
FORMS OF HOPF ALGEBRAS AND

GALOIS THEORY

BODO PAREIGIS

The theory of Hopf algebras is closely connected with various ap-
plications, in particular to algebraic and formal groups. Although the
�rst occurence of Hopf algebras was in algebraic topology, they are now
found in areas as remote as combinatorics and analysis. Their struc-
ture has been studied in great detail and many of their properties are
well understood. We are interested in a systematic treatment of Hopf
algebras with the techniques of forms and descent.
The �rst three paragraphs of this paper give a survey of the present

state of the theory of forms of Hopf algebras and of Hopf Galois theory
especially for separable extensions. It includes many illustrating exam-
ples some of which cannot be found in detail in the literature. The last
two paragraphs are devoted to some new or partial results on the same
�eld. There we formulate some of the open questions which should
be interesting objects for further study. We assume throughout most
of the paper that k is a base �eld and do not touch upon the recent
beautiful results of Hopf Galois theory for rings of integers in algebraic
number �elds as developed in [C1].

1. Hopf algebra forms

As a �rst example of the occurence of a Hopf algebra let us consider
the units functor. In the sequel let k be a commutative, associative ring
with unit. Later on it will be a �eld, in particular the �eld of rationals
or reals. Let k-Alg denote the category of commutative k-algebras and
Grp the category of groups. Then there is the important functor

U : k-Alg �! Grp;
the units functor, which associates with each k-algebra its group of
invertible elements or units. This functor is representable by the k-
algebra k[x; x�1] = kZ, the group-ring of the in�nite cyclic group Z,
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i.e.
U(A) �= k-Alg(k[x; x�1]; A):

The multiplication of the units group U � U �! U induces a commu-
tative diagram

U(A)� U(A) U(A)-

k-Alg(k[x; x�1]
 k[x; x�1]; A) k-Alg(k[x; x�1]; A)-
? ?

with vertical arrows isomorphisms. By the Yoneda Lemma the sec-
ond horizontal arrow induces a comultiplication on the representing
k-algebra

�: k[x; x�1] �! k[x; x�1] ` k[x; x�1] = k[x; x�1]
 k[x; x�1];

de�ned by �(x) = x 
 x. Observe that the tensor product of com-
mutative algebras is the coproduct in k-Alg. Also the inverse inv: U
�! U and the neutral element f:g �! U de�ne corresponding maps on
the representing algebra. All in all we obtain the structure of a Hopf
algebra on the algebra k[x; x�1].

De�nition 1.1. A k-algebra H together with k-algebra homomor-
phisms

� : H �! H 
H;
� : H �! H;
� : H �! k

is called a Hopf algebra, if H together with � and � is a coalgebra and
if � satis�es the following commutative diagrams

H k-
�

H-
�

?
�

6
r

H 
H H 
H-
� 
 1(1
 �)

Here the mapr : H
H �! H denotes the multiplicationr(a
b) :=
ab of the algebra H and � : k �! H is de�ned by �(a) := a � 1H , the
canonical map from k into H.

The map �: H �! H 
H is called the diagonal or comultiplication
on H. It is awkward to write the images as tensors in the usual way,
especially if composites of such maps occur. The following simpli�ed
notation has been introduced by Sweedler. For a linear map f : A
�! B
C we de�ne

P
a(B)
a(C) := f(a) or in the special case of a Hopf

algebra (H;�; �) we write
P
h(1)
h(2) := �(h). The advantage of this

notation is, that it can be extended to bilinear maps along the following
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example. If g : B�C �! D is a bilinear map with inducedmap ĝ : B
C
�! D on the tensor product, then we can de�ne

P
g(a(B); a(C)) :=

ĝ(f(a)) and thus use the "components" a(B) and a(C) as if they were
well-de�ned ordinary elements, which can be used as arguments in
bilinear maps.
Similar to the Hopf algebra k[x; x�1] each commutative (as an alge-

bra) Hopf algebra H represents a functor

~H : k-Alg �! Grp; ~H(A) := k-Alg(H;A)

where the multiplication on ~H is given by the commutative diagram

~H(A)� ~H(A) ~H(A)-

k-Alg(H 
H;A) k-Alg(H;A)-
? ?

So the group-ring kZ has been seen to be a Hopf algebra with the
diagonal �(g) = g 
 g for every element g in the group Z. This holds
not only for the group Z. Every group-ring kG is a Hopf algebra
with the same comultiplication, even for non-commutative groups G.
The non-commutative group rings, however, do not anymore represent
group valued functors on k-Alg. They are special instances of formal
groups.
Another concrete example of a group valued functor is

C : k-Alg �! Grp;
the circle group, de�ned by C(A) := f(a; b) 2 A � Aja2 + b2 = 1g.
The group structure is given by (a; b) � (c; d) := (ac � bd; ad + bc).
The representing Hopf algebra is the "trigonometric algebra" H =
k[c; s]=(c2 + s2 � 1). The diagonal is de�ned by

�(c) = c
 c� s
 s;
�(s) = c
 s+ s
 c:

The most interesting observation is this. Let A be a commutative k-
algebra with 2 invertible and containing i =

p�1. Then the assignment

U(A) 3 a 7!
�
1

2
(a+ a�1);

1

2i
(a� a�1)

�
2 C(A)

de�nes a functorial isomorphism of groups. If 2�1; i 2 k then U and
C are isomorphic group valued functors, hence they have isomorphic
representing Hopf algebras

k[x; x�1] �= k[c; s]=(c2 + s2 � 1):
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If i =2 k then the two group valued functors are not isomorphic, neither
are their representing Hopf algebras k[x; x�1] and k[c; s]=(c2 + s2 � 1).
If k is a �eld of characterictic 6= 2 and i =2 k, then U and C are

non-isomorphic but they induce isomorphic functors U jk(i) and Cjk(i) if
restricted to the k(i)-algebras. Let K = k(i) and let A be a K-algebra.
Then we have

K-Alg(K 
 k[x; x�1]; A) �= k-Alg(k[x; x�1]; A)
�= U jK(A)�= CjK(A)�= k-Alg(k[c; s]=(c2 + s2 � 1); A)
�= K-Alg(K 
 k[c; s]=(c2 + s2 � 1); A)

hence K 
 k[x; x�1] �= K 
 k[c; s]=(c2 + s2 � 1) as K-Hopf algebras,
where the tensor product is always taken over the base ring k. Observe
that a cancellation property cannot be expected in this case.
In particular, the Q-Hopf algebras Q[x; x�1] and Q[c; s]=(c2+s2�1)

and the R-Hopf algebras R[x; x�1] and R[c; s]=(c2 + s2 � 1) are not
isomorphic, but the C-Hopf algebras C[x; x�1] �= C[c; s]=(c2 + s2 � 1)
are. This is an example for the next de�nition.

De�nition 1.2. Let G and G0 be group valued functors on k-Alg. Let
K be a faithfully at commutative k-algebra. If the restrictions to
K-Alg are isomorphic group valued functors: GjK �= G0jK, then G and
G0 are called K-forms of each other as groups.
Let H and H 0 be Hopf algebras over the commutative ring k. Let

K be a faithfully at commutative k-algebra. If K 
H �= K 
H 0 as
K-Hopf algebras, then H and H 0 are called K-forms of each other as
Hopf algebras
We say that G and G0 resp. H and H 0 are forms of each other if

there exists a faithfully at k-algebra K such that they are K-forms of
each other.

So for G and G0 to be K-forms of each other we need an isomorphism
of set valued functors � : GjK �! G0jK such that

GjK �GjK G0jK �G0jK-�� �

GjK G0jK-�
? ?

commutes.
There may be many di�erent Hopf algebrasH 0 which are forms for H

with respect to some faithfully at extension K. In particular the rich-
ness of Hopf algebras over Q should be higher than over C. Granted
there may be Hopf algebras de�ned over C, which do not come about
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by a base ring extension from Q, but e.g. semisimple cocommutative
Hopf algebras over C are always de�ned over Q. This is a consequence
of a more general structure theorem of Milnor, Moore and Cartier on
cocommutative Hopf algebras over algebraicly closed �elds. Our inter-
ests are in this richness of Hopf algebras over "small" �elds. One can
show for example that over the �eld R of reals the circle functor C is
the only non-trivial form of the units functor U .
There is a description of K-forms for quite general algebraic struc-

tures given by the theory of faithfully at descent. We apply it to the
case of Hopf algebras. Let H be a Hopf algebra over k. The group of
automorphisms of this Hopf algebra will be denoted by k-Hopf-Aut(H).
After a base ring extension by k �! K we get a Hopf algebraK
H over
K with group of automorphisms K-Hopf-Aut(K 
 H). Every change
of the base ring extension, i.e. every homomorphism of commutative k-
algebras K �! L induces a group homomorphismK-Hopf-Aut(K
H)
�! L-Hopf-Aut(L
H). Thus we have a functorAut(H) : k-Alg �! Grp
de�ned by Aut(H)(K) := K-Hopf-Aut(K 
H). Every group valued
functor on the category k-Alg of commutative k-algebras has an asso-
ciated Amitsur cohomology Hn(K=k;Aut(H)). It is not necessary to
know the precise de�nition of these cohomology groups to apply the
following theorem.

Theorem 1.3. Let H be a k-Hopf algebra. Then there is a bijektion
between the set of (isomorphism classes of) K-forms of H and the
Amitsur cohomology group H1(K=k;Aut(H)).

Proofs of this may be found in various forms in [G], [H], or [KO].
Actually this theorem holds in greater generality and the proof is quite
technical and involved.
In view of this theorem the main problem of calculating forms is to

determine the set of Hopf algebra automorphisms of a Hopf algebra.
In fact we do not have to calculate the cohomology group, since by a
twofold application of this theorem { going from certain forms to the
cohomology group and then from the same cohomology group back to
some other forms { we will eliminate the explicit computation of the
cohomology.
In the case of group-rings kG of �nitely generated groups G the

automorphism group k-Hopf-Aut(kG) can be calculated, in particular
for cyclic groups Cn of order n. We assume that the automorphism
group F of G is �nite. Then one can show that k-Hopf-Aut(kG) is
isomorphic to the automorphism group Gal-Aut(EF

k ) of the trivial F -
Galois extension EF

k of k. This Galois extension can be described by
the ring EF

k = (kF )�, the dual space of the group ring kF , on which F
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acts by automorphisms in such a way, that the ring extension (kF )�=k
is an F -Galois extension in the sense of [CHR]. Actually this leads to a
functorial isomorphismAut(kG) �= Gal-Aut(EF ), so that the Amitsur
cohomology groups of these two group functors also coincide.
We formulate one of the most interesting consequences of these con-

siderations.

Theorem 1.4. [HP] Let k be a commutative ring with 2 not a zero
divisor in k and Pic(2)(k) = 0, the two-torsion of the Picard group.
Then

a) the Hopf algebra forms of kZ are

H = k[c; s]=(s2 � asc� bc2 + u);

b) the Hopf algebra forms of kC3 are

H = k[c; s]=(s2 � asc� bc2 + u; (c+ 1)(c� 2); (c+ 1)(s � a));

c) the Hopf algebra forms of kC4 are

H = k[c; s]=(s2 � asc� bc2 + u; c(ac� 2s));

d) the Hopf algebra forms of kC6 are

H = k[c; s]=(s2�asc�bc2+u; (c�2)(c�1)(c+1)(c+2); (c�1)(c+1)(sc�2a)):
In all cases a; b; u 2 k satisfy a2 + 4b = u and u is a unit in k. The

Hopf algebra structure in all cases is de�ned by

�(c) = u�1((a2 + 2b)c
 c� a(c
 s+ s
 c) + 2s 
 s);
�(s) = u�1(�abc
 c+ 2b(c
 s+ s
 c) + as
 s);
�(c) = 2; �(s) = a; �(c) = c; �(s) = ac� s:

We give an indication of the way how this result is obtained. In all
cases of the theorem the group F is the cyclic group with two elements.
The theory of C2-Galois extensions ( = quadratic Galois extensions) is
well known. Actually every quadratic Galois extension of k is a form of
the trivial quadratic Galois extension (kC2)

� �= k�k of k as will be seen
below. Since the automorphism groups Aut(kG) �= Gal-Aut(k � k)
coincide, the �rst Amitsur cohomology groups describing the forms
coincide, too. So there is a bijective correspondence between the forms
of the group-rings in the theorem and the quadratic Galois extensions of
k [see Thm. 4.1]. This correspondence was used to explicitly calculate
the forms given in the theorem.
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2. Hopf Galois extensions

A di�erent class of "forms" is obtained if one considers the following
cancellation problem.

De�nition 2.1. Let G : k-Alg �! Grp be a group valued functor. Then
the multiplication of G on itself G �G �! G makes G a G-set valued
functor. Here we de�ne the functor G�G by (G�G)(K) := G(K)�
G(K), so that the multipication of each group G(K) de�nes a functorial
homomorphism G � G �! G, briey the multiplication on G and the
G-set structure is de�ned "componentwise".
Let X : k-Alg �! Set be another functor which is also a G-set valued

functor by X �G �! X. Let K be a faithfully at commutative ring
extension of k. If the restrictionsGjK and XjK toK-Alg are isomorphic
as GjK-set valued functors, then G and X are called K-forms of each
other as G-set valued functors.

So for G and X to be K-forms of each other we need an isomorphism
of set valued functors � : GjK �! XjK such that

GjK �GjK XjK �GjK-�� 1

GjK XjK-�
? ?

commutes.
A Hopf algebraic description of this is somewhat more complicated.

The notion of a G-set and of forms of a G-set translated to the repre-
senting objects of the representable functors G and X gives the follow-
ing de�nition.

De�nition 2.2. Let H� be a commutative Hopf algebra and A be a
commutative algebra. A is called an H�-comodule algebra if there is an
algebra map � : A �! A
H� such that the diagrams

A A
H�-�

A
H� A
H� 
H�-�
 1?

�

?
1
�

and

A A
H�-�

A A
 k-�?
id

?
1
�

commute.
Let H� be a commutative Hopf algebra and A be a commutative

H�-comodule algebra. Let K be a faithfully at commutative ring
extension of k. If K
H� �= K
A as K
H�-comodule algebras, then
A is called a K-form of H�.
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Closely connected with K-forms of G-set valued functors is the no-
tion of a principal homogeneous space.

De�nition 2.3. If G is a group and X is a set, then a G-set X is
called homogeneous, if for each pair x; y 2 X there exists a g 2 G
such that xg = y. A G-set X is a principal homogeneous G-set if X is
homogeneous and xg = x for any x 2 X implies g = e.

It is easy to verify, that a G-set X is a principal homogeneous space
i� the map ' : X � G 3 (x; g) 7! (x; xg) 2 X �X is bijective. This
holds also in the case X = ;. If X 6= ; then X and G are isomorphic as
G-sets. These statements are easily translated into terms of functors.
The map ' : X �G �! X �X which is de�ned for any G-set valued

functor X induces the algebra homomorphism  : A 
 A 3 s 
 t 7!P
st(A) 
 t(H�) 2 A
H� on the representing objects. ' is an isomor-

phism i�  is.

Proposition 2.4. Let G be a representable group valued functor and X
be a representable G-set valued functor on k-Alg. Let the representing
algebra A of X be faithfully at. Then G and X are K-forms of each
other as G-sets for some faithfully at commutative k-algebra K i� X
is a principal homogeneous space over G.

Proof. We �rst remark the following. Let X and Y be representable
functors, let f : X �! Y be a natural transformation, and K be faith-
fully at. Assume that f jK : XjK �! Y jK is an isomorphism. Then
f is an isomorphism. This is due to the fact that the corresponding
statement holds for the representing algebras.
Now let there be a natural isomorphism of GjK-set valued functors

� : GjK �! XjK . Then since (X � Y )jK = XjK � Y jK the following
diagram commutes

(G�G)jK (G�G)jK-'jK

(X �G)jK (X �X)jK-'jK?
��1

?
���

:

Since GjK is a principal homogeneous space over GjK "componen-
twise", the top morphism is an isomorphism. So are the two vertical
arrows. Thus the bottom arrow is an isomorphism. By the above
argument we get that ' : X �G �! X �X is an isomorphism.
Conversely if ' : X � G �! X � X is an isomorphism, then in par-

ticular the induced k-algebra homomorphism  : A 
 A 3 s 
 t 7!P
st(A) 
 t(H�) 2 A 
 H� of the representing algebras is an isomor-

phism. (Here we use the Sweedler notation in context with a bilinear
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map.) This is even an isomorphism of A-algebras. So we get for any
A-algebra B

GjA(B) �= k-Alg(H�; B) �= A-Alg(A
H�; B)
�= A-Alg(A
A;B) �= k-Alg(A;B) �= XjA(B):

It is now easy to verify that this is an isomorphism of GjA-set valued
functors. �

The translation of the notion of principal homogeneous spaces into
terms of Hopf algebras has a most interesting variation. Let A be
an H�-comodule algebra. Assume now that H� is �nitely generated
and projective as a k-module and that A is faithfully at. The dual
H := Homk(H�; k) is a �nitely generated projective cocommutative
Hopf algebra which acts on A by h � t = P

t(A)h(t(H�)). Then the
following holds:

Theorem and De�nition 2.5. Under the above assumptions the fol-
lowing are equivalent:

a) A is a Hopf Galois extension of k with Hopf algebra H (or
simply H-Galois).

b)  : A
A 3 s
t 7!P
st(A)
t(H�) 2 A
H� is an isomorphism.

c) There is a faithfully at extension K of k with K
A �= K
H�

as K 
H�-comodule algebras.
d) � : H 
 A 3 h 
 s 7! (t 7! P

s(h � t)) 2 Endk(A) is an
isomorphism and A is �nitely generated faithful projective as a
k-module.

e) k is the �xring

AH := fs 2 Aj8h 2 H : h � s = �(h)sg
of A under the action of H and the rings AH and A#H are
Morita equivalent.

Proof. a): A Hopf Galois extension is de�ned to be one of the equivalent
conditions b) - e). b) implies c) with K = A. The equivalence of
b) and c) is the preceding Proposition. The equivalence between b)
and d) is a simple calculation with dual bases for H and H� and use
of faithful atness. e) is essentially a translation of d) into terms of
Morita equivalences. Detailed proofs of this can be found in [P]. �

There are various di�erent generalizations of Galois extensions. Non-
commutative algebras with Hopf algebras acting on them have been
investigated. Commutative algebras with �nite groups acting on them
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have been studied in [CHR]. The de�nition used here has been intro-
duced in [CS] and is also described in [S1]. Special instances of Galois
extensions are encluded in this general concept.
Let k be a �eld and H = kG the group (Hopf) algebra of a �nite

group. Let K be a �eld extension of k which is H-Galois. Then G
acts by automorphisms on K. Furthermore we have k = fs 2 Kj8g 2
G : g(s) = sg = KG. Since [K : k] = jGj we get that K is a "classical"
Galois extension of k with Galois group G. Conversely if K is a "clas-
sical" Galois extension of k with Galois group G then by Dedekind's
lemma and d) of the above Theorem K is Hopf Galois with Hopf alge-
bra H = kG.
Jacobson's extension [J] of Galois theory to purely inseparable �eld

extensions can be incorporated into the general framework of Hopf Ga-
lois theory in the following way. Jacobson uses restricted Lie algebras
acting by derivations on purely inseparable �eld extensions of exponent
one. The restricted universal enveloping algebras of the restricted Lie
algebras are Hopf algebras and the action extends to a Hopf Galois ac-
tion on the same extension. Details and an extension to a larger class
of purely inseparable �eld extensions can be found e.g. in [S2] and [W].
The question arises which parts of the "classical" Galois theory can

be transferred to Hopf Galois theory. The de�nition of a Hopf subalge-
bra H 0 � H causes some problems on the coalgebra side. If we always
assume, however, that H 0 is a direct summand of H as a k-module,
these problems can be resolved. The fundamental theorem of Galois
theory can be extended to

Theorem 2.6. [CS] Let K be Hopf Galois with Hopf algebra H. For
H 0 a Hopf subalgebra of H let

Fix(H 0) := fx 2 Kj8h 2 H 0 : h � x = �(h)xg:

Then

Fix: fH 0 � HjH 0 Hopf subalgebra g �! fLjk � L � K subalgebra g

is injective and inclusion-reversing.

We say, that the fundamental theorem of Galois theory hold in its
strong form, if the map Fix is bijective. This, however, is not the
case in general, as we will see below. There is another deviation from
the "classical" Galois theory. The Hopf algebra acting on a Galois
extension K of k is not uniquely determined. Examples have been
known for inseparable �eld extensions.
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3. Separable Field Extensions

We give an example of a separable �eld extension which is not Galois
in the classical sense, but which is Hopf Galois with two di�erent Hopf
algebras. Let K = Q( 4

p
2) and k = Q. It is well known that this is not

a "classical" Galois extension. Let

H = Q[c; s]=(c2 + s2 � 1; cs)

with the coalgebra structure as given in part I. Abbreviate ! := 4
p
2.

Then the operation of H on K is given by
1 ! !2 !3

c 1 0 �!2 0
s 0 �! 0 !3:

If K = k( 4
p
2) were a classical Galois extension for example over the

base �eld Q(i) then the Galois group is cyclic with generator e. Here
the generator e has been replaced by the two operators c and s which
operate k-linearly and according to the rules

c(xy) = c(x)c(y)� s(x)s(y) and s(xy) = s(x)c(y) + c(x)s(y):

Similarities with the trigonometric equalities are intended. If one ex-
tends the base �eld fromQ toQ(i) then (Q(i)
Q( 4

p
2)) : Q(i) becomes

a classical Galois extension and the Hopf algebra H is extended to the
group ring QC4. By further extending the base �eld to Q(i; 4

p
2) the

ring extensionQ(i; 4
p
2)
Q( 4

p
2) becomes isomorphic to the dual of the

extended group algebra (Q(i; 4
p
2)C4)�. This isomorphism is compati-

ble with the comodule algebra structure. So we see that the original
H�-comodule algebra K is a form of the trivial H�-comodule algebra
H�.
One can show that there is a second Hopf algebra over Q and action

on K = Q( 4
p
2) such that the setup is a Hopf Galois extension. The

Hopf algebra is

H = Q[c; s]=(s2 � 2c2 + 2; cs)

with the action
1 ! !2 !3

c 1 0 �!2 0
s 0 !3 0 �2!:

The maps c and s are k-linear and satisfy the multiplicative relations

c(xy) = c(x)c(y)� 1

2
s(x)s(y) and s(xy) = c(x)s(y) + s(x)c(y):

To see that this gives a Hopf Galois extension one has to extend the
base �eld to Q(

p�2) and then procede as above.
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This is an example of a k-algebra which is a Hopf Galois extension
with two di�erent Hopf algebras. We will see further down that this
will happen very often. Even the "classical" Galois extensions often
have more than one Hopf algebra for which they are Hopf Galois. On
the other hand there are separable �eld extensions which are not Hopf
Galois at all. The separable �eld extensions which are Hopf Galois can
be classi�ed by the following theorem.
To formulate the theorem we �x the following notation. Let K be a

�nite separable �eld extension of k. Assume

~K = normal closure of K over k;

G = Aut( ~K=k);

G0 = Aut( ~K=K);
S = G=G0 (left cosets),
B = Perm(S) (group of permutations of S):

Theorem 3.1. [GP] Under the assumptions made above the following
are equivalent

a) There is a Hopf k-algebra H such that K=k is H-Galois.
b) There is a regular subgroup N � B such that the subgroup G �

B normalizes N .

The examples given above are of a rather special type which we call
"almost classical" Hopf Galois extensions. They are characterized by
the following

Theorem 3.2. [GP] The following conditions are equivalent:

a) There exists a Galois extension E=k such that E 
K is a �eld
containing ~K.

b) There exists a Galois extension E=k such that E 
K = ~K .
c) G0 has a normal complement N in G.
d) There exists a regular subgroup N � B normalized by G and

contained in G.

The last condition of this theorem shows that we are indeed talking
about Hopf Galois extensions. These extensions are particularly well
behaved because they satisfy the fundamental theorem of Galois theory
in its strong form.

Theorem 3.3. [GP] If K=k is almost classically Galois, then there
is a Hopf algebra H such that K=k is H-Galois and the map Fix is
bijective.

The ambiguity of the Hopf algebra acting on a Hopf Galois extension
is exposed in the following
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Theorem 3.4. [GP] Any classical Galois extension K=k can be en-
dowed with an H-Galois structure such that the following variant of
the fundamental theorem holds: There is a canonical bijection between
Hopf subalgebras of H and normal intermediate �elds k � E � K.

One of the simplest examples of a classical Galois extension with

this new H-Galois structure is the following. Let � be a 3rd primitive
root of unity and let ! := 3

p
2. Then K = Q(!; �) is a classical Galois

extension of Q with Galois group S3. It is also Hopf Galois with Hopf
algebra

H = Q[c; s; t]=(c(c� 1)(c + 1); 2c2 + st+ ts� 2; cs; sc; ct; tc; s2; t2):

The action of H on K is described by the table
1 ! �

c 1 0 �2

s 0 !2 0
t 0 0 0.

The action of the three generating elements c; s; t on K sati�es

c(xy) = c(x)c(y) + 1
2s(x)t(y) +

1
2t(x)s(y);

s(xy) = c(x)s(y) + s(x)c(y) + 1
2
t(x)t(y);

t(xy) = c(x)t(y) + t(x)c(y) + s(x)s(y):

We �nish this paragraph on separable �eld extensions which are Hopf
Galois by giving a family of examples of separable �eld extensions which
are not Hopf Galois: no �eld extension K over Q of degree 5 with
automorphism group S5 of ~K=k can be Hopf Galois [GP].

4. Hopf Algebra Forms revisited

Many of the following results have been obtained in cooperation and
discussions with students and collegues of mine. In particular I grate-
fully acknowledge the cooperation of C. Greither, R. Haggenm�uller,
and C. Wenninger.
The techniques to prove Theorem 1.2 can be used to calculate more

forms of group rings. The advantage in the proof of Theorem 1.2 was
that all quadratic extensions of a commutative ring can be explicitly
described if the ring satis�es only minor conditions [Sm]. If 2 is not
a zero divisor in k and if Pic(2)(k) = 0 then all quadratic extensions
of k are free and can be described as K = k[x]=(x2 � ax � b) where
a2+4b = u is a unit in k. The non-trivial automorphism is f(x) = a�x.
This information was translated into terms of Hopf algebra forms using
the following
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Theorem 4.1. [HP] Let G be a �nitely generated group with �nite
automorphism group F = Grp-Aut(G) Then there is a bijection between
Gal(k; F ), the set of ismorphism classes of F -Galois extensions of k,
and Hopf(kG), the set of Hopf algebra forms of kG. This bijection
associates with each F -Galois extension K of k the Hopf algebra

H =
nX

cgg 2 KG 8f 2 F :
X

f(cg)f(g) =
X

cgg
o
:

Furthermore H is a K-form of kG by the isomorphism

! : H 
K �= KG; !(h
 a) = ah:

On the other hand it is not trivial to describe F -Galois extensions of a
�eld k. They are not just the classical Galois �eld extensions of k. The
simple example of the trivial F -Galois extension kF �= k� : : :�k is not
a �eld. Actually F -Galois extensions are just Hopf Galois extensions
with Hopf algebra kF [CHR, Thm 1.3]. Arbitrary commutative rings
K are admitted as Galois extensions. The action of the group F on the
extension K by di�erent elements f; f 0 has to be "strongly distict", i.e.
for every idempotent e 2 K there is an x 2 K such that f(x)e 6= f 0(x)e.
This is the key to the following

Theorem 4.2. Let F be a �nite group and k a �eld. K=k is an F -
Galois extension if and only if

K �=
n timesz }| {

L� : : :� L

where L=k is a U-Galois �eld extension with U � F a subgroup of
index n.

Proof. Let K=k be an F -Galois extension. K is a commutative separa-
ble k-algebra by [CHR Thm 1.3] hence is a product K �= L1� : : :�Ln
of separable �eld extensions Li=k. The automorphisms in F map the
primitive idempotents to primitive idempotents and F operates transi-
tively on the set primitive idempotents, since the sum of idempotents
in an orbit is in the �xed �eld. For any two idempotents ei and ej the
automorphism f of F mapping ei to ej also maps Li to Lj. Hence Li
is isomorphic to a sub�eld of Lj. By symmetry all the �elds Li are
mutually isomorphic. The stabilizer U � F of e1 acts as Galois group
on L1=k since it acts strongly distinctly and jU j = [L : k].
Conversely let U � G be a subgroup and L : k be U -Galois. Let

g1; : : : ; gn be a set of representatives for G=U = fg1U; : : : ; gnUg. Let
K = L � : : : � L with idempotens e1; : : : ; en. De�ne the action � : G
�! Sn by �(g)(i) = j if ggiU = gjU the regular representation of G
on G=U . We de�ne g(lei) := g�1

�(g)(i)ggi(l)e�(g)(i). Observe that ggiU =
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g�(g)(i)U implies ug;i := g�1
�(g)(i)ggi 2 U . Then the �xring of K under

the action of G is k, for let
P
liei 2 KG. Then for all g 2 G we haveP

ug;i(li)e�(g)(i) =
P
liei. For g := giug

�1
i we get ggiU = giU , hence

�(g)(i) = i and ug;i = g�1i giug
�1
i gi = u, so that u(li) = li for all u 2 U ,

hence li 2 k. For g := gjg
�1
i we get ggiU = gjU hence �(g)(i) = j

and ug;i = g�1j gjg
�1
i gi = id, so that liej = ljej, hence li = lj for all

i; j. This shows
P
liei = �

P
ei = � 2 k. Obviously all elements of k

remain �xed under the action of G so that k = KG. Furthermore K
is separable by de�nition. To show that G operates strongly distictly
it su�ces to �nd for every g 2 G; g 6= id and ei 2 K and x 2 K such
that g(x)ei 6= xei. Assume �rst that �(g)(i) 6= i. Choose x = ei. Then
g(ei)ei = e�(g)(i)ei = 0 6= ei = eiei. If �(g)(i) = i then g�1i ggi 2 U and
u 6= id since gnot = id. Choose an l 2 L with u(l) 6= l and x = lei.
Then g(x)ei = g(lei)ei = g�1i ggi(l)eiu(l)ei 6= lei = leiei = xei. This
concludes the proof. �

Observe by the way that kC2 has no non-trivial forms, since C2 has
trivial automorphism group, so the corresponding Galois extension of
a form must be k itself. Already the next simplest cases after studying
the forms of kZ, kC3, kC4, and kC6 cause unsatisfactory calculations.
We discuss the case of QC5.
The automorphism group of C5 is C4 which has exactly one non-

trivial subgroup C2. The C4-Galois extensions K of Q can be of the
following forms

1) K is a C4-Galois �eld extension of Q,
2) K �= L� L where L is a quadratic �eld extension of Q,
3) K �= Q�Q�Q�Q.

The problem is now to describe as explicitly as possible all C2- resp.
C4-Galois �eld extensions K of Q, to describe the action of C4 on K
and then calculate the forms according to Theorem 4.1. Associated
with a C4-Galois �eld extension K is the following form of QC5:

H �= Q[a]=(a5 � 5pa3 + (5(p2 � 3q)� 10
p
q(p2 � 4q))a)

Here K is the splitting �eld of x4 + px2 + q and
p
q(p2 � 4q) 2 k

necessarily holds if K is a C4-Galois �eld extension. The diagonal
maps can be described by

�(a) =
1

uv(u2� v2)2
((u5+v5)(a
a)�(u3+v3)(a
b+b
a)+(u+v)(b
b));
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where

u =

s
�p+

p
p2 � 4q

2
and v =

s
�p�

p
p2 � 4q

2
:

The case of K �= L � L with quadratic extension L=Q is somewhat
easier. We get

H �= Q[a]=(a5+ 5p(a3 + pa)) with �(a) = u�1(1;�1)(a
 a):

where L = Q(u) is the splitting �eld of x2 � p.
Finally the case of K �= Q � Q � Q � Q leads to the trivial form

QC5.
The other simple example is that of forms of QC2 � C2. The auto-

morphism group of C2 � C2 is the symmetric group S3. Now we have
to study the di�erent cases of S3-Galois extensions

1) K is an S3-Galois �eld extension of Q,
2) K �= L� L where L is a C3-Galois �eld extension of Q,
3) K �= L� L� L where L is a quadratic �eld extension of Q,
4) K �= Q�Q�Q�Q �Q �Q.

In the �rst and second case we get

H = Q[a]=(a(a3+ ua+ v))

where K is the splitting �eld of x3+ux+v irreducible. If D = �4u3�
27v2 is the discriminant then

�(a) = 1
D
[ �2u(3va
 a� u(a
 c+ c
 a))

+v

2
(4u2b
 b+ 9c
 c+ 6u(b
 c+ c
 b))� 9v2(a
 b+ b
 a)]

where

b =
4

v
a3 +

4u

v
a+ 3

and

c = �4u

v
a3 + 2a2 � 4u2

v
a� 4u:

In the third case of K �= L� L� L we get

H = Q[a]=((a2 � 1)(a2 � u))

where L is the splitting �eld of x2 � u and the diagonal is

�(a) =
1

u2 � u

�
(u2 � u� 1)a
 a� a3 
 a3 + a3 
 a+ a
 a3

�
:

The case of K �= Q�Q�Q�Q�Q�Q leads to the trivial form
Q(C2 �C2).
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Problems 4.3. The generators of Hopf algebra forms and their diag-
onals are rather arbitrary. It often turns out that either the diagonal
or the ideal to be factored out can be chosen to be relatively simple,
but not both. Is there a canonical choice of the generators of a Hopf
algebra form? 1 Is there a way to determine the minimal number of
generators? Can one describe the "cyclic" Hopf algebra forms? This
seems to be of interest for the representation theory of Hopf algebras,
like cyclic groups are for the representation theory of groups.

Another problem area arises from the following considerations. Let
kCn be the group algebra of a �nite cyclic group and let k be a �eld
with char(k) =� n. Then the group algebra is semisimple by Maschke's
theorem. Let K be a �eld extension of k or a commutative separable
algebra. Then every K-form H of kCn is again semisimple, since a
nilpotent ideal of H would remain nilpotent in K 
H �= KCn in both
cases, but KCn is still semisimple. There may be forms which are
even better in their representation properties as the example of part I.
shows.
The Hopf algebra H = R[c; s]=(c2 + s2 � 1; cs) is a C-form of RC4.

It is easy to see that H �= R �R �R �R as R-algebras. Thus H is
absolutely semisimple, i.e. all its simple modules are one-dimensional
over the base �eld. RC4, however, is not absolutely semisimple. It
decomposes as RC4

�= R � R � C as an algebra, so it has a two-
dimensional simple module.
So there is the problem of determining which group algebras have

absolutly semisimple forms and to describe all those forms. If every
semisimple group algebra had an absolutely semisimple form this would
mean, that one does not need to extend the base �eld of a group alge-
bra kG to obtain total splitting, but that the splitting can already be
obtained over the base ring for a suitable formH. Since we are not talk-
ing about algebra forms but about Hopf algebra forms the possibility
of tensoring H-modules over the base �eld | an important technique
for representation theory | is preserved.

Theorem 4.4. If k is a �eld of characteristic not dividing n, then
the Hopf algebra kCn has a uniquely determined absolutely semisimple
Hopf algebra form kCn = (kCn)

�.

Proof. Any absolutely semisimple form of kCn has underlying algebra
kI . But kI is a Hopf algebra i� I is a �nite group. After base �eld
extension the group structure of I remains unchanged, so there can be

1Added in proof: A complete answer to this question for the case of group rings
has been given recently by the author in Twisted group rings submitted to Comm.
Alg.
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at most one group structure on I and at most one Hopf algebra struc-
ture on kI so that kI is a form of kCn. So an absolutely semisimple
form of kCn is a Hopf algebra kG with a uniquely determined com-
mutative group G of order n. We show G �= Cn so that kCn becomes
the absolutely semisimple form of kCn. It su�ces to show this over a
�eld k containing an n-th primitive root of unity. But then kCn splits
completely and the statement is well known. �

This unique absolutely semisimple form of kCn is associated with
an F -Galois extension K of k with F �= Aut(Cn). It turns out that
k[x]=('n(x)) is an F -Galois extension and associated to kCn. 'n(x)
is the n-th cyclotomic polynomial. In general k[x]=('n(x)) will not
be a �eld extension of k. According to Theorem 4.2 and with some
additional calculations one can see that k[x]=('n(x)) �= k(�n) � : : :�
k(�n).

Problems 4.5. It would be interesting to know which group algebras
over Q have absolutely semisimple forms. The Hopf algebra QSn is
itself absolutely semisimple. There are also examples of groups G whose
group algebras have no absolutely semisimple forms.

5. Separable Hopf Galois Extensions

Problems 5.1. In part III we have seen examples of separable �eld
extensions K=k which are Hopf Galois. All the examples were in fact
"almost classically" Galois. A 16-dimensional example of a Hopf Galois
extension which is not "almost classically" Galois is given in [GP]. M.
Takeuchi has checked that all that all Hopf Galois extensions of dimen-
sion less than 8 are "almost classically" Galois. The obvious question
is, are there proper Hopf Galois extensions of dimension less than 16?
Questions about the correspondence between "normal" Hopf subalge-
bras and Hopf Galois sub�elds have been addresses in [C2]. Many of
those questions are still open. Childs also addresses the question of
the uniqueness of the Hopf algebra H w.r.t. which a separable �eld
extension is Hopf Galois. He obtains results for "classical" Galois �eld
extensions. He shows that the Hopf algebra H is never unique if G is
cyclic of odd prime power order. H is never unique for non-abelian G.
This needs a di�erent proof, however, than given in [C2]. Childs also
shows that H is unique if G is cyclic of prime order, a result which we
will extend below.

Assume that we have the same setup K=k; ~K=k;G;G0; S;B as in III.
In [C2] the following result is shown.
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Proposition 5.2. G normalizes the regular subgroup N of B i� G is
a subgroup of the holomorph Hol(N) = N �Aut(N).

We extend Theorem 2 of [C2] as follows:

Theorem 5.3. Let K=k be a separable �eld extension of degree [K :
k] = p a prime. The following are equivalent:

1) K=k is Hopf Galois.
2) K=k is almost classically Galois.
3) G is solvable.

If any (and all) of these conditions hold then the Hopf algebra H is
unique for K=k H-Galois.

Proof. If K=k is H-Galois then there is a regular subgroup N of Sp
such that G � Hol(N) = N � Aut(N), the holomorph of N . Since
N �= Cp the holomorph Hol(N) �= Cp � Cp�1, hence G is solvable.
Let G be solvable. Since K = k(a) with a a zero of an irreducible

polynomial f of degree p, G is a subgroup of Sp, hence p=jGj and
p2 =� jGj. Below we show that for a solvable group G there is a chain
of normal subgroups of G (!)

e / : : : / G2 / G1 / G0 = G

with Gi=Gi+1
�= (Z=piZ)ei . Consider the sequence of sub�elds

k = k0 � k1 � : : : � km�1 � km = ~K;

with ki+1=ki Galois with Galois group (Z=piZ)ei and ki+1=k normal.
We get a 2 km and a =2 km�1, otherwise ~K � km�1 since km�1=k
normal. Then the minimal polynomial f of a is irreducible over km�1
by the last lemma. So all the k-generating elements 1; a; : : : ; ap�1 of
K are linearly independent over km�1. Thus K and km�1 are linearly
disjoint and pm = p. Since p2 =� [ ~K : k] and p = pm = [km : km�1] we
get km�1 
 K �= km�1 � K = km = ~K. So by Theorem 3.2 the �eld
extension K=k is almost classically Galois.
To see that the Hopf algebra H together with the Galois operation is

uniquely determined, observe that p=jGj and G � N �Aut(N) and N
the only Sylow p-subgroup of Hol(N) imply that the Sylow p-subgroup
of G is N , which is unique. Thus G = N � A with a subgroup A �
Aut(N). Consequently N = Gp � B is uniquely determined and so is
H by Theorem 3.1. �

To �nish the proof of the theorem we prove the following lemmas.

Lemma 5.4. Let G be a �nite solvable group. Then there is a sequence

e / : : : / G2 / G1 / G0 = G
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with Gi=Gi+1
�= (Z=piZ)ei , pi prime and Gi / G normal subgroups.

Proof. by induction. We only indicate how to construct Gi+1 from Gi.
Let M / Gi be a normal subgroup of prime index pi. De�ne Gi+1 :=T
g2G

gMg�1. It has all the required properties. �

Lemma 5.5. Let K=k be a normal separable �nite �eld extension. Let
f 2 k[x] be separable and irreducible of degree p a prime. Then either
f is irreducible over K or f completely splits into linear factors.

Proof. Let a1; : : : ; ap be the zeros of f in the algebraic closure and let G
be the automorphism group of K(a1; : : : ; ap)=k. G operates transitively
on the zeros, since f is irreducible. Let N be the �xgroup of K. Since
K=k is normal, we get that N /G is a normal subgroup. N decomposes
fa1; : : : ; apg into orbits of equal cardinality sinceG operates transitively
and N is normal. So either N operates transitively or trivially. Hence
f is irreducible or splits completely. �
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