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Let k be a commutative ring. If B 1is a k-bialge-
bra then the category B-Mod of left B-modules is a
monoidal category with the tensor-product M o N of
two B-modules made again into a B-module by b(m ® n) =
®Db

Zib(1)m ® b(z)n , where b (2) = A(b) and A

(1)
the diagonal of B . The neutral object of this monoidal
structure is k with the trivial action e€: B — k .

Given two k-bialgebras B and B' we want to in-
vestigate those equivalences B-Mod & Bf-Mod which
preserve the tensor products in both categories or more
precisely those equivalences which are (C-)monoidal
functors. B

A more general situation would be to study equiva-
lences of module categories A-Mod £ A'-Mod which pre-
serve arbitrarily given monoidal structures on A-Mod

resp. A'-Mod , where A and A' are k-algebras. If

A and A' are commutative then one could consider for
1455
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example the monoidal structures given by the tensor
products over A resp. A' . But in this case any
equivalence A-Mod £ A'-Mod would already imply A £ A' ,
since A and A' were assumed to be commutative.

In [4] we showed that a monoidal structure on A-Mod
which is preserved by the underlying functor
U: A-Mod —> k-Mod comes already from a bialgebra
structure on A and is essentially the monoidal struc-
ture described above for B-Mod.

Thus we shall restrict our attention to (C-)monoidal
equivalences B-Mod ¥ B'-Mod where B and B' are
k-bialgebras. Since the same problem may be posed for
the categories of comodules B-Comod ¥ B'-Comod (the
bialgebra structure of B induces also here a C-monoidal
structure) we shall phrase all statements and proofs in
the language of monoidal categories as developed e.g. in
[2, 3, 5].

The advantage of this procedure lies primarily in the
fact that many statements can be more easily proved in
the general categorical form than in the concrete exam-
ple of comodules over coalgebras. This can be seen in
the fact that there is no direct proof for the state-
ment that a C-monoidal underlying functor
U: B-Comod —> k-Mod determines the bialgebra struc-
ture of B uniquely up to isomorphisms [4]. Similarly

we do not have direct proofs for most of the results of
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this paper in the special case of comodules and coalgebras.
Let (C be a symmetric monoidal category aﬁd let
B resp. B' be bimonoids in (C . Then BC is a
C-monoidal category and U: BC ——> C 1is a C-monoidal
functor [4] .
A functor F: D —> E between two C-monoidal cate-

gories 0§ and E (with tensor products & for 0

and & for E) is called a weakly C-monoidal functor if

1) F is a C-functor with natural isomorphism

g: FIM o X) £ F(M) e X, MeD , X eC

2) F is a weakly monoidal functor with natural trans-
formations
§: F(M 8 N) —> F(M) & F(N) , M,N « D

z: F(3) — T

3) the given data are coherent in the sense of

(1, 2, 5].

PROPOSITION 1. Let B , B' be bimonoids in ¢C

and let F: BC — B,C be a covariant functor. Equiva-

lent are

a) F is a weakly C-monoidal functor which preserves

difference cokernels of l-contractible pairs.

b) There is a B'-B-biobject P which is B-coflat and a

B'-B-comonoid such that F & p eg is a natural iso-

morphism.
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Before we prove this proposition we have to define a
B'-B-comonoid. A comonoid P in C with A: P — P ® P
and e€: P —» I 1is called a B'-B-comonoid if P is in
B'CB and so are the structure morphisms A and ¢ .

Here we use the C-monoidal structures on C resp. C

B' B

(and hence on B'CB) as defined above.

Proof of Proposition 1: Applying Theorem 4.2 of [2]

we only have to compare the comonoid structure of P
and the weakly monoidal structure of F . Assume first
that F satisfies a) and P is given with F ¥ p o5 -
Actually P = F(B) as a left B'-object and since F

is a C-functor we get a right B-structure on P compat-
ible with B'-multiplication by
F(B)eBgF(BeB)F—‘—‘”,F(B) hence P @ B —» P
which makes P a B'-B-biobject. Observe that B & B

is in BC (this object should be distinguished from

B e B in BC where b-(b' ® b") = bb' © b") and that
0: B—> B &B as well as e: B —> I are morphisms

in BCB . Hence F(A) and F(e) are in B,C and

induce by the weakly monoidal structure of F morphisms

~

F(BY — F(B®B) —> F(B)  F(B) =P & P

>4
]
1]

F(B) — F(T) — T .

™
Lav]
1]

in B,C. It is easy to see from the coherence conditions
of weakly C-monoidal functors that (P,A,e) is a
comonoid. Since B & B is also in CB we get a commu-

tative diagram
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iR

F(B) B F(B ® B ———> F(B)

| |

F(B & B) ® B ” F((B&B) & B)

A

F((B®B) ® (BeB)) —> F(B & B)
F(BeB) & F(B &B)
7
(F(B) 8 F(B)) e B —> (F(B) ®B) & (F(B) @ B) —> F(B) & F(B)

in B'C hence A: P — P & P is also in CB . The
diagram
F(B) ® B —» F(I) & B fesB
i 2
F(B @ B) —> F(T & B)
F(B) Fle1) 2F(1)e1 —>T1e1I
12 u2 (VR

S I = F(T) ——— 1

commutes hence e: P — I is in C_ . Thus P is a

B

B'-B-comonoid.

Assume now that P satisfies condition b). Again by
Theorem 4.2 of [2] we know that F is a C-functor which
preserves difference cokernels of lU-contractible pairs.
In order to prove that F is weakly monoidal we first

prove

LEMMA 2. Let B and B' be bimonoids in C and

Pe pCy . Then ,C(P ey I,I) & 5 Cg(P,T)
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Proof: Consider the commutative difference

cokernel diagram in C

Bl

PeBeI—3Pel —Pe,l
1 I
iz mult ¢
P eB —1——’,PL>P3BI
® €

Given VY e B,C(P ®, I) we get a diagram

B

P@B::;P—%PeBI

¥\ /\v &)
I

and VY (pb) = Yuw(pb) Yu(pe(b)) = ¥(pe(b)) = ¥(p)e(b) =

= ¥(p)b , furthermore V¥ e B'C since w and V¥ are.
so ¥ e, Cg(P,I) .

Conversely given ¥ e B'CB(P’I) , we get ¥ (pb) =
¥(p)b = ¥(p)e(b) = ¥(pe(b)) hence a unique factori-
zation through w in BC in the diagram (X).

Now we return to the proof of Proposition 1. The

counit e€: P — I in C induces e: P e, I — I

B'"B B
by Lemma 2 and thus
g F(’I‘)-—’YPeBi—e-yf.
Furthermore the diagonal 4A: P —» P & P in 5'Cp
induces
FMENM £Peo, MEN) —> (P EP) oy (M&N) >
(P op M) & (P oy N) £ F(M) & F(N) .

The morphism T e C 1is defined by

B'
T((p &p') ® mé&n)) = (peym & (p' og n) .
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n

Observe that T((p @ p')b ® (m @ n)) =

T((pb(1) ® p'b(z)) ® (men)) =

(pb 1) ®p M) & (p'b 5y 5 1)

(p e b(1)m) & (p' e b(z)n) =

n~

T((p & p') ® (b(1)m 8 b(z)n)) =

®

T((p € p') @ b(m & n)) hence T is defined on
(P & P) ep (M & N) . Obviously T is a natural trans-
formation in M,N € BC , thus
§: F(M @ N) —> F(M) & F(N) is a natural transforma-
tion. Using the definition of T it is straightforward
to see that the coherence diagrams for a weakly
C-monoidal functor (as given in [4] for a C-monoidal
functor) commute.

Before we show that the two constructions for going

from a) to b) resp. from b) to a) are inverse to each

other, we need another Lemma.

LEMMA 3. Let F be as in Proposition 1 repre-

sented by P e, . Then the diagram

P—“’>PeBI

F(B) —> F(I)

commutes.
Proof: Since B e Be I —3 Bel 5—9—; I is a

difference cokernel of a U-contractible pair, it is

preserved by F , hence we have a commutative diagram 4
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with difference cokernels as rows

PeB —3P @ Pe, I
If Il
F(B) ® B —3 F(B)

12 l }2
F(B @ B) =3 F(B) !
" n Fled
F(BeB e I) — F(Be I) —> F(I) .

F(e © 1)
Completion of the proof of Proposition 1: First we
consider the correspondence between e¢: P — I and

T: F(f) — f . The construction ¢ —» ¢ > €' gives

e'=(P=F(B)-—>F(I)"=’P®BI-eﬁI)=
P pPoe, I -51I)=c¢

B
where we used Lemma 3 and the correspondence between

e and e following Lemma 2. The construction

t —> € —> ' gives

e= (P =F(B) — F(I) 2> 1) =

(P—‘*’>peBI§F(I)—C—>I)

by Lemma 3 and hence

c'=(F(I)“=’PeBI§F(I)—5>I)=r,.

Now we consider AP —_— § — Aé and get

A{D=(P=F(B)-———>F(B6B)é’

P o, @ a8 221 (p&op oy (B & B)

T ~ w ~

— (P ®p B) ® (P LN B) = P ® P)
=(®P2Pey;B— (P8P o (B & B) —ZL»
(P ®p B) © (P ey B) =P e P) = AP

by elementwise computation. To see that also
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| *91d
(Nen Joaq) 9og«— (NewW ©4d) Toae= ((NeW ege a ea
(NO@ W T d @ed«— ((N®W) ©d @dr— ((N®W) @ged ®4d

n

o q) ® g ® d «— ((N

RECERT

% @ o w @y — n%

!

N% w% (@18 (@) « n%
ﬂm (A1)
(New 8 ((a)18 (8)4) «— (N

l 1

® W) ® d) © g d—

(N4 @ (W) 4 . (N @ W4
u (IA) %
@19 W agce (N%a e mbay
(A) 1
W @emyn — % wh (gea)))s 7

d

((N® W) o g® d) @ g@4d

sT (II1) AmI\ﬁ (1)
e %o (e @i —> ((NewW % (aea)d
| (I1) 1
(New % (a4 - S (new % gy

v
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§ —> AP —> &' gives the identity we must show that

the diagram given in FIG. 1 commutes.

If this diagram commutes we get

§' = (FM@N) £Pe; (M8N) = F(B) o (M & N) —

F(B & B) L (M & N) — (F(B) & F(B)) LN (M & N) =
n A T Py ~

(P & P) &g (M ® N) — (P ®n M) ® (P ®g N) =

F(M) & F(N))

(which is going around the diagram along the upperside)
= (FMeN - F & F(v)) = 5 .

The commutativity of the diagram (FIG. 1) will be shown

in several steps as marked in the diagram. First we

investigate the properties of the morphism S . It is

given by S(g ® (m e n)) = (q ®p m) e N for

geQ e B'CB ® B because S(gb © (m ® n)) =

(gb ep m) ey n = (q(b(1) ® b(2)) ep m) ep n =

(@ eg b(q)m e byn = S(@e (byyme byn)) =

S(g  b(m ® n)) . Obviously S is functorial in Q ,

M , and N and its composition with the morphism

((F(B) & F(B)) oy M) ey N —> (F(B) ey M) & (F(B) ey N)

gives T as defined earlier. The last morphism is

defined by

((P & P) eBM)eN—+((PeBM)8P)sN¥

(P oy M) & (P e N) — (P op M) & (P oy N) .

(I) The following diagram commutes as can be verified

by elementwise computation:
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B ey (M8 N Lol (588 oy (M &N
l s
¢ ((B&B) oy M) &N
M &N 2 (BeBM)é(BsBN).

Applying F gives (I).

(IT) The horizontal morphisms are defined on differ-
ence cokernels hence they are functorial in the
first component.

A

(III) commutes by using that F(B & B) ©, (M & N) is

B
a difference cokernel, F is a C-functor and the
definition of S , which is essentially a coher-
ence morphism.

(IV) commutes since S 1is functorial in the first
variable.

(V) commutes by coherence before taking cokernels

over B so (V) commutes itself.

(VI) commutes since & 1is a natural transformation.

PROPOSITION 4. Given bimonoids B and B' in

the symmetric moncidal category C . Assume that there

are weakly C-monoidal inverse equivalences

F: BC — _,C and G: B,C —> _C . Then F and G

Bl

are C-monoidal functors.

B

Proof: By definition F and G are weakly
C-monoidal equivalences if there are C-monoidal iso-

morphisms ¥: GF £ Id and ¢: FG £ Id . Thus the
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diagram

Fem 8 N S8 Fean 8 6n)) —S» FG(M) & FG(N)

o 7o e o
M&N id M 38N

commutes, i.e. there is a right inverse 1 for the s
in the diagram with ¢t = id . Furthermore F(3) is a
monomorphism for all M,N e g'C - Similarly G(s) is
a monomorphism and G(6§)G(tr) = id so that
G(7)G(s) = id . Now G is full hence 1§ = id and
thus

§: F(G(M) & G(N)) —> FG(M) & FG(N)
is an isomorphism. Thus in the above diagram F(§) is
an isomorphism. Since f reflects isomorphisms we get
5: G(M & N) — G(M) & G(N) an isomorphism. By
symmetry also § is an isomorphism in general.

For the morphism ¢: F(I) — f and
T: G(f) — 1 we get a commutative diagram

rot) L&) p(d) &, 8

g I

¥ ! > T

hence ¢ 1is a retraction and F(Z) is a monomorphism.
Thus G(g) is a retraction and a monomorphism, i.e.

an isomorphism. So ¢ 1is an isomorphism.

COROLLARY 5. Let ,C and ,,C be C-monoidally

equivalent induced by the B'-B-progenerator and

B'-B-coalgebra P . Then
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i) there is an isomorphism P e I £1I in CB such

that the diagram

€
p P .1
(1) 12 nz
P ® ¢

P @B B—S P GB I commutes

ii) there is an isomorphism P e, (B €B) 2PeP in

CB ® B such that the diagram
A
P ——~———li——~> P eP
(2) A 1z
P ® A A
P ®g B~——P ey (B ® B) commutes.

Proof: The morphism P ep I £ I is just ¢ for
the C-monoidal functor P ey . The morphism

Pe, (Be®B) P eP is the isomorphism P e, (B & B) &

B B
(P B) & (P oy B) £ P & P and the diagram commutes

by the definition of AP .

In order to show that the conditions in Corollary 5

are also sufficient that BC and B,C are C-monoidally

equivalent let us assume that B is a bimonoid and A

is a monoid in the symmetric monoidal category C .

Assume further that a C—eQuivalence between BC and

AC is given by F: BC — AC , G: AC — BC and

o: FG £ 14 , ¥: GF £ 14 .

LEMMA 6. Let C be a monoid in € . Then the

C-equivalence F: BC —> AC induces a C-equivalence

FC: BCC — ACC .
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-
Proof: By Lemma 4.1 of [2] the functors F and

G induce functors FC: BCC — ACC and

GC: ACC — BCC By the symmetry of C and the
coherence the functors clearly are C-functors. The

morphism ¢: FG £ Id induces a C-isomorphism

0c: FoBq ¥ Id, since the diagram
FG(M) ® C £ FG(M @ C) —> FG(M)
ne(M & C 12 (M ® C) H2 ¢
Mo C = Me C — M

in AC commutes. By a symmetric argument we get that

FC is a C-equivalence.

LEMMA 7. Let F: D — D' be a C-functor between

C-categories which preserxves difference cokernels. Let

C be a monoid in C . Then there is a natural iso-

morphism of functors in D'

F(M o N) £ F(M) e N

where M e DC and N e CC .

Proof: By definition

M@ Ce® N—3MeN—M e N is a difference

cokernel in 0 . Hence the following commutative
diagram of difference cokernels

F(Me C® N) —2 F(M ® N) ——>F(M®CN)
we iz n

F(IM) ® C @ N —3 F(M e N —> F(M) L N

where the last isomorphism clearly is functorial in M

and N .



MODULE CATEGORIES 1469

COROLLARY 8. If P e ACB , M e BCC , N e CCD and

if P ®p: BCD — ACD perserves difference cokernels

and if P is B-coflat then

P ®g (M e N) = (P ®p M) ®c N in ACD .

Proof: This is essentially Lemma 7, except that
the diagram in the proof of Lemma 7 is a diagram in

ACD )

LEMMA 9. Let P ¢ ACB be B-coflat. Let M e BCC'

Then P o, M defined in AC has a natural C-right

structure and

PeBeM_—2Pe@M—P LN M

is a difference cokernel in ,C. .

Proof: By the fact that P 1is B-coflat we have

a natural isomorphism (P e; M) e C €p o, (M e C)

From Lemma 4.1 of [2] , we know that P ey M e AC has

a right C-structure. Now the diagram

PeBoeMeC —2PeMeC —P @ M e C

l A

PeBeM_ _—=2PeM —>P @ M

VS

commutes in AC since P eg M ® C is a difference
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cokernel. Thus P ®g M 1is a difference cokernel in

ACC :

THEOREM 10. Let A be a monoid, B a bimonoid in

the symmetric monoidal category C . Let F: BC — AC

be a C-functor. The following conditions are equivalent:

a) there is a C-monoidal structure of AC such that

the underlying functor (U: AC —> C , id, id, id)

is a C-monoidal functor and F is a C-monoidal

equivalence (with suitably chosen natural transfor-

mations &8, ¢, &).
b) there is an A-B-progenerator P , which is a

B-comonoid and satisfies the conditions

i) there is an isomorphism P e, I £ I in (j

such that the diagram

€

p—F 1
(1) 1 12
P e B Pegyp ey I commutes

IR

ii) there is an isomorphism P e, (B 8 B) £ P @ P in

CB © B such that the diagram
A
P———P——->P8P
(2) m iz
P ® A A
Pe, B——=P o, (B ® B) commutes.

B B

Proof: By Corollary 5 and by Proposition 6 of [4]

we have that a) implies b).
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Conversely assume that b) holds. First we observe that

the isomorphisms P e, I £1I and P e, (B 8 B) P eP

induce a unique A-left-structure on I resp. P ® P

such that the isomorphisms are in AC . The diagrams

(1) and (2) consist of A-morphisms, in particular A

P
and ep are in AC .
Now let M,N e _C . There is a functorial iso-
morphism P ey (M & N) = (P LN (B ® B)) ®: & B (M @ N)

in AC . In fact P ey defines a C-equivalence between

¢ and AC . In particular P e

differeace cokernels. By Corollary 8 we get

B! BC — AC preserves

P ey (M8N) £P o

(B@B))@BQB

((B 8 B) & @B(Meu))%’

B B

(M ® N) in C

(P ® A

B

By (2) we get an isomorphism

(P @, (B ® B)) ® (M®N) £ (P eP) o

B B e B M e N)

B e®B
in AC , where (P o P) ®: o B (M ® N) is formed in
A e AC by the A-structures on each of the P's .

Furthermore there is an isomorphism

%

(P ® P) ® o B (M ® N) =P ey (P LN (M ® N)) in ¢ ,
where the difference cokernels are taken in A e Ac ,
resp. P eg (M ® N) is in B - aC - The morphism is

defined by (p e p') e men) —> p e (p'  (me n)) .
One can check that it extends to the difference
cokernels by using that in the commutative diagram
(FIG. 2) the columns are difference cokernels in C

A
and hence in A e aC by Lemma 9 and the last row is a
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difference cokernel in since

A ® AC

p ®:* 5 o 20 T 2 e AC is an equivalence. Now the map
pe (p' ® (men)) —> (pep') ® (me n) is in

A e AC and can be factored through

P e (P e

(P ® P) ®

B (M® N)) . So the A ® A - isomorphism

(MeN) & Peo, (Po, (M@ N)) is also

B ® B B B

an isomorphism in € and thus induces a unique new

A-structure on P ®p (P LN

Finally there is an isomorphism of A ® A - objects

(M ® N)) .

P ey (P ®

(P ®

(Me N)) 2P o, (Mo (P ep N)) g

B B

B M) & (P ey N) because P LN is a C-equivalence

and Lemmas 6 and 9 apply. This isomorphism is also in
¢ and thus defines a unique new A-structure on
(P 8y M) ® (P LN N) .

Alltogether we have obtained a natural A-isomorphism

a Y
P LN (M ® N) = (P ®g M) e (P N

This isomorphism is induced by the morphism

N) .

p® (men) —> (p(1) ® m) ® (p(z) ® n)

where A (p) = p(q) © P(y) -

Let Q e be the inverse equivalence of P ®g

Then P o Q 8 M=M for M é—AC and

(P LN Q o M) ® (P &y Q &, N) = MeN
thus inducing in a natural way an A-structure on M @ N
> n x
and a bifunctor M ® N from AC AC to AC .
Furthermore by the previous considerations we have a

natural isomorphism
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v

Pe,6 (M®N) = (P ey M) & (P LN N)
and

A ~n M
P ®p I =1

such that P oy becomes a C-monoidal equivalence if

M & N induces a C-monoidal structure on AC -
Following the construction of the A-structure on

M 8 N , the coalgebra structure on P and using the

coherence in (C we get

(MEN) € LEME& (N & L)

induced by the associativity isomorphism in ¢C

Similarly we get

If8&M&M and M& T 2am.

These isomorphisms are coherent in C , hence also in

AC , SO AC is monoidal and even (C-monoidal. This

proves also that (U,id,id,id) is a C-monoidal functor.

Finally P LN is a C-monoidal functor since all

structural morphisms are defined by the structural

coherent morphisms in C . This completes the proof of

Theorem 10.

If A and B are bimonoids, then Theorem 10
provides necessary and sufficient conditions, that the

categories C and C are C-monoidally equivalent.

A B

Moreover if the equivalent conditions of Theorem 10 are
satisfied we get immediately by Proposition 6 of [4]
that A is a bimonoid. Thus Theorem 10 expresses the

special Morita equivalence preserving the tensor
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product without using the tensor product in AC nor
the bialgebra structure of A .

A simple example of a Morita equivalence of module
categories with tensor products can be given by using
the bialgebra automorphism ¢ of the bialgebra
k[:z3] , the group algebra over any field k , with
c(M:=72 in Z, .

Since ¢ 1is a group autormorphism of 23 it is a bi-
algebra automorphism of k[Z,] . Let A =B = k[z3]
and P = k{:Z3] as a coalgebra. Then P is a right
B-module via the usual multiplication of k[:Z3] and
in fact a B-module coalgebra (i.e. a B-comonoid). By
A f B £ End,(P) P becomes an A-B-progenerator. The

canonical isomorphisms P e, k £ k and

P o, (B 8 B) £ P @ P satisfy the diagrams (1) and (2)

in Theorem 10, so P @ induces a Morita-equivalence

B
of the module categories B-Mod and A-Mod preserving
the tensor products in these categories. This example
holds for any group ring with any automorphism on the
group -

On the other hand the conditions on P in Theorem
10 b) are quite restrictive. Assume that b) holds and
that B is a Hopf monoid in C with antipode S .
Then the morphism f: B @ B —> B ® B given by

f(b ® b') = b b' has the inverse

1 ® P
b e b' — b(1) ® S(b(z))b' . Now conside?
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A

f: B®B — B , then it is clear that £f 1is an

® B
isomorphism in BC , where B ® B carriesa B-structure
on the left factor and B 8 B is a B-object via the

diagonal. Thus the isomorphism P e, (B 8 B) £ P @ P

B
induces an isomorphism P © B £ P ey (B ® B)
P e, (B ®B) P eP . In case C = K-Mod with K a

113

field and B (and hence P ) finite-dimensional we
get P £ B in K-Mod and similarly P £ A . Thus two
finite dimensional Hopf algebras can only be Morita
equivalent in the sense of Theorem 10 if they have the
same dimension.

A further remark concerning Theorem 10 is in order.
The conditions i) and ii) of b) can be expressed
diffefently. To express i) we assume that
U AC — C preserves epimorphisms. First we consider
the morphism e, ® I: P @, I —> I , which is well-

P B

defined since €p € CB . This morphism satisfies

(sP ® I)(P ® eB)(p ® b) = ep(p)eB(b) = eP(p)b = eP(pb),

thus the diagram (1) commutes with e, ® I . Now if i)

P
is satisfied then P 8y € is an epimorphism in AC
and in C hence the isomorphism P e, I 2 I must be

€p ©® I . Thus i) reduces to
i') the morphism €p g I: P LN I — I 1is an
isomorphism.

The diagram (2) is made commutative by the morphism

. a ] ]
y: P ®p (B®B) 2 pebeb' — p(1)b ® p(z)b e PeoP
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as can be easily checked. Assume that ii) holds. Then

the isomorphism ¢: P e, (B & B) ¥ P ® P satisfies

B
f(p o (1 © 1)) = p(1) ® P(2) since (2) commutes and
, _ . . .

f(p ® (b ® b')) P(1)b ® p(z)b since ¢ 1is a
B ® B - isomorphism. Thus ¢ = ¥ and ii) reduces to
ii') the morphism

. A ' [
¥: P ep (Be®B) apeboeb' — p(1)b ® p(z)b e Po®P
is an isomorphism.

If B 1is a Hopf monoid then the isomorphism

Pe®B =P ® P discussed earlier, is the morphism

p®b+— p(1) ® p(z)b
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