

International Journal for Vitamin and Nutrition Research

Internationale Zeitschrift für Vitamin- und Ernährungsforschung

Journal international de Vitaminologie et de Nutrition

EDITOR-IN-CHIEF G. RITZEL, ST. ALBANVORSTADT 19, CH-4052 BASEL

CURATORES

K. Bernhard, Basel	R.S. Harris, Cambridge, Mass.	R.E. Stone, Chicago
H.D. Cremer, Giessen	C. den Hartog, Wageningen	A.V. Szent-Györgyi, Woods Hole
K. Folkers, Austin	T. Reichstein, Basel	

EDITORES

J.T. Abrams, Cambridge, GB	G. Brubacher, Basel	J. Ganguly, Bangalore
H. Berger, Innsbruck	R. Buzina, Zagreb	J. Mauron, La Tour-de-Peilz
H. Bickel, Zürich	D.B. Coursin, Lancaster	H.E. Sauberlich, Birmingham,
A. Bondi, Rehovoth	P.M. Dreyfus, Sacramento	M.L. Scott, Ithaca
M. Brin, Nutley	F. Fidanza, Perugia	

The "International Journal for Vitamin and Nutrition Research" is published at irregular intervals (about 4 fasc. per annum) 4 fasc. = 1 volume, prize per volume = Sw. Fr. 134.— / Die «Internationale Zeitschrift für Vitamin- und Ernährungsforschung» erscheint in zwangloser Reihenfolge (ca. 4 Hefte pro Jahr). 4 Hefte ergeben einen Band. Bezugspreis pro Band = sFr. 134.-, DM 170.- / Le «Journal international de Vitaminologie et de Nutrition» paraît irrégulièrement en fascicules (env. 4 fasc. par année). 4 fasc. = 1 volume, prix par volume = sfr. 134.---

Hans Huber Publishers Berne Stuttgart Toronto

Western Hemisphere: Jack K. Burgess Inc., 2175 Lemoine Avenue, Fort Lee, N.J. 07024

This journal is regularly listed in Current Contents and Index Medicus

The journal serves as the official organ of the Swiss Society for Nutrition Research

Printed in Switzerland

© 1984 by Hans Huber Publishers, Berne

Birmingham, USA

Inhalt / Contents

ARAFA A.M. and HUSSEIN L.: The Assessment of The Vitamin B ₆ Status among Egyptian School Children by Measuring the Urinary Cystathionine Excretion	321
ARIMANANA L. and LEATHWOOD P.D.: Effects of Prior Carbohydrate Intake on Protein/Carbo-	521
	202
hydrate Selection by the Rat	283
ARNAUD M.J., WELSCH C., GARREL D. and TOURNIAIRE J.: Reproducibility of the Measurement	
of Whole Body Protein Turnover Using the End Product Method	282
BASU T.K., WEISER, T. and DEMPSTER J.F.: An in vitro Effect of Ascorbate on the Spontaneous	
Reduction of Sodium Nitrite Concentration in a Reaction Mixture	233
BAYLISS R.M., BROOKES R., MCCULLOCH J., KUYL J.M. and METZ J.: Urinary Thiamine Excretion	
after Oral Physiological Doses of the Vitamin	161
BICKEL R., REINHARDT C.A. and LÜTHY J.: In vitro Growth Inhibition Assay for the Detection of	
Fusarium Toxins in Feedstuffs	287
BIESALSKI H.K.: Retinol and Retinyl Ester in Separated Structures of the Guinea Pig Inner Ear	113
BLUM M., PRABUCKI A.L. and SCHÜRCH A.: The Influence of Different Dietary Fats on the Life	
Span of Rats	276
BLUM M., PRABUCKI A.L. and SCHÜRCH A.: The Influence of Various Dietary Fats on the Fatty	
Acid Composition of Organ Lipids in the Rat	277
BONJOUR JP., BAUSCH J., SUORMALA T. and BAUMGARTNER E.R.: Detection of Biocytin in Urine	
of Children with Congenital Biotinidase Deficiency	223
BOUCHER-EHRENSPERGER M. and PETTER C.: Prevention of Thrombocytic Defects in the br/br	
Rabbit with Folic acid and Vitamin B_{12} : Analogy with the T.A.R. Syndrome in Humans	199
BRANCA D., SCUTARI G. and SILIPRANDI N.: Pantethine and Pantothenate Effect on the CoA Con-	
tent of Rat Liver	211
CASTER W.O., DRUMMOND S.K. and TANNER M.A.: Maternal Diet and Mental Retardation in	211
Southern Georgia, USA	371
	571
CHANGBUMRUNG S., POSHAKRISHANA P., VUDHIVAI N., HONGTONG K., PONGPAEW P., MIGASENA	
P. et al: Measurements of B_1 , B_2 , B_6 Status in Children and their Mothers Attenting a Well-	1.40
baby Clinic in Bangkok	149
CULLUM M.E., OLSON J.A. and VEYSEY S.: Analysis of Deuterated Analogs of Vitamin A by Elec-	
tron Impact and Chemical Ionization Modes in Gas Chromatography Coupled to Mass Spec-	
trometry	3
CULLUM M.E., JOHNSON C. and ZILE M.H.: Comparison of Fetal and Adult Retinol and Retinoic	• • •
Acid Binding Proteins in Bovine Serum and Pigment Epithelium	297
CULLUM M.E., ZILE M.H. and VEYSEY S.W.: Analysis of Retinol and Dideuterated Retinol in Rat	
Plasma by Gas Chromatography Combined Mass Spectrometry	11
Décombaz J., Sartori D., Arnaud A.L., Thelin A.L., Schürch P. and Howald H.: Oxidation	
and Metabolic Effects of Fructose or Glucose Ingested before Exercise in Man	281
DOREA J.G., SOUZA J.A., GALVÃO M.O. and IUNES M.A.F.: Concentration of Vitamin A in the	
Liver of Foetuses and Infants dying of Various Causes in Brasilia, Brazil	119
FIDANZA A.A.: Nutritional Status of the Elderly, IV	361
FIDANZA F., BRUBACHER G., SIMONETTI M.S. and CUCCHIA L.M.: Nutritional Status of the Eld-	
erly, III	355
FIDANZA F., FIDANZA A.A., COLI R. and MENCARINI C.A.: Food and Nutritient Consumption of	
Two Rural Italian Population Groups Followed for Twenty Years	91
FIDANZA F., SIMONETTI M.S., CUCCHIA L.M., BALUCCA G.G. and LOSITO G.: Nutritional Status of	
the Elderly, II	75
FISHBAINE B. and BUTTERFIELD G.: Ascorbic Acid Status of Running and Sedentary Men	273
FLATT J.P., ACHESON K.J., RAVUSSIN E. and JÉQUIER E.: Dietary Fat Substrate Utilization and	
Short Term Body Composition Changes in Man	279
FLORIDI A., PUPITA M., PALMERINI C.A., FINI C. and FIDANZA A.A.: Thiamin Pyrophosphate De-	
termination in Whole Blood and Erythrocytes by High Performance Liquid Chromatography.	165
FRIGG M. and Broz J.: Relationships between Vitamin A and Vitamin E in the Chick	125
······································	

.

GIBSON J. and WESTHUYZEN J. VAN DER: Effect of L-Dihydroxyphenylalanine (L-dopa) and Methionine on Tissue S-Adenosylmethionine Concentrations in Cobalamin-inactivated Fruit Bats.	329
GLENN B.P. and ELY D.G.: Effect of Lipid-coated Lysine on Digestion and Nitrogen Metabolism by Wethers	377
GRECO A.M., BOSCHI G., STICCHI R., VETRANI A. and SALVATORE G.: Effects of a Purified Diet	• · · •
Enriched with Animal Protein on Female Rats. Preliminary Report.	263
GUIDOUX R.: Ca ²⁺ Regulation by Isolated Rat Liver Mitochondria Influence of the Intramito-	200
chondrial Citrate Content on the Extramitochondrial Ca ²⁺ Level	288
GUIGOZ Y. and JUILLERAT M.: Induction of Tyrosine Aminotransferase (TAT) by a Physiological	200
Stress as Function of Dietary Fat	289
	185
ridoxine Intake and Pyridoxine Status among Aged Institutionalised People	105
after the Intramuscular Administration of Vitamin D_3 .	17
HOLLOWAY D.E., GUIRY V.C., HOLLOWAY B.A. and RIVERS J.M.: Influence of Dietary Ascorbic	17
Acid on Cholesterol $7-\alpha$ -Hydroxylase Activity in the Rat	333
HOLM J., HANSEN I. and LYNGBYE J.: Quantitative and Qualitative Effects of N ¹⁰ -Methylfolate on	555
High-affinity Folate Binding in Human Leukocytes	195
HORIUCHI S. and ONO S.: Effects of Riboflavin Administration on the Phospholipid Metabolism	.,,
of Rat Liver Impaired with Carbon Tetrachloride	173
HUNT C., CHAKRAVORTY N.K. and ANNAN G.: The Clinical and Biochemical Effects of Vitamin C	-
Supplementation in Short-stay Hospitalized Geriatric Patients	65
KIRCHGESSNER M. and MÜLLER H.L.: Thermogenesis with a Ketogenic Diet in Sows	99
KORPELA H., LOUENIVA R., YRÄNHEIKKI E. and KAUPPILA A.: Selenium Concentration in Mater-	
nal and Umbilical Cord Blood, Placenta and Amniotic Membranes	257
KRATZING C.C., KELLY J.D. and OELRICHS B.A.: Ascorbic Acid Changes in Brain	349
KRAUS KH., BONJOUR, JP. and BERLIT P.: Biotin Levels in Plasma of Patients with Friedreich	
Ataxia and Other Spinocerebellar Degenerations	272
KRAUSE KH., KOCHEN W., BERLIT P. and BONJOUR JP.: Excretion of Organic Acids Associated	
with Biotin Deficiency in Chronic Anticonvulsant Therapy	217
KUMPULAINEN J., VUORI E. and SIIMES M.A.: Effect of Maternal Dietary Selenium Intake on Sele-	• • •
nium Levels in Breast Milk	251
KUNZ C., NIESEN M., LILIENFELD-TOAL L. VON, and BURMEISTER W.: Vitamin D, 25-Hydroxy- Vitamin D and 1,25-Dihydroxy-Vitamin D in Cow's Milk, Infant Formulas and Breast Milk	
during Different Stages of Lactation.	141
LABADARIOS D., SHEPHARD G.S., MINEUR L.G., VAN BUUREN A.J., HUTCHISON M.E. and Oost-	
HUIZEN O.J.: Biochemical Vitamin B ₆ Deficiency in Adults with Chronic Glomerulonephrides	
with and without the Nephrotic Syndrome	313
LANGHANS W. and SCHARRER E.: Feeding Rats a High Fat Diet Changes the Effect of Various Me-	• • • •
tabolic Challenges on Food Intake	280
Moser U. and Weber F.: Uptake of Ascorbic Acid by Human Granulocytes	47
MOËNNOZ D. and ASHLEY D.V.: Comparison of Plasma Free Tryptophan and Plasma Tryptophan	205
to Large Neutral Amino Acid Ratios as Physiological Predictors of Brain Tryptophan	285
MOËNNOZ D., EXELL N. and ASHLEY D.V.: Lack of Influence of Free Fatty Acids on Tryptophan- albumin Binding in Plasma	286
NADIGER H.A., RAD A.S. and SADASIVUDU B.: Effect of Simultaneous Administration of Vitamin	200
E and Pyridoxin on Erythrocyte Membrane Na $^+$ K ⁻ ATPase Activity	307
OELRICHS B.A., KRATZING C.C., KELLY J.D. and WINZOR D.J.: The Binding of Ascorbate to Bovi-	507
ne Serum Albumin.	61
PIIRONEN V., VARO P., SYVÄOJA EL., SALMINEN K., KOIVISTOINEN P. and ARVILOMMI H.: High	01
Performance Liquid Chromatographic Determination of Tocopherols and Tocotrienols and its	
Application to Diets and Plasma of Finnish Men, II.	41
PIIRONEN V., VARO P., SYVÄOJA EL., SALMINEN K. and KOIVISTOINEN P.: High Performance Li-	
quid Chromatographic Determination of Tocopherols and Tocotrienols and its Application to	
Diets and Plasma of Finnish Men, I.	35

Internat. J. Vit. Nutr. Res. 54 (1984) 217-222 Received for publication October 14, 1983 Anticonvulsants Biotin deficiency Biotin-dependent organic aciduria

Excretion of Organic Acids Associated with Biotin Deficiency in Chronic Anticonvulsant Therapy*

KLAUS-HENNING KRAUSE¹, WALTER KOCHEN², PETER BERLIT¹ and JEAN-PIERRE BONJOUR³

¹ Neurologische Universitätsklinik, Heidelberg (F.R.G.), ² Universitäts-Kinderklinik, Heidelberg (F.R.G.) and ³ Department of Vitamin and Nutrition Research, F. Hoffmann-La Roche & Co., Basel (Switzerland)

Summary: Urinary organic acids, known to be elevated in children with biotin deficiency, were determined in 7 epileptics under long-term therapy with anticonvulsants and in three controls. Four patients administered phenytoin, primidone, phenobarbital, or carbamazepine, alone or in combination, had reduced plasma biotin levels (< 250 ng/l) and an elevated excretion of certain organic acids indicating a possibly decreased activity of propionyl CoA carboxylase (3-OHpropionate, *methylcitrate*) and 3-methylcrotonyl CoA carboxylase (3-methylcrotonate and the glycine conjugate, 3-OH-isovalerate). Two epileptics receiving sodium valproate alone had normal circulating biotin levels and no changes in level of the investigated urinary acids were found. These findings indicate that the reduced biotin levels seen in epileptics receiving other anticonvulsants than sodium valproate lead to an elevated excretion of certain organic acids in urine.

Introduction

In the urine of patients with an inborn error of metabolism of biotin-dependent carboxylases elevated concentrations of organic acids (e.g. methylcitrate, 3-hydroxypropionate, propionylglycine, tiglic acid, 3-methylcrotonic acid, 3-hydroxyisovaleric acid) are found [1]. These metabolites are excreted due to a blockage in the catabolism of branched chain amino acids and are caused by a reduced activity of the biotin-dependent enzymes propionyl CoA carboxylase and 3-methylcrotonyl CoA carboxylase (Figure 1).

^{*} This study was supported in part by grant Kr 659/1 from the Deutsche Forschungsgemeinschaft.

Pyruvate carboxylase deficiency has also been described as being accompanied by a typical urinary pattern, especially by an elevation of lactic acid [13] (Fig. 1). The regulation of fatty acid synthesis at the acetyl CoA carboxylase step is well known but its clinical relevance has not yet been elucidated. A deficient holocarboxylase synthetase, which attaches biotin to the apocarboxylase, or reduced circulating biotin levels due to an altered absorption, transport, and/or metabolism of biotin can be the reasons for the reduced carboxylase activities in patients with an inborn error of metabolism [1]. Some of the above mentioned organic acids have also been reported in the urine of a boy with a dietary biotin deficiency [9] and in a girl with short-gut syndrome during parenteral alimentation without biotin [8]. In both patients low circulating biotin levels and a reduced activity of biotin-dependent enzymes were found.

A marked reduction of plasma biotin concentrations has been noted in epileptics on long-term therapy with anticonvulsants [6, 7]. The purpose of this study was to evaluate whether epileptics with low plasma biotin levels also excrete abnormal organic acids in their urine.

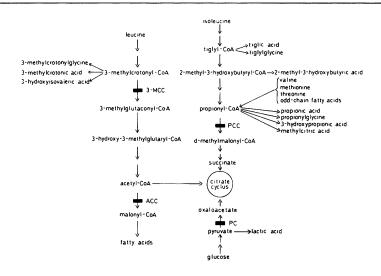
Patients and methods

24-h-samples of urine were collected from seven long-term treated epileptics and from three controls (two males, aged 30 and 34 years, one female, aged 27 years). The clinical data of the patients are summarized in Table I. In the morning after urine collection blood was taken for the microbiological determination of plasma biotin levels, using Lactobacillus plantarum as test organism [4], and for measuring serum concentrations of anticonvulsants.

Patient	age (ycars)	sex	type of seizures	anticonvulsants	duration of treatment (years)	daily intake at time of examination (mg/kg body weight)
A	25	male	partial seizures with	phenytoin	24	4.2
			complex symptomatology and tonic-clonic seizures	phenobarbital	24	1.0
В	37	male	partial seizures with	primidone	12	10.1
			complex symptomatology	carbamazepine	2	13.5
С	28	male	tonic-clonic seizures	phenytoin	1	4.8
D	30	male	partial seizures with	phenytoin	0.1	5.4
			complex symptomatology and tonic-clonic seizures	carbamazepine	5	none
E	24	female	complex absences, partial	phenytoin	7	5.8
			seizures with complex symptomatology and tonic-clonic seizures	sodium valproate	10	34.6
F	25	male	tonic-clonic seizures	sodium valproate	3	15.6
G	22	male	tonic-clonic seizures	sodium valproate	3	9.8

Tab. 1:	Clinical	data	of	the	patients
---------	----------	------	----	-----	----------

Determination of organic acids, which are known to be involved in inborn errors of biotin-dependent enzymes, or nutritional biotin deficiency, was carried out by combined gaschromatography and mass spectroscopy: Aliquots of the urines containing 5 mg of creatinine were lyophilized, then acidified to pH 2,5 with H_2SO_4 and separated on a column of silicic acid into 4 fractions using 2-methyl-2-butanol/chloroform mixtures as eluents [5].


The fractions were evaporated until dry, following which the TMS derivatives formed by addition of MSTFA (Machery & Nagel) were analyzed by GC/MS on a 50 m glass-capillary SE-54 (Jaegi, Trogen, Switzerland) with a Du Pont 21-492 B mass-spectrometer (Programm 75° (10 min), 4°/min up to 220° C). Identification and quantification were performed by multiple specific ion detection (MSID) of the characteristic mass-ions of the acids to be measured. Calibrations of the available reference compounds were performed as for samples. The internal standards (dibutylacetic acid and C_{19} alkane) were added after silicic acid chromatography and before evaporation of the chromatographic fraction. Reference compounds were not available for 3-methylglutaconic acid and propionylglycine. Identification of both compounds was confirmed by mass-spectrometric analyses of enriched samples. For quantification of propionylglycine (m/z 159) isobutyrylglycine (m/z 158) was used as reference due to the almost equal intensities of the mentioned mass-ions. In the case of 3-methylglutaconic acid (cis + trans) 3-methylglutaric acid was applied using the M⁺-15 mass-ions for quantification; probable error was assumed to be less than $\pm 30\%$.

Results and Discussion

The results of the determination of organic acids in urine are summarized in table II, together with the serum concentrations of anticonvulsants and the plasma biotin levels. As expected from our previous study [7], plasma biotin levels in the five epileptics (patients A–E) treated with phenytoin, primidone, phenobarbital or carbamazepine were clearly lower than in the two patients receiving sodium valproate alone (F + G) or in the three controls. Four of the five epileptics (A–D) had a reduced plasma biotin concentration of less than 250 ng/l.

A deficient activity of the propionyl CoA carboxylase might be deduced from elevated amounts of methylcitric acid and 3-OH-propionic acid in 3 cases (A, B, C). In contrast to our controls, propionylglycine could be detected in 2 patients (A, C). The excretion rates of tiglic acid and its glycine conjugate are too small to result in a clear indication, although the highest values of tiglic acid have been found in patients A and B. 3-OH-2-methylbutyric acid was distinctly elevated only in patients B and C. A possibly influenced activity of the 3-methylcrotonyl CoA carboxylase was indicated by elevation of 3-OH-isovaleric acid in 3 cases (A, B, C), of 3-methylcrotonic acid in 4 cases (A, B, C, D) and of its glycine conjugate in patients B and D. The determinations of the metabolites following the 3-methylcrotonyl CoA carboxylase reaction (see Fig. 1) revealed, that in one patient (C) both metabolites were absent; in 2 other (B, D) 3-OH-3-methylglutaric acid was detectable in very little amounts, whereas the precursor was shown to be absent. High values of lactic acid were found in patients A-D; that seems to be consistent with decreased activity of the pyruvate carboxylase.

Little is known about the connection between reduced biotin levels and changes in excretion of metabolites in consequence of decreased activity of carboxylases [1, 8,

Fig. 1: Metabolic pathways involving biotin-dependent carboxylases (3-MCC = 3-methylcrotonyl CoA carboxylase, PCC = propionyl CoA carboxylase, PC = pyruvate carboxylase, ACC = acetyl CoA carboxylase)

9, 11]. Both the pattern and the concentration of organic acids excreted in urine were found to vary greatly in children with an inborn error of biotin-dependent enzymes, being dependent on protein intake or clinical status [1]. Therefore, not so much the individual concentrations or the pattern of organic acids excreted seem to be important, but the fact that in the urine of the epileptics under phenytoin, primidone, phenobarbital, or carbamazepine treatment, indications are given of higher levels of some organic acids possibly demonstrating a deficient activity of the carboxylases, especially of the propionyl CoA carboxylase, in which several increased metabolites support the assumption. In contrast, the 2 patients (F and G) on sodium valproate monotherapy exhibited no excretion rates indicating a possibly reduced activity of the carboxylases. As their plasma biotin levels were found to be normal a reduced enzymatic activity would not be expected. The reduced activity of the 3-methylcrotonyl CoA carboxylase in patients B, C and D seems furthermore to be indicated by the lower excretion of 3-methylglutaconic acid and 3-hydroxy-3methylglutaric acid, which appear after the carboxylation step in the catabolism of leucine, when compared to controls.

The results of patient E, treated with sodium valproate and additional phenytoin, were intermediate between those of controls and epileptics given sodium valproate alone and those of the remaining epileptics: 3-hydroxyisovaleric acid and tiglic acidwere found to be higher in the urine of patient E. The excretion of 3-methylglutaconic acid and of 3-hydroxy-3-methylglutaric acid was comparable to that of patients F and G. These findings indicate that the activity of the biotin-

	patients A	В	C	D	E	F	G	controls 1	2	3	normal values from the literature
anticonvulsants in serum (µg/ml)	PHT 6.1 PB 9.9	PRM 8.1 PB 30.0 CBZ 7.6	PHT 12.6	PHT 46.2	VPA 53.6 PHT 15.6	VPA 75.4	VPA 50.7		-	_	
biotin in plasma (ng/L)	<150	240	197	198	280	343	325	327	305	413	> 250 [7]
propionylglycine	0.004	n.d	0.002	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01 [10]
methylcitric acid	0.07	0.03	0.05	trace	n.d.	trace	n.d.	n.d.	n.d.	n.d.	< 0.01 [10]
3-hydroxypro- pionic acid	0.025	0.03	0.09	trace	trace	n.d.	n.d.	n.d.	0.001	n.d.	< 0.01 [3]
3-hydroxy-2-me- thylbutyric acid	0.004	0.04	0.03	0.004	0.004	0.005	0.008	n.d.	0.003	0.002	
tiglic acid	0.003	0.003	n.d.	n.d.	0.001	n.d.	n.d.	n.d.	trace	n.d.	< 0.001 [10]
tiglylglycine	n.d.	trace	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01 [10]
3-methylcrotonic acid	0.01	0.05	0.02	0.04	n.d.	0.004	n.d.	n.d.	trace	n.d.	
3-methylcro- tonylglycine	n.d.	0.09	trace	0.03	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	< 0.01 [11]
3-hydroxyiso- valeric acid	0.37	0.42	0.22	0.15	0.17	0.06	0.06	0.03	0.01	0.1	< 0.09[2]
3-methylglu- taconic acid	trace	n.d.	n.d.	n.d.	0.005	0.01	0.006	trace	trace	trace	
3-hydroxy-3-me- thylglutaric acid	0.01	trace	n.d.	0.002	0.03	0.03	0.02	0.01	0.003	0.02	< 0.01 [10]
lactic acid	0.74	0.61	0.65	0.84	0.3	0.4	0.35	0.19	0.15	0.3	< 0.22 [12]

Tab. II: Concentrations of anticonvulsants (PHT = phenytoin, PB = phenobarbital, PRM = primidone, CBZ = carbamazepine, VPA = sodium valproate) in serum, biotin in plasma and organic acids in urine (μ mol/mg creatinine) (n.d. = not detectable)

dependent enzymes is less reduced in patient E than in the epileptics treated with anticonvulsants other than sodium valproate; this is in accordance with the intermediate plasma biotin level of 280 ng/l detected in patient E.

For the first time an elevated excretion of some organic acids, known to occur in the urine of children with an inborn error of metabolism of biotin-dependent enzymes or of children with a dietary biotin deficiency, has been detected in epileptics treated with phenytoin, primidone, phenobarbital or carbamazepine. This elevated excretion seems to be caused by the reduced circulating biotin levels found in these epileptics. Whether a connection exists between the reduced plasma biotin levels and the anticonvulsant efficacy of these drugs remains to be studied.

References

1. BONJOUR, J.-P.: Wld. Rev. Nutr. Diet. 38, 1-88, 1981. - 2. CHALMERS, R.A., HEALY, M.J., LAWSON, A.M., HART, S.T., WATTS, R.W.E.: Clin. Chem. 22, 1292-1298, 1976. - 3. COWAN, M.S., WARA, D.W., PACKMAN, S., AMMANN, A.J., YOSHINO, M., SWEETMAN, L., NYHAN, W.L.: Lancet *ii*, 115-118, 1979. - 4. FRIGG, M., BRUBACHER, G.: Int. J. Vitam. Nutr. Res. 46, 314-321, 1976. - 5. KESNER, L., MUNTWYLER, E.: Anal. Chem. 38, 1164-1168, 1966. - 6. KRAUSE, K.-H., BERLIT, P., BONJOUR, J.-P.: Arch. Psychiatr. Nervenkr. 231, 141-148, 1982. - 7. KRAUSE, K.-H., BERLIT, P., BONJOUR, J.-P.: Ann. Neurol. 12, 485-486, 1982. - 8. MOCK, D.M., DE LORIMER, A.A., LIEBMANN, W.M., SWEETMAN, L., BAKER, H.: N. Engl. J. Med. 304, 820-823, 1981. - 9. SWEETMAN, L., SURH, L., BAKER, H., YOSHINO, M.: PETERSON, R.M., NYHAN, W.L.: Pediatrics 68, 553-558, 1981. - 10. SWEETMAN, L., WEYLER, W., NYHAN, W.L., CÉSPEDES, C., LORIA, A.R., ESTRADA, Y.: Biomed. Mass. Spectrum 5, 198-207, 1978. - 11. THOENE, J., BAKER, H., YOSHINO, M.: New Engl. J. Med. 304, 817-820, 1981. - 12. THOMPSON, J.A., MILES, B.S., FENNESSY, P.V.: Clin. Chem. 23, 1734-1738, 1977. - 13. VAN BIERVLIET, J.P.G.M., BRUINVIS, L., VAN DER HEIDEN, C., KETTING, D., WADMAN, S.K., WILLEMS, J.L., MONNENS, L.A.H.: Devl. Med. Child. Neur. 19, 392-401, 1977.

Dr. K.-H. Krause, Neurolog. Univ.-Klinik, Vossstrasse 2, D-6900 Heidelberg (F.R.G.)