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On K-Theory of Hopf Algebras

of Finite Type
by Bodo Pareigis

This paper generalizes some results of the represen-
tation theory and K-theory of fipite groups to Hopf alge-
bras of finite type. The main aim is to find some gener-
alization of Artin's theorem on the finiteness of the
Grothendieck ring of representations of a finite group
modulo the induced representations coming from cyclic
subgroups. The group theoretic methods use heaﬁily the
properties of single group elements in the group ring which
we don't have in general Hopf algebras any more. In par-
ticular the sum of the cyclic (as algebras generated by
one element) sub Hopf algebras of a Hopf algebra is not
any more all of the Hopf algebra. So induction from cyclic
sub Hopf algebras cannot be handled with the present
theory. Furthermore the fact that group rings over fields
of characteristic zero are semisimple could not be removed.
So our results apply mainly to semisimple Hopf algebras.
By representations we mean ordinary modules over Hopf
algebras. In [4] W, Haboush shows that for finite alge~
braic groups this leads to representations in the sense of
algebraic groups. Since we admit also Hopf algebras which
are not cocommutative this theory covers (by dualization)

graded modules over the base ring with finite grading
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group. They are comodules over the corresponding group
ring or modules over the dual of the group ring which

is semisimple when the base ring is a field.

The first part covers a theory of Frobenius functors
on a certain category of Hopf algebras. Since we admit
Hopf algebras which are not cocommutative the Frobenius
functos take wvalues in not necessarily commutative rings.
In particular the Grothendieck ring GO(H) of a Hopf algebra

H will not in general be commutative.

In the second part we investigate the characters of
representations which take values in the dual of a Hopf
algebra H. In particular we determine the kernel and
cokernel of the character map y: Gg(H) — H* for a finite
dimensional Hopf algebra H over a field k and discuss the

usual orthogonality relations of characters.

The last part proves a generalization of Artin's
theorem (Theorem 3.8) and gives some applications of this

theorem.

This paper was prepared during a seminar at the State
University of New York at Albany. Many results are due
to inspiring discussions with the participants of this

seminar.
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In an earlier version of this paper the orthogonality
relations for characters where only discussed in case
the Hopf algebra has a field as base ring. In many applica-
tions one wants the base ring to be rather arbitrary.
So I tried to carry the discussion of characters and
their orthogonality relations over Hopf algebras over
arbitrary commutative rings up to the point where increased
technical difficulties enter the situation. Several times
you will find the restriction Pic(R) = 0. In view of the
remark at the end of [7] the results should hold without
this assumption. I hope to be able to work out the details

in another context.
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1. Frobenius functors and modules

All rings are assumed to be associative rings with
unit, all ring homomorphisms preserve the units, all
modules are unitary modules. If A is a ring then A-mod
denotes the category of A left modules.

Let f:A+B be a ring homomorphism. Then f induces

functors f,: A-mod =+ B-mod by f,(M) = B&,M and .

®
f : B-mod + A-mod which sends a B module to the under-
lying abelian group considered as an A module via f:A+B.

*
f, is the induction functor, f is the restriction functor.

Lemma 1.1: Let f:A*B and g:B+*C be ring homomorphisms,

then
1) (gf)* = g*f*

2) (id,), = Id
A'* A-mod

3 (en)t = £'g*

*

4) (idA) = Id
A-mod ~

The proof is obvious.

Now let R be a commutative ring, let A, B, C, D be

R-algebras and let f:A+B and g:C+D be R algebra homomorphisms.
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By abuse of notation let f, be (f@idc)*: AQRC-mod > BaRc_mod
% 0
and let f be (f@idc)‘: B8RC-mod > A@RC-mod. Similarly

E3 %
let g, be (idAQg)* and g be (idAeg) .

Lemma 1.2: With the notations introduced above we have

1) f.g, = g.f,: A9;C-mod + B®;D-mod

2) f

0
"

% %
g f: B9;D-mod + A, C-mod

*
3) f, g fu: A®pD-mod + B@LC-mod.

S
(18]
n

Proof: 1) and 2) depend on the fact that (f8id)(id,8g) =
fog = (istg)(fQidc). 3) is a simple computation of tensor
products.

Let R be a commutative ring. A Hopf algebra H
over R is an R algebra H, which is also a coalgebra with
structure maps A:H » HGRH and e:H » R being R algebra
homomorphisms [12]. Let R-Hopf denote the category of
Hopf algebras over R with antipode.

Let H € RzHopf and M,N € H-mod. Then MQRN € F-mod

by the map H & HeH - Endp (M)8; Endp(N) + Endp (M8 N). This

defines an additive bifunctoér:
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R ¢ (H-mod) * (H-mod) = H-mod.

Let R, be the abelian group R with H module structure given

by e€: H+R.

Lemma 1.3: There are natural isomorphisms of H modules

(MGRN)GRP = MOR(NBRP)

MORRe = M

1]

ReeRM'

If H is cocommutative then there is a natural isomorphism

MORN = NORM.

Proof straightforward.

Proposition 1.4 (Frobenius Reciprocity): Let j:H'+H be in

R-Hopf , M € H-mod, N € H'-mod. Then there are natural

isomorphisms of H modules

* -
34 (3 QDBLN) = M8, (W)

. c* .
J4 (N8BR3 (D)) = j,(NI8M .
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Proof: By symmetry we only have to investigate the first
isomorphism. It is given by ¢(h8(m&n)) = | he,ym8(h ,y8n).
(h)

This is clearly a natural transformation in M and N. The

inverse map ¢: M@R(HOH,N) > H@H,(MGRN) is given by
Y(m@®(hen)) = § h(1y8(S(h(,,Im8n) where S is the antipode
(h)

of H.

Corollary 1.5 [8, Lemma 6]: There is a natural isomorphism

%
of H modules MGRH = MeeRH where Me = (ne) (M) with

n:R+H the algebra structure map of H.

. L
Proof: For j:R+H we get M@pH = M@ J, (R ) = j,(J (MI8;R) =

MeeRH'

Let A be an R algebra. Let MO(A,R) be the full sub-
category of A-mod of finitely generated projective R
modules. Let P(A) be the full subcategory of A-méq'
of finitely generated projective A modules. Let M(A) be

the full subcategory of A-mod of Noetherian A-modules.

Then we define
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Ki(A): = Ki(P(A))

ey = x. 1 (a,R))

i : it

G;(A): = K; (M(A)) for iz0,1.

For the definition of K; see {1). The map Ci(A): Ki(A)»Gi(A)
with Ci(A)[P] = [P] which is defined for a left Noetherian

ring A is called the Cartan map.

Lemma 1.6: Let H € R-Hopf. The functor

eR: H-mod x H-mod + H-mod induces functors

1) 8,: MO(H,R) x MO(H,R) -+ HO(H,R)

R
2) GR: MO(H,R) x P(H) + P(H)
3) GR: P(H) x MO(H,R) + P(H).

If R is Noetherian and H is a finitely generated R-module

then 9R induces functors

4) 8,: MO(H,R) x M(H) + M(H)

R

5) DR: M(H) x MO(H,R) + M(H).
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All these functors are exact in both variables.

Proof: 1) The tensor product of two finitely generated
projective R modules is a finitely generated projective
R-module, Since short exact sequences of modules in MO(H,R)

split, the tensor product is exact in both variables.

2) Let MGMO(H,R) and PEP(H). Then there is QEP(H)
with P®Q =~ &H. Hence MBRP is a direct summand of
@(MGRH) = O(HEGRH) by 1.5. Now Me is finitely generated
and projective as an R-module hence there is an NeeMo(H,R)
with MeONe = GRG. Consequently MESH is a direct summand of
Q(REQRH) =®H. All direct sums being finite we get that
MLP is a direct summand of some @H, hence M P € P(H).

The functor is exact in MO(H,R) since all short exact
sequences split over R. The functor is exact in P(H) since

all short exact sequences split over H hence over R.

4) Since H is Noetherian, M(H) is the category of
finitely generated H-modules. The tensor product of two
finitely generated R-modules is again finitely generated
as an R-module or as an H-module, which is the same in
this context. GR is exact in MO(H,R) since short exact
sequences split over R. 8, is exact in M(H) since all

modules in M (H,R) are R-flat.
o
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3) is symmetric to 2) and 5) is symmetric to u4).

Let R-hopf be the category of R-Hopf-algebras with

antipodes which are finitely generated and projective as

R-modules with Hopf algebra homomorphisms H'+H, such that
H is projective as an H' right (and/or left) module, as
morphisms.

Let Frob be a category with (non-commutative) rings
as objects and morphisms (i*,i*): A+B where i, :A+B and

*
i : B*A are additive maps such that

-,‘ . 3 k3
1) i is a ring homomorphism

%
2) big(a) i (i (b)a) for all a€A, bEB

*
3) igz(a)b igz(ai (b)) for all a€A, bEB.

% * x . %
The composition is (i,,i )(j4,3 ) = (i,j.,3 1 ). A functor

G: C + Frob from a category C is called a Frobenius functor.

Proposition 1.7: ng R-hopf.. + Frob is a Frobenius functor.

Proof: Gg(H) = KO(MO(H,R)) is a ring by 1.6 with multi-

plication [M]1-[N] = [M@RN]. The unit element is [Re] and

the ring is associative by 1.3.
Let j: H'+H be in R-hopf. . Then j,: H'-mod + H-mod

%
and j : H-mod =+ H'-mod induce functors
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. K3
Jat MO(H',R) + MO(H,R) and j : MO(H,R) -+ MO(H',R). In fact
if MeM_(H',R) then j, (M) = H®y,! is still finitely generated.

Furthermore by a direct sum argument j,(M) is R-projective.
*
Since j does not change the R module structure it restricts

to M_(H,R).

Both functors are exact. This is trivial by defini-
* ;
tion for j . For j; it is a consequence of the fact that
. .
H is H'-projective. Hence j, and j induce homomorphisms

. . R R R Rt
of abelian groups ]*.GO(H') - GO(H) and j .GO(H) + GO(H ).

* 1
j 1s a ring homomorphism since j preserves eR and

j“(Re) = Re" For j, Frobenius reciprocity (Prop. 1l.4) gives

543 IMI-IND) = [M1-3,0NT and §,(IN1-5°IMD) = §,0N1-[MD.

This proves Prop. 1l.7.

Similar definitions could have been made for mod-H
the category of H right modules. Let H°P be the Hopf
algebra with inverted multiplication and comultiplication
of H. Then we may apply the original definitions to HeP

instead of dealing with mod-H, except for the functor

8r: mod-H X mod-H + mod-H. Since the comultiplication
for H°P is the comultiplication for H with inverted fac-

tors, we have to invert the order of the factors for OR if
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we switch over from mod-E to HOP-mod. Hence we get,

by dealing with H right modules, Gg(mod-H) anti-isomorphic
to GE(HOP), where Gg(Hop) is defined for H°P left modules.
Now the antipode S of H induces an isomorphism H=H°p,

hence Gg(HOP) = Gg(ﬂ). We have proved

s . R R
Propgsition 1.8: The rings Go(mod-H) and GO(H-mod), one

taken for H right modules, the second taken for H left

modules, are anti-isomorphic to each other.

If H is a cocommutative Hopf algebra then GE(H) is
a commutative ring by 1.3, in this case it does not make
any difference whether we define Gg(H) for H left or right
modules.

We remark that for any Hopf algebra homomorphism

j: H'>H in R-Hopf we still get a ring homomorphism

*

Y

j o Gg(H) -+ Gg(H'). This is true in particular for

® %
n:R+*H and e€: H+R. Since €n = idR we get n € = id hence

Lemma 1.9: For any H € R-Hopf GE(H) is an augmented

R -
GO(R) = KO(R) algebra.
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Let F,6: C +» Frob be two Frobenius functors. Then

a Frobenius morphism a is a ring homomorphism

a(C): F(C) + G(C) for all C € C such that for all j: C+D

in C the diagrams

Jx J
F(C)—— F(D) F(C) «——— F(D)
a(C) a(D) and a(C) q(D)

Lk
% ]
G(C) — G(D) G(C) +—— G(D)

commute.

Let f: R+R' be a homomorphism of commutative rings,

then the induction functor f,: R-mod + R'-mod induces
functors f,: R-Hopf <+ R'-Hopf and f,: R-hopf + R'-hopf.

To prove that fy (R-hopf) g R'-hopf one uses direct .sum
Rl

arguments. The composition of G,

R'-hopf + Frob with

fi,: R-hopf + R'-hopf: defines a new Frobenius functor

R'
Gy fx-
Proposition 1.10. Let f: R*R' be a homomorphism of

commutative rings. Then fy,: H-mod + R'8pH-mod induces

R

. . R'
a Frobenius morphism f,: Go > Gy fg.
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Proof: Although f, occurs in many different situations

it means always tensoring with R' over R. First we ob-
serve that f,: H-mod - R'8;H-mod restricts to
f*:Mo(H,R) -+ MO(R'QRH,R’) since f, preserves finite

generation and projectivity. Since short exact sequences

in MO(H,R) are split over R we see that f, is exact.
eps R R! - oR'¢(nt
Hence we get an additive map f,: GO(H)+Go fo(H) = G (R 8 H).
Clearly f*(MeRN) = f*(M)OR,f*(N) so f, is a ring homo-
% %
morphism. From Lemma 1.2 we get f,j. = jofy and f,3 = j f,
which give the desired properties of a Frobenius morphism.

Let G: C + Frob be a Frobenius functor. Then a

Frobenius G left module K consists of the following:

1) K assigns to each CEC a G(C) left module K(C)

2) K assigns to each morphism j: C+C' in C a pair
of additive maps K(j) = (j*,j*) with
54 K(C) » K(C') and § : K(C') » K(C) such that
j* is semi-linear with respect to j*:G(C') + G(C)

and such that
%
je(a)b' = jy(a-3 (")) for all a€G(C), b'EK(C')

a'-ju(b) j*(j*(a')‘b) for all a'€G(C'), bEK(C).
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*
3) 3=+ j, and j =+ j are covariant and contravariant

functors respectively.

Let K and K' be Frobenius G left modules. A
G-homomorphism B:K+K' consists of a family of G(C)-homo-
morphisms B(C):K(C)+K(C') for all C€C such that for all

j: C+D in C the diagrams

%

j 3
K(C) — =+ K(D) K(C) «———K(D)
g(C) g(D) and B8(C) 18(D)
. &
K'(C) — 2 K" (D) K'(C) «—— K' (D)

commute. One easily checks

Proposition 1.11: The category G-mod of Frobenius G left

modules is an abelian category where

(K8K')(C) = K(C)@K'(C)
Ker(g)(C) = Ker(g(C))
Cok(B)(C) = Cok(g(C)).

Proposition 1.12: Ki and G? for i=z0,1 are Gg left and right

modules on R-hopf.
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Proof: The module structure for i=0 is a consequence of

Lemma 1.6. ([M]:[N,al = (M8 N,!®,a] induces a module struc-
ture on Kl(H) and G§(H). Now let j: H'+H be in R-hopf.

Then we get exact functors j,: MO(H',R) -+ MO(H,R),

3% M (H,R) » M_(H',R), 34: P(H') » P(H) and 3" :P(H) » P(H')

since H is finitely generated and projective as an H'-
module. This gives additive maps j, and j* on Ki and G?.
By Frobenius reciprocity and the fact that j* preserves
tensor products over R, we get property 2 for Frobenius

modules. Property 3 is trivial.

Proposition 1.13: Let f: R+*R' be a homomorphism of com-

_— e ———— e —

mutative rings. Then f,: Ky + Kp,fy is a Gg-homomorghism

for K any of the four G left or right modules K and

G? for i=0,1.

Proof: This follows from Lemma 1.2. similar to the proof

of Prop. 1.10.

Proposition 1.14: Let R Eg a Noetherian commutative ring.

Furthermore ¢. : Ki(H) + Gi(H) with [(P] » [P] and
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[P,a) + [P,a) and ¥;: Gi(H) » G (H) with [M]~ [M] and

[M,a] » [M,a] are Gﬁ-homomorphisms.

Proof is similar to the proof of Prop. 1.12. Clearly ¢i
and y; are Gg-homomorphisms commuting with induction and

restriction with respect to j: H'+H in R-hopf.

Corollary 1.15: Let R be a Noetherian commutative ring.

Then the Cartan map K (H) + G (H) is a Gﬁ-homomorghism of

Frobenius Gg modules on R-hopf. In particular the

kernel and the cokernel of the Cartan map are Gﬁ—modules.

— — —— e — ——
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2. Characters

Let k be a commutative ring and H be a Hopf algebra
in k-hopf. Then H* = Homk(H,k) is again a Hopf algebra

in k-hopf.

We define a map y: Gg(H) — H* by X[M] (n) =
trace (h: M —> M) where fl(m) = hm and where we use
the definition and the properties of the trace as given

in (14, A II p.78). We call Y the character map.

Proposition 2.1: The character map x: Gg(H) —> H* is a

ring homomorphism.

Proof: Let M,NeMo(H,k) and heH, meM, neN, Then

A
he(m @ n) = h,,\m ® h,,\n. Let h correspond to
Z)h (1) & bz <)

A
o ®
z By ® mz"l)i under Homk(M,M) MM and let h(2)

correspond to Zn(2)j ® nEZ)j . Then trace(ﬁ: M@N — M@eN) =
;Zm(q)l(m(q)l) >_‘n(2)a(n(2)'J 7_ trace(h(,l)) trace(h(a))
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This proves x[M@ N1(h) = (Z)XEM](h(l))~x[N](h(2)) =
h

%
= (x[MJ#x[N])(h), where * is the multiplication in H .

Furthermore we have X[ke](h) = ¢(h) hence x[kel = e,

An element f€H* is a class function if

fC ¥ h,,xS(h,.{)) = e(h)f(x) for all h,x€H.

®
Lemma 2.2: f€H is a class function if and only if

f(hx) = f(xh) for all h,x€H.

Proof: If f is a class function then f(xh) = } e(h(z))f(xh(l)) =
(h)

= (%)f(h(s)xh(l)s(h(z))) = f(hx). If f(xh) = f(hx) for all

h,x€H then f( § h,, xS(h,y4)) = £C § xS(h,,yd)h, y) = e(h)f(x).
, L R)*Sha, I xS(heyydhyy

h) (h)

Since the character of a module x[M] is a trace it
satisfies x[MJ(xh) = x[MJ(hx), hence x[M] is a class function.

A similar relation as in Lemma 2.2 can be derived for
the elements of a Hopf algebra themselves. We call a
Hopf algebra H cyclic with generating element g if H as a
k-algebra is generated by g, i.e., if H=k[x1/(p(x)) as

k-algebras.
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Lemma 2.3: Let H' be a sub Hopf algebra of H. Then xg = gx

for all ge H' if and only i_fg:g(1)xs(g(2)) = &(g)x for
g

all geH'.

Proof: Since 8(1) and g(p) are elements of H' if ge H' it

is clear that xg = gx for all ge H' implies 23(1)’(5(3(2)) =
g

€(g)x for all geH'. Conversely we have gx =

{2—-)8(1)"3(8(298(5) =<4:3’“(8(1))8<2> = xg.

Let R be a commutative ring with Pic(R) = O.Then
we know from [7, Corollary 1] that any Hopf algebra H in
R-hopf is a Frobenius algebra. In view of [9, Satz 10]
there is an element Zai @b, € H®H with h-ZaiObi = Zaiebih

for all he H. Such an element will be called Casimir element

for H. From [9, Satz ’IO] we also know that the Casimir
element and the Frobenius homomorphism Yy can be picked in

such a way that Z’/’(ai)bi =1 = Zaiyz(bi). Then Zai 8b; is

called a dual basis for H.
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In (7] a left integral in H was defined to be an
element a€H with ha=e(h)a for all h€H. A left norm is
the element NE€H with Noy=e. By [7, Thm. 3] the left
norm generates the two-sided ideal of left integrals in

H as a free R-module.

Lemma 2.4: a) Let Zaiebi be a Casimir element of H. Then

faje(d;) is a left integral in H.

b) a€H is a left integral if and only if

! a,,,8S(a,,,) is a Casimir element.
(a) 1) (2)" = =

Proof: a) h-Ja;e(b;) = Jaje(bsh) = e(h)-Ja e(b;).

b) Let a€H be a left integral. Then ha=ze(h)a. Hence

"

heqya ® S(a;,y35(h¢,y) = e(h)- ) a ® Sla,,,).
RRICBLICH (2)28z) RICICH! 2

This implies a ® S(a d)h = e(h ) ) a,4,®S(a Yh, =
Leay @) = Letay) 1288y

= h,qyya @ Sa,,y)Sth,,,)h =h ] a 8 Sla,,,).
IRUNCICELICH (2)5(M2)hegy = 1 Laa) @)

For the converse we know from a) that a(l)e(s(a(z))) = a
(a)

is a left integral.

We call an element a€H cocommutative if

(Z)a(l)ea(z) = (2)3(2)03(1)' A Frobenius algebra H with
a a
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Frobenius homomorphism § is called symmetric if y(ab)=y(ba)

for all a,b€H, which means that the Nakayama automorphism
is the identity [9]. Since $(ab) = 7} w(l)(a)w(2)(b),
(p)
%
a Hopf algebra is symmetric if and only if Y€H 1is co-
commutative. Since a left norm is a Frobenius homomorphism

*
for H we may say that H is cosymmetric if a left norm of H

is cocommutative.

Proposition 2.5: Let a left norm N for H be cocommutative.

Proof: Lemma 2.4 shows that JN ;) @ S(N(,,) is a Casimir

element. By [7, Proof of Thm. 2] we have

SCh) = J N, wChN,. ). Then T Ny p(SCN, . )) =
RIRIRIELIES &N (2)

Z)N(l)w((g.)NEI)W(N(2)”22))) =

N,y N, (NI ON! ) =
k ) (1) (2) 1" (2)

adan

#* *
Ny WwCly(N} . DON! TN ) = s« YINLLVINE, ) )
(N;(N') (1) (L77(2) (2) (g.) (1)77(2)

# .
where h is the image of h under the Nakayama automorphism

and N'=N. Now 1=S(1) = (g)N(1)¢‘”(2)) = (g)w(n(l))N(z) by

cocommutativity of N, hence N(l)w(S(N(z))) = 1, Similarly
(N)
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we et ) p(())S(2)) - e K 2)) =
<N§N)Niﬂ)y(}‘"“<1))N(a)Nie)) =

—
This proof uses only 63«1(1\1(1))1\1(2) = 1 which is a

N
consequence of the cocommutativity of N. We do not know

whether gy/(N(,]))N(e) = 1 is always fulfilled.
N

We come back to the discussion of the character map.
Let He€ k-hopf where k is a commutative ring. Let M,NGMO(H,k),

M*= Hom,(M,k) and a,be H. Then we have

Lemma 2.6: a) X[Homk(M,N)] = X[M‘ ekN] in (H® H)*.
b) xMe, N (aeb) = yul(a): y(N] (v).
c) y () = y[M] ().

Proof: a) Homk(M,N) and M* @kN are isomorphic H@k HOP-

modules.

* *
b) Let a correspond to Zmi Qmi and b to an an.

Then y[M &, N](a8b) = Z(m;eng)(mienj) = Zm;(mi)ns(nj)

= xM ()« y[v] ().
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%
c) The representation of H in M uses the transposed

matrix of the representation of H in M, if M is a free k-module.

Proposition 2.7 (First Orthogonality Relation): Let

H € x-hopf. Let Ja,8b,; be a Casimir element for H. Let

M,N be two nonisomorphic simple H-modules. Then

Ix[NI(a ) -x[MI(b) = o.

Proof: Let T: Homk(M,N) -+ Homk(M,N) be defined by
T(f)(m) = Ja,f(b;m). This is the trace map Tr of [8].
T(f) € Homy(M,N) because of Ja;f(b;hm) = hia;f(b;m).
Since HomH(M,N) = 0 we get T = 0. Hence

0 = x[Hom, (M,N)I(T) = Jx[MI(b;)-x[NI(a;).

In the special case of the Casimir element N this
relation is equivalent to (x[NJ]x(x[M]S))(N) = 0. This
is the first relation of [6, Thm. 2.7] expressed for the

dual Hopf algebra. We assume now that k is a field.

Proposition 2.8: Let H € k-hopf. Let Ja,8b, be a Casimir

element for H, such that 0 # Zaibiek. Let M be a simple
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H-module with K = HomH(M,M). Then

IxtMICa ) xIM1(b,) = Ja b, -dim K.

Proof: The map T in the proof of Prop. 2.7 restricted to

Homy (M,M) is multiplication by Zaibi # 0, hence T has a
section. So Homk(M,M) =U & HomH(M,M) and T is multi-
plication with Ja;b; on Homy(M,M) = K and zero on U. Hence
IxM1Ca ) -x[MI(by) = x[Homy (M,M)I(T) = Ja;b.-dim K.

The field k is called a splitting field for H if

every simple H-module remains simple under any base field
extension (absolutely irreducible representation). This

is equivalent to dimk HomH(M,M) = 1 for every simple
H-module M.

Corollary 2.9 (Second Orthogonality Relation): Let H € x-hepf:

be a semisimple Hopf algebra over a splitting field k. Let

X

be a simple H-module. Let Ja;®8b, be the Casimir element

e(N)'l(g)N(l) ® S(N(,)). Then

Ix[M1(a ) -x[MI(by) =1.

Proof: By [8, Cor. 6] €(N) is invertible since H is semi-

simple. Since dim,_ Homy(M,M)=1 and e(N)'l(%)N(l)S(N(Z))zl

the result follows from Prop. 2.8.
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This relation is the second relation of [6, Thm. 2.7]

expressed for the dual Hopf algebra.

Proposition 2.10: Let H € k-hopf. Let Zaiebi be a Casimir
element for H such that Xx[M](ai)’x[M](bi) # 0 for each

simple H-module M. Then H is semisimple.

Proof: k 1is a simple H-module. Hence

0#fx[k I(a; ) x[k _J(b;) = x[Hom (k_,k )T = x[k_1(Ja;b.) =
e(Ja;b;). Since e(Ja;b;) = e(Jase(b;)) = ela*N) we get
€(N)#0 and by [8, Cor. 6] that H is semisimple.

We want to investigate more closely the image and
the kernel of the character map x. Since the image has
close connection with the center Z(H) of H we shall first

study some properties of Z(H).

Proposition 2.11: Let H € R-hopf be free and let Pic(R)=0.

Let Zriek be a dual basis for H with the ris a basis for H.

Let B; : , be defined by Eﬁi,j,krk =(£’

Let B; 5. )(r )(l)r S((r. )(2))
J

Then gairi € Z(H) if and only if gaiB = e(rj)ak for

i,3,k

all j and k.
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Proof: It is clear that the required dual-basis always

exists. By Lemma 2.3 we have x€Z(H) if and only if

(Z)g(l)xS(g(z)) = e(g)x for all g€H if and only if
g

(Ej)(rj)(l)XS((rj)(2)) = e(rj)x for all Ty if and only if

; %r )“i(rj)(l)riS((rj)(Q)) = ée(rj)akrk for all j if and
>3

= s(rj)ak for all j and k.

ly i B. .
only if galBl,J,k

If H is a group algebra RG and gys++-18, are the

elements of G, let ¢(i,j)=k be defined by g.g.

-1
5 lg:.| =8y - For

fixed i the function takes images just over the indices of

of the elements of the conjugacy class of r;. Let

-1

Y(k,j)=i be defined by gj

CNCILE AR Then x=§uigi€Z(H) if
and only if ak=aw(k,j) for all j and k. This may be seen
from Bi,j,k = 6¢(i,j),k = Gi,w(k,j) and Prop. 2.11, which
is the well-known result that Z(RG) = Rhle...QRhm where

hi:Z(nggj in the i~-th conjugacy class of G).

Proposition 2.12: Let H € k-hopf' such that k is a

splitting field for H. Then GO(H) is a free abelian group

with rank (GO(H)) = dim (Z(H)/rad Z(H)).
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Proof: Since H is Artinian GO(H) is free with basis {[M]}
where M are simple H-modules. Each x€Z(H) induces a map
in Homy(M,M) = k, since k is a splitting field, so X:M»M
is multiplication by some aMek. Hence we get a map

$:Z2(H) D x » (aM 2e Oy ) € k#...8k which is an algebra
1 r

homomorphism. x€Ker (¢) if and only if xM;=0 for all simple
non-isomorphic modules Mi if and only if x is in each
maximal left ideal of H if and only if x € rad Z(H),

hence Ker(¢) = rad Z(H). By the Frobenius-Schur theorem

{2, Thm. 10.10) ¢ is onto. Hence dim (Z(H)/rad Z(H)) = r =

= rank (GO(H)).

Theorem 2.13: Let H € k-hopf be a semisimple Hopf algebra

with antipode S such that s2zid and such that k is a

splitting field for H. Let Z(H) be the center of H and

let {Mi}gg a set of representatives of the isomorphism

classes of simple H-modules. Then the elements x[Mi] 2.(H)

% * *
defined by GO(H)—X4H + 2 form a basis for Z .

Proof: Let Zeix[Mi](x) = 0 for all x€Z(H). Since x€Z(H)
i

operates on Mi by multiplication by aiek, we get
X[Mi](x) = a; dim(M;). By (6, Theorem 2.8]) dim (M;) is

invertible in k. The map ¢:Z(H) + k&...8k constructed in
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the proof of the preceding proposition is bijective hence
there is an x€Z(H) with ¢(x) = (0,...,1,...,0). Hence

0 = ZBix[Mi](x) = B;-1-dim(M;). So the xIM;1}, y are
i

*
linearly independent. Since rank (GO(H)) = dim Z(H) by

proposition 2.12, the x[Mi] 7 (H) form a basis.

Lemma 2.14: Let H € k-hopf be semisimple with splitting

in H'. Then CE(H) = kex(G_(H)).

Proof: Clearly the class functions form a subspace of H*.
Let £ € Cf(H). Since H is semisimple, decompose f with
respect to the simple subalgebras of H as f=f +...+fn.
The fi's are again class functions by Lemma 2.2, hence

f;(ab) = fi(ba) for a,b € Homk(Mi’Mi)' Hence fi=aix[Mi].

Corollary 2.15: Under the hypotheses of Theorem 2.13 we

*
Z(H) .

have C£(H) 8 2(1)' = H* and CEMH) |4y

Proof: dim (kx(Go(H))) = rank (GO(H)) dim (Z(H)*)

implies that the restriction map Cf(H)

k-x (6, (H)) =+ 2"

is an isomorphism since it is onto by Theorem 2.13. Hence

CE(H) ® 2° = H.
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Let H € R-Hopf for a commutative ring R. Let
f:R+K be a ring-homomorphism, where K is a field. We say

that K is a p-splitting field for H if p ¢ dimK(Hom (M,M))

K8H

for every simple KORH-module M.

Theorem 2.16: Let k be a field of characteristic p#0. Let

H € x-hopf such that k is a p-splitting field for H.

Then the sequence
P X, ¥
0 -+ GO(H) > GO(H) + H
is exact.

Proof: Clearly xp=0 where the map p is multiplication by p.
Let x € G_(H) with x = Zti[Mi] = [M] - [N] with semisimple
H-modules M,N. Let [M] = fm,[M;] and [N] = Jn.[M,] with
mi,niGN and Mi simple H-modules. We want to show that if

x[M] = x[N] then plmi-ni. Since M and N are semisimple

modules, they are semisimple modules over H/rad(H) = H

which is a semisimple ring. Let ﬁi = HomD.(Mi’Mi) with
i

Di = HomH(Mi,Mi) be the simple component of H with respect

to Mi' Since Hi = Hn(Di) the full nxn-matrix ring over Di’
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let eieﬁi correspond to the matrix (uij) in Mn(Di) with

aij=0 for i#l or j#1 and ®y,%1. Then

Hence 0 = x(x)(ei) = (mi—ni) dimk(Di) = ti-dimk(Di) mod (p).

Since p # dim (D;) we get t; € (p) CZ, hence x € p°Go(H).
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3. Finiteness Theorems

We first study some homological properties before we

go back to K-theory.

Theorem 3.1: Let G € k-hopf be semisimple and let k be a
field. Let H be a sub-Hopf-algebra of G and let G be

projective as an H-module. Then H is semisimple.

Proof: By [8, Cor. 6] fi°(G,k) = 0. Hence 1=0 for the cup-
product. In [8, Cor 10] we remarked that i(G,H)(1) = 1.
Hence 1=0 also for the cup-product of A"(H,-). Hence
ﬁo(H,k)=0 and by [8, Cor. 6] H is semisimple.

This theorem gives rise to the question under which
conditions the radicals of Hopf-algebras G and their sub-
Hopf-algebras H satisfy the relation rad (&)VH = rad (H).

This is certainly not always the case. Let

k

Z/2Z , G = S3 the symmetric group on 3 letters and
H

{(1),(12)} € G. Then rad (kH) = k-((1)+(12)) since
this is the augmentation ideal and ((1)+(12))2 = 0. If
(1)+(12) € rad (k6) then [((1)+(12))(132)1% € rad (k@)
and is idempotent and different from zero. This is a
contradiction, hence kH M rad (xG) # rad (kH).

In general one proves easily rad(H) = H /) rad(G) for

a sub-Hopf-algebra H of G € hopf-k. The relation
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rad(H) = H /' rad(G) holds in each of the following cases.

1) G is semisimple and H-projective by above theorem,
2) G is commutative,
3) G is local,

4) H is a normal sub-Hopf-algebra of G and H is local
(a proof of this can be given similar to a proof in

{5, 5.17 Satzl)

5) G is a group algebra and H is the group algebra

of a normal subgroup [5, 17.3 Hauptsatz].

Proposition 3.2: Let R be a comnutative ring with Pic(R)=0.
Let H € R-hopf. Let M be an H-module. Let I=annilp(M).
Let Ny be the left norm of H. If I and e(Ny) are rela-

—_———— ——————

tively prime in R, then de(M) $ pdp(M).

Proof: First we show that M is (H,R)-projective. IM=0
implies I‘Homp(A,M)=0 for all A € H-mod. Hence
n n
I-H'(H,Homp (A,M)) = I-Extiy py(A,M) = 0 [8, Prop. 2].
n
Also e(Ny)-H"(H,Homg (A,M)) = e(NH)-Ext’(‘H,R)(A,M) = 0 by
[8, Cor. 2]. Since I and e(NH) are relatively prime, we
n

get Ext R)(A,M) = 0 for all A € H-mod. Hence M is
b

(H,R)-projective.



-34-

Now M is a direct summand of HORM by H@RM 3 h®m-+hm€eM
and M3 m » lemGHGRM since M is (H,R)-projective. Hence
de(M)§de(H8RH). If 0+Pn*...+PO+M+O is an R-projective
resolution then 0+H8LP +...+HB P +HO M+0 is an H-projective
resolution. Hence de(HORM) < de(M).

Now we come back to the study of Frobenius functors.
Let C be a category and let C be a class of morphisms in C.
Let F be a Frobenius functor and let K be a Frobenius F

module. Define

Fo(H): = J(i,F(H')|i:H'+H, i€C)

Ko(H): = J(i,K(H')|i:H'+H, i€C)
FC: = Niker(i*:FGF(H')) [i: H'+H, i€C)

KEay: = Niker(i*:K(HI+K(H"))|i: H'+H, ieC).

We say that a subgroup B of a group A has exponent n in A

if na€B for all a€A. A has exponent n if nA=0.

Lemma 3.3: Let K be a left Frobenius F module over a

Frobenius functor F on C. Let C be a class of morphisms

in C. Then
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1) F(H)KC(H) + Fo(HIK(H) Q;KC(H)

rankCan + FPankam < K
Cc - _ C
2) Fo xS = 0 = FCaK .

3) 1If f:K+L is an F-homomorphism then

£(H) (K (H)) € Lo (H),

s <G < Lan.

4) If for each morphism j:H'»H in C,

3" (Ko (H)) < Ko (H') resp. j,(KC(H) < xCem)

c

then K, resp. k™ is a Frobenius F-module.

The proof is similar to the proof of [1, XI.2.4 Prop.] and

is left to the reader.

Lemma 3.4: Let F: C +~Frob be a Frobenius functor. Let

C € C be a class of morphisms. Let F,(H) have exponent n

in F(H).

a) Let K be a Frobenius F left module. Then K.(H) has

exponent n in K(H) and xC(H) has exponent n.
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b) Let K(H') be a torsion module (have exponent r) for

all H' with a morphism i:H'+H in C, then K(H) is a torsion

module (has exponent nr).

c) Let f:K+L be a morphism of Frobenius-F-left-modules.

If K(H) is torsion free and Ker(f(H')) is a torsion module

for all H' with a morphism i:H'>H in C then f(H) is a

monomorphism. If L(H) is torsionfree and Im(f(H')) is a

torsion module for all H' with a morphism i:H' + H in C

then f(H) is the zero map.

Proof: a) X(H)/K,(H) is a F(H)/F (H)-module. So is KCH)y.

b) K(H) is an extension of KC(H) and K(H)/KC(H), both of
which are torsion modules. K(H)/KC(H) has exponent n,

KC(H) has exponent r.

c) Since Ker(f(H)) and Im(f(H)) are both torsion submodules
of torsionfree modules, both are equal to zero.

If C is a class of morphisms in hopf-R, then the
smallest exponent eC(H) of (Gg)C(H) in Gg(H) is called the

induction exponent of H with respect to C. Then for any

Frobenius Gg module K and any H € hopf-R, KC(H) in K(H)

and KC(H) have exponent eC(H).
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Lemma 3.5: Let f:R+R' be a homomorphism of commutative

rings. Let C be a class of morphisms in hopf-R. Let

C': = £,(C) = {i®R'|i € C} C hopf-R'. Let H € hopf-R.

Then

ec.(H&RR') divides ec(H).

' :
Proof: By Prop. 1.10 f,: Gﬁ + Gﬁ f, is a Frobenius-

morphism. Since C'=f,(C) and H8 R' = f,(H) this lemma

follows from Lemma 3.4.a.

Proposition 3.6: Let R be a regular commutative domain

with field of fractions L and let p € Spec(R). Let

H € hopf-R. Then

a) eCOR/p (HQRR/p) divides eceL(HGRL)
P 2
b) ec(H) divides eceL(HORL) .

) . . R,y - L -

Proof: We may identify GO(H) = GO(H), GO(HORL) = GO(HORL),
and 6X/P(He R/p) = G_(HBR/p) by [11, Thm. 1.2]. By [11,
Thm. 1.9] we get the commutative triangle

a
GO(H) — GO(HORL)

NI

GO(H@RR/p)
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where o and B are derived from R+L and R+R/p resp., hence
they are Frobenius morphisms. Since y is derived from
the surjectivity of ¢, it is also a Frobenius homomorphism.
This proves a).
By [11, Thm. 1.7] there is a short exact sequence
£

+ g
G_(H8,R/p)— G (H) — G _(He L) » O
p€sSpec(R) ° R ° o R

where f is induced by restrictions and g is induced by in-
ductions. Hence both commute with restriction and induc-
tion homomorphisms arising from maps in hopf-R by Lemma 1.2.

Ly

R
1]
GO(H ) » GO(H'GRL) and hence (GO)C(H) + (Go coL

(HORL) are
surjective. Let e = eC@L(HeRL)‘ So there is aG(GS)C(H)

with g(a) = e+l, hence e-1l-a € Ker(g). Let b € GO(HSRR/p)

. R/p
with f(b) e-l-a. By a) we get e-b € (G keR/p(HsRR/p).

Hence f(e-b) = e’-1-e.a € (Gg)C(H). Consequently

2 R
e“:1 € (GO)C(H).

Let A be an algebra and B be a subalgebra of A. Let
VEA-mod be a simple A-module and WEB-mod be a simple
B-module. Then let (V:W) be the number of composition
factors isomorphic to W in V considered as a B-module.

Let (A@BW:V) be the number of composition factors V in

A8 W.
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Lemma 3.7: Let k be a field. Let H,G€k-hopf be semisimple
and let H be a sub Hopf algebra of G. Let V€G-mod and

(GOHW:V)~dimk (HomG(V,V)) = (V:W)'dimk (HomH(w,w)).

Proof: (GQHW:V)'dimk(HomG(V,V)) = dimk(HomG(GOHW,V)) =

dimk(HomH(w,V)) = (V:W) -dimk(HomH(w,W) ).

Theorem 3.8: Let k be a field of characteristic p>0. Let

G € k-hopf be semisimple. Let C be a class of injective

morphisms in k-hopf such that G = é i(H) and such that k
iec - -

i._s_ a splitting field for all H with (i:H+G) € C. Then

— ————— —— — s

£
Proof: ||G6 (H)— 6 _(6) 6,(6)/(G)(G) » 0 is an
1€C

exact sequence by definition. Tensoring with Z/pZ keeps
it exact. Let A be the representing matrix of f with respect

to the sets of non-isomorphic simple G-modules {Sl,...,Sn}

and non-isomorphic simple H-modules {Tl ,...,Tn } for all
H

i:H+G in C. IfZ/pZ ® A is an epimorphism, then

Z/pZ ® GO(G)/(GO)C(G) is zero, hence GO(G)/(GO)C(G) is
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finite with order of all elements prime to p.
Assume that k is a splitting field for G. For i:H»G
n
we have i,[T, 1 = T a. ‘[Sj]’ By Lemma 3.7 and by
H j=

Theorem 3.1 we get

We want to show that n rows of A are linearly independent
n
modulo p. Given b, € Z such that § b.a. . = 0 mod(p).
3 321 ]1H9]

*
Then iji [Sj] = 0 mod(p). Hence x({bji [Sj]) = 0 by
3
*
Theorem 2.16. Since ijx(i [Sj])(h) = zbj [Sj](h) = 0 for

all h€H and also for all i:H+G in C we get ijx[Sj] = 0.

By Th .16 .[S.] = p*)c.[S. t b. = s e
y Theorem 2.1 ZbJ[SJ] p ZcJ[S]] and thus by = pey

Hence Z/pZ ® A has rank n and Z/pZ & GO(G) has dimension n,
so Z/pZ ® A is onto.

We have proved the theorem in case k is a splitting
field for G. If this is not the case, let L be a splitting

field for G. Then we get a commutative diagram
IGO(H)-——~-+ G G) —= G (G)/(G e (G) ——— 0

kb

'_|__|__GC’(L8kH)——--> GO(L&kG)—~* GO(LSKG)/(GO)LQC(LekG)’“* 0
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where a is an isomorphism since every irreducible H-module

is absolutely irreducible (k is a splitting field). Since
(Hom(S:1,5:) and @ (sii,siiy) ¢

G =T omg Si S5 and °(G) = IIGO(HomG Si Sy en-

soring with L will map components of GO(G) to components

of GO(LORG), hence B8 is a monomorphism. By the S5-Lemma

we get that vy is a monomorphism. The theorem has already

been proved for Go(LekG)/(Go)LQC(LOkG), so ‘it holds also

for GO(G)/(GO)C(G).

Corollary 3.9: Let k b

a field of characteristic p>0.

Let G € k-hopf be semisimple with antipode S such that

s?zid. Let C be a class of sub Hopf algebras H of G i

— e ——— —

|5

(]

k-hopf such that J H2D Z(G), the center of G, and k i
HEC - - - -

a splitting field for all HEC. Then G _(G)/ (G )n(6) is

finite and has no elements of order p.

Proof: In the proof of Theorem 3.8 we used 6 = § i(H)
iec

only for the conclusion that ijx[Sj](h)=0 for all héH and

i€C implies ijx[Sj]=0. In view of Theorem 2.13 this may
already be done if one only knows the X[Sj] on Z(H).

In K-theory of finite groups one tries a reduction of

GO(G) to GO(H) where H are group rings of cyclic subgroups

of 6. In that situation one gets G=JH for free from the
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structure of group rings. In the general case we cannot
use this reduction as the following example shows.

Let k = Z/pZ , u, be the functor up(R)={r€R|rp=l}

viewed as multiplicative group with R€k-Alg. Then upxup

has the affine Hopf algebra k[x,y]/(xP-1,yP-1) with
A(x) = x8x, A(y) = y@y. The dual G = Homk(k[x,y]/(xp~1,yp-1),k)
is the Hopf algebra k[x,yl/(xP-x,yP-y) with

A(x) = x81 + 18x,A(y) = y@l + 18y which is semisimple as
an algebra. G is the universal p-enveloping algebra of
the two dimensional abelian p-Lie-algebra kx®ky with
x[p] (pl

=X, y zy. G has p2 non-isomorphic simple modules

klx,y1/(x-a,y-B) = Sa with (a,B) € kxk, since it has p2

5B
different maximal ideals corresponding to the p2 elements
of k-Alg(G,k) where k is the algebraic closure of k. Hence
GO(G) is a free abelian group of rank pz.

Let us look at the sub Hopf algebras of G which are
generated as an algebra by one element (cyclic sub Hopf

algebras). Their duals represent subfunctors of upxup

which are semigroups. Since upxup(R) = up(R)Xup(R) is a
p-group, the semigroup subfunctors are group subfunctors.
They are infinitesimal (local) height one algebraic groups,
hence by [13, II.7.4.2] their bialgebras are universal

p-algebras of sub p-Lie-algebras of kx®ky. Consequently
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the cyclic sub Hopf algebras of G are H°=k[x]/(xp-x),A(x)=x01+10x
and H = klax+y1/ ((ax+y)P-(ax+y)),Alax+y) = (ax+y)@1+18(ax+y)

for all a€ k. So we get p+l copies of the bialgebra of Mp-

A simple induction proof shows

2
dim (H, + JH) s Bl <p? =aimsg
afk & °

hence G # Z H, + H,. So Theorem 3.8 or Corollary 3.9 cannot
atk

be applied in this situation.

For this example let us compute GO(G)/(GO)C(G) with

C = {Ha’Ho’H1’°“’Hp-1}’ The simple Ha-modules are

Ta g = klax+yl/(ax+y-B) and the simple H_-modules are
T, o = k[x1/(x-g) for g€k. Then
s8
3 p-l
ig([Ty oD = [GQHGTQ’B] = YZOISY’B‘GY]
and
. p-1
ig(IT, o1 = YZOESB’Y]'

Then the following relation holds:

(s
P-LSy s
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This proves that Go(G)/(Go)C(G) is a Zp-module. The

representing matrix of uGo(Hi) - GO(G) modulo p has

rank < p2-l since each i, ([T, gl) and 1, ([T, o1) induces p
k] 9,

unit entries into the matrix. If we take the sum of all
the columns we get the zero column modulo p. Since
GO(G) has rank pz, we get GO(G)/(GO)C(G) £ 0.
This example leaves the open question to find a
more general hypothesis for G and C such that
(G)/(G )C(G) is finite but may have elements of order
p. A generalization of Theorem 3.9 away from the semi-

simplicity of G is the following

Corollary 3.10: Let R be a regular commutative domain,

K its quotient field, p € Spec(R). Let G € R-hopf with

e(NG) # 0 where Ng is a norm of G. Let C be a class of

injective morphisms i:H+G in R-hopf, such that 6 = J i(H),
- - = i€c

K is a splitting field for all H with i:H»G in C and al

such H are commutative. Then Gg(G)/(Gg)C(G) and

6R/P(cer/p)/ (aR (8 R/p) are finite. If the

R/p
YceRr/p

characteristic of K is p>0, then neither of both groups

contains elements of order p.

Remark: As in Corollary 3.9 the condition G = g i(H)
i€cC
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may be replaced by 82=idG and g i(H) D 2(6).
iec -

Proof: NGel is the norm of G@RK and e(NGGI) = e(NG)Ql £0

hence G8pK is semisimple. Then Gg(GeRK)/(GK)

o)cex(G8RK) is

finite (with no elements of order p if char(K)=zp). Thus

we may apply Proposition 3.6 to get the result.

Lemma 3.11: Let k be a field and H € k-hopf and H com-

mutative. Then the Cartan-map H# : K (H) + G (H) is a

monomorphism with finite cokernel.

Proof: Since H is Artinian, H is a product of local rings

IP with maximal ideals m.. KO(H) has basis {[Ir]}’ GO(H)
has basis {[I_./m J}. I, has only copies of I /m  as com-
position factors. Hence HO(H) = Ho(Il) 6...8 Ho(In) where

the Ho(Ir) are non-zero lxl-matrices.

Proposition 3.12: Let R be a regular commutative local

domain, K its quotient field, m its maximal ideal. Let

GER-hopf with e(NG)#O where N, is a norm of G. Let C be a

class of injective morphisms i:H+G in R-hopf, such that

G = g i(H), K is a splitting field for all H with i:H+G
iéc - T

in C and all such H are commutative. Then
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HO(GGRR/m): KO(GQRR/m) - GO(GGRR/m) is a monomorphism with

finite cokernel.

Proof: Both K_(G8./m) and G_(G8R/m) are Gg/m(GORR/m)

R/m

Frobenius modules and HO(GORR/m) is a Go

homomorphism.
By Lemma 3.4.c for the claim that HO(GGRR/m) is a mono-

morphism and by Lemma 3.4.b for the claim that the cokernel

of HO(GQRR/m) is finite it is enough to prove the theorem
for commutative Hopf algebras H and to show that

Gﬁlm(GORR/m)/(GE/m) (G8,R/m) is finite. The first

C8R/m

assertion is Lemma 3.11, the second is Corollary 3.10.

Corollary 3.13: Let the assumptions be the same as in

Proposition 3.12. Let P,Q be finitely generated projective

G-modules with PGRK = Q&RK over GORK. Then P=Q.

Proof: Apply [11, Theorem 1.10] to Proposition 3.12.

Corollary 3.14: Let R be a Dedekind domain with quotient
field K. Let G € R-hopf with e(Ny) # 0. Let C be a class

of injective morphisms i:H+G in R-hopf such that

G = ) i(H), K is a splitting field for all H with i:H+G
iéc I B

in C and all such H are commutative. Let P and Q be
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finitely generated projective G-modules with PGRK = QORK

as GORK-modules. Let a be a non-zero ideal of R. Then

—— — —— —— S—— w—

there is a short exact sequence

0+P+>Q+X=+0

of G-modules with (annR(X), a) = R.

Proof: By localization we get P = Q from Corollary 3.13.
The assertion then follows from a theorem of Roiter

{11, Theorem 3.1].

Theorem 3.15: Let R be a Dedekind domain with Pic(R)=0

with quotient field K. Let G € R-hopf with e(NG) £ 0.

Let C be a class of injective morphisms i:H+G in R-hopf

such that G = ] i(H), K is a splitting field for all H
R iéc - - -

with i:H+G in C and all such H are commutative. Let P be

a finitely generated projective G-module with P K free

on m generators as a G@RK-module. Then P is isomorphic

to G ® ... G ® I (m-1 copies of G), where I is an ideal

of G. If a is a non-zero ideal of R then I may be chosen

such that (annR(G/I), a) = R,

Proof: The proof of [1l, Theorem 3.3] may be verbally

taken over if one observes that the necessary generalization
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of the crucial lemma of Rim [11, Lemma 3.4] is given by

Proposition 3.2.

Corollary 3.16: Under the assumptions of Theorem 3.15 let

the Jordan-Zassenhaus theorem hold for R. Then KO(G)
and GO(G) are finitely generated abelian groups and the

maps KO(G) -+ GO(GGRK) and GO(G) > GO(GORK) have finite

kernels.

Proof: The proof of these facts is essentially the same as
the proofs given for group ring in [11, Theorem 3.8 and

Theorem 4.1] using the theory developed above.
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