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[8] Mitochondrial Ribosomes of Neurospora crassa:
Isolation, Analysis, and Use

By W. NEUPERT, F. MILLER, R. MICHEL, and G. HALLERMAYER

Introduction

Mitochondrial ribosomes are central constituents of the mitochondrial
transcription-translation system which is linked to the mitochondrial
DNA.!"3 The functional and structural characteristics of Neurospora
mitochondrial ribosomes have been intensively investigated. They were
the first mitochondrial ribosomes to be isolated and positively charac-
terized as mitochondrial.®” They represent a good system for the study of
mitochondrial ribosomes and their reactions from a variety of reasons: (a)
they can be isolated in high quantities from fast-growing Neurospora cells;
(b) they can be obtained in pure condition, since it is possible to remove
cytoplasmic ribosomes and membraneous material; (c) mutations in
Neurospora affecting ribosome structure and functions are available. On
the other hand, there are a number of allied problems in the biogenesis of
mitochondria in which a’knowledge of mitochondrial ribosomes is a pre-
requisite to a meaningful experimental approach.

' P. Borst and L. A. Grivell, FEBS Let. 13, 73 (1971).

2 P. Borst, Annu. Rev. Biochem. 41, 333 (1972).

3 T. W. O’Brien and D. E. Matthews, Handb. Genet. 5, 535 (1976).

* N. G. Avadhani, F. S. Lewis, and R. J. Rutman, Sub-Cell. Biochem. 4, 93 (1975).

> W. Neupert, in ‘‘Horizons in Biochemistry and Biophysics’ (E. Quagliariello, F. Pal-
mieri, and T. P. Singer, eds.), Vol. III, p. 257. Addison-Wesley, Reading, Massachusetts,
1977.

% H. Kiintzel and H. Noll, Nature (London) 215, 1340 (1967).

“M. R. Rifkin, D. D. Wood, and D. J. L. Luck, Proc. Natl. Acad. Sci. U.S.A. 58, 1025
(1967).

Copyright © 1979 by Academic Press, Inc.
METHODS IN ENZYMOLOGY, VOL. LV1 All rights of reproduction in any form reserved.
ISBN 0-12-181956-6
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Isolation of Mitochondrial Ribosomes

Growth of Neurospora Cells and Isolation of Mitochondria. Growth of
mycelia and procedures to break cells are described in a separate article
of this volume.® Neurospora cells should be grown until they reach early
or middle log phase. The cells are harvested by filtration and then washed
two times with ice-cold isolation medium (about 10 ml/g wet weight). The
medium for isolation of mitochondria contains EDTA to avoid massive
contamination of mitochondria by cytoplasmic ribosomes.

Sucrose, 0.44 M
EDTA, 0.002 M
Tris-HCI, pH 7.5, 0.01 M

Mitochondria are isolated from the cell homogenate according to the
flow diagram shown in Fig. 1. They should be washed in isolation medium
at least three times, by gently resuspending them in a glass-Teflon potter
and resedimenting them, to reduce the amount of contaminating cyto-
plasmic ribosomes to less than 2-4%.

All chemicals should be reagent grade and all operations should be
carried out at 0°—4°.

Isolation of Ribosomes. The final mitochondrial pellet is resuspended in
AMT buffer to a protein concentration of 1-2 mg/ml; 0.15 volume of 20%
Triton X-100 (Sigma Chemical Co., St. Louis, Missouri) in AMT is added.

NHCI, 0.1 M
MgCl,, 0.01 M
Tris-HCI, pH 7.5, 0.03 M

The cleared suspension is centrifuged for 20 min at 48,000 g ... Usually a
small pellet containing mainly cell walls and unbroken cells is discarded.
The ribosomes are pelleted from the lysate by centrifuging the supernat-
ant through a cushion of 1.4 M sucrose in AMT. In a 10- to 13-ml cen-
trifuge tube, a 2-ml cushion is adequate. Centrifugation depends on rotor
and centrifuge used. Using the Spinco 50Ti rotor, 2 hr at 50,000 rpm
(226,000 g.ax) give a good ribosomal pellet. Use of a sucrose cushion
greatly improves the purity of the ribosomes. In the absence of a cushion,
the ribosomal pellet contains considerable amounts of yellow mem-
braneous material.

Centrifugation of the clarified mitochondrial lysate can also be per-
formed in 1.5-ml reaction tubes made of polyethylene (e.g., Eppendorf-
Geratebau, Hamburg, Germany) when small amounts of ribosomes are to
be isolated. The tubes are placed in adaptors which fit into a Spinco 50Ti

8 W. Sebald, S. Werner, and H. Weiss, this volume [5].
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rotor and which have about half the height of a 13.5-ml tube. The holes
of the adaptors are filled with water before setting in the tubes, so that
they are floating. The tubes may be run with or without caps.

After centrifuging down the ribosomes, the supernatant is removed by

suction. The surface of the colorless ribosomal pellet is gently rinsed by
carefully overlaying about 1 ml of AMT buffer. Care is taken that no
residue of the lysate remains at the wall of the centrifuge tubes. Usually
the tubes are placed upside down on filter paper for about 5 min. The
ribosomes are resuspended in AMT buffer (about 0.1 ml per 10-ml tube)
by gently shaking the tubes for about 5 min. The ribosomal suspension is
collected and subjected to a clarifying spin for 5 min at 10,000 g ... This
clarifying spin gives only a pellet when ribosomes are aggregated or con-
taminated by membraneous material.
The uv spectrum of the supernatant is recorded, and the amount of ribo-
somes is calculated from the extinction at 260 nm. The amount of
ribosomes is usually expressed in A,q, units. One A,q, unit is the quan-
tity of ribosomes contained in 1 ml of solution which has an absorbance of
1 when measured in a 1-cm path length cell. One A,g, unit corresponds to
40 ng of ribosomal RNA. The average yield of mitochondrial ribosomes is
about 0.5 Ay per milligram of mitochondrial protein. One milligram of
mitochondrial protein is usually obtained from 0.5 g hyphae (wet weight).
Mitochondrial ribosomes tend to aggregate especially after collection of
ribosomes by centrifugation and may therefore be partly lost. Also, raising
the temperature above 0°—4° leads to aggregation. Furthermore, the ribo-
somes have a tendency to stick to the walls of the cellulose nitrate cen-
trifuge tubes.

Dissociation of Mitochondrial Ribosomes into Subunits. Several simple

and rapid methods have been described for the preparation of ribosomal
subunits.

a. Mitochondrial ribosomes are isolated as described above with the
exception that heparin (sodium salt, grade II, Sigma Chemical Co., St.
Louis, Missouri) is added to the AMT buffer used for the isolation of
ribosomes from the isolated mitochondria.® Concentration of heparin is
0.5 mg/ml. Centrifugation of the mitochondrial lysate for 4 hr is advisable
to avoid loss of slowly sedimenting subunits. Gradient centrifugation
shows that practically all ribosomes are dissociated to 50 S and 37 S
subunits (see Fig. 2B).

b. Ribosomes are taken up in AT buffer (0.01 M Tris-HCl, 0.1 M
NH,CI, pH 7.5) and layered on the gradient, the upper part of which
? R. Michel, G. Hallermayer, M. A. Harmey, F. Miller, and W. Neupert, in ‘‘Genetics and

Biogenesis of Chloroplasts and Mitochondria’’ (T. Biicher er al., eds.), p. 725. North-
Holland Publ., Amsterdam, 1976.
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Resuspended in 18 ml AMT
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FiG. 1. Flow diagram for the isolation of mitochondrial ribosomes. Neurospora cells (15 g
wet weight) from a 20-liter culture are homogenized in a bottom-driven macerator with 150
ml of isolation medium (IM) (0.44 M sucrose, 2 mM EDTA, 0.03 M Tris-HCI, pH 7.5) and
put through a grind mill. AMT: 0.1 M NH,Cl, 0.01 M MgCl,, 0.03 M Tris-HCI, pH 7.5.
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consists of a layer of SAMT buffer (0.20 M sucrose, 0.01 M Tris-HCI, 0.1
M NH,CI, 0.1 mM EDTA, pH 7.5). The rest of the gradient consists of
0.3-0.9 M sucrose in AMT buffer. Centrifugation is carried out for 3—4 hr
(see below). The brief passage through the EDTA layer dissociates the
ribosomes into subunits which then separate on the Mg?* containing gra-
dient. A 1.5-ml SAMT layer is adequate for 10- to 12-ml centrifuge
tubes. !0

c. A suspension of mitochondrial ribosomes in AMT buffer is sub-
jected four times to a freezing-thawing treatment. For freezing, the sus-
pension is put into a deep freeze box and is allowed to cool to —20°C. The
sample is thawed by letting it adjust to 4°C."!

II. Analysis of Mitochondrial Ribosomes

Sucrose Density Gradient Centrifugation. Further separation of
mitochondrial ribosomes is carried out by sucrose density gradient cen-
trifugation. Linear or convex (isokinetic) sucrose gradients ranging from
0.3 to 1.0 M sucrose in AMT are prepared according to established proce-
dures.!? About 0.05 to 0.2 ml of the ribosome suspension is layered on the
gradient. Centrifugation in a Spinco SW41 rotor at 40,000 rpm (286,000
Zmax) for 3—4 hr is appropriate for the analysis of monomers and subunits,
centrifugation for 45-60 min for the analysis of polymeric forms. Gra-
dients are monitored by pumping the content of the centrifuge tubes
through a quartz flow cell and recording the absorption at 260 nm. Usually
gradients are pierced at the bottom and 60% sucrose is pumped into the
tubes. One to 5 Ay units of ribosomes give good absorption profiles when
a 0.5-cm path length cell is used and the absorption scale is 0-1.

Calibration of gradients is usually carried out by cocentrifugation of E.
coli ribosomes prepared according to established procedures.'® In special
cases, cocentrifugation of radioactively labeled E. coli ribosomes is very
useful, since minute amounts of E. coli ribosomes can be employed which
do not disturb the absorption profiles of the Neurospora ribosomes.

A typical gradient profile obtained according to the described proce-
dure is shown in Fig. 2A. The mitochondrial ribosomes contain a promi-
nent 73 S monomer peak and clearly discernable subunits (50 S and 37 S).
Polymeric forms are also found. They exist in decreasing amounts from
dimers to heptamers. The percentage of polymers, monomers, and sub-
units can be estimated from the A,q, profiles. The total polymeric forms

10 R. Michel and W. Neupert, Fur. J. Biochem. 36, 53 (1973).
't S. Werner, personal communication.

12 H. Noll, Nature (London) 215, 360 (1967).

13 M. W. Nirenberg, Vol. 6, p. 17.
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FiG. 2. Analysis of mitochondrial ribosomes by sucrose density gradient centrifugation.
(A) Mitochondrial ribosomes prepared according to the flow diagram in Fig. 1. Before
isolating ribosomes, Neurospora cells were treated with cycloheximide and *H-leucine to
label nascent polypeptide chains (see text). (B) Mitochondrial ribosomes dissociated into
subunits by heparin (see text). Absorbancy at 260 nm (—): radioactivity (-@--@-).

account for 40-50% of total ribosomes, and monomers account also for
some 40-50%. Subunits contribute some 10%.

The relatively low percentage of polymers in mitochondrial ribosome
preparations is in sharp contrast to cytoplasmic ribosomes, where up to
95% of the total ribosomes may be isolated as polymers. Such yields of
cytoplasmic polymers require the presence of heparin®; without heparin
most of the ribosomes are usually recovered as monomers.®1%:1¢ In the
case of mitochondrial ribosomes addition of heparin results in the dissoci-
ation of polymeric and monomeric forms into subunits.® A gradient profile
of mitochondrial ribosomal subunits obtained by heparin treatment is
shown in Fig. 2B.

4 F. A. M. Alberghina and S. R. Suskind, J. Bacteriol. 94, 630 (1967).



86 BIOGENESIS OF MITOCHONDRIA i8]

Mitochondrial ribosomes have been described to dissociate at much
higher levels of Mg?* than their cytoplasmic counterparts.'® If the Mg?*
concentration is lowered to 0.1 mM dissociation takes place, whereas
cytoplasmic ribosomes begin to dissociate at concentrations of 0.01 mM.
Mitochondrial polymeric ribosomes show a high tendency to aggregate
and may be lost when temperature and pH are not carefully controlled.
These polymers are not converted to monomers by the action of ribonu-
clease and may represent aggregates linked via their nascent polypeptide
chains.'® A similar characteristic has been described for HeLa cell
mitochondrial ribosomes.!®

Nascent polypeptide chains on mitochondrial ribosomes can be
specifically labeled with radioactive amino acids in vivo. A culture of
Neurospora cells is incubated with cycloheximide (0.1 mg/ml) for 2 min,
then *H-leucine (1 wCi/ml, specific radioactivity 10-60 mCi/mmole) is
added and incorporation is allowed to proceed for 5 min. Then the culture
is cooled to 0° by adding 2 volumes of ice-water mixture, and mitochon-
drial ribosomes are isolated. The selective labeling of nascent polypeptide
chains is possible since (a) cycloheximide specifically blocks cytoplasmic
translation but not mitochondrial translation,!”-!* and (b) the mitochondrial
ribosomal proteins are synthesized on cytoplasmic ribosomes.!*2!

The isolated ribosomes are subjected to density gradient centrifuga-
tion, and the gradient content after passing the absorbance monitor is
collected with a fractionation collector. Radioactivity in the fractions is
determined by liquid scintillation counting. Nascent polypeptide chains
are mainly (about 90%) associated with the polysome portion of the ribo-
somes (Fig. 2A).

Electron Microscopic Analysis of Mitochondrial Ribosomes. Posi-
TIVE STAINING. Mitochondrial ribosomes can be demonstrated in thin
sections of Neurospora cells or of isolated mitochondria. Pellets of cells or
mitochondria are fixed with 3% glutaraldehyde in 0.1 M cacodylate buffer,
pH 7.4, for 6-12 hr. The pellets are then rinsed three times with 0.29 M
sucrose, 0.2 M cacodylate buffer, pH 7.4, and postfixed in 1% OsO, for 1
hr in 0.29 M sucrose, 10 mM MgCl,, 0.1 M cacodylate buffer, pH 7.2.
Samples are dehydrated in ethanol and embedded in Epon 812. Thin
sections are contrasted with 7% magnesium uranyl acetate and lead cit-
rate. Figure 3 shows a thin section of a cell of the wall-less ‘‘slime”’

5 H. Kiintzel, J. Mol. Biol. 40, 315 (1969).

' D. Ojala and G. Attardi, J. Mol. Biol. 65, 273 (1972).

'" W. Sebald, A. J. Schwab, and T. Bucher, FEBS Let:. 4, 243 (1969).

" E. S. Hawley and J. W. Greenawalt, J. Biol. Chem. 254, 3574 (1969).

'Y W. Neupert, W. Sebald, A.J. Schwab, A. Pfaller, and T. Biicher, Eur. J. Biochem. 10, 585
(1969).

20 H, Kiintzel, Nature (London) 222, 142 (1969).

2! P. M. Lizardi and D. J. L. Luck, J. Cell Biol. 54, 56 (1972).
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Fic. 3. Small field from the cytoplasm of a wall-less mutant of Neurospora (Slime
arg-1A). Mitochondrial ribosomes are abundant and arranged mainly in rows along the
periphery of the inner membrane. Cytoplasmic ribosomes are also visible.

mutant of Neurospora, in which mitochondrial ribosomes can be better
demonstrated than in the wild type. Ribosomes often show a polysomelike
arrangement, characteristically along the peripheral inner mitochondrial
membrane and not regularly distributed over the whole matrix area. With
yeast, similar techniques were employed and similar results were
obtained.?*?

NEGATIVE STAINING. The physical dimensions may be measured by
analyzing electron micrographs of negatively stained ribosomes.>* The
shapes observed are projections and depend on the orientation of the
ribosomes on the grid. For negative staining, ribosomes in AMT buffer are
dialyzed for 16-18 hr against a buffer containing 1 M methanol, 0.002 M
MgCl,, and 0.03 M Tris-HCI, pH 7.6, according to Vasiliev.?®> Holey
parlodion films are prepared according to Drahos and Delong,? picked up

22 P. V. Vignais, B. J. Stevens, J. Huet, and J. André, J. Cell Biol. 54, 468 (1972).
= K. Watson, J. Cell Biol. 55, 721 (1972).

Y. Nonomura, G. Blobel, and D. Sabatini, J. Mol. Biol. 60, 303 (1971).

V. D. Vasiliev, FEBS Letr. 14, 203 (1971).

26 V. Drahos and A. Delong, Nature (London) 186, 104 (1960).
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500 R

FiG. 4. Selected images of negatively stained mitochondrial and cytoplasmic ribosomes
from Neurospora crassa. Upper row: mitochondrial ribosomes. Lower row: cytoplasmic
ribosomes. The first four images in each row represent frontal views, the last one a lateral
view. The groove between small subunits (top) and large subunit (bottom) can be seen in
frontal views of either type of ribosome. Lateral views in both cases show the asymmetric
arrangement of the small subunit with respect to the large subunit. x 400,000.

on copper grids (300 mesh), and reinforced by a thick layer of carbon. The
grids are covered with a second parlodion film, and a thin layer of carbon
is again evaporated on to them at 1072 torr. The grids are then rinsed for 2
days in amyl acetate to remove the parlodion films. A drop of the unfixed
ribosome suspension is deposited on the grid and removed with filter
paper after 1-5 min. A drop of 2% unbuffered uranyl acetate is immedi-
ately placed on the grid, before the film has dried. 0.5 wl of 0.015%
octadecanol in hexane (w/v) is applied to the surface of the stained droplet
and the stain withdrawn with filter paper. Micrographs from such prepara-
tions are taken at direct magnifications of 80 x 10° to 100 x 10%. Figure 4
shows a gallery of selected images of mitochondrial and cytoplasmic ribo-
somes. Frontal views and lateral views according to the definition of
Nonomura et al.?* can be discriminated in either case.

Table I contains the average dimensions along the main axes of the
ribosomes.

Immunological Studies of Neurospora Ribosomes. Specific antibodies
may be readily prepared against mitochondrial ribosomes. Such an-
tibodies show no cross-reaction with cytoplasmic ribosomes, and an-
tibodies against cytoplasmic ribosomes do not react with mitochondrial
ribosomes.®?” Antibodies are raised in rabbits in the following manner.
Approximately 30-40 A,q units of ribosomes in 0.5 ml AT buffer are
emulsified with an equal volume of complete Freund’s adjuvant (Difco,

27 G. Hallermayer and W. Neupert, FEBS Lett. 41, 264 (1974).
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TABLE 1
PROPERTIES OF MITOCHONDRIAL AND CYTOPLASMIC RIBOSOMES FROM
NEUROSPORA CRASSA

Mitochondrial Cytoplasmic
Property ribosomes Reference  ribosomes  Reference
Sedimentation coefficient
(S20.w)
Monomer 73 6 77 6
78 40, 41
81 7
Dimer 103 6 108 6
115 14
Large and small subunit 50 + 37 6, 15 60 + 37 6, 15
56 + 36 41
Dimensions
(Negative staining)
Main axes® (A) 273 = 18 250 = 17
X X
222 + 18 213 = 16
RNA components
Sedimentation coefficient 23 + 16.2 6 25.8 + 16.5 6
S30.w-UNItS 23 + 16 34 25.6 + 16 34
Molecular weights 1.28 + 0.74 19 1.28 + 0.64 19
(dalton x 10%) 1.29 + 0.69 41
(Gel electrophoresis at 5°C)
5 S RNA Not detected 9, 31 Present 9, 31
5.8 S RNA Not detected 9, 31 Present 9, 31
G + C content (%) 38 6 49 6
35 7 50 7
Methylation of large and 0.13 + 0.067 42 1.3+ 1.5 42
small subunit RNA
(methyl groups per 100
nucleotides)
Number of ribosomal proteins 30 + 23 21, 43 31 + 21 39
in large and small subunits 31 + 30 39
Dissociating levels of 0.1 15 0.01 15
magnesium ions (at 50
mM NH,Cl) (mM)
Antibiotic sensitivity
Chloramphenicol + 17, 18 - 17, 18
Cycloheximide (Actidione) - 17, 18 + 17, 18
- 21 + 21

Anisomycin

“ Mean values and standard deviations (N = 65) of height x width measured on fron-
tal views.
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Detroit, Michigan) and injected subcutaneously into four different posi-
tions of the neck region of the rabbit. Four injections at intervals of 10
days have been found to yield satisfactory titers. For immunoprecipita-
tion, antiserum or y-globulins (prepared by ammonium sulfate precipita-
tion, redissolved in AMT and dialyzed against AMT for 10-15 hr) are
added to the ribosomes in AMT buffer containing 1% Triton X-100 (about
2 A, units/ml). Two hundred microliters of antiserum is usually sufficient
to precipitate 2 A, units of ribosomes. Precipitates are centrifuged,
washed three times with 1% Triton X-100 in AMT, and washed once with
AMT buffer.

Such antibodies can specifically precipitate mitochondrial ribosomes
from mixtures of cytoplasmic and mitochondrial ribosomes.® They can,
furthermore, be used to precipitate ribosomal proteins.

Antibodies can be employed to study problems, such as phylogenetic
affinities between related species, pool sizes of free mitochondrial
ribosomal proteins, and cellular transport of such proteins.

Isolation and Analysis of Ribosomal RNA Components. The RNA com-
ponents can be extracted by standard extraction procedures either from
isolated ribosomes or from isolated mitochondria. However, it is very
difficult to obtain undegraded RNA from isolated ribosomes.® Therefore,
ribosomal RNA is usually isolated from whole mitochondria. Also in this
case, it is advisable to add nuclease inhibitors, such as diethyl pyrocarbo-
nate.?® The method of Parish and Kirby?® modified by Leaver and Ingle®°
and the method of Solymosy et al.?® appear to give the best results with
respect to integrity and yield of ribosomal RNA 931733

The molecular dimensions are usually determined by (a) sucrose den-
sity gradient centrifugation,®’3* and (b) polyacrylamide gel elec-
trophoresis, essentially according to the methods described by Peacock
and Dingman?® and by Loening.*® Both procedures must be carried out
under conditions in which the mitochondrial RNA does not unfold, or else
under conditions in which complete denaturation is induced.?” The
ribosomal RNA components found are listed in Table I. The guanine

** F. Solymosy, 1. Fedorcsak, A. Gulyas, G. L. Farkas, and L. Ehrenberg, Eur. J. Biochem.
5, 520 (1968).

# J. H. Parish and K. S. Kirby, Biochim. Biophys. Acta 129, 554 (1966).

30 C.J. Leaver and J. Ingle, Biochem. J. 123, 235 (1971).

31 P. M. Lizardi and D. J. L. Luck, Nature (London), New Biol. 229, 140 (1971).

#2Y. Kuriyama and D. J. L. Luck, J. Mol. Biol. 73, 425 (1973).

33 H. Kiintzel, Z. Barath, 1. Ali, J. Kind, and H.-H. Althaus, Proc. Natl. Acad. Sci. U.S.A.
70, 1574 (1973).

# 1..S. Dure, J. L. Epler, and W. E. Barnett, Proc. Natl. Acad. Sci. U.S.A. 58, 1883 (1969).

3 A. C. Peacock and C. W. Dingman, Biochemistry 7, 668 (1968).

36 U. E. Loening, Biochem. J. 113, 131 (1969).

37 L. Reijnders, P. Sloof, and P. Borst, Eur. J. Biochem. 35, 266 (1973).
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and cytosine content of the mitochondrial RNA is low compared to that of
the cytoplasmic ribosomal RN A7 and this feature may be exploited in
the resolution of mixtures of cytoplasmic and mitochondrial ribosomal
RNA's. The cytoplasmic and mitochondrial RNA’s have very similar elec-
trophoretic mobility when electrophoresed at 4°. However, if the temper-
ature of electrophoresis is raised to 25°, the mitochondrial RNA partially
unfolds and exhibits a reduced electrophoretic mobility.

Analysis of Mitochondrial Ribosomal Proteins. Several methods can be
employed for the separation of mitochondrial ribosomal proteins. The
most satisfactory is two-dimensional electrophoresis as described by
Kaltschmidt and Wittmann® and employed by van den Bogert and de
Vries.?® One-dimensional electrophoresis in urea gels or in sodium
dodecyl sulfate-urea gels combined with isoelectric focusing can also give
good resolution as demonstrated by Lizardi and Luck.?! Separation on
polyacrylamide gradient gels has also been shown to be a powerful and
convenient technique.* For special purposes chromatography on car-
boxymethyl cellulose columns may be a useful method.?°

The number of proteins found in large and small subunits of
mitochondrial 73 S ribosomes by various authors is presented in
Table 1.21:3943

Analysis of Mitochondrial Ribosomal Function. Assays for the func-
tional activity of isolated mitochondrial ribosomes are few and very lim-
ited. There are no published data on the translation of mitochondrial
messenger RNA or messenger RNA from other sources by purified 73 S
ribosomes of Neurospora crassa. Only partial reactions of protein synthe-
sis have been demonstrated, i.e., (a) poly(U)-directed synthesis of
polyphenylalanine*!, (b) binding of formylmethionyl-tRNA**, (c) synthe-
sis of formylmethionylpuromycin*>, and (d) the ‘‘fragment reaction’
(peptidyltransferase activity).*® The activity of the poly(U)-directed sys-
tem was found to be very low, and also the *‘fragment reaction’* showed
much lower levels when compared to E. coli ribosomes. Significantly,
both of these functions are inhibited by antibiotics which react with pro-
karyotic ribosomes, e.g., chloramphenicol (see Table I).

* E. Kaltschmidt and H. G. Wittmann, Anal. Biochem. 36, 401 (1970).

% C. van den Bogert and H. de Vries, Biochim. Biophys. Acta 442, 227 (1976).

4 M. M. Taylor and R. Storck, Proc. Natl. Acad. Sci. U.S.A. 52, 958 (1964).

4t P. Cammarano, A. Felsani, A. Romeo, and F. A. M. Alberghina, Biochim. Biophys. Acta
308, 404 (1973).

42 A, M. Lambowitz and D. J. L. Luck, J. Biol. Chem. 10, 3081 (1976).

3 A, M. Lambowitz, N.-H. Chua, and D. J. L. Luck, J. Mol. Biol. 107, 223 (1976).

+ H. Kiintzel, FEBS Ler, 4, 140 (1969).

45 F. Sala and H. Kiintzel, Eur. J. Biochem. 15, 280 (1970).

4 H. de Vries, E. Agsteribbe, and A. M. Kroon, Biochim. Biophys. Acta 246, 111 (1971).
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III. Use of Neurospora Mitochondrial Ribosomes

The ribosomes of Neurospora mitochondria may be used in an ap-
proach to a number of fundamental problems related to biogenesis and
autonomy of mitochondria, such as the following.

1. Analysis and characterization of mitochondrial messenger RNA

2. Studies on the mechanism of mitochondrial translation and the
mechanism of antibiotic action on mitochondrial biogenesis

3. Studies on the interaction of mitochondrial ribosomes and
mitochondrial membranes and the mechanism of insertion of mitochond-
rial translation products into the mitochondrial membrane

4. Studies on the assembly of mitochondrial ribosomes and on the
transport of mitochondrial proteins from the cytoplasm across the
mitochondrial membranes

5. Studies on the genetic basis of defects of mitochondrial ribosomes
phenotypically characterized by deficiencies in respiratory complexes.

Comments

In a recent series of papers one group of workers has reported the
isolation of a special type of Neurospora mitochondrial ribosome having a
sedimentation coefficient of 80 S.3%4748 The authors have expressed the
view that this is the real functional mitochondrial ribosome, whereas the
73 S ribosome arises by degradation of this 80 S ribosome. The 80 S
ribosome differs from the 73 S ribosome in many respects. In a detailed
study of Neurospora ribosomes®*® we were unable to detect an 80 S
mitochondrial ribosome. Rather we have observed that under the condi-
tions described for the isolation of mitochondrial 80 S ribosomes, the 73 S
mitochondrial ribosomes were heavily contaminated by cytoplasmic
78-79 S cytoplasmic ribosomes. In our view, the above-mentioned au-
thors have not excluded the possibility that the 80 S ribosome is a cyto-
plasmic contaminant, a possibility strongly favored by our own findings
and those of Lizardi and Luck.*

47 R. Datema, E. Agsteribbe, and A. M. Kroon, Biochim. Biophys. Acta 335, 386 (1974).

48 A. M. Kroon, P. Terpstra, M. Holtrop, H. de Vries, C. van den Bogert, J. de Jonge, and
E. Agsteribbe, in ‘*‘Genetics and Biogenesis of Chloroplasts and Mitochondria’’ (T. Biicher
et al., eds.), p. 685. North-Holland Publ., Amsterdam, 1976.

4 R. Michel, G. Hallermayer, M. A. Harmey, F. Miller, and W. Neupert, Biochim. Biophys.
Acta 478, 316 (1977).





