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COHOMOLOGY OF GROUPS IN ARBITRARY
CATEGORIES

BODO PAREIGIS!

1. Introduction. In this paper we give a short sketch of a method
of doing cohomology theory of group-like objects in arbitrary cate-
gories. The way of approach is closely connected with the usual the-
ory of cohomology of groups and has also been used by D. K. Harri-
sonin [6]. Specifically the equivalence of the homogeneous, inhomo-
geneous, and normalized theories will be shown. Since we consider
arbitrary categories we must give all definitions by properties of maps
and cannot apply explicit computations with elements. But instead
of using the diagrams which contain the maps of those definitions,
we consider these maps as elements of the morphism sets and use the
algebraic structures of the morphism sets which are induced by the
abstractly defined structures of the objects.

In [6] two examples of this theory, Harrison’s complex and
Amitsur’s complex, have already been mentioned. Since the homo-
geneous and inhomogeneous definitions of Harrison’s complex are
equivalent we can prove that Harrison’s complex is a subcomplex of
Amitsur’s complex.

This theory may be developed in greater generality using certain
functorial properties of the cohomology theory of groups as I. Ber-
stein pointed out to me. I hope that the possibilities of explicit com-
putation as described in this paper, might also be of some interest.

2. Notation. Let € be a category with finite direct products. This
means that for a finite collection of objects By, - - -, B, in @ there
exists an object IIBi=Bl>< -+ + X B, in € and morphisms p;: HB‘
—B;, so called projections, such that for any object 4 in € and any

system of morphisms b;: A—B;, 1=1, - - -, n there exists a unique
morphism b: A—]]B: with pb=0b;. We write (by, - - -, b,) instead
of b. It is easy to see that (p1, - - -, p») =id, the identity on HB,-.

The direct product of # copies of B will be written as B*. Further-
more we denote by Mor(4, B) the set of morphisms from A4 to B.
For any finite set of morphisms b;& Mor(4;, By), t=1, - - -, n we
denote by (by X - -+ X b,) the morphism (bip1, - -, bapn)
eMor(JI4: IIB.), where p;&Mor(][4:, 4;). For the composi-

Received by the editors May 11, 1963.
t The author was supported by NATO-Research-Fellowship 4-s-nato 2/3 gf.
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tion of these morphisms we have the following rules [3, Propositions
3.5, 3.6, 3.7]: let b&EMor(4, B), c;EMor(B, C), d;&EMor(C;, D)),
and e;EMor(D;, E;), then

(@) (ciy s+, )b = (cad, -+ +, Cab),
(2.1) (b) (d1X « -+ Xda)(er,* -+, 6n) = (dacy, * * +, dncn),
(€ (1 X « - Xen)(@r1 X +++Xdn)=(e1d1 X « + » X ndn).

Since we do not assume that the category € is a category with zeros
in the sense of [3] we have to use another axiom for the neutral ele-
ment for group-like structures.

The complete set of axioms which we shall use is:

(I) There exists a morphism p: X X X—X. u is called a multiplica-
tion on X.

(II) There exists an element 0&Mor(X, X) such that

(a) Of = Og for all objects 4 and all f, g € Mor(4, X)),

(b) r(0,id) = id € Mor(X, X),

(c) wp(id, 0) = id € Mor(X, X).

(ITI) p(uXid) =p(d Xu) EMor (X3, X).

(IV) There exists a morphism s&Mor(X, X) such that u(id, s)
=u(s, id)=0&Mor(X, X).

(V) Let id=(p1, p2) and 7= (ps, p1) EMor(X?, X?), then p=pr.

If (I) and (III) hold, then X is called a semigroup, if (I), (II), (111),
and (IV) hold, then X is called a group and if (I), (II), (I1II), (IV)
and (V) hold, then X is called a commutative group. We write (X, u)
to indicate that u is the multiplication on X under consideration.

One easily proves that 0&Mor(4, 4) is unique. We call 0 the
neutral element of the multiplication u. If the necessary axioms hold
for the multiplication u in X, we shall use the following notation
with x;&EMor(4, X)

(@) wu(x, 22) = 21° %, (= 21+ =),
(2.2) (b) Ox; = 1 (=0),
() sx; = ;71 (= — ).

The notation in parentheses will be used, if the multiplication is
commutative, i.e., if axiom (V) holds.

Let now (X, u) be a semigroup and (Y, ») a commutative group
and AEMor(X XY, Y). Then we shall write for all 4 and all mor-
phisms x&Mor(4, X), yEMor(4, Y)

(2.3) Az, ) = z-y.
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This notation should not interfere with the notation (2.2.a).

We call ¥ an X-module, if ¥ is a commutative group and X oper-
ates on Y as in (2.3) and if for all x, %y, xsEMor(4, X); ¥, 31, ¥a
EMor(4, 7)

(@) (14 y2) =291+ 20,
(b)  (m1%x2)-y = @1 (x2-9)

and if Mor(X, V)= .

We shall call the X-module structure on Y trivial if AM(x, y) =y for
all 4 and all x&Mor(4, X), ultratrivial if A(x, y) =0 for all 4 and all
xEMor(4, X). If (X, p) has a neutral element 1 and if A(1, y) =1y,
then we call ¥ a unitary X-module. Certainly a trivial X-module
structure on Y implies that Y is a unitary X-module. We remark
furthermore that with the above definitions Mor(4, Y) is a group if
Vis a group [3, Theorem 4.10].

All these definitions are already well known [3] but by using the
notation (2.2) and (2.3) computation will become easier and we can
easily refer to computations made in the classical case. Thus axioms
(2.4) are already given in this notation and stand for certain com-
mutative diagrams.

(2.4)

3. Cohomology of groups. In the notation given in the preceding
paragraph it is now easy to generalize the definition of the coho-
mology of a semigroup (X, u) with coefficients in an X-module (7, »).
We define the differentiation 8*: Mor(X?, ¥)—Mor(X"+, Y) by

(f) = () (py, * -+, Pat1)
= p1-(f(ps, -+ *, Pnt1))

+ Z (_1)‘]‘.(?1: sy pithivr, ot e, Pn+1)

1=l
+ (=D (py, - - -5 p),
where p;,EMor(X"t!, X), fEMor(X", V) and (—1)¥f=s¥. As in
ordinary cohomology theory [4] one checks 8"+!9"(f) =0 and that
9" is a homomorphism. Furthermore we define a set which we denote
by Mor(X?® Y)=Mor(Y, Y)0, where 0&Mor(X, V). It is easy to
see that Mor(X?, Y) is a commutative group under the induced multi-
plication of ¥. We define 8°: Mor(X?, ¥)—Mor(X, Y) by

0°(f0)(p) = #-(f0) — (f0) € Mor(X, T),

where (p) =idEMor(X, X). d° is a homomorphism too and we get
919°(f0) =0.
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If the category € has a final object F [5, p. 332], i.e., if there exists
an object F such that Mor(4, F) contains exactly one element for all
A4 in @, and if Mor(F, Y) is nonempty, then 0&EMor(Y, V) admits
the factorization

0
Y->F—>Y

and Mor(X?, Y)=Mor(F, ¥) by a natural isomorphism, which ex-
plains the definition of Mor(X9, ¥). In the examples in §4 we always
shall have categories with a final object.

We thus have constructed a complex of abelian groups:

—1 60 al
(3.1) 0—— Mor(X° V) > Mor(X, ¥) > Mor(X2, V) - - - .
We define the inhomogeneous cohomology groups of X with coeffi-
cients in Y by
H*(X, ¥) = Kerd®/Imo» !, n = 0.

We also can define the homogeneous cohomology groups. For this
purpose we consider the set of morphisms f& Mor(X+!, V) with the
property

p-(f(pos -+ s pw)) =f(P-bo, -+ -, D Pn)
and denote this set by Morx(X=+!, ¥). One can easily prove that this
definition implies

x-(f(xo, ) xn)) =f(x'x0’ R x‘xn)
for x, x;&Mor(4, X). Obviously Morx(Xt1, V) is still a commuta-
tive group. We define homomorphisms

8": Morx(X", ¥) — Morx(X"t!, ¥), nx1

by

B (o s pa) = 0 (=B, - -+ By - -+ 1),

=0

where 7 means that the projection under this sign is to be omitted.
Here again one easily checks that §*+167(f) =0. Thus one obtains the
complex

0 81 82

(3.2) 0 — Morx(X, ¥) » Morx(X%, V) > - - -
and defines homogeneous cohomology groups by
H*(X, V) = Kerér+!/Imé, n = 0.
THEOREM 3.1. Let (X, w) be a group and (Y, v) a unitary X-module
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and let Mor(Y, X)#= . Then
X, V)~ H X, V), nz0.

Proor. This proof is exactly the same as in the ordinary cohomol-
ogy of groups [4]; one proves that Morx(X**+!, ¥)=~Mor(X", ¥) and
that the differentiation operators 6* and 0 commute with these iso-
morphisms.

If now (X, u) is a semigroup with neutral element and (Y, v) is an
X-module then we consider those elements fEMor(X®, Y) with
f(x, » - -, x,) =0 if one of the x;&Mor(4, X) is the neutral element.
This subset forms a group Mor¥ (X", ¥) of normalized cochains for
n=1. For n=0 we define Mor¥(X?°, ¥)=Mor(X? Y). If we denote
the differentiation induced by d” on these subgroups also by d* we
get the complex

—1 1

(3.3) 0—> Mor¥(X", ¥) 6_") Mor¥(X, ¥V) — Mor¥(X2, V) - - -
and the cohomology groups

Av(X, Y) = Kerg®/Imo*!, n=0.
As in the classical case [4] one proves

PRrOPOSITION 3.2. Let (X, u) be a semigroup with neutral elemesnt and
(Y, v) a unitary X-module. Then

A"X,Y)~H"X,Y), nz=0.

4. Examples. Let us now consider two examples of this theory. In
the first example let @ be the category of sets and set maps; then we
get the ordinary cohomology of groups.

Another example is the following, due to Harrison [6]: For a com-
mutative ring K with identity consider the category @ of commuta-
tive K-algebras with identity and K-algebra homomorphisms which
preserve the identity. Let €= @° be the dual of this category. Since
@ has finite inverse products, namely the tensor products of K-
algebras, @ has finite direct products. Since @ has an initial object K
(in the sense of [5]), i.e., every set of K-algebra homomorphisms
from K to any K-algebra 4 consists of exactly one element, @ has a
final object K°.

Let now 4 be any arbitrary K-algebra in @, (z)=Z the infinite
cyclic group with generator 2z, and G any commutative multiplicative
group. We denote by K(Z) and K(G) the group rings of Z and G
over K. Then the following definitions make 4° into a semigroup,
K(Z)° and K(G)? into groups, and induce an ultratrivial 4°%module
structure and a trivial K(G)%module structure on K(Z)°:
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Bt A—>A4AQ® 4 pi(e) =1Qa
pa: K(G) = K(G) ® K(G)  polg) =g ®¢
: K(Z) —> K(Z) ® K(2) v(z) =2Q 3
A K(Z) > 4 @ K(2) MiE =181
At K(Z) — K(G) @ K(2) N(z) = 1@z

-

We notice that all K-algebra homomorphisms from K(Z) to 4 are
uniquely determined by the image of the generator z of Z and that
the range for the images of z is just the group of units 4* of 4. So
we get Mor((4%", K(Z)0)=Z(A)*.

If we evaluate the inhomogeneous differentiation operators 9*, we
get Amitsur’s complex ([1] and [7])

A° 1 2
(4.1) A(A/K): 1 5 K*— A* > (A Q@ A)*— - - -
from the A%module K(Z)° For the K(G)"-module K(Z)° we get

Ve Vi v?
4.2) $(G): 1> K*— K(G)*— (K(G) @ K(G)*— -
which is Harrison’s complex [6] in case G=Q/Z and K is a field,
where @ are the rational numbers and Z are the integers.

This example has already been given by Harrison in [6], but the
definitions are repeated for the convenience of the reader.

By Theorem 3.1 we can also apply the homogeneous cohomology
theory for the complex (4.2). By evaluating the maps 8” we easily
verify that this complex may be regarded as a subcomplex of Amit-
sur's complex A(K(G)/K). Indeed the subgroups which form the
complex (4.2) in the homogeneous representation consist of all ele-
ments of (K(G)*)* of the form

Z kig1i ® - - ® gni

=1
such that {J7.,g;s=1 for all 5. In case G=Q/Z and ¢;,;€ Q/Z, we
get that $(@Q/2) is a subcomplex of A(K(Q/Z)/K) and that the last
conditions read:

D kg ® - ® gai € (K(Q/2Z)M*
fa=1
such that Y7, ¢;,;=0 for all 4.

Thus we get a factor complex I of A=A(K(Q/Z)/K) over
9 =9(9/Z) and an exact sequence

4.3) 1-9-A-U—1.
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THEOREM 4.1. HM()=H'(1), n=1.

Proor. The exact sequence (4.3) gives rise to an exact cohomology
sequence

C s B — BY(W) — HY(D) — H Q@) — - -

We want to prove H*(%) =0 for all =.

For H*(A) we have H*()) = H(K(Q/Z)/K), and K(Q/Z)
~lim . K(G) for finite cyclic groups G and by [7, p. 345] H*(%)
=~lim . H*(K(G)/K).

Now let G be a cyclic group and 1 be the unit element of G. We
define a: K—K(G) by a(k)=Fk-1 where k€K, and B: K(G)—K by
B( X kigi) = D_ki, where ;€K and g the generator of G. Then as in
the proof of [9, Lemma 3.1] we have that the chain maps defined by
o and B induce maps o*: HY(K/K) —» H(K(G)/K) and B*:
H~(K(G)/K)—H"(K/K) which are isomorphisms. So H*(K(G)/K)
=0 for all finite cyclic groups G and thus H*»(K(@/Z)/K) =0. By the
exact cohomology sequence (4.4) we get the desired result of Theo-
rem 4.1.

We have studied the homogeneous form of Harrison's complex.
If one tries to construct homogeneous cohomology groups for Amit-
sur’s cohomology one will find that the cohomology groups vanish,
due to the more general fact that for ultratrivial module structures
the complex (3.2) vanishes.

BIBLIOGRAPHY

1. S. A. Amitsur, Simple algebras and cohomology groups of arbitrary fields, Trans.
Amer. Math. Soc. 90 (1959) 73-112.

2. A. J. Berkson, On Amitsur's complex and restricted Lie algebras, Trans. Amer.
Math. Soc. 109 (1963), 430-443.

3. B. Eckmann and P. J. Hilton, Group-like structures in general categories. 1.
Multiplications and comultiplications, Math. Ann. 145 (1962), 227-255.

4. S. Eilenberg and S. MacLane, Cokomology theory in abstract groups. 1, Ann. of
Math. (2) 48 (1947), 326-341.

5. P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-
448.

6. D. K. Harrison, Abelian extensions of arbitrary fields, Trans, Amer. Math. Soc.
106 (1963), 230-235.

7. A. Rosenberg and D. Zelinsky, On Amitsur's complex, Trans. Amer. Math. Soc.
97 (1960), 327-356.

8. , Amitsur's complex for inseparable fields, Osaka Math. J. 14 (1962), 219~
240.

9. B. Pareigis and A. Rosenberg, Addendum to “Amitsur's complex for purely in-
separable fields,” Osaka Math. J. (to appear).

CORNELL UNIVERSITY AND
UNIVERSITAT HEIDELBERG



