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Non-additive ring and module theory I.
General theory of monoids

By Bodo Pareigis (Miinchen)

Much of the present theory of rings and modules depends only on the multi-
plicative structure, not on the additive structure of the objects in question. Another
part of this theory depends mostly on the additive structure. This last part has exten-
sively been studied in the context of abelian (or additive) categories. We want to
introduce categorical tools to study just the multiplicative properties. A surprisingly
large part of ring and module theory can be recovered in this way, e.g. Morita
theorems, Brauer groups of Azumaya algebras, Maschke’s theorem about separable
group rings etc. Furthermore this generalized theory applies to a series of examples
to be discussed later.

The general background of our theory is the notion of a monoidal category
(not necessarily symmetric or closed or complete or cocomplete). This is a category
% in which we can form associative “tensor.products™ of objects and morphisms,
with “unit” /€% such that I® X=X=X®I Rings are generalized to monoids
in %, i.e. objects A€% together with an associative unitary multiplication u:
A®A—~A. Modules are generalized to A-objects, i.e. objects Mc% together with
an associative unitary multiplication v: AQ M —~ M. We use a Yoneda Lemma like
technique to do most computations elementwise. So the associativity of the monoid
A, u: AQ A—~A can be expressed by a(bc)=(ab)c for “elements” a, b, c of A4
(see § 1). Similarly an A-morphism f: M—N of A-objects M, N is described
by flam)=af(m).

This concept may be applied to a series of examples some of which are rings
and modules, coalgebras and comodules, Banach algebras and Banach modules,
H-module algebras and modules over them for H a Hopf algebra, monoids (in sets)
and monoid sets with equivariant maps etc.

In this paper we want to introduce the general background of non-additive ring
and module theory, tensor products over arbitrary base-monoids (read: base-rings),
and the technique of elementwise computation.
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1. Notation and the universal property of the tensor product

Let (¢, ®,1) be a monoidal category, i.e. a category ¥ with a functor
®: €X¥—% and an object /€%, and with natural isomorphisms

a: A®(BRC) = (A®B)QC
A IQA=A

0: AR®I=A
such that all diagrams

AQ(BR(C®D)) =~ (AQB)®(C®D) = (4®B)®C)QD

’A®a la@D
AR((B®C)®D) : -(A®(B®C))®D
and
A®(l®B) =d (Ael)® B
XN ﬁ Y.
A®B
and
I®] = J[®J
2\\ ﬁ
I
commute.

If there is an additional natural isomorphism
y: AQB =~ B®A

such that
idses = (AQB —- BRA — A®B)
and
A®] LA /®A
5’\« A
A
and

ARB®C) — (A®B)®C —— CR(ARB)

A®y a
+

+
AQ(C®B) =~ (40 C)® B 2% (C® A)®B

commute, then ¥ is called a symmetric monoidal category [3].
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Let ¥ always be a monoidal category. A

For objects A, C€¥ we use the notation A(X):=%(X, 4). So A will be
considered as a contravariant functor from % to the category & of sets or as a
‘“‘variable set”. By the Yoneda Lemma [12] there is a bijection between the morphisms
f: A—=B in ¥ and the natural transformations ¢: A(X)—~B(X) by ¢=%(X, f),
which then will be denoted by the same letter: f: A(X)—B(X). Observe then that
fl@)=foa for ac A(X).

Consider A® B as a ‘“‘variable set”. We want to introduce a universal property
for it, which resembles the usual universal property of the tensor product. For this.
purpose consider a ‘“‘variable set” A(X)XB(Y) in the two ‘“variables” X and
in Y. A natural transformation f: A(X)XB(Y)=-F(X®Y), natural in X and
Y, with a contravariant functor #: ¥~ is called a bimorphism. We simply
write it as f: AXB—Z. .

Clearly

AX)XB(Y) = €(X, A)X¥€(Y, B)3(a ,b) -2- a®@bcB(XQY, AQB) = AQ B(X®Y)
is a bimorphism.

1.1 Lemma. (Universal property for tensor products). For each bimorphism
f: AXB—F there is a uniquely determined natural transformation f*. AQB—~%,
such that

AXB A®B8

commutes.

Furthermore AXB 24 QB F isa bimorphism for each natural transforma-
tion g:AQB—-%.

PrROOF. Let X=A4, Y=B and f’'=f(id,, idg). Then f'€¢%(A® B) may be
considered as a natural transformation f*: 4 ® B(Z)—~% (Z) by the Yoneda Lemma.
namely f*=%(=)(f’). Now let X, YE% be arbitrary objects. For (a, b))€A4(X)X
X B(Y) we have
S

A(A)X B(B) - F(AQB)
| 4@ < B®) F@®b)
AX)XB(Y)—— #(xX8Y)

commutative, hence for (id,, idg)€ A(4) X B(B) we get
F(a®b)of(id,, idg) = foA(a) X B(b)(id,. idp) = f(a, b)

hence (f*o®)(a, b)=*(a®b)=F (a@b)(f')=F (a®b)of(id,, idg)=f(a, b). Thus
the diagram of the Lemma commutes.

Let g be such that go®=/. Then g(id, ®idp)=(go®)(id,, idg)=/(id,, idg)=f"
in #(4A® B), hence the induced natural transformations f* and g from 458
to & are equal.
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So we have a bijection between bimorphisms f: AXB—% and natural trans-
formations f*: AQ B—~%. In particular for each object C¢¥ and bimorphism
f: AXB—C there is a unique morphism f*: A® B—~C such that

AX) X B(yY) —2— ~ A@B(xaY)

\ lf*
cixey)

commutes for all X, Y€%.

Certain, but usually not all, elements in 4@ B(X® Y) are of the form a®b
with a€A(X), b€ B(Y). For those elements we have f(a, b)=f*"(a®b). Since f™*
is uniquely determined by f, we want to describe f*(z) for all z€ A ® B(X) with
the use of f. Since f has two variables we introduce the notation

f(z45 25) = f*(2).

If we take in particular ®: AXB—~A®B as bimorphism, then it clearly factors
through id: A® B~A® B. With the notation just introduced we get z=z,® zg
for all z€A®B(X). The elements z which occur as tensor products a®b
will be called decomposable tensors, the others indecomposable.

Since for any bimorphism f: AXB-C the value f(z,, zg) is uniquely deter-
mined for z=z,®zy, if one only knows f(a, b) for all (a, b)€A(X)XB(Y), we
will not make any difference between decomposable tensors a®b and indecompos-
able tensors z,®z; and thus will use the same notation a®¥b in both cases.

We will list a few interesting examples of monoidal categories, to which we will
apply the later results:

a) Category of K-modules for a commutative ring K with the usual tensor product
and K€K-Mod.

b) The dual of K-Mod with the tensor product and K¢ K-Mod.

c) Any category % which has finite products or coproducts and a final or initial
object, in particular the categories of sets, R-modules or the category of small
categories.

d) The category of endofunctors of a category ¥ with composition and the identity
functor.

e) The category of R— R-bimodules with the tensor product M®gN and
R€ER-Mod, where R is a possibly non-commutative ring.

f) The category of real or complex Banach spaces together with the completed
tensor product and R resp. C. The morphisms in this category shall be the
linear maps of norm less than or equal to 1.

Observe that the examples a), b), ¢) and f) are symmetric monoidal categories, whereas

d) and e) are in general nonsymmetric.
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2. Monoids and objects over monoids

A monoid in € is an object A€% together with two morphisms p: AQA—~A4
and #: I—-A, such that the diagrams

AQ(ABA) 2 (A2 A)®4 222 404

AQu l/t
u

ARA A

and

[0A 284, son AN

(%) \j,u/

commute.

If we write p(a®b)=ab for (a, b)e A(X)XA(Y), then the commutativity of
the first diagram is equivalent to a(bc) = A(a) ((ab) )€ A(XQR(YR Z)) for all X, Y, Z€ &
and all (a,b,c)€A(X)XA(Y)XA(Z). As long as it i1s clear from the context we’ll
omit A4(«) and simply write ((ab)c)€ A(X®(Y®Z)), hence (ab)c=a(bc).

In the sequel we shall often omit composites of «, 2, ¢ and y on the side of
the domain of a composition of morphisms. This can be done without any harm by
the coherence results of [5]. So we’ll identify certain morphisms with different domains,
or rather pick a fixed domain out of the set of possible uniquely isomorphic domains,
using the axiom of choice. Hence when we talk about 4(X® Y® Z), then XQ YR Z
is such a fixed domain.

Since

).'11 ]/’,

IQX12% 194

commutes, we get A(27!Y)ol(id;®a)=a. Hence the commutativity of the left
triangle of (%) is equivalent to A(A~Y)(n(id;)a)=a for all X€¥ and all a€A(X)
Again we will omit 4(2~') and obtain n(id;)a=a. If we write 1=n(id,), we get
l1-a=a for all a€ A(X). The right triangle of () is commutative iff a-1=a for
all a€A(X) (again omitting A(¢™Y)).

Observe that for an arbitrary monoidal category (¥, ®, I) there is no sense
in asking if a monoid (4, u, ) is commutative, since there is no symmetry y: A ® 4=
=A®A. If, however, ¥ is a symmetric monoidal category then a monoid (4, u, 1)
is called commutative if

A®A n

Tl A
Aoa T

13 D
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commutes. This is equivalent to ab=ba for all a€ A(X), b€ A(Y) (again omitting
A(): AX® Y)~A(YRX)).

Now let 4 be a monoid. An A-left-object in ¥ is an object M€% together
with a morphism v: A®M—~M such that

|4v E

ASM M

and

JoM —Z8M _ LseM

commute. Writing v(a® m)=am, this is equivalent to (ab)m=a(bm) and 1-m=m
for all meM(Z), acA(X), b€ A(Y). Here again we omit M(x) and M(171)
or M(4).

A monoid-morphism f: A—B is a morphism f€%, such that

AR A-L2L.B®B
u! ul
A I _.B
and
I

commute, equivalently
f(ab) =f(a)f(b) and f(I)=1

for all a€A(X), b€ A(Y) and all X, Y¢&%.
An A-morphism f: M—~N is a morphism f€%, such that

AM 22X 4@ N

| |v

M——N

commutes, equivalently f(am)=af(m) for all ac A(X), me M(Y) and all X, Y€%.
Thus we get a category ,% of A-objects and A-morphisms for each monoid A
and a category Mon (¥¢) of monoids and monoid-morphisms.
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If the tensor product of % is the coproduct and 7 the inijtial object of ¥,
then the unique morphism /—X will be denoted by e. The diagrams

hence

commute. So the diagram

14 ALl A n
A/ l/*XA
4\"A i

determines a unique pu: Al A—+-A which is a multiplication with 2-sided unit.
It is easy to see that u, the codiagonal, is associative. So each object in & carries
a unique structure of a monoid. Since the codiagonal is a natural transformation
each morphism is a monoid morphism. Thus Mon (¥)=%.

On the other hand let (¢, ®, I) a symmetric monoidal category then Mon (%)
is a symmetric monoidal category with the tensor product of A, B€Mon (¥¢) the
tensor product in ¥. In fact if 4, B€Mon (%), then u g5 (AQB)QR(AR® B)=

=(AQ A)®(BR B) “a®¥s 4 ® B where the isomorphism is the unique isomorphism
defined by the coherence theorem of symmetric monoidal categories: ¢: (1® B)®
QA @B )=(AQAYQR(BRB’). S0 lues(a®bQa’ @b’ )=aa’@bb’. Now it’s easy
to check that 4 ® B is a monoid. Furthermore y: A® B=B® A is a monoid mor-
phism hence Mon (%) is a symmetric monoidal category.

If we form Mon (Mon (%)) then this is again a symmetric monoidal category.
Let (4,u,: AQ A—A) bein Mon (Mon (¥)) and let ji,: 4® A—~A be the multi-
plication of A4 in Mon (¥) then u, in particular is a monoid morphism, i.e.

Ba®0,

(ARA4)R(ARA) %‘ (ARA)R(ARA) —— ARA
Ba®n, II‘A

+ i, +

A®A A
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commutes or if y (a®b)=:acb and ji(a®b)=: ab, then (aa’")o(bb’)=(aob)(a’ob’).
Observe now that n: I—-A as morphism in Mon (¢) is a monoid morphism.
Let 7: I—~A be the unit of A in Mon (¥). Hence

io=
i\ /1
A

commutes or n=4ij. So the units for 4 in Mon (¥) and for 4 in Mon (Mon (%))
are the same. Let 1€A4(I) be the unit and a’=1=b, then

ach’ = (al)o(1b’) = (aol)(lod’) = ab’, hence p, = fi,.

Furthermore a’b=(la’)(b1)=(1b)(a’1)=ba’, hence the multiplication ji, was com-
mutative to start with. Conversely if [, is commutative then ji, is a monoid
morphism, i.e. the commutative monoids are precisely the monoids in Mon (%).
Hence Mon (Mon (%))=C Mon (%), where C Mon (%) is the full subcategory of
Mon (¥¢) of commutative monoids.

Now it’s easy to see that the tensor product in C Mon (¢) is a coproduct for
C Mon (¥). The injections are

ARI

A=AQI —~ AR B.

Let f: A-~C and g: B—~C be morphisms in CMon (¢). Then h: AQB—~C
defined by h(a®b)=f(a)g(b) is a morphism in C Mon (%) since h(aa’ @bb’')=
=f(aa’) g(bb")=f(a) f(a’) g(b) g(b")=f (a) g(b) f(a') g(6')=h(a®@b) h(a’®b") and
hle)=f()g(l)=1. If /': AQB—~C reduces to f on A and g on B then
Ha®l)=f(a), M1®b)=gk) and I(@aRb)=h(a®1)(1Qb)=f(a)g(b)=h(a®b)
hence /n=h’. We have proved

2.1: Theorem. 1) Let € be a symmetric monoidal category then Mon (Mon (¥)=
=C Mon (¥) has the tensor product of ¥ as product.

2) If € is a monoidal category which has the coproduct as tensor product then
C Mon (¥)=Mon (¥)=¥, i.e. each object of € carries a unique monoid structure,
which is commutative.

A special case of this is the fact the usual tensor product is a coproduct in the
category of commutative K-algebras, also the usual tensor product is a product in
the category of cocommutative K-coalgebras.

This uses the fact that the (commutative) monoids in K-Mod resp. K-Mod°P
(examples a) and b)) are the (commutative) K-algebras resp. the (cocommutative)
K-coalgebras. % is then the category of A-modules for the K-algebra A4 resp.
the category of K-comodules for the K-coalgebra A4. For the last assertion observe
that for M, N¢ ,K-Mod°?= ¥ we have f¢,€(M, N) iff

N -M
{ {
AQN -~ AQM

commutes in K-Mod.
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For the example c) in the special case (Sets, X, {0}) the monoids are precisely
the (abstract) monoids and ,% is the category of sets on which the monoid 4 acts,
together with the equivariant maps. For (4, X, £) with E a final object one obtains
the categorical monoids.

In example d) the monoids are precisely the monads . An example for a
left-o-object, if # comes from a pair of adjoint functors &: € —~% and ¥: €—~%
[12], is the functor ¥. The functor & is a right J#-object, and #=%QF as
two-sided J#-objects.

The monoids for example e) are the R-rings in the sense of P. M. COHN [see
also SWEEDLER 15].

For example f) the monoids are precisely the Banach algebras.

2.2. Theorem. The forgetful functor U: € —~% is monadic.

ProoOF. Since A4 is a monoid, the functor A®Q —: €—~% is a monad with
1w (AR)AR)~A® and n: I®~AQ® induced by u: AQA—~A and n: I-A.
Furthermore /& is identified by 2 with Ide.

The “algebras’ for the monad A® are [12] pairs (M, v) where Mc% and
v: AQ M —~M is a morphism in € such that

ABA®H) L2 o for and  p—2PD L 4o

/“OZ}W_ v _—LV id"l /

M

commute. This clearly is equivalent to the definition of an A-object. An “algebra
morphism” for 4® is a morphism f: M—N, such that

AoM 220 4o N
{ ’ ¥
M———N
commutes. Again this is equivalent to f: M—~N being an A-morphism. Hence
4€ —~% is monadic with left-adjoint $>M ~AQ M€ 6.

2.3. Corollary: 7 is a monoid in € and the category % is equivalent to €.

PrOOF. Let u: I®I—1 be /. or ¢ and n: I—1I be the identity. Then by the

coherence theorem [5] 7 is a monoid. Since /® =Id, by /, both have equivalent
categories of algebras, ;4 for the functor /® and ¥ for the functor Id.

A special instance of this is the fact that the category of abelian groups “is’ the
category of Z-modules, since (Ab, ®, Z) is a monoidal category.

2.4. Corollary: The forgetful functor #: 4,6 —~% creates limits and isomorphisms.
If € is complete so is ,€ and the limits are formed in €. % creates those colimits
which are preserved by A®. If € has a generator then ,€ also has a generator.

Although we will not use the following facts they should be stated. The straight
forward proofs are left to the reader.
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2.5. Proposition: The forgetful functor 9: Mon (¥)—~% creates limits and
isomorphisms. It even creates difference cokernels of A-contractible pairs.

The functor %: Mon (¥)—~%, however, has in general no left adjoint, e.g. the
category of finite sets with the product as ®.

3. Inner hom-functors and tensor products

Let A, B be monoids in the monoidal category ¥. An A — B-biobject is an
object M<c% together with morphisms AQM—~M and M®B--M such that M
becomes an A-left-object, a B-right-object and the diagram

AQMPB -~ M®B
4 ¥
AQM — M

commutes, i.e. a(mb)=(am)b. A morphism of A— B-biobjects is a morphism in
¢, which is an A-left and B-right morphism, i.e. f(am)=af(m) and f(mb)=
=f(m)b. The category of A— B-biobjects is denoted by ,%z. Clearly there are
forgetful functors #: 65—~ ,€ resp. %: ,€y—%5. These functors are monadic in
the same way as the functor in Theorem 2.2. Observe that % does not in general
preserve colimits.

Assume that 4 and % have difference cokernels. Let M< %, and N, 4%,
then we consider the two morphisms in B‘K

i MRUON) 2 Mo N
and
¢: MOURN) ~ (M@ AN 2. M N.

The difference cokernel of f and g in g% will be denoted by
f BW
M@AQN) = MON — M@, N

If we consider f and g as morphismsin %, we geta difference cokernel w:MQ N~
-~M® 4N through which pw factors uniquely:

Me(A®N) :;:BMON —~ Mg, N

>~

MeN

Observe that we use the same notation for the objects of the difference cokernels in
% and in % though #(MQ,N)xMQ®,N in general for %: ;4—~% the forget-
ful functor. If, however, B® : € —~% preserves difference cokernels then (M ® 4N) =
=M ®,N. This is the case if tensor products in ¥ preserve difference cokernels,
so for example in symmetric closed monoidal categories which are discussed later
on in this paragraph. If in addition N€,%; then zwc: MN—-MQ, N denotes
the difference cokernel of f and g in g%..
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Let Mcg€,, N, and Pe€g6. A bimorphism f: MXN-—P is called a
B-left A-bimorphism if f(ma, ny=f(m, an) and f(bm, n)=>bf(m, n) for all me M(X),
neN(Y), acA(Z), b€B(U).

3.1. Proposition: Let Mcz6,, N, € and P€g%. For each B-left A-bimor-
phism f: MXN—P there is a uniqgue morphism g: MQN—~P in g€ such that
the diagrams

M) x N(Y) 2o MeNxoY) 50 Ma, W(xeY)

Tk

P(XeY)
commute.

Proor. By Lemma 1.1 f may be factored uniquely through ® by a morphism
f*: MQN--P. f* isin g€ because of bf(m, n)=f(bm, n). Now f(ma, n)=f(m, an)
implies f*(ma®@n)=f*(m®an) hence f*o(vyy@N)oa=f"o(MQvy). So f* can
be uniquely factored through zw.

Let (4, ®,1) be a monoidal category. If the functor X®: ¥3Y-XQ® Y¢%
has a right adjoint it will be denoted by [X, —], so that

¢(XQY, Z) = ¢(Y, [X, Z))
natural in Yand Z. If X® has aleft adjoint it will be denoted by (X, —), so that
CY,XRZ)=¥6(X,Y), Z)

natural in Y and Z. If (¥, ®, I) has right adjoint functors to X® forall X¢%,
then & is called a (left-) closed monoidal category. If (¢, ®,I) has left adjoint
functors to X® for all X€%, then ¥ is dual to a closed monoidal category, which
we shall call a (left-) coclosed monoidal category.

The most interesting example for this is the dual of the category of modules
over a commutative ring, which is used for studying coalgebras.

If ®X has a right adjoint for all X¢%, then & is called a (right-) closed
monoidal category. If € is symmetric, then ¥ is left-closed iff % is right-closed.
We will only consider monoidal categories which are left-closed and call them closed
monoidal categories.

Let M, N¢,6, X€¥. Then M®X is again in €. So M®:%—~,6 is a
functor. We want to find a right adjoint to it, which will be denoted by ,[M, N]
hence

B(MQ X, N) = 4(X, [M, N])) = M, N](X).

We observe that there are two morphisms wu, v: (M, N)-%(A® M, N), namely
f—~fovy and f-vyo(AQ®f). By definition f isin ,€(M, N) iff these two maps
coincide on f iff
A®f
AQM ——~ AQN
bl

M—L N
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commutes. Hence we get ;6 (M, N) as a difference kernel:
LM, N) 2~ €M, N) == 6(4@ M, N).

Let % be a closed monoidal category with difference kernels. Let u’, v’ [M, N](X)=
u

=M X, N) -;2(6((A QM)®X, N)=[A®M, N}(X). Let K(M, N) be the dif-
ference kernel of u’, v": [M, N]-[A® M, N]. Then we get a commutative diagram
of difference kernels

74

LEMaxX, V) — EMox,N) == E(AOM)@X, N)
IR n i
OO, K(PN) — (X, [ M,1]) =Sz €, (A0 M N)).
Hence M®: ¥—~,% has a right adjoint, so K(M, N)= ,[M, N}, i.e.

M, N1 — [M, N] == [A® M, N]
is a difference kernel.
Here we use the fact that € is left closed. In fact if the operation of 4 on
M is right sided, then we cannot form % ,(M® X, N). For this we need commuta-
tivity of
MOIARX - NRQARKX orof MRXRA ~ NRXR®A
¥ v V }
MOIX — NQX MQX —— NQX

but in the first diagram the upper horizontal morphism and in the second diagram the
two vertical morphisms cannot be defined in general.
Dual to the above construction we get a difference cokernel

(AQM, Ny == (M, N) — N, M),

although we cannot immediately dualize the above construction, since A then
becomes a comonoid. But the only thing we have used is that there is a morphism
A® M—~M, not that 4 is a monoid.

If M®: €, has a right adjoint, then we get the adjunction morphisms
XM, M®X] and M® 4[M, N]--N the last morphism in ,%. It induces a bi-
morphism M X M, N]-N which we write as (m, f)—(m)f. Since the morphism
M® M, N]—N isan A-morphism we get {am)f=a({(m)f) for ac A(X), me M(Y)
and f€ (M, N)(Z). Conversely if fe€[M,NJ(Z) and (am)f=a((m)f) for all
meM(Y), ac A(X) then f€,[M, N](Z) by the difference kernel property.

Since the diagram

Mex) x [MNICr) —F—= N(xoY)
R I
elx,mx Eoy,N) L= ¢lxov,m)
meY

with o(m, f)=(XQ®Y ~-M®Y L. N) commutes, we get that (m)f=
=fo(m®Y) identifying along the natural adjointness isomorphism.
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3.2. Theorem: Let {: M(X)—~N(X®Y) be a natural transformation in X com-
patible with the action of A on M resp. N. Then there is a unique f€ ,[M, N](Y)
such that {(m)={m)f for all X€€ and meM(X).

Proor. Without taking into account the A-action, the Yoneda Lemma gives
us a unique ¢(id)y=fEN(MQY) such that {(m)=fo(m® Y)={(m)f for all X€¥
and all m€ M (X). Now {(am)=a{(m)implies a({m)f)={am)f, so that f€ ,[M, N1(Y).

3.3. Corollary: There is an associative multiplication
AIM, N1® [N, P} = ,[M, P]
with unit I— (M. M) for all M, such that (IQ M, N]-~ M, M]Q , M, N]—~
=AM, N)=7 and (4[M, N]@I—~[M, N]® 4[N, N]— [M, N))=o.

Proor. Define the multiplication by (myu(f® g)=((m)f)g and write u(fQg)=
=fg. This defines a morphism by Proposition 3.2. Then {m)fg=((m)f)g hence
(mY(feyh={m)fgyh=(m)f g)h=(m)f(gh) and by Proposition 3.2 we have
(fe)h=f(gh), the associativity.

Define 1~ ,[M, M] as morphism corresponding to 9¢,4(M®I, M). Then for
meM(X) we have {(myn=9o(m®I)=m (again identifying X and X®I7I via o),
hence nf=f and gn=g.

3.4. Corollary: For each M€ 6 we get a monoid ,[M, M].
3.5. Corollary: For M€ €, N¢ ,Fp we have (M, N€¥p.
Proor. The map

M(X)X M, NY(Y)XB(Z)3(m, f, b) — (m)f)bE N(X ®YRZ)
induces a bimorphism
AlM, NJ(Y)X B(Z)5(f, b) — fbe IM, N(YQRZ)

by Proposition 3.2 such that ((m)f)b={(m)( fb). Hence ,4[M, N] becomes a right
B-object.

3.6. Corollary: M ¢ ,% induces a functor 4[M, —]:,€5—~%3.
3.7. Corollary: Let M€ 65 and N€ 6. Then M, N]€g%b.

PROOE. M(X)X B(Y)X 4[M, NI(Z)3(m, b, f)-~(mb) fEN(X® Y® Z) induces a
bimorphism

B(Y)X 4[M, NI(Z)3(b, f) — bf € 4[M, N](YRZ)

by Proposition 3.2 such that (m) (bf)=(mb)f. Hence ,M,N] becomes a left
B-object.

3.8. Corollary: M€ , %€y induces a functor M, —]:,€—5%.
3.9. Corollary: If M¢ G5, N€ €5 then M, N]€g¥b..
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3.10. Proposition: For Q€6 ,, M€ ¢ and N¢cg¥é there is a natural iso-

morphism ,E(M, g[Q, N]))=z6(Q® M, N) if 5[0, N] and Q® ;M exist.

Proor. The difference cokernel in 346 0@ ARM=Q0QM-~Q® M induces
a commutative diagram of difference kernels

B%(o & M, n)—=L(QeMN) :::B%’(OGA@M, N)
It Ry ny
LM, [QN]) — €M, e N]) ==¢(AoM, SLONI)

where the left isomorphism results from the universal property of difference kernels.

The only problem is the commutativity of the right lower square (with respect

to the multiplication v,:Q0® A4 —~Q). Now for f€38(Q®M, N), g€ Q(X), acA(Y)
and meM(Z) have

(gay¥ ()(m) = f(ga®m) = fo(vo® M) (g®a®@m) = (g) ¥ (fo(vg® M))(a@m)

hence the claimed commutativity.

An object Q€% , iscalled A-coflat if for all monoids C and objects M€ %
the difference cokernel Q® ,M€,%, exists and if the natural morphism O0® ,
(MN)-(Q®  M)QN in z%,, induced by the associativity of the tensor pro-
duct, is an isomorphism for M< , 6. and N€E).

3.11. Proposition: Let Q€% be A-coflat. Then there is a natural isomorphisin
qj : B[Q®AA[9 N] EA[Ma B[Q9 N]]

for M€ €, Ne€g€ and Q€596 ,.

Proor. The isomorphism is given by the following commutative diagram

%(C,¥)

(g(C’ B[Q ®A M’ N]) %(Ca A[M: B[Q, N]])
il 110

B(g((Q®A M)®C, N) = B(g(Q@A(M@C)’ N) = E(MQC, g[Q, N)).

3.12. Proposition: The following diagram is commutative

[C, M, 5[0, NII] X [M®C, 50, NI] £ 5[00,(M&C), N]
[C, ¥] pla, N]

[C, s[0®4M, N]] L Q®M)®C, N]

for Cc%4, M¢c %, Ncg¥ and for Q€g%, A-coflat.
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PrOOF. Invest the definitions of ¥ to get a commutative diagram

€D, [C) oM, f[Q. M) ——— ¥(D, [M&C, gla N]]) —= €(D, z[Qe(MeC), N])

NS I %
€COD ,[M, 4LQ NI) ,t((MoC)8D, 4G NI) 5 €08 (MaC))0 D. M)
A\ z N 2
L M@ (CoD), f Q. N]) s €(G((1eC)aD), N)
\ %

Bf(@g;w;css, V)

LK

eced lagrM ~1) = fU(Qere(ced N} = {(((QeM)@C)eD. N) |
> S
€0, [c, zla@ M NIT) 4D, j(9aM)®C, NI}

The outer frame of this diagram implies the assertion of the proposition.

The examples of § 1 have the following properties. The example a) is closed, com-
plete, cocomplete, and abelian. Example b) is coclosed, complete, cocomplete
and abelian. Example c¢) may be closed (e.g. category of sets with the product),
complete, cocomplete and abelian (e.g. K-Mod with the product) or not. Example
d) is in general not closed. Example e) is closed, complete, cocomplete and abelian,
but not symmetric. Example f) is closed by [X, Y] the set of continuous linear maps
[14]. Furthermore there are difference kernels and difference cokernels, but the cate-
gory is not additive.
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