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emde chromaffin secretory vesicles, obtained by differential centrifugation, were further 
purified on isotonic (PereolI) gradients. The chromaffin vesicIe fractions recovered from the 
gradients contain acetylcholinesterase as well as lysosomal enzymes. With the aid of a 
subsequent sucrose gradient lysosomal enzymes could be removed from chromaffin vesicIe 
fractions. but not acetylcholinesterase. This suggests that lysosomal enzymes do not pass 
through the chromaffin vesicIes during the biogenesis of lysosomes but acetylcholinester
ase does. © 1984 Academic Press. Ine. 
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Lysosomal enzymes and acetylcholinester
ase have been reported to be secreted from 
perfused adrenals as well as from cultured 
chromaffin cells (1-5). Subcellular fraction
ation and separation of crude chromaffin 
secretory vesicles on Percoll density gradients 
have indicated that both lysosomal enzymes 
and acetylcholinesterase are present in chro
maffin vesicle fractions (6,7). Thus it seems 
that chromaffin vesicles contain these en
zymes and may therefore act as transport 
systems for cell membrane and lysosomal 
components as well as the "natural" secretory 
products of the chromaffin cello 

In the hepatocyte, 5'-nucleotidase and ad
enylate cyclase, two typical cell membrane 
enzymes, have been found to be part of the 
secretory vesicles, a fact which is compatible 
with their insertion into the cell membrane 
during exocytosis (8-11). Also, the transfer 
of Iysosomal enzymes to lysosomes in fibro
blasts possibly involves a pathway including 
seeretion or transport to the cell membrane 
followed by reuptake (cf. Ref. (12». 

To find out whether acetylcholinesterase 
as weH as lysosomal enzymes are indeed 
eonstituents of the ehromaffin vesicle and 
might therefore be involved in the biogenesis 
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of the cell membrane and the lysosomes, we 
have first purified erude ehromaffin vesicles 
on Percoll gradients and subsequently put 
the secretory vesicle fractions recovered from 
these gradients on sucrose gradients. The 
eareful analysis of five different acid hydro
lases, acetylcholinesterase, and several other 
markers in the gradients revealed that chro
maffin seeretory vesicles contain aeetylcho
linesterase but not lysosomal enzymes. 

MATERIAL AND METHODS 

Homogenization of adrenal medullary tis
sue, differential centrifugation, and density
gradient centrifugation in Percoll media were 
carried out as previously described (7). Briefly, 
bovine adrenal glands were transported from 
the Ioeal slaughterhouse to the laboratory in 
an ice-cold medium eontaining 20 mM phos
phate (pH 7.4, adjusted with NaOH), 0.9% 
NaCI, 1 mM EDT A, and 1 mM EGT A. The 
medullae were cut out and placed into the 
isolation medium eontaining 20 mM Mops 1 

(pH 7.0, adjusted with KOH), 1 mM EGTA, 
and suerose to give a final osmolality of 420 

148 

I Abbreviation used: Mops, 4-morpholinepropanesul
fonic acid. 
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mosmoljkg. The medullae (20% w/v) were 
minced into small pieces and homogenized 
in a loose-fitting Teflon-to-glass homogenizer 
by three downward strokes. To remove un
broken tissue the homogenate was filtered 
through three layers of cheesecloth. The re
sulting suspension was first centrifuged at 
2200gav for 10 min. The low-speed pellet PI 
was disearded and the supematant SI was 
centrifuged at 12,OOOgav for 20 min. The 
pellet obtained from 8 g of tissue was resus
pended in 1 ml isolation medium (P2, emde 
chromaffin vesicles). Percoll (50%) in isolation 
medium was prepared either by dialysis (7) 
or by addition of an equal volume of twiee
eoncentrated isolation medium to 1 vol of 
Pereoll (density 1.132 g/ml). One milliliter 
of the emde chromaffin vesicle fraction (P2) 
was mixed with 8 ml 50% Percoll in isolation 
medium prepared as described above and 
centrifuged at 35,000gav for 30 min in a 
fixed-angle rotor (Beckman TFT, 65.13). Pu
rified secretory vesicles were recovered from 
the Percoll gradient (fractions 1-18). Percoll 
was removed using a Sephacryl 2000 column 
equilibrated with isolation medium. Theves
icles were then concentrated by centrifugation 
(12,000gav for 20 min) and resuspended in a 
small volume of isolation medium (fraction 
SV, about 40 mg protein/ml). 

A 0.3-ml amount of the seeretory vesicle 
fraetions (SV) was plaeed on discontinuous 
sucrose gradients. Their composition (in 14-
ml tubes) was 2 ml of 2.4 M; 1 ml each of 
2.3, 2.2, 2.1, 2.0, 1.9, 1.8, 1.7, and 1.6 M; 
and 0.9 ml each of 1.5 and 0.86 M sucrose 
in 20 mM Mops (pH 7.0), 1 mM EGT A. 
Centrifugation was carried out at 40,000 rpm 
for 3 h in a SW 40 Ti rotor. Fractions of 8 
drops were collected from the gradients by 
means of a peristaltic pump. 

Protein, acety1cholinesterase, and absor
bance at 280 nm were determined as de
scribed recently (7,13). The details of the 
methods used in the assays for five different 
acid hydrolases (14-16) are given in Table 1. 
Cytochrome bS61 was estimated from the 
reduced minus oxidized difference spectra 

(17). A TPases were measured as described 
(18,19). Substances were obtained from the 
following manufacturers: substrates for the 
acid hydrolases, Serva, Heidelberg; Percoll, 
Pharmacia. Freiburg; Vanadate-free A TP and 
ouabain, Sigma, Munich. All other chemicals 
were of the purest grade commercially avail
able. 

RESUL TS AND DISCUSSION 

The isolation of pure and stable subcellular 
organelles is aprerequisite for biochemical 
studies on the compositions, properties, and 
functions of these stmctures. Secretory vesi
cles are characterized by high amounts of 
intravesicular substances (secretory products). 
During sucrose-gradient centrifugation secre
tory vesic1es are exposed to hypertonie media, 
which probably causes the instability of the 
isolated material. To circumvent this disad
vantage secretory vesicles from the neurohy
pophysis and adrenal medulla have been 
isolated on isotonic continuous gradients us
ing Percoll as gradient material (6,7,20,21). 
The main contaminants of cmde secretory 
vesicle fractions (Le., those obtained by dif
ferential centrifugation) are mitochondria, 
which can be completely removed using such 
gradients. The vesicles obtained are stable 
and have successfully been used in studies 
concerned with the analysis of proton, so
tium, and calcium transport (6,7,13,20, 

12-24). 
However, cmde secretory vesicles (fraction 

P2) also contain lysosomal enzymes (e.g., 
55.5% ± 10.1, n 11, ofthe activity ofaryl 
sulfatase present in the homogenate of bovine 
adrenal medullary homogenates). Reports 
from severallaboratories have indicated that 
lysosomal enzyme activities are found also 
in secretory vesicle fractions after further 
purification on Percoll gradients (6,20,24). 
The determination of ß-gluconidase and ß
hexosaminidase in Percoll gradients (Fig. 1) 
shows that apart of these lysosomal enzyme 
activities is in fact centered around fraction 
8, which also contains the markers for chro-



Enzyme Substrate 

Acid phosphatase 5.5 mM Nitrophenyl 
(EC 3.1.3.2) phosphate 

Aryl sulfatase 10 mM Nitro-
(EC 3.1.6.1) catechol sulfate 

ß-Galactosidase 5 mM Nitrophenyl 
(EC 3.2.1.23) galactoside 

ß-N-Acetyl 10 mM Nitrophenyl. 
glucosaminidase N-acetyl-ß-
(EC 3.2.1.30) glucosaminide 

ß-Glucuronidase 2 mM Nitrophenyl 
(EC 3.2.1.31) glucuronide 

TABLE I 

ANALYTICAL PROCEDURES FOR ENZYME AssAYS OF LYSOSOMAL ENZYMES 

pH/final 
volume 

Buffer (mi) Addition Manipulation 

Acetate 5.0/0.2 0.1% Triton X-IOO Add 1 ml of glycine (0.53 M), 
(SO mM) ±7.5 mM tatrate Na2C03 (0.34 M), NaO 

(0.27 M), pH 10.7; 
centrifuge 

Acetate 5.ü/0.2 0.1 % Triton X-IOO Add 1 ml of 10% TCA; 
(200 mM) NaCI (0.5 M) centrifuge; add I ml of 

NaOH (2.5 M) to 
supematant 

Acetate 5.0/0.2 0.1% Triton X-IOO Add 1 ml glycine (0.25 M), 
(100 mM) NaCI (0.1 M) pH 9.8; centrifuge 

Citrate 4.5/0.1 0.2% Triton X-100 Add 1 ml glycine (0.25 M), 
(200 mM) NaO (0.2 M) pH 9.8; centrifuge 

BSA (0.01%) 

Acetate 5.0/0.2 0.1% Triton X-IOO Add 1 ml of glycine (0.53 M), 
(SO mM) Na2C03 (0.34 M), NaO 

(0.27 M), pH 10.7; 
centrifuge 

Wavelength for 
colorimetric 

determination 
(nm) 

405 

515 

405 

405 

405 

Reference 

(14) 

OS) 

(14, 16) 

(14) 

(14) 

Note. All incubations were carried out at 30·C. EC in the first column refers to the enzyme classification by the Commission on Enzymes of the International Union 
of Biochemistry. 

-::s 

I 
Cl 
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maffin secretory vesicle contents (7, l3). The 
same fractions also contain acetylcholinester
ase (Fig. 1), an enzyme which has been 
reported to be present in chromaffin secretory 
vesicles (7). 

Both lysosomal enzymes as well as acetyl
cholinesterase have been shown to be secreted 
from perfused adrenals (1-3) and a corelease 
of acetylcholinesterase and catecholamines 
has been observed from chromaffin cells in 
culture (4,5). Thus, if both types of enzymes 
are actually present within the chromaffin 
secretory vesic1es the parallel secretion of 
these enzymes together with catecholamines 
could be feasible. 
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As a further test for the colocation of 
lysosomal enzymes and acetylcholinesterase 
within chromaffin secretory vesicles, we have 
put the secretory vesicle fractions recovered 
from the Percoll gradients described above 
on sucrose gradients (Fig. 2). In these gra
dients the distribution of acetylcholinesterase, 
cytochrome bS6 [, and Mg2+-ATPase was 
similar to that of the absorbance at 280 nm, 
which was taken to conveniently locate se
cretory vesic1e contents (catecholamines plus 
nucleotides) of chromaffin vesicles (compare 
Refs. (7) and (13)). By contrast the distribu
tion of five lysosomal enzymes, namely aryl 
sulfatase, ß-glucuronidase, ß-hexosaminidase, 
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FIG_ I. Distribution of markers in fractions from Percoll gradients_ Crode chromaffin vesicles (fraction 
P2) obtained by differential centrifugation (12,OOOga. for 20 min were placed on a 50% Percoll gradient 
After centrifugation in a fixed-angle rotor (TFf, 65_13) at 35,OOOga. for 30 min, fractions were collected 
from the bottom and analyzed. Protein is given as mg X ml-', acetylcholinesterase as /lmol acetylthiocholine 
hydrolyzed X min X ml-', ß-N-acetylglucosaminidase and ß-g1ucuronidase as /lmol product formed X 30 
min-' X ml-'. The vertical dashed line marks the protein peak which contains the highest amount of 
ascorbate, adrenalin, and noradrenalin (7). 
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FIG. 2. Distribution of markers in fractions recovered from sucrose gradients. Purified chromaffin 
vesicles (fraction SV) recovered from the Percoll gradient were placed on a sucrose gradient (see refractive 
index). After centrifugation in a SW 40 rotor (368,OOOgmax for 180 min) fractions were collected from the 
bottom and analyzed. Protein is given as mg X mI-I, catecholamines plus nucleotides as absorbance at 
280 nm X mI-I, acetylcholinesterase as j.lmol acetylthiocholine hydrolyzed X min- t X mI-I, Iysosomal 
enzymes as j.lmol product formed X 30 min- I X mI-I, ATPases as nmol ADP formed X min- I X mI-I, 
and cytochrome bS61 as nmol X mI-I. The vertical dashed line marks the protein peaks which coincides 
with that of A2so , cytochrome bS6 " acetylcholinesterase, and Mg2+-ATPase. 

ß-galactosidase, and acid phosphatase, dis
played a completely different pattern. From 
these results the following conclusions can 

be drawn: First, the lysosomal enzymes are 
located in a compartment different from 
chromaffin vesicles, whereas acetylcholines-
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terase is contained within these structures. 
Second, the strategy to use a Percoll gradient 
as well as a sucrose gradient successively 
allows the removal first of mitochondria, 
then of lysosomes, a fact which might be 
advantageous as a basis for the isolation of 
pure lysosomes from this tissue. 

Earlier attempts to directly put crude chro
maffin secretory vesicles on sucrose gradients 
to remove lysosomal enzymes from the frac
tions did not allow a ready interpretation of 
the results because the distribution for these 
enzymes was bimodal and the chromaffin 
vesicle fractions obtained still contained a 
certain percentage of lysosomal enzymes 
(25,26). Furthermore, a direct comparison of 
chromaffin secretory vesicle fractions pre
pared on different types of gradients revealed 
that the activity of ß-glucuronidase was still 
substantial in fractions purified on sucrose 
gradients (6). 

The data presented in this report on the 
removal of lysosomal enzymes from chro
maffin vesicle fractions using, successively, 
two types of density gradients definitely rule 
out a colocation of these enzymes in chro
maffin secretory vesicles and strongly argue 
against a role for these structures in the 
biogenesis of lysosomes. Similar observations 
have been made in neurohypophysial secre
tory vesicles (20,24). However, the colocation 
of cell membrane components within chro
maffin vesicles in conjunction with cotrans
port studies on the intact tissue as well as on 
chromaffin cells in culture suggest a partici
pation of chromaffin secretory vesicles in the 
biogenesis of the cell membrane. In the he
patocyte such a process has been described 
for 5'-nucleotidase and adenylate cyclase (8-
11). The presence of adenylate cyclase has 
also been reported in chromaffin secretory 
vesicles (27). In further studies (28) it had 
been argued that this enzyme distributes in 
sucrose gradients in the same way as does 
acetylcholinesterase, which was at that time 
accepted to be an exclusive marker for cell 
membranes. However, the present data on 
acetylcholinesterase distribution in different 

types of density gradients show that this 
argument may no longer be valid. 

Obviously there are several cell membrane 
markers present in chromaffin vesicles. In 
addition to the examples of adenylate cyclase 
and acetylcholinesterase discussed above, the 
a-bungarotoxin-binding part of the acetyl
choline receptor (29) and sodium-calcium 
exchange activity have also been observed in 
chromaffin secretory vesicles (13,22,30). The 
finding on the absence of Na+-K+-ATPase 
activity in the chromaffin vesicle fractions 
(Fig. 2) is not surprising. The subunits ofthis 
enzyme after biosynthesis are processed in 
different ways. The ß subunit is synthesized 
at the endoplasmic reticulum and traverses 
the Golgi but the a subunit appears to be 
synthesized on free polysomes and discharged 
to the cytoplasm (cf. Ref. (31). Lack of 
enzyme activity in chromaffin vesicles there
fore only means that no mature (assembled) 
Na+-K+-ATPase exists in these structures. 
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