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Reductive chain separation of botulinum A toxin - aprerequisite to 
its inhibitory action on exocytosis in chromaffin cells 
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Cleavage of the disulfide bond linking the heavy and the light chains of tetanus toxin is necessary for its inhibitory action 
on exocytotic release ofcatecholamines from permeabi1ized chromaffin cells [(1989) FEBS Lett. 242, 245-248; (1989) J. 
Neurochern., in press]. The related botulinum A toxin also consists of a heavy and a light chain linked by a disulfide 
bond. The actions ofboth neurotoxins on exocytosis were presently compared using streptolysin O-permeabilized bovine 
adrenal chromaffin cells. Botulinum A toxin inhibited Ca2 +-stimulated catecholamine release from these cells. Addition 
of dithiothreitollowered the effective doses to values below 5 nM. Under the same conditions, the effective doses of teta
nus toxin were decreased by a factor of five. This indicates that the interchain S-S bond of botulinum A toxin must 

also be split before the neurotoxin can exert its effect on exocytosis. 
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1. INTRODUCTION 

The clostridial neurotoxins tetanus toxin (Tetx) 
and botulinum toxin A (Botx A) are members of a 
family of closely related high molecular mass pro
teins. The 150 kDa proteins consist of a heavy and 
a light chain covalently linked by a disulfide bond. 
They belong to the most poisonous substances 
known. Their main target is the central (Tetx) or 
the peripheral (Botx A) nervous system where they 
act as very potent inhibitors of transmitter release 
[3-5]. Besides their well-known effects on 
neurons, Tetx and Botx A have recently been 
reported to inhibit exocytosis from adrenal 
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medullary chromaffin cells when injected in
tracellularly [6]. Similar results were obtained 
when chromaffin cells were treated extracellularly 
with large amounts of various botulinum 
neurotoxins, whereas Tetx was ineffective under 
these conditions [7]. 

Using permeabilized chromaffin cells, the in
tracellular effects on exocytosis by these neurotox
ins can be studied more directly. In such 
preparations the internalization process is bypass
ed and defined doses can be applied. Recently, the 
inhibitory action of Tetx on exocytosis from 
digitonin- [8] and streptolysin 0 (SLO)
permeabilized chromaffin cells has been described 
[1,2]. Furthermore, the effect of Tetx can be 
augmented by addition of dithiothreitol (DTT), 
which reduces the interchain disulfide bond be
tween the heavy and light chains of Tetx [1,2]. 
Even the purified light chain alone has been found 
to inhibit exocytosis [1]. The present study was 
undertaken to determine whether Botx A requires 
activation via a similar process to that for Tetx 
before becoming effective within the cell. 
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2. EXPERIMENTAL 

2.1. Materials 
Tetx, Botx A and Botx B were a generous gift from V. Weller 

and E. Habermann (Rudolf Buchheim-Institut für Phar
makologie, Giessen, FRG). The LDso in mice was 2 ng/kg for 
Tetx, and 3 ng/kg for both botulinum toxins. Streptolysin 0 
was kindly provided by S. Bhakdi (Institut für Mikrobiologie, 
Giessen). Botx A antitoxin (horse, 750 IV/mi) was obtained 
from Behring Werke (Marburg), collagenase (0.7 lU/mg) from 
Serva (Heidelberg), collagen (rat tail) and cytosine arabinoside 
from Sigma (München), and DMEM and fetal calf serum from 
Seromed, Biochrom KG (Berlin, Germany). 

2.2. Cell cultures 
Chromaffin cells from bovine adrenal medulla were prepared 

as described [9]. Briefly, fresh adrenals were dissected free of 
fat and connective tissue and immediately rinsed free of blood 
by several retrograde injections of ice-cold buffer I (mM: 150 
NaCI, 5 KCI, 10 glucose, 10 Hepes, pH 7.4, supplemented with 
50 lU penicillin, 50 pg/ml streptomycin and 0.25 pg/ml 
fungizone). The adrenals were transported to the laboratory on 
ice. The majority of red blood cells were removed by further 
perfusion as described above. Subsequently, whole glands were 
incubated with collagenase (0.05070 in buffer I supplemented 
with 0.5070 BSA) for 1 h at 37°C. The medullae were removed 
and incubated with collagenase for a further 1 h. The resulting 
cell suspension was filtered through a nylon mesh (250 pm) and 
washed several times with buffer I containing 2070 BSA. The 
cells were suspended in culture medium (DMEM) containing 
10070 fetal calf serum and 5 pM cytosine arabinoside. They were 
plated on precoated (rat tail collagen, 20 pg/ml) wells at a den
sity of 3 x lOs cells. 

Rat pheochromocytoma cells (PCI2) kindly provided by H. 
Thoenen (Max-Planck-Institut für Psychiatrie, Martinsried) 
were cultivated as stated earlier [10]. 

2.3. Assay Jor exocytosis 
Adrenal chromaffin or PCI2 cells were preloaded with 

tritiated noradrenaline or dopamine [1,2,10,11]. After several 
washes with Ca2+-free buffer II (mM: 140 NaCI, 4.6 KCI, 1.2 
KH2P04, 1.2 MgS04, 0.5 ascorbic acid, 15 Pipes, pH 7.2), buf
fer III (mM: 150 NaCI, 10 Pipes, lEGTA, pH 7.2) and KG buf
fer (mM: 150 K+ glutamate, 10 Pipes, 0.5 EGTA, 5 NTA, pH 
7.2), cells were permeabilized with SLO (30 HV/ml for adrenal 
chromaffin cells or 60 HV/ml for PCI2 cells) in KG buffer sup
plemented with 0.1070 BSA, 2 mM Mg2+ / ATP and I mM Mg2+ 
free, either on ice (PCI2) or at 37°C for 2 min [2,11]. The buf
fer was then replaced with a fresh one containing the neurotoxin 
preparations to be tested. After incubation for 25 min at 37°C, 
cells were challenged for 10 min with KG buffer containing the 
indicated amounts of free Ca2+. The buffer was either com
pletely replaced by fresh buffer containing the indicated 
amounts of free Ca2+ (adrenal chromaffin cells) or Ca2+ was 
added to obtain the final free Ca2+ concentration (PCI2 cells). 
The eH]catecholamines released were estimated in the superna
tant and in cells after lysis in 0.2070 SDS [1,2,10]. Values (mean 
of duplicate or triplicate determinations) are expressed as 070 of 
the radioactivity present at the beginning of stimulation. Free 
Ca2+ concentrations were calculated using the stability con-
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stants given in [12] and were routinely monitored by a 
Ca2+-sensitive electrode [13]. 

3. RESULTS 

Adrenal chromaffin cells take up 3-5070 of the 
radioactive dopamine or noradrenaline offered. 
When permeabilized with SLO and incubated for 
25 min at 37°C, equal amounts (5%) of 
[3H]noradrenaline or [3H]dopamine can be re
leased by micromolar concentrations of free Ca2+ 

(fig.1). Incubation of permeabilized cells with Botx 
A for 25 min at 37°C reduces both 
[3H] noradrenaline and [3H]dopamine release 
evoked by 30 IlM free Ca2

+ (fig.l). The effects of 
Botx Aare specific because they can be overcome 
by boiling or preincubating the toxin with antitox
in. The antitoxin itself has no effect on 
Ca2+ -stimulated release (fig.1). 
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Fig.l. Inhibitory effect of Botx A on Ca2+ -stimulated 
[3H]catecholamine release from SLO-permeabilized adrenal 
chromaffin cells. Adrenal chromaffin cells were preloaded with 
either [3H]noradrenaline (A) or [3H]dopamine (B) and 
permeabilized with SLO as given in section 2. The cells were 
incubated for 25 min at 37°C with antitoxin (7.5 V/mi), Botx 
A (4.2 nM), Botx A (4.2 nM) + antitoxin (7.5 V/mi) or Botx A 
(4.2 nM) previously heated for 15 min to 95°C as indicated. 
Before use all toxin dilutions were incubated for 2 h at room 
temperature which is necessary for the inactivation of Botx A 
in the antitoxin-containing sampie. The incubation buffer was 
exchanged for fresh one containing 30 pM free Ca2+. Values 
obtained in two separate experiments are means of three 

sampIes ± SD. 



Volume 248, number 1,2 FEBS LETTERS May 1989 

The inhibitory action of Botx A increases with 
incubation time. More than 10 min are required to 
affect Ca2

+ -induced exocytosis (not shown). 
Fig.2 gives a dose-response curve for the in

hibitory action of Botx A on exocytosis in the 
presence or absence of DTT. Although DTT is not 
absolutely required for the effects of Botx A, it 
drastically reduces the effective dose of this 
neurotoxin to values below 5 nM final concentra
tion (fig.2). Inhibition by Botx A, even at doses up 
to 100 nM and in the presence of DTT, is never 
complete and does not exceed 60-70010 (not 
shown). Varying the free Ca2

+ concentration dur
ing stimulation does not substantially alter the in
hibition by Botx A (not shown). 

Parallel experiments have been performed with 
Tetx. Again the presence of DTT greatly reduces 
the effective dose of this neurotoxin (fig.3). 
However, compared to Botx A, greater amounts of 
Tetx are required to affect exocytosis (figs 2,3). 
The complete inhibition observed with Tetx con
trasts with the partial inhibition obtained with 
Botx A under the same conditions (see figs 2,3). 
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Fig.2. DTT increases the inhibitory effect of Botx A on 
exocytosis from SLO-permeabilized adrenal chromaffin cells. 
[3H]Noradrenaline-preloaded and SLO-permeabilized adrenal 
chromaffin cells were incubated with various amounts of Botx 
A toxin (abscissa) in either the absence (0--0) or presence 
( __ ) of 1 mM DTT. Ordinate: [3H]noradrenaline released 
due to stimulation with 30 ,uM free Ca2+. Release in the absence 
of Ca2+ was approx. 4Ofo under both conditions. Values are 

means of three determinations ± SD. 
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Fig.3. DTT increases the inhibitory effect of Tetx on exocytosis 
from SLO-permeabilized adrenal chromaffin cells. The 
procedure followed that given in fig.2. After incubation of cells 
with the given (abscissa) amounts of Tetx in either the absence 
(0--0) or presence ( __ ) of I mM DTT, cells were 
stimulated with 35,uM free Ca2+. Values are means of two 
determinations. Release in the absence of Ca2+ (4.8%) was 

subtracted. 

Experiments have been also performed with 
SLO-permeabilized PC12 cells. These cells exhibit 
roughly the same sensitivity towards Tetx as 
adrenal medullary chromaffin cells [1,2]. 
However, catecholamine release from PC12 as op
posed to chromaffin cells is only affected by 
20-times high er concentrations of Botx A even 
when DTT is present (table I, cf. fig.2). 

Table 1 

Inhibitory effect of Botx A on Ca2+ -stimulated eH]dopamine 
release from SLO-permeabilized PC12 cells 

Control 
Botx A 70 nM 

14 nM 
2.8 nM 

[3H]Dopamine release (%) 
stimulated by Ca2+ (20,uM) 

19.8 
10.9 
17.6 
18.7 

[3H]Dopamine-preloaded cells were incubated with SLO at ODC 
for 2 min [1]. The medium was replaced by fresh buffer 
supplemented with Botx A and 1 mM DTT. After 20 min at 
37DC the cells were stimulated with 20,uM free Ca2+ for 10 min. 
VaJues are means of two determinations. Release in the absence 

of Ca2+ (14%) was subtracted 
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4. DISCUSSION 

It has been recognized that Botx A as weIl as 
Tetx does not solely affect the secretory process of 
neurons. When applied extracellularly, Botx A, B 
and D, but not Tetx, inhibit exocytosis from 
chromaffin cells [7,14). The sensitivity of adrenal 
chromaffin cells to Botx A can be increased by 
pretreating the cells with a ganglioside mixture 
which mimicks the ganglioside pattern of the 
neuronal plasma membrane. After this treatment, 
the cells even become sensitive to Tetx [15). The 
difference in sensitivity between nerve cells [16) 
and pretreated [15) or untreated [7) adrenal 
chromaffin cells towards clostridial neurotoxins 
may be due to variations in the uptake of ex
tracellularly applied neurotoxins by these cells. 

When directly applied to the cytosol by injection 
[6) or through large pores in the plasma membrane 
([1,2,8), this paper) both Tetx 11 ,2,6,8) and Botx A 
([6), this paper) inhibit the Ca2+ -stimulated ex
ocytosis from chromaffin cells. Thus, Tetx and 
Botx A interfere with steps during exocytosis 
which are common to neurons and chromaffin 
cells and occur after the intracellular rise of Ca2

+. 

The intracellular actions of Botx A and Tetx are 
difficult to analyze when applied extracellularly or 
injected into single cells. SLO inserts defined pores 
large enough for the free passage of proteins into 
the plasma membrane [17,18). In SLO
permeabilized adrenal medullary chromaffin or 
PC12 cells, the efficacy of Tetx 11 ,2) and Botx A 
(this paper) can be compared more directly. The 
inhibitory action of Botx A is greatly augmented 
under reducing conditions, i.e. by addition of 
DTT. This indicates that the S-S bond which links 
the heavy and the light chains must be broken 
before exocytosis can be inhibited. For Tetx the 
same holds true ([2), this paper) and, after chain 
separation, the light chain alone can inhibit ex
ocytosis (1). 

Besides the generally used 'two-chain' form, the 
clostridial neurotoxins also exist in a 'single-chain' 
form where the light and heavy chains are linked 
by a peptide bond in addition to the disulfide bond 
[3-5). When subjected to SDS-PAGE under 
reducing conditions, these forms cannot be 
separated into a light and a heavy chain. Ac
cordingly, even in the presence of DTT, single
chain Tetx does not inhibit exocytosis from per-
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meabilized chromaffin cells (1). Apreparation of 
Botx B, which proved to be in single-chain form 
when subjected to SDS-PAGE, similarly did not 
affect catecholamine release from permeabilized 
chromaffin cells (unpublished). 

When applied extracellularly, the single-chain 
form of Botx B is also less effective as compared 
to the two-chain form in Aplysia neurons and 
mouse hemidiaphragm [19). The same applies for 
the single-chain of Tetx when tested in primary 
cultures of mouse brain and in vivo [20). 

At present, it is not known whether intracellular
ly applied Tetx light chain alone inhibits exocytosis 
from neurons as it does in permeabilized adrenal 
chromaffin cells (1). In contrast, the light chain of 
Botx A, when injected into Aplysia neurons, has 
no effect. In these neurons both the heavy and the 
light chain of Botx A must be present to inhibit 
transmitter release [21). Further experiments will 
show whether the light chain of Botx A alone or a 
combination of both heavy and light chains is 
responsible for the inhibition of exocytosis from 
chromaffin cells. It is also unclear wh ether the 
light chain of Tetx alone inhibit exocytosis when 
injected into neurons. Such experiments should 
provide further information as to whether Tetx 
and Botx A act via a different molecular 
mechanism. Otherwise different mechanisms of 
exocytosis must be assumed to operate in en
docrine cells and neurons. 

The pharmacological differences between the ac
tions of Tetx and Botx A have been attributed to 
different plasma membrane receptors involved in 
the internalization of both toxins leading to the 
same intracellular action [22). A similar molecular 
mechanism for the action of Tetx and Botx A 
within the cells has been predicted from their 
primary structure [23). However, from studies us
ing mouse hemidiaphragm, different effects of 
Tetx and Botx A have been deduced [24). Ex
periments with permeabilized chromaffin cells sup
port the latter conclusion: whereas Botx A gives 
rise to incomplete inhibition of Ca2

+ -stimulated 
exocytosis ([6,7), this paper) Tetx fully blocks this 
cellular response ([1,6,8), this paper). The ob
served differences in effective doses of Tetx and 
Botx A also constitute evidence against the 
assumption of a fully identical mechanism of in
tracellular action. 

Clostridial neurotoxins will become valuable 
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tools to define single steps of cellular pathways 
connecting the rise in intracellular Ca2+ concentra
tion to fusion of the vesicular and plasma mem
brane. Such stepwise analysis may eventually lead 
to an understanding of the underlying molecular 
mechanisms. 
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