Journal of Algebra

Editor-in-Chief:
Graham Highman
Mathematical Institute
24-29, St. Giles
Oxford, England
Editorial Board:
Richard Brauer
Department of Mathematics
Harvard University
2 Divinity Avenue
Cambridge, Massachusetts 02138
R. H. Bruck

Department of Mathematics
Van Vleck Hall
University of Wisconsin
Madison, Wisconsin 53706
D. A. Buchsbaum

Department of Mathematics
Brandeis University
Waltham, Massachusetts 02154
P. M. Cohn

Department of Mathematics
Bedford College
Regents Park
London N.W. I, England
J. Dieudonné

Université D'Aix-Marseille
Faculté Des Sciences
Parc Valrose
Nice, France
Walter Feit
Department of Mathematics
Yale University
Box 2155 Yale Station
New Haven, Connecticut 06520
A. Fröhlich

Department of Mathematics
King's College
London, W. C. 2, England
A. W. Goldie

Mathematics Department
The University of Leeds
Leeds, England
J. A. Green

Mathematics Institute
University of Warwick
Coventry,
England

Marshall Hall, Jr.
Sloan Laboratory of Mathematics and
Physics
California Institute of Technology
Pasadena, California 91109
I. N. Herstein

Department of Mathematics
University of Chicago
Chicago, Illinois 60637
B. Huppert

Mathematisches Institut
der Universität
Tübingen, Germany
Nathan Jacobson
Department of Mathematics
Yale University
Box 2155 Yale Station
New Haven, Connecticut 06520
E. Kleinfeld

Department of Mathematics
University of Iowa
Iowa City, Iowa 52240
Saunders MacLane
Department of Mathematics
University of Chicago
Chicago, Illinois 60637
G. B. Preston

Department of Mathematics
Monash University
Clayton Victoria 3168
Australia
H. J. Ryser

Department of Mathematics
California Institute of Technology
Pasadena, California 91109
J. Tits

Mathematisches Institut der Universität
Wegelerstrasse 10
Bonn, Germany
Guido Zappa
Istituto Matemàtico
"Ulisse Dini"
Università degli Studii
Viale Morgani, 67/A
Firenze, Italy

Published monthly at 37 Tempelhof, Bruges, Belgium, by
Academic Press, Inc., 111 Fifth Avenue, New York, N. Y. 10003
Volumes 17-19, 1971 (4 issues per volume)
Institutional subscriptions: $\$ 26.00$ per volume
Private subscriptions (for the subscriber's personal use only): $\$ 10.00$ per volume All correspondence and subscription orders should be addressed to
the office of the Publishers, 111 Fifth Avenue, New York, N. Y. 10003
Send notices of change of address to the office of the Publishers at least 4 weeks
in advance. Please include both old and new addresses.
Second class postage paid at Jamaica, N. Y. 11431
(C) 1971 by Academic Press, Inc.

Printed in Bruges, Belgium, by the St Catherine Press, Ltd.

JOURNAL OF Algebra

ieditor-in-chief: Graham Higman

ieditorial board:

R. H. Bruck
I. N. Herstein
D. A. Buchsbaum
B. Huppert
P. Cohn
Nathan Jacobson
J. Dieudonné
E. Kleinfeld
Walter Feit
Saunders MacLane
A. Fröhlich
G. B. Preston
A. W. Goldie
H. J. Ryser
J. A. Green
J. Tits
Marshall Hall, Jr. Guido Zappa

Volume 18-1971

Copyright © 1971, by Academic Press, Inc.
All Rights Reserved
No part of this volume may be reproduced in any FORM, BY PHOTOSTAT, MICROFILM, BY RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS.

Academic Press, New York and London

CONTENTS OF VOLUME 18

Number 1, May 1971
Jean Carcanague. Idéaux bilatères d'un anneau de polynomes non commutatifs sur un corps 1
M. André. Hopf Algebras with Divided Powers 19
S. M. Gersten. On Mayer-Vietoris Functors and Algebraic K-Theory 51
A. R. Magid. Galois Groupoids. 89
Kevin McCrimmon. A Characterization of the Radical of a Jordan Algebra 103
Mitsuhiro Takeuchi. A Simple Proof of Gabriel and Popesco's Theorem 112
Michael Aschbacher. Doubly Transitive Groups in Which the Stabilizer of Two Points is Abelian 114
Andreas Dress. The Ring of Monomial Representations I. Structure Theory 137
Number 2, June 1971
M. J. Kallaher and T. G. Ostrom. Fixed Point Free Linear Groups, Rank Three Planes, and Bol Quasifields 159
M. Slater. Alternative Rings with D.C.C., III 179
Stanley E. Payne. Nonisomorphic Generalized Quadrangles 201
Nicolae Popescu. Le spectre à gauche d'un anneau 213
B. A. F. Wehrfritz. Remarks on Centrality and Cyclicity in Linear Groups 229
C. B. Thomas. Frobenius Reciprocity of Hermitian Forms 237
Zvonimir Janko. The Nonexistence of a Certain Type of Finite Simple Group 245
J. T. Arnold and J. W. Brewer. On Flat Overrings, Ideal Trans- forms and Generalized Transforms of a Commutative Ring 254
Peter Crawley and Alfred W. Hales. The Structure of Abelian p-Groups Given by Certain Presentations. II. 264
Lance W. Small. Localization in PI-Rings. 269
Sigurd Elliger. Interdirekte Summen von Moduln 271
Erwin Kleinfeld. Generalization of Alternative Rings, I. 304
Erwin Kleinfeld. Generalization of Alternative Rings, II 326
Gunter F. Pilz. Direct Sums of Ordered Near-Rings 340
Dorin Popescu. Catégories de Faisceaux 343
J. A. Gerhard. The Number of Polynomials of Idempotent Semi- groups 366
James McCool and Alfred Pietrowski. On Free Products with Amalgamation of Two Infinite Cyclic Groups 377
Mario Fiorentini. On Relative Regular Sequences 384
Gabriel Sabbagh. Embedding Problems for Modules and Rings with Application to Model-Companions 390
William R. Nico. Homological Dimension in Semigroup Algebras 404
R. H. Dye. On the Conjugacy Classes of Involutions of the Simple Orthogonal Groups over Perfect Fields of Characteristic Two 414
Grovanni Zacher. Determination of Locally Finite Groups with Duals 426
Paul Camion, L. S. Levy, and H. B. Mann. Linear Equations over a Commutative Ring 432
Cemal Koc. On a Generalization of Clifford Algebras 474
John R. Durbin and Merry McDonald. Groups with a Character- istic Cyclic Series. 453
Earl J. Taft. On the Splitting of Hopf Algebra Modules 461
Aron Simis. Projective Modules of Certain Rings and the Existence of Cyclic Basis 468
Martha Smith. Group Algebras. 477
Number 4, August 1971
M. Ojanguren and R. Sridharan. Cancellation of Azumaya Algebras 501
Paul Chabot. Some Sylow 2-Groups Which Cannot Occur in Simple Groups 506
Karl Egil Aubert. Additive Ideal Systems. 511
A. Doneddu. Sur les extensions quadratiques des corps non com- mutatifs 529
J. C. Lennox. On a Centrality Property of Finitely Generated Torsion Free Soluble Groups 541
D. B. Coleman and Joel Cunningham. Harrison's Witt Ring of a Commutative Ring 549
Kevin McCrimmon. A Characterization of the Jacobson-Smiley Radical 565
C. J. Graddon. \mathscr{F}-Reducers in Finite Soluble Groups 574
Bodo Pareigis. When Hopf Algebras Are Frobenius Algebras 588
B. L. Osofsky. On Twisted Polynomial Rings. 597
S. B. Conlon. A Short Communication 608
Author Index 609

When Hopf Algebras Are Frobenius Algebras

Bodo Pareigis
Mathematisches Institut der Universität München
8 München 13, Schellingstrasse 2-8, Germany

Communicated by A. Fröhlich
Received August 19, 1970

Abstract

R. Larson and M. Sweedler recently proved that for free finitely generated Hopf algebras H over a principal ideal domain R the following are equivalent: (a) H has an antipode and (b) H has a nonsingular left integral. In this paper I give a generalization of this result which needs only a minor restriction, which, for example, always holds if $\operatorname{pic}(R)=0$ for the base ring R. A finitely generated projective Hopf algebra H over R has an antipode if and only if H is a Frobenius algebra with a Frobenius homomorphism ψ such that $\sum h_{(1)} \psi\left(h_{(2)}\right)=\psi(h) \cdot 1$ for all $h \in H$. We also show that the antipode is bijective and that the ideal of left integrals is a free rank $1, R$-direct summand of H.

1. In Ref. [4], Larson and Sweedler proved the equivalence for a finite-dimensional Hopf algebra over a principal ideal domain to have a (necessarily unique) antipode and to have a nonsingular left integral. It is easy to see that this result implies that a finite-dimensional Hopf algebra over a principal ideal domain is a Frobenius algebra, which generalizes the well-known fact that a group ring of a finite group is Frobenius as well as the result of Berkson [1], that the restricted universal enveloping algebra of a finite-dimensional restricted Lie algebra is Frobenius. This result has consequences with respect to a cohomology theory of Hopf algebras which will be exhibited in a subsequent paper.

In this paper we want to generalize the main result of [4] to arbitrary commutative rings R and finitely generated projective Hopf algebras H. We need only a slight restriction on H or on R, viz., $\operatorname{pic}(R)=0$ to get the equivalence between the existence of an antipode and the fact that H is a Frobenius algebra with a Frobenius homomorphism ψ, such that $\sum_{(h)} h_{(1)} \psi\left(h_{(2)}\right)=\psi(h) \cdot 1$ for all $h \in H$, where $\sum_{(h)} h_{(1)} \otimes h_{(2)}=\Delta(h)$ is the Sweedler notation. We do not know whether the imposed restrictions on R or H are necessary for the above result. ${ }^{1}$ In this context we also prove that the

[^0]antipode of a finitely generated projective Hopf algebra is bijective. This holds without any further restrictions.
Since integrals are also of interest in this general situation, we shall prove that in a Hopf algebra H which is Frobenius with a Frobenius homomorphism ψ such that $\sum_{(h)} h_{(1)} \psi\left(h_{(2)}\right)=\psi(h) \cdot 1$ for all $h \in H$ the two-sided H ideal of left integrals is an R-free rank $1 R$-direct summand of H.
2. Let R be a commutative ring (associative with unit). All modules are assumed to be unitary R modules. All algebras are assumed to be associative R algebras with unit.

A coalgebra C is a module C together with homomorphisms $\Delta: C \rightarrow C \otimes C$ (the tensor product is taken over R), the diagonal, and $\epsilon: C \rightarrow R$, the counit or augmentation, such that

commute where we identify $C \otimes R, C$, and $R \otimes C$. We adopt the Sweedler notation $\Delta(c)=\sum_{(c)} c_{(1)} \otimes c_{(2)}$ as explained in [7, p. 10].
A Hopf algebra H is an algebra H with structure maps $\mu: H \otimes H \rightarrow H$ and $\eta: R \rightarrow H$, which is also a coalgebra with structure maps $\Delta: H \rightarrow H \otimes H$ and $\epsilon: H \rightarrow R$ such that Δ and ϵ are algebra homomorphisms. As in [7, Proposition 3.1.1] one shows that μ and η are coalgebra homomorphisms.

Let C be a coalgebra. A C right comodule is a module M together with a homomorphism $\chi: M \rightarrow M \otimes C$ such that

commute, where we identify M and $M \otimes R$. Here again we use the Sweedler notation $\chi(m)=\sum_{(m)} m_{(0)} \otimes m_{(1)}$. Observe that the $m_{(i)}$'s for $i \geqslant 1$ are elements in C, whereas the $m_{(0)}$'s are in M.
Let H be a Hopf algebra. An H right Hopf module is an H right module M which is also an H right comodule such that

$$
\chi(m h)=\sum_{(m),(h)} m_{(0)} h_{(1)} \otimes m_{(1)} h_{(2)} .
$$

Let H be a Hopf algebra. Then $\operatorname{hom}_{R}(H, H)$ is an associative R algebra with unit $\eta \epsilon$, if we define the multiplication by $f * g:=\mu(f \otimes g) \Delta$, i.e., $f * g(h)=\sum_{(h)} f\left(h_{(1)}\right) g\left(h_{(2)}\right)$ [7, p. 70, exercise 1]. The antipode S of H is (if it exists) the two-sided inverse of the identity 1_{H} of H in $\operatorname{hom}_{R}(H, H)$.
3. Lemma 1. Let A, B, and C be R modules. If C is finitely generated and projective, then $\lambda: \operatorname{hom}(A, B \otimes C) \rightarrow \operatorname{hom}\left(C^{*} \otimes A, B\right)$ with $\lambda(f)\left(c^{*} \otimes a\right):=\left(1 \otimes c^{*}\right) f(a)$ is an isomorphism.

Proof. λ defines a natural transformation

$$
\operatorname{hom}(A, B \otimes-) \rightarrow \operatorname{hom}(-* \otimes A, B)
$$

which is an isomorphism for $C=R$. By [6,4.11. Lemma 2] the above lemma holds.

Proposition 1. Let C be a finitely generated projective R coalgebra and M be an R module. Then $\chi: M \rightarrow M \otimes C$ defines a C right comodule if and only if $\lambda(\chi): C^{*} \otimes M \rightarrow M$ defines a C^{*} left module, where λ is defined as in Lemma 1.

Proof. $\quad C^{*}$ is an R algebra by $c^{*} d^{*}(c)=\sum(c) c^{*}\left(c_{(1)}\right) d^{*}\left(c_{(2)}\right)$. Assume $\chi: M \rightarrow M \otimes C$ defines a C right comodule. Then

$$
\begin{aligned}
\left(c_{1}^{*} c_{2}^{*}\right) m & =\sum_{(m)} m_{(0)}\left(c_{1}{ }^{*} c_{2}^{*}\left(m_{(1)}\right)\right) \\
& =\sum_{(m)} m_{(0)}\left(c_{1} *\left(m_{(1)}\right) c_{2}^{*}\left(m_{(2)}\right)\right) \\
& =\sum_{(n)} c_{1} *_{(0)}\left(c_{2}^{*}\left(m_{(\mathbf{1})}\right)\right) \\
& =c_{1} *\left(c_{2} * m\right)
\end{aligned}
$$

and

$$
\epsilon m=\sum_{(m)} m_{(0)} \epsilon\left(m_{(1)}\right)=m
$$

so M is a C^{*} left module.
Now let M be a C^{*} left module. The natural transformation

$$
\rho: M \otimes C \otimes D \rightarrow \operatorname{hom}\left(C^{*} \otimes D^{*}, M\right)
$$

defined by $\rho(m \otimes c \otimes d)\left(c^{*} \otimes d^{*}\right)=c^{*}(c) d^{*}(d) m$ is an isomorphism for finitely generated projective modules C and D, since it is an isomorphism for $C=D=R\left[6,4.11\right.$. Lemma 2]. So $M \otimes C \otimes C \cong \operatorname{hom}\left(C^{*} \otimes C^{*}, M\right)$ for our finitely generated projective coalgebra C.

Let $x=((\chi \otimes 1) \chi-(1 \otimes \Delta) \chi)(m) \in M \otimes C \otimes C$. Then $\rho(x)\left(c_{1}{ }^{*} \otimes c_{2}{ }^{*}\right)=$ $c_{1}{ }^{*}\left(c_{2}{ }^{*} m\right)-\left(c_{1}{ }^{*} c_{2}{ }^{*}\right) m=0$ for all $c_{1}{ }^{*}, c_{2}{ }^{*} \in C^{*}$, so $x=0$, i.e., χ is coassociative. Furthermore, we have $(1 \otimes \epsilon) \chi(m)=\sum_{(m)} m_{(0)} \epsilon\left(m_{(1)}\right)=\epsilon m=m$, since ϵ is the unit element in C^{*}. So M is a C right comodule.

Proposition 2. Let H be a finitely generated projective Hopf algebra with antipode S. Then H^{*} is an H right Hopf module.

Proof. H^{*} is an H^{*} left module, so it is an H right comodule. We have for $g^{*}, h^{*} \in H^{*}$, and $h \in H$ and the comodule map $\chi: H^{*} \rightarrow H^{*} \otimes H$ with $\chi\left(h^{*}\right)=\sum(h) h_{(0)}^{*} \otimes h_{(\mathbf{1})}^{*}$.

$$
\begin{equation*}
g^{*} h^{*}=\sum_{\left(h^{*}\right)} h_{(0)}^{*} g^{*}\left(h_{(1)}^{*}\right) \tag{1}
\end{equation*}
$$

and

$$
g^{*} h^{*}(h)=\sum_{(h)} g^{*}\left(h_{(1)}\right) h^{*}\left(h_{(2)}\right)=\sum_{\left(h^{*}\right)} h_{(0)}^{*}(h) g^{*}\left(h_{(1)}^{*}\right) .
$$

H^{*} is also an H right module by $h^{*} \cdot h=S(h) \circ h^{*}$, where $\left(h \circ h^{*}\right)(a)=$ $h^{*}(a h)$ for all $a \in H$. For $g^{*}, h^{*} \in H^{*}$, and $a, b \in H$ and $\chi: H^{*} \rightarrow H^{*} \otimes H \cong$ $\operatorname{hom}\left(H^{*}, H^{*}\right)$, we have

$$
\begin{aligned}
\chi\left(h^{*} \cdot a\right)\left(g^{*}\right)(b) & =\left(g^{*}\left(h^{*} \cdot a\right)\right)(b) \\
& =\sum_{(b)} g^{*}\left(b_{(1)}\right) h^{*}\left(b_{(2)} S(a)\right) \\
& =\sum_{(a)(b)} g^{*}\left(b_{(1)} \epsilon\left(a_{(2)}\right)\right) h^{*}\left(b_{(2)} S\left(a_{(1)}\right)\right) \\
& =\sum_{(a)(b)}\left(a_{(3)} \circ g^{*}\right)\left(b_{(1)} S\left(a_{(2)}\right)\right) h^{*}\left(b_{(2)} S\left(a_{(1)}\right)\right) \\
& =\sum_{(a)}\left(\left(a_{(2)} \circ g^{*}\right) h^{*}\right)\left(b S\left(a_{(1)}\right)\right) \\
& =\sum_{(a)}\left(\left(\left(a_{(2)} \circ g^{*}\right) h^{*}\right) \cdot a_{(1)}\right)(b) \\
& =\sum_{(a)\left(h^{*}\right)}\left(\left(h_{(0)}^{*}\left(a_{(2)} \circ g^{*}\right)\left(h_{(1)}^{*}\right)\right) \cdot a_{(1)}\right)(b) \\
& =\sum_{(a)\left(h^{*}\right)}\left(\left(h_{(0)}^{*} \cdot a_{(1)}\right)\left(a_{(2)} \circ g^{*}\right)\left(h_{(1)}^{*}\right)\right)(b) \\
& =\sum_{(a)\left(h^{*}\right)}\left(\left(h_{(0)}^{*} \cdot a_{(1)}\right) g^{*}\left(h_{(1)}^{*} a_{(2)}\right)\right)(b) .
\end{aligned}
$$

This implies $\chi\left(h^{*} \cdot a\right)=\sum_{(a)\left(h^{*}\right)} h_{(0)}^{*} \cdot a_{(1)} \otimes h_{(1)}^{*} a_{(2)}$ which proves the proposition.

Let M and N be H right Hopf modules over a Hopf algebra H with antipode S. We define an R module $P(M)=\{m \in M \mid \chi(m)=m \otimes 1\}$. Let $f: M \rightarrow N$ be a module and comodule homomorphism. We define $P(f)$ as restriction of f to $P(M)$. Then $\chi(P(f)(m))=\chi(f(m))=(f \otimes 1) \chi(m)=f(m) \otimes 1 \in P(N)$. Obviously P is a functor from the category of H right Hopf modules to the category of R modules.

Lemma 2. Let M be a Hopf module over a Hopf algebra H with antipode S. Then $M \cong P(M) \otimes H$ as right Hopf modules. Furthermore, $P(M)$ is an R direct summand of M.

Proof. The natural injection $P(M) \rightarrow M$ has a retraction $M \ni m \mapsto$ $\sum(m) m_{(0)} S\left(m_{(1)}\right) \in P(M)$ for

$$
\begin{aligned}
\chi\left(\sum_{(m)} m_{(0)} S\left(m_{(1)}\right)\right) & =\sum_{(m)} m_{(0)} S\left(m_{(3)}\right) \otimes m_{(1)} S\left(m_{(2)}\right) \\
& =\sum_{(m)} m_{(0)} S\left(m_{(1)}\right) \otimes 1
\end{aligned}
$$

Now $\alpha: P(M) \otimes H \rightarrow M$ and $\beta: M \rightarrow P(M) \otimes H$, defined by $\alpha(m \otimes h)=m h$ and $\beta(m)=\sum_{(m)} m_{(0)} S\left(m_{(1)}\right) \otimes m_{(2)}$, are inverse R homomorphisms of each other. α being an H module homomorphism, β is an H module homomorphism. Furthermore, $\chi \beta(m)=(\beta \otimes 1) \chi(m)$ implies that β and, consequently, also α is a comodule homomorphism.

Proposition 3. Let H be a finitely generated projective Hopf algebra with antipode S. Then $P\left(H^{*}\right)$ is a finitely generated projective rank $1 R$ module.

Proof. For each prime ideal \mathfrak{p} in R the isomorphism $H^{*} \cong P\left(H^{*}\right) \otimes H$ implies $H_{\mathfrak{p}}^{*} \cong P\left(H^{*}\right)_{\mathfrak{p}} \otimes_{R_{\mathfrak{p}}} H_{\mathfrak{p}}$. Now $H_{\mathfrak{p}}^{*} \cong H_{\mathfrak{p}}$ as free finite-dimensional $R_{\mathfrak{p}}$ modules. So $\operatorname{dim}\left(P\left(H^{*}\right)_{p}^{p}\right)=1$ for all prime ideals \mathfrak{p} in R. Thus, $P\left(H^{*}\right)$ has rank 1. Furthermore, it is finitely generated projective as a direct summand of H^{*}.
4. An R algebra H is a Frobenius algebra if H is a finitely generated projective R module and if there is an isomorphism $\Phi:{ }_{H} H \cong{ }_{H} H^{*}$, where we consider H^{*} as an H left module via $h \circ h^{*}(a)=h^{*}(a h)$ for all $a, h \in H$, $h^{*} \in H^{*}$ [2]. Φ is called a Frobenius isomorphism. $\Phi(1)=: \psi$ is a free generator of H^{*} as an H left module called Frobenius homomorphism. By [3, p. 220, (4)], ψ is also a free generator of H^{*} as an H right module, where $h^{*} \circ h(a):=h^{*}(h a)$ for all $h^{*} \in H^{*}$, and $h, a \in H$. This is a consequence of the proof that the
conditions for a Frobenius algebra are independent of the choice of the sides, i.e., ${ }_{H} H \cong{ }_{H} H^{*}$ implies $H_{H} \cong H_{H} *$ (if H is finitely generated and projective). ψ is unique up to multiplication with an invertible element of H [5, Satz 1].

Jf a Frobenius algebra H has an augmentation ϵ, then the element N with $N^{-} \circ \psi=\epsilon$ is called a left norm of H. A left norm N is also unique up to multiplication with an invertible element of H from the right side. We have $((h N) \circ \psi)(a)=\psi(a h N)=(N \circ \psi)(a h)=\epsilon(a h)=\epsilon(a) \epsilon(h)=(N \circ \psi)(a) \epsilon(h)=$ $(\epsilon(h) N \circ \psi)(a)$ for all $a, h \in H$. This implies

$$
h N=\epsilon(h) N \quad \text { for all } \quad h \in H
$$

An element $a \in H$ of an augmented algebra H with $h a=\epsilon(h) a$ for all $h \in H$ is called a left integral of the augmented algebra H. So a left norm is in particular a left integral.

Proposition 4. Let H be a finitely generated projective Hopf algebra with antipode S. Then S is bijective.

Proof. $\quad S$ is injective: Let $\theta: H^{*} \cong P\left(H^{*}\right) \otimes H$ be the isomorphism of H right modules defined by Proposition 2 and Lemma 2. Let $S(h)=0$ and $p \otimes a \in P\left(H^{*}\right) \otimes H$, then

$$
\theta^{-1}(p \otimes a h)=\theta^{-1}(p \otimes a) \cdot h=S(h) \circ \theta^{-1}(p \otimes a)=0
$$

So $p \otimes a h=0$ for all $p \otimes a \in P\left(H^{*}\right) \otimes H$ and the R endomorphism of $P\left(H^{*}\right) \otimes H$, defined by the multiplication with h, is the zero endomorphism.

Let \mathfrak{m} be a maximal ideal of R. If we localize with respect to \mathfrak{m}, we get an $R_{\mathfrak{m}}$ Hopf algebra $H_{\mathfrak{m}}$ with antipode $S_{\mathfrak{m}}$. Furthermore, $\left(H^{*}\right)_{\mathfrak{m}} \cong\left(H_{\mathrm{m}}\right)^{*}$, where the second ${ }^{*}$ means dualization with respect to R_{m}. Also, $P(M)_{\mathrm{m}} \cong$ $P\left(M_{\mathrm{m}}\right)$ for an H Hopf module M since $P(M)$ is the kernel of $\chi-1_{M} \otimes \eta$ and localization is an exact functor. So $\left(P\left(H^{*}\right) \otimes H\right)_{\mathfrak{m}} \cong P\left(\left(H_{\mathrm{m}}\right)^{*}\right) \otimes_{R_{\mathrm{m}}} H_{\mathrm{m}}$. As in Proposition 3, $P\left(\left(H_{\mathrm{m}}\right)^{*}\right)$ is a free R_{m} module on one generator so $P\left(\left(H_{\mathrm{m}}\right)^{*}\right) \otimes_{R_{\mathrm{m}}} H_{\mathrm{m}} \cong H_{\mathrm{m}}$. The multiplication of H_{m} with h on the right is a zero morphism for all maximal ideals m of R. So multiplication of H with h on the right must be zero which implies $h=0$. So S is injective.
S is surjective: Let $0 \rightarrow H \xrightarrow{S} H \rightarrow Q \rightarrow 0$ be an R exact sequence. Then for all maximal ideals $\mathfrak{m} \subseteq R$, we have $0 \rightarrow H_{\mathfrak{m}} \rightarrow H_{\mathfrak{m}} \rightarrow Q_{\mathfrak{m}} \rightarrow 0$ is $R_{\mathfrak{m}}$ exact. So $H_{\mathfrak{m}} / \mathrm{m} H_{\mathrm{m}} \xrightarrow{T} H_{\mathrm{m}} / \mathrm{m} H_{\mathrm{m}} \rightarrow Q_{\mathrm{m}} / \mathrm{m} Q_{\mathrm{m}} \rightarrow 0$ is $R_{\mathrm{m}} / \mathrm{m} R_{\mathrm{m}}$ exact, where T is the antipode of the $R_{\mathrm{m}} / \mathfrak{m} R_{\mathrm{m}}$ Hopf algebra $H_{\mathrm{m}} / \mathfrak{m} H_{\mathrm{m}}$. Since this Hopf algebra is finitely generated, T is injective so that T is bijective and $Q_{\mathfrak{m}} / \mathfrak{m} Q_{\mathfrak{m}}=0$. Since Q and $Q_{\mathfrak{m}}$ are finitely generated, $Q_{\mathfrak{m}}=0$ for all maximal ideals $\mathfrak{m} \subseteq R$. So $Q=0$ and S is surjective.

Theorem 1. Let H be a finitely generated projective Hopf algebra with
antipode S. Let $P\left(H^{*}\right) \cong R$ as R modules. Then H is a Frobenius algebra with a Frobenius homomorphism ψ such that

$$
\sum_{(h)} h_{(1)} \psi\left(h_{(2)}\right)=\psi(h) 1 \quad \text { for all } \quad h \in H
$$

Proof. By Proposition 2 and Lemma 2 there exists an isomorphism $H^{*} \cong P\left(H^{*}\right) \otimes H$ of H right modules where $\left(h^{*} \cdot h\right)(a)=h^{*}(a S(h))$ or $h^{*} \cdot h=S(h) \circ h^{*}$ is the definition of the module structure on H^{*}. Since $P\left(H^{*}\right) \cong R$, let $\theta: H^{*} \cong H$ be an isomorphism of H right modules. Define $\Phi=\theta^{-1} S^{-1}: H \cong H^{*}$, where we use Proposition 4. Then $\Phi(h a)=$ $\theta^{-1} S^{-1}(h a)=\theta^{-1}\left(S^{-1}(a) S^{-1}(h)\right)=\theta^{-1}\left(S^{-1}(a)\right) \cdot S^{-1}(h)=\Phi(a) \cdot S^{-1}(h)=$ $h \circ \Phi(a)$, so H is a Frobenius algebra. Before we prove the formula on the Frobenius homomorphism we prove the following:

Lemma 3. Let H be a finitely generated projective Hopf algebra with antipode S with $P\left(H^{*}\right) \cong R$. Let $\Phi: H \cong H^{*}$ be the Frobenius isomorphism constructed above and let $\psi=\Phi(1)$ be a Frobenius homomorphism. Then $\psi \in P\left(H^{*}\right)$ and ψ is a left integral in H^{*}.

Proof. $\Phi(1)=\psi$ implies $S \theta(\psi)=1$ and also $\theta(\psi)=1 . \theta$ is a comodule homomorphism so $\sum \theta\left(\psi_{(0)}\right) \otimes \psi_{(1)}=(\theta \otimes 1) \chi(\psi)=\Delta(\theta(\psi))=\Delta(1)=$ $1 \otimes 1=\theta(\psi) \otimes 1 . \theta \otimes 1$ being an isomorphism this implies $\chi(\psi)=\psi \otimes 1$ so $\psi \in P\left(H^{*}\right)$. Now

$$
\begin{align*}
h^{*}\left(\sum_{(h)} h_{(1)} \psi\left(h_{(2)}\right)\right) & =\sum_{(h)} h^{*}\left(h_{(1)}\right) \psi\left(h_{(2)}\right) \\
& =\left(h^{*} \psi\right)(h) \\
& =\sum_{(\psi)} \psi_{(0)}(h) h^{*}\left(\psi_{(1)}\right) \tag{1}\\
& =\psi(h) h^{*}(1) \\
& =h^{*}(\psi(h) 1)
\end{align*}
$$

for all $h \in H$ and $h^{*} \in H^{*}$. This implies

$$
\sum_{(h)} h_{(1)} \psi\left(h_{(2)}\right)=\psi(h) 1 \quad \text { for all } \quad h \in H
$$

This also means $\left(h^{*} \psi\right)(h)=h^{*}(1) \psi(h)$, which proves that ψ is a left integral in H^{*}.

Corollary 1. Let R be a commutative ring with $\mathrm{pic}(R)=0$. Then each finitely generated projective Hopf algebra with antipode is a Frobenius algebra.
5. Lemma 4. Let P be a finitely generated projective R module and let $f: P \rightarrow P$ be an epimorphism. Then f is an isomorphism.

Proof. The sequences

$$
\begin{aligned}
& 0 \rightarrow A \rightarrow P \xrightarrow{\stackrel{f}{\rightarrow}} P \rightarrow 0, \\
& 0 \rightarrow A_{\mathfrak{m}} \rightarrow P_{\mathrm{m}} \xrightarrow{f_{\mathfrak{m}}} P_{\mathfrak{m}} \rightarrow 0, \\
& 0 \rightarrow A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}} \rightarrow P_{\mathfrak{m}} / \mathfrak{m} P_{\mathfrak{m}} \xrightarrow{\tilde{f}} P_{\mathfrak{m}} / \mathfrak{m} P_{\mathfrak{m}} \rightarrow 0
\end{aligned}
$$

are all split exact. But \tilde{f} is an isomorphism by reasons of dimension so $A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}}=0 . A_{\mathfrak{m}}$ is finitely generated so that $A_{\mathfrak{m}}=0$ for all maximal ideals $\mathrm{m} \subseteq R$, so that $A=0$ and f is an isomorphism.

Theorem 2. Let H be a Hopf algebra and a Frobenius algebra with a Frobenius homomorphism ψ such that $\sum(h) h_{(1)} \psi\left(h_{(2)}\right)=\psi(h) 1$ for all $h \in H$. Then H has an antipode S.

Proof. We define $S: H \rightarrow H$ by $S(h)=\sum(N) N_{(1)} \psi\left(h N_{(2)}\right)$, where N is a left norm, i.e., $N \circ \psi=\epsilon$. Then

$$
\begin{aligned}
\sum_{(h)} h_{(1)} S\left(h_{(2)}\right) & =\sum_{(h)(N)} h_{(1)} N_{(\mathbf{1})} \psi\left(h_{(2)} N_{(2)}\right) \\
& =\psi(h N) 1 \\
& =\epsilon(h) 1 \\
& =\eta \epsilon(h)
\end{aligned}
$$

for all $h \in H$ by definition of N. So $1 * S=\eta \epsilon$.
Now $\operatorname{hom}_{R}(H, H)$ is an associative R algebra with multiplication $f * g=$ $\mu(f \otimes g) \Delta . \operatorname{Hom}_{R}(H, H)$ is also finitely generated and projective since H is. The map

$$
\operatorname{hom}_{R}(H, H) \ni f \mapsto f * S \in \operatorname{hom}_{R}(H, H)
$$

is an R epimorphism for $(f * 1) * S=f *(1 * S)=f * \eta \epsilon=f$. By the preceeding lemma, $-* S$ is an isomorphism with inverse map $-* 1$. So $S * 1=\eta \epsilon * S * 1=\eta \epsilon$, i.e., S is an antipode.

Theorem 3. Let H be a Hopf algebra and a Frobenius algebra. Then the two-sided ideal of left integrals $h \in H$ (with ah= $=\epsilon(a) h$ for all $a \in H$) is a free R direct summand of H of rank 1 with basis $\{N\}$, a left norm of H.

Proof. Let h be a left integral, then $\psi(a h)=\psi(\epsilon(a) h)=\psi(h) \epsilon(a)=$ $\psi(h) \psi(a N)=\psi(a \psi(h) N)$ for all $a \in H$, so that $h \circ \psi=\psi(h) N \circ \psi$ or $h=\psi(h) N$.

Furthermore, ϵ is an epimorphism since $\epsilon \eta=1_{R}$. So $\epsilon^{*}: R \rightarrow H^{*}$ is a monomorphism. Also $\rho: R \rightarrow H^{*} \cong H$ is a monomorphism. But $\epsilon^{*}(r)(h)=$ $r \epsilon^{*}(1)(h)=r \epsilon(h)=\psi(h r N)$, so that $\rho(r)=r N$. Since ρ is injective, $R \ni r \mapsto r N \in H$ is injective. Thus, $R N$ is free of rank 1.

Finally, $H \ni h \mapsto \psi(h) N \in R N$ is a retraction for the inclusion $R N \subseteq H$, in which case $R N$ splits off as a direct summand.

By Theorem $1, \psi$ is a left integral and $H \ni h \mapsto h \circ \psi \in H^{*}$ as well as $H \ni h \mapsto \psi \circ h \in H^{*}$ are isomorphisms, so that ψ is a nonsingular left integral in H^{*}. Now let $\operatorname{pic}(R)=0$. If H is a finitely generated projective Hopf algebra with an antipode, then so is H^{*}. Furthermore, $H^{* *} \cong H$ as Hopf algebras with antipode and also H has a nonsingular left integral. This implies the main result of (see remark on page 588) [4] for the case that R is a principal ideal domain, for then $\operatorname{pic}(R)=0$ holds.

Note added in proof. P. Gabriel gave an example of a finitely generated projective Hopf algebra with antipode which is not a Frobenius algebra, showing that pic $(R)=0$ is a necessary condition for Corollary 1 . We have however the following

Theorem. Let H be a finitely generated projective Hopf algebra over a commutative ring $R . H$ has an antipode if and only if H is a quasi Frobenius algebra and H^{*} has a finite set of generators $\psi_{1}, \ldots, \psi_{n}$ as an H left module ($\left.h \circ h^{*}(a)=h^{*}(a h)\right)$ such that for all $k=1, \ldots, n$

$$
\sum_{\left({ }^{h}\right)} h_{(1)} \psi_{k}\left(h_{(2)}\right)=\psi_{k}(h) 1 \quad \text { for all } h \in H
$$

Here a quasi Frobenius algebra is taken in the sense of B. Müller, Quasi-FrobeniusErweiterungen, Math. Zeitschr. 85, 345-368 (1964). This theorem guarantees that the cohomology theory of Hopf algebras can be developed without the restrictive condition $\operatorname{pic}(R)=0$.

References

1. A. Berkson, Proc. Amer. Math. Soc. 15 (1964), 14, 15.
2. F. KASCh, Sitzungsber. Heidelberg. Akad. Wiss. (1960/61), 89-109.
3. F. Kasch, Math. Z. 77 (1961), 219-227.
4. R. G. Larson and M. E. Sweedler, Amer. J. Math. 91 (1969), 75-94.
5. B. Pareigis, Ann. Math. 153 (1964), 1-13.
6. B. Pareigis, "Kategorien und Funktoren," Teubner, Stuttgart, 1969.
7. M. E. Sweedler, "Hopf Algebras," W. A. Benjamin Inc., New York, 1969.

[^0]: ${ }^{1}$ See footnote at the end.

