479-491 
soleus muscle, 247-256 

Ray, electric (Torpedo, Narcine), 240-
244, 261, 264-265, 274, 287-294 

RCA, 418 
Receptor(s) 

acetylcholine, 338 
and calcium, 252-253, 256 
in cultured muscle, 259-264, 278-

284 
and growth regulation, 378, 383, 

388 
immunologic study of, 239-244 
membrane localization of, 287-

294 
EGF, monoclonal antibodies vs, 

362-366 
lambda, 3-13 
lectin, 416-418 
-mediated endocytosis and iron 

metabolism, 495-518 
mitochondrial, 39 

Red cell(s) 
deformability, 124, 128-130 
and iron metabolism, 496 

Regeneration, nerve, 299-308 
Rhabdovirus, 609 
Salt transport, monovalent, in MDCK 

cells, 584-595; see a l s o Calcium, 
Potassium, Sodium 

Sea urchin, 140-142, 144, 171-181 
embryo gastrulation, 420 
spermatozoa, 185-186 

Secretory component, 390, 392 
Selenium, 578 
Self-assembly mechanisms, 15-16 
Serum 

fetal calf, 212-215 
Stimulation of neuroblastoma cells, 

212-216 
Sialoglycoconjugates, 418 
Signal hypothesis, 3-13, 15-20 
Signal sequence mutations, suppressors 

of, 10-13 
Siphonophores, sperm-egg attraction, 

185-195 
SITS, 331 
Sleep and brain metabolism, 329-334 
Sodium ions, 278 

and growth control 
in MDCK cells, 584-595 
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in neuroblastoma cells, 214-216, 
224-231 

and hexose transport, 551-566 
potassium pump activity in neuro

blastoma cells, 227-231 
role in egg activation, 197-207 
see a l s o ATPase, (Na + ,K + ) ; Salt 

transport 
Spectrin, 61, 65, 107-117, 122, 127 
Speract, 185 
Sperm acrosome reaction, 139 
Spermatozoa 

attraction to egg in siphonophores, 
185-195 

binding in echinoderms, 192-195 
sea urchin, 185-186 
swimming Stimulation, 185-186 

Spherocytosis, hereditary, 121 
Sphingomyelin, 116-117 
Spisula, 140-142 
Staphylococcus aureus rosettes, 64-65 
Starfish, 140-145, 149, 171 
Steroid(s) 

adrenal, 542 
-growth hormone interaction with 

plasma membrane, 157-167 
see a l s o Hormone(s), specific 

Steroids 
Succinyl, 107 
Synapse(s) 

formation, 337-339 
formation and repression in muscle 

reinnervavation, 299-308 
frog neuromuscular, 239-244 
reorganization, 247-256 

Taurine in CNS development, 349-354 
Teratocarcinoma cells, mouse, 501 
12-0-Tetradecanoylphorbol-13-acetate 

(TPA), 555-558 
Tetrodotoxin (TTX), 322-326 
Thalassemia, and iron overload, 495-

518 
Theophylline, 157, 555-557 
Thyroglobulin, 403, 407 
Thyroid, 403-411 

Thyrotropin, 403, 405, 407 
Tight junction, 525-535, 553, 575 
Toad 

bladder, 537-542 
cell line, TB6c, 538-542 
cell line TBM, 538-542 
kidney, 537-542 
kidney cell line A6, 526-535 

Torpedo. See Electric ray 
Toxin(s) 

o>Bungarotoxin, 240, 261-264, 277-
281, 289, 383 

cholera, 314 
tetrodotoxin (TTX), 322-326 
see a l s o Endotoxins 

Transferrin, 390, 392-400, 578, 580-581 
Translocation of nascent peptides 

across ER, 24-27 
Transmitter release in rat muscle, 255 
Trifluoperazine, 150, 548 
Trigger hypothesis, 15-20 
Triiodothyronine, 578, 581, 592 
Triiodotyronine, 393 
Trypsin-insensitive domain (TID), 289 
Tubularia, 189 
Tumor Promoters, 555, 566. See a l s o 

Carcinogenesis; Virus(es), 
oncogenic 

Tumorigenicity of various cell lines, 572 
Tunicamycin, 274-275, 278-279, 418-

419, 436 
Urechis, 140-142 

Vasopressin, 543-549, 578 
Vectorial translation, 50 
Verapamil, 174 
Vesicular Stomatitis virus, 59, 600-609 
Villin, 90-93, 98 
Vimentin, 241 
Vinblastine, 150, 321 
Vincristine, 321 
Virus(es) 

envelope proteins, 480 
enveloped, 102 
enveloped, entry into epithelial cell 
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line, 599-609 
fowl plague, 600-609 
influenza, 600-603 
Moloney sarcoma, 575 
Oligosaccharides, biosynthesis of, 

445-455 
oncogenic RNA, 367 
rhabdovirus, 609 
Semliki Forest, 59, 454, 599-609 
Sendai, 599 
Sindbis, 59, 445-455 

SV40, 572 
Toga, 454 
vesicular Stomatitis, 59, 600-609 

von Gierke disease, 330-331 
X537A, 271, 278, 280-284 
Xenopus laevis, 143, 148, 157-167 
Yeast, 46 

mitochondria, 49-58 
petite, 51-56 


