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When Hopf Algebras Are Frobenius Algebras
Bopo PareiGis

Mathematisches Institut der Universitit Miinchen
8 Miinchen 13, Schellingstrasse 2-8, Germany

Communicated by A. Frohlich
Received August 19, 1970

R. Larson and M. Sweedler recently proved that for free finitely generated
Hopf algebras H over a principal ideal domain R the following are equivalent:
(a) H has an antipode and (b) H has a nonsingular left integral. In this paper
I give a generalization of this result which needs only a minor restriction,
which, for example, always holds if pic(R) = O for the base ring R. A finitely
generated projective Hopf algebra H over R has an antipode if and only if H
is a Frobenius algebra with a Frobenius homomorphism ¢ such that
X hqy P(hey) = P(h) - 1 for all he H. We also show that the antipode is
bijective and that the ideal of left integrals is a free rank 1, R-direct summand

of H.

1. In Ref. [4], Larson and Sweedler proved the equivalence for a
finite-dimensional Hopf algebra over a principal ideal domain to have a
(necessarily unique) antipode and to have a nonsingular left integral. It is
easy to see that this result implies that a finite-dimensional Hopf algebra
over a principal ideal domain is a Frobenius algebra, which generalizes the
well-known fact that a group ring of a finite group is Frobenius as well as the
result of Berkson [1], that the restricted universal enveloping algebra of a
finite-dimensional restricted Lie algebra is Frobenius. This result has
consequences with respect to a cohomology theory of Hopf algebras which
will be exhibited in a subsequent paper.

In this paper we want to generalize the main result of [4] to arbitrary
commutative rings R and finitely generated projective Hopf algebras H.
We need only a slight restriction on H or on R, viz., pic(R) = 0 to get the
equivalence between the existence of an antipode and the fact that H
is a Frobenius algebra with a Frobenius homomorphism i, such that
2 halhe) = (k) - 1 for all he H, where 3 ) hqy ® he) = 4(h) is the
Sweedler notation. We do not know whether the imposed restrictions on R
or H are necessary for the above result.! In this context we also prove that the

1 See footnote at the end.

588
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antipode of a finitely generated projective Hopf algebra is bijective. This
holds without any further restrictions.

Since integrals are also of interest in this general situation, we shall prove
that in a Hopf algebra H which is Frobenius with a Frobenius homomorphism
¢ such that " Aq(he)) = P(k) - 1 for all ke H the two-sided H ideal of
left integrals is an R-free rank 1 R-direct summand of H.

2. Let R be a commutative ring (associative with unit). All modules
are assumed to be unitary R modules. All algebras are assumed to be associative
R algebras with unit.

A coalgebra C is a module C together with homomorphisms 4 : C—C ® C
(the tensor product is taken over R), the diagonal, and € : C — R, the counit
or augmentation, such that

C 4 cC®C c4>-Cc®C
Al lA@l and lA\ ll@;
CRCRLCRCRC cC®CLL,

commute where we identify C ® R, C, and R ® C. We adopt the Sweedler
notation 4(c) = Y, ¢ ® ¢y as explained in [7, p. 10].

A Hopf algebra H is an algebra H with structure maps p: H Q H— H
andn : R — H, which is also a coalgebra with structure maps 4 : H > H @ H
and € : H — R such that 4 and e are algebra homomorphisms. As in [7,
Proposition 3.1.1] one shows that y and 7 are coalgebra homomorphisms.

Let C be a coalgebra. A C right comodule is a module M together with a
homomorphism y : M — M & C such that

M—* sM®C MXA: M®C
xl ll@d and \ ll@:
MRC2L MRCRC M

commute, where we identify M and M & R. Here again we use the Sweedler
notation x(m) = Y () M) @ mg) . Observe that the my’s for ¢ > 1 are
elements in C, whereas the m,’s are in M.

Let H be a Hopf algebra. An H right Hopf module is an H right module M
which is also an H right comodule such that

x(mh) = Y mghg @ myhe) -

(m),(R)
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Let H be a Hopf algebra. Then homg(H, H) is an associative R algebra
with unit ne, if we define the multiplication by fxg: = u(f® g)4, ie,
fxgh) =X u f(hw) glhw) [7, p. 70, exercise 1]. The antipode S of H is
(if it exists) the two-sided inverse of the identity 15 of H in homg(H, H).

3. LemMa 1. Let A, B, and C be R modules. If C is finitely
generated and projective, then A :hom(A, B ® C) — hom(C* ® 4, B) with
MfNe* ® a) = (1 @ c*)f(a) is an isomorphism.

Proof. A defines a natural transformation
hom(4, B ® —) — hom(—* &) 4, B),

which is an isomorphism for C = R. By [6, 4.11. Lemma 2] the above lemma
holds.

ProposiTION 1. Let C be a finitely generated projective R coalgebra and M
be an R module. Then y: M — M @ C defines a C right comodule if and
only if Nx) : C* @ M — M defines a C* left module, where A is defined as in
Lemma 1.

Proof. C* is an R algebra by c*d*(c) = X (o ¢*(cw) d*(c()). Assume
x:M— M @ C defines a C right comodule. Then

(er*e™)m = Z my(cr*c2*(m)))
(m)

= Y m(e*(my) e*(my))

(m)

= Z e *mg) (e *(my))
(m)

= ¢,*(co*m)
and

em =y me(my) = m,
(m)

so M is a C* left module.
Now let M be a C* left module. The natural transformation

p:M® C® D — hom(C* ® D*, M)

defined by p(m ® ¢ ® d)(c* ® d*) = c*(c) d*(d)m is an isomorphism for
finitely generated projective modules C and D, since it is an isomorphism for
C =D =R [6,411. Lemma 2]. So M @ C ® C =~ hom(C* ® C*, M)
for our finitely generated projective coalgebra C.
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Let x = ((x ® lx — (1 ® A)x)(m) € M ® C @ C. Then p(x)(e,* @ c*) =
c1¥(eg*m) — (cy¥c,*)m = 0 for all ¢;*, ¢,* € C*, so x = 0, i.e., x is coasso-
ciative. Furthermore, we have (1 ® €)x(m) = X () m@e(my) = em = m,
since e is the unit element in C*. So M is a C right comodule.

ProposITION 2. Let H be a finitely generated projective Hopf algebra with
antipode S. Then H* is an H right Hopf module.

Proof. H* is an H* left module, so it is an H right comodule. We have
for g*, h* € H*, and h € H and the comodule map y : H* — H* ® H with

X(h*) =3>m h?fn ® h(ﬂi) .
&R =Y hing*(hd) (1)
(h*)
and

ghNh) =Y. g (hw) K (he) = Y ho(h)g*(hd))-

(k) (h*)

H* is also an H right module by A* - & = S(h) o h*, where (ko h*)(a)
h*(ah) for allae H. For g*, h* € H*,and a,be Hand y : H* - H* @ H
hom(H*, H*), we have

R

x(h* - a)(g*)(®) = (g*(h* - a))(b)
= > &*bw) H*(bwS(a))

(b)

= Y g*bweaw)) k*(bwS(aw))

(a)(d)

= Y (a@ °g")bwS(aw)) F*(bwS(aw))
(a)(b)

= 2 (@) ° &%) F*)(bS(aw))

(a)

=2 (e °g*) #*) - a)(b)

(a)

= Y ((hio(aw " )hD)) * aw)(®)

(a)(h*)

= Y (ko) - aw)aw  &¥)(k))®)

(a)(h*)

= Y (ko " aw)g" (kipaw))®).

(a)(h*)
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This implies x(h* ‘- @) = Y (yu hy)  aw @ hi)a which proves the
proposition.

Let M and N be H right Hopf modules over a Hopf algebra H with antipode
S. We define an R module P(M) = {me M | x(m) = m @ 1}. Letf: M — N
be a module and comodule homomorphism. We define P(f) as restriction of f
to P(M). Then y(P(f)(m)) = x(f(m)) = (f ® Dx(m) = f(m) ® 1 € P(N).
Obviously P is a functor from the category of H right Hopf modules to the
category of R modules.

LemmA 2. Let M be a Hopf module over a Hopf algebra H with antipode S.
Then M o~ P(M)® H as right Hopf modules. Furthermore, P(M) is an R
direct summand of M.

Proof. The natural injection P(M)— M has a retraction M3 mi—
Zim) Mm@ S(mq) € P(M) for

X (Z m(O)S(m(l))) = (Z) mpS(mp) & myS(m)

(m)

= (Z) mSimy) @ 1.
Nowo : PM)R® H—> Mand B : M— P(M)® H, defined by a(m @ k) = mh
and B(m) = Y (m) My S(my) ® m(, , are inverse R homomorphisms of each
other. a being an H module homomorphism, 8 is an H module homo-
morphism. Furthermore, yB(m) = (B ® 1)x(m) implies that B8 and, conse-
quently, also o« is a comodule homomorphism.

ProPOSITION 3. Let H be a finitely generated projective Hopf algebra with
antipode S. Then P(H*) is a finitely generated projective rank 1 R module.

Proof. For each prime ideal p in R the isomorphism H* ~ P(H*) ® H
implies H* o~ P(H*), ®R H,.Now H,* ~ H, as free finite-dimensional
R, modules So dlm(P(H*)p) =1 for all prime ndeals p in R. Thus, P(H*)
has rank 1. Furthermore, it is finitely generated projective as a direct summand
of H*.

4. An R algebra H is a Frobenius algebra if H is a finitely generated
projective R module and if there is an isomorphism @ : ;H ~ yH*, where
we consider H* as an H left module via . o h*(a) = h*(ah) for all a, he H,
h* € H* [2]. @ is called a Frobenius isomorphism. (1) =: i is a free generator
of H* as an H left module called Frobenius homomorphism. By [3, p. 220, (4)],
i is also a free generator of H* as an H right module, where A* o h(a) : = h*(ha)
for all #* € H*, and h, a < H. This is a consequence of the proof that the
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conditions for a Frobenius algebra are independent of the choice of the sides,
ie., yH ~ ,H* implies Hy; ~ Hy* (if H is finitely generated and projective).
i is unique up to multiplication with an invertible element of H [5, Satz 1].

If a Frobenius algebra H has an augmentation ¢, then the element N with
N oy = e is called a left norm of H. A left norm N is also unique up to
multiplication with an invertible element of H from the right side. We have
((AN) o )(a) = W(ahN) = (N o f)(ah) = e(ak) = e(a)e(h) = (N o $)(a)e(h) =
(e(A)N o )(a) for all a, h € H. This implies

hN = e(h)N  forall heH.

An element a € H of an augmented algebra H with ha = e(h)a for all h e H is
called a left integral of the augmented algebra H. So a left norm is in particular
a left integral.

PROPOSITION 4. Let H be a finitely generated projective Hopf algebra with
antipode S. Then S is bijective.

Proof. S is injective: Let 8 : H* ~ P(H*) ® H be the isomorphism of H
right modules defined by Proposition 2 and Lemma 2. Let S(#) = 0 and
p ®ae P(H*) ® H, then

61 (p ®ak) = 0 (p ® a) - h = S() > 0-4(p @ a) = 0.

So p®ah =0 for all p ® ae P(H*) @ H and the R endomorphism of
P(H*) ® H, defined by the multiplication with #, is the zero endomorphism.
Let m be a maximal ideal of R. If we localize with respect to m, we get an
R,, Hopf algebra H,, with antipode S,,. Furthermore, (H*),, o~ (H,)*,
where the second * means dualization with respect to R, . Also, P(M),, =~
P(M,,) for an H Hopf module M since P(M) is the kernel of y — 1,, ® Ul
and localization is an exact functor. So (P(H*) ® H),, =~ P((H,)*) ®Rm
As in Proposition 3, P((H,)*) is a free R, module on one generator so
P((H,)*) ®r,, Him = H,, . The multiplication of H,, with % on the right
is a zero morphism for all maximal ideals m of R. So multiplication of H with
h on the right must be zero Wthh implies 2 = 0. So S is injective.

S is surjective: Let 0 — H S H- O — 0 be an R exact sequence. Then
for all maxnmal ideals m C R, we have 0 — H,, — H,, — Q,, — 0 is R, exact.
So H, /mH,, =X H, /mH, — Q,/mQO, — 0is R, /mR,, exact, where T is the
antipode of the R,,/mR,, Hopf algebra H,,/mH,, . Since this Hopf algebra is
finitely generated, T is injective so that T is bijective and Q,,/mQ,, = 0.
Since O and Q,), are finitely generated, Q,,, = O for all maximal ideals m C R.
So O = 0 and S is surjective.

THEOREM 1. Let H be a finitely generated projective Hopf algebra with



594 PAREIGIS

antipode S. Let P(H*) ~ R as R modules. Then H is a Frobenius algebra with
a Frobenius homomorphism s such that

Y hayphe) = (k)1 forall heH.
(r)

Proof. By Proposition 2 and Lemma 2 there exists an isomorphism
H* ~ P(H*) ® H of H right modules where (h* - h)(a) = h*(aS(h)) or
h* - b = S(h) o b* is the definition of the module structure on H*. Since
P(H*)~ R, let 0 : H* ~ H be an isomorphism of H right modules. Define
® = 6-1S-1: H~ H* where we use Proposition 4. Then P(ha) =
6-15-1(ha) = 0-X(S-H@)SH(R)) = 6-X(Sa)) * S-H(k) = B(a) - S-H(k) =
h o @(a), so H is a Frobenius algebra. Before we prove the formula on the
Frobenius homomorphism we prove the following:

Lemma 3. Let H be a finitely generated projective Hopf algebra with
antipode S with P(H*) o~ R. Let @ : H ~ H* be the Frobenius isomorphism
constructed above and let y = D(1) be a Frobenius homomorphism. Then
Y € P(H*) and i is a left integral in H*.

Proof. ®(1) = ¢ implies SO(y) = 1 and also O()) = 1. 0 is a comodule

homomorphism so 3 8(}) @ ¥ = (9 ® Ix($) = 4(6(4) = 4A(1) =
1®1 =0)®1. 01 being an isomorphism this implies x(}) = $ ® 1
so i € P(H*). Now

1 (3 habh) = ¥ B (ho) $(he)

(k) (h)
= (B*)(h)
=Y doh) F*@w)  (by (1)

W)
= y(h) h¥(1)
— PH()L)

for all A € H and A* € H*. This implies

Y hwidlhe) = $(B)1  forall heH.
(h)

This also means (h*y)(k) = h*(1)(%), which proves that i is a left integral
in H*.

CoRrOLLARY 1. Let R be a commutative ring with pic(R) = 0. Then each
finitely generated projective Hopf algebra with antipode is a Frobenius algebra.
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5. Lemma 4. Let P be a finitely generated projective R module and
let f: P — P be an epimorphism. Then f is an isomorphism.

Proof. The sequences

0>4—->PLP-0,
0~—>Am-——>meﬂ->Pm—>0,

0 — Ap/mdy — Py/mPy L PyjmPy — 0

are all split exact. But f is an isomorphism by reasons of dimension so
AypfmA,, =0. 4, is finitely generated so that 4, = 0 for all maximal
ideals m C R, so that A = 0 and f is an isomorphism.

THEOREM 2. Let H be a Hopf algebra and a Frobenius algebra with a
Frobenius homomorphism ¢ such that Y haqyp(he)) = Y(h)1 for all ke H.
Then H has an antipode S.

Proof. We define S : H— H by S(h) = Y (v) No¥(hN(y), where N is a
left norm, i.e., Noy = €. Then

Y hpShw) = Y. hoNo¥(heNg)
(h) (R)(N)

= $(hN)1
= (k)]
= ne(h)

for all 2 € H by definition of N.So 1 * S = ge.

Now homg(H, H) is an associative R algebra with multiplication f x g =
u(f ® g)4. Homg(H, H) is also finitely generated and projective since H is.
The map

homy(H, H) 5 f > f % S € homg(H, H)

is an R epimorphism for (f*1)* S =f* (1 *S) = f*ne = f. By the
preceeding lemma, — xS is an isomorphism with inverse map — % 1. So
Sx1 =mnexSx1 =ne ie., Sis an antipode.

THEOREM 3. Let H be a Hopf algebra and a Frobenius algebra. Then the
two-sided ideal of left integrals h € H (with ah = e(a)h for all ac H) is a free
R direct summand of H of rank 1 with basis {N}, a left norm of H.

Proof. Let h be a left integral, then y(ah) = J(e(a)h) = PY(h)e(a) =
Y(h)p(aN) = P(ap(h)N) for all a € H, so that ko b = (h)N o 3y or b = J(h)N.
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Furthermore, € is an epimorphism since en = 1. So ¢* : R —> H* is a
monomorphism. Also p : R — H* ~ H is a monomorphism. But ¢*(r)(k) =
re*(1)(h) = re(h) = Y(hrN), so that p(r) =rN. Since p is injective,
R>7r+>rN e H is injective. Thus, RN is free of rank 1.

Finally, H>h+> (h)N € RN is a retraction for the inclusion RN C H,
in which case RN splits off as a direct summand.

By Theorem 1, ¢ is a left integral and Hah> hoyc H* as well as
H > hi> o he H* are isomorphisms, so that ¢ is a nonsingular left integral
in H*. Now let pic(R) = 0. If H is a finitely generated projective Hopf
algebra with an antipode, then so is H*. Furthermore, H** ~ H as Hopf
algebras with antipode and also H has a nonsingular left integral. This
implies the main result of (see remark on page 588) [4] for the case that R
is a principal ideal domain, for then pic(R) = 0 holds.

Note added in proof. P. Gabriel gave an example of a finitely generated projective
Hopf algebra with antipode which is not a Frobenius algebra, showing that pic(R) = 0
is a necessary condition for Corollary 1. We have however the following

Theorem. Let H be a finitely generated projective Hopf algebra over a commutative
ring R. H has an antipode if and only if H is a quasi Frobenius algebra and H* has
a finite set of generators ¢ ,..., ¥, as an H left module (ko A*(a) = h*(ah)) such
that forall k = 1,...,

Y hawihe) = du(h)1  forall he H.
*)

Here a quasi Frobenius algebra is taken in the sense of B. Miiller, Quasi-Frobenius-
Erweiterungen, Math. Zeitschr. 85, 345-368 (1964). This theorem guarantees that
the cohomology theory of Hopf algebras can be developed without the restrictive
condition pic(R) = 0.
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