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Non-additive ring and module theory I. 
General theory of monoids 

By Bodo Pareigis (München) 

Much of the present theory of rings and modules depends only on the multi-
plicative structure, not on the additive structure of the objects in question. Another 
part of this theory depends mostly on the additive structure. This last part has exten-
sively been studied in the context of abelian (or additive) categories. We want to 
introduce categorical tools to study just the multiplicative properties. A surprisingly 
large part of ring and module theory can be recovered in this way, e.g. Morita 
theorems, Brauer groups of Azumaya algebras, Maschke's theorem about separable 
group rings etc. Furthermore this generalized theory applies to a series of examples 
to be discussed later. 

The general background of our theory is the notion of a monoidal category 
(not necessarily Symmetrie or closed or complete or cocomplete). This is a category 

in which we can form associative "tensor products" of objects and morphisms, 
with "unit" such that I®X^X^X®L Rings are generalized to monoids 
in i.e. objects A£%> together with an associative unitary multiplication JX\ 
A ^ A ^ A . Modules are generalized to ^-objects, i.e. objects together with 
an associative unitary multiplication v: A & M - + M . We use a Yoneda Lemma like 
technique to do most computations elementwise. So the associativity of the monoid 
A , \ i \ A & A - + A can be expressed by a(bc) = (ab)c for "elements" a , b, c of A 
(see § 1). Similarly an ,4-morphism / : M - + N of ^-objects Af, N is described 
by f ( a m ) = af(m). 

This coneept may be applied to a series of examples some of which are rings 
and modules, coalgebras and comodules, Banach algebras and Banach modules, 
//-module algebras and modules over them for H a Hopf algebra, monoids (in sets) 
and monoid sets with equivariant maps etc. 

In this paper we want to introduce the general background of non-additive ring 
and module theory, tensor products over arbitrary base-monoids (read: base-rings), 
and the technique of elementwise computation. 
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1. Notation and the universal property of the tensor product 

Let <g>,/) be a monoidal category, i.e. a category # with a functor 
® : # X # — # and an object and with natural isomorphisms 

a: , 4 ® ( £ ® C ) ^ 0 4 ® 5 ) ® C 

/: I®A^A 

Q: A(S>I = A 
such that all diagrams 

>4®(£®(C®Z))) — (/*®5)®(C®Z>) — ( ( ^ ® ^ ) ® C ) ® Z ) 
|/4®oc ja®£> 

A<8)((B<g)C)®D) * ( ^ ® ( 5 ® C ) ) ® D 

A ®(I ®B) *(A®l)®B 

A ®3 

I<S>I = I G I 

and 

and 

V 

I 

f 

commute. 
If there is an additional natural isomorphism 

such that 

and 

and 

y: A®B ^ B®A 

täA®B = (A<8>B—~ B®A A®B) 

A»I - f®A 

A 

A®{B®C)^(A®B)®CC®{A®B) 
M ® y | a 
* a y ® £ * 

A®(C®B) — (A®C)®B (C®A)®B 

commute, then # is called a Symmetrie monoidal category [3]. 
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Let ^ always be a monoidal category. 
For objects A9C€<# we use the notation A ( X ) : = V ( X 9 A ) . So A will be 

considered as a contravariant functor from # to the category ¥ of sets or as a 
"variable set". By the Yoneda Lemma [12] there is a bijection between the morphisms 
/: A ^ B in # and the natural transformations (p: A(X)-»B(X) by c p = < g ( X 9 f ) 9 

which then will be denoted by the same letter: / : A ( X ) - + B ( X ) . Observe then that 
f ( a ) = f o a for a£A(X). 

Consider A ® f? as a "variable set". We want to introduce a universal property 
for it, which resembles the usual universal property of the tensor product. For this 
purpose consider a "variable set" A ( X ) X B ( Y ) in the two "variables" X and 
in Y. A natural transformation / : A(X)XB(Y)-+ffir(X®Y)9 natural in X and 
X, with a contravariant functor & \ <g + Sf is called a bimorphism. We simply 
write it as / : A X B - + & . 

Clearly 

A ( X ) X B ( Y ) = <€{X, A)XC€{Y9 B ) $ ( a 9b)—+a®b£c£{X®Y9 A®B) = A®B(X®Y) 

is a bimorphism. 

1.1 Lemma. (Universal property for tensor products). F o r each bimorphism 
f : AXB^»!F there is a uniquely determined n a t u r a l transformation / * : A Q B ^ ^ , . 
such that 

A ®B 

® g 
F u r t h e r m o r e A X B —»A<&B —- !F is a bimorphism for each n a t u r a l transforma­

tion g:A®B^^. 
P R O O F . Let X = A 9 Y = B and f ' = f ( i d Ä 9 i d B ) . Then f'€&(A®B) may be 

considered as a natural transformation / * : A < g > B ( Z ) - + t F ( Z ) by the Yoneda Lemma 
namely = Now let X 9 Y^fß be arbitrary objects. For (a9b)£A(X)X 
X B ( Y ) we have 

A ( A ) X B ( B ) —— &(A®B) 
\ A ( a ) * B { b ) \&(a®b) 

A(X)XB(Y)——3?(X®Y) 

commutative, hence for (id^, idB) £A(A)XB(B) we get 

&{a®b)of(\dA9 idB) = f o A ( a ) X B ( b ) ( i d A 9 idB) = f ( a 9 b) 

hence ( /* o®)(a, b)=f%a®b) = &(a®b)(f') = &(a®b)of(ydÄ9 i d B ) = f ( a 9 b ) . Thus. 
the diagram of the Lemma commutes. 

Let g be such that g o ® = / Then gCid^ ® id B) = (g o ®)(id^, id B) ̂ / ( i d ^ , id ß ) = / ' 
in tF(A<g)B)9 hence the induced natural transformations / * and g from A<2>B 
to are equal. 
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So we have a bijection between bimorphisms / : A X B - + 3 F and natural trans­
formations / * : A<g>B-+lF. In particular for each object and bimorphism 

/: A X B - + C there is a unique morphism / * : A < g > B ^ C such that 

A(X)xß(Y) - *-A®B(X<*Y) 

C(X®Y) 

commutes for all X , Y£^. 
Certain, but usually not all, elements in A<g>B(X®Y) are of the form a®b 

with a£A(X)9 b£B(Y). For those elements we have f ( a 9 b)=f*(a®b). Since / * 
is uniquely determined by / , we want to describe /*(z) for all z£A®B(X) with 
the use of / . Since / has two variables we introduce the notation 

f(zA9zB) :=/*(z). 

If we take in particular ®: A X B ^ A Q B as bimorphism, then it clearly factors 
through i d : A®B^A®B. With the notation just introduced we get z = zA<g>zB 

for all z£A®B(X). The elements z which occur as tensor products a®b 
will be called decomposable tensors9 the others indecomposable. 

Since for any bimorphism / : A X B - + C the value f ( z A , zB) is uniquely deter­
mined for z—zA%zB9 if one only knows f ( a 9 b) for all ( a 9 b)£A(X)XB{Y)9 we 
will not make any difference between decomposable tensors a®b and indecompos­
able tensors zA<g)zB and thus will use the same notation a®b in both cases. 

We will list a few interesting examples of monoidal categories, to which we will 
apply the later results : 
a) Category of üf-modules for a commutative ring K with the usual tensor product 

and jreJC-Mod. 
b) The dual of K - M o d with the tensor product and K£K-Mod. 
c) A n y category # which has finite products or coproducts and a final or initial 

object, in particular the categories of sets, i?-modules or the category of small 
categories. 

d) The category of endofunctors of a category # with composition and the identity 
functor. 

e) The category of R — i^-bimodules with the tensor product M®RN and 
R£R-Mod9 where R is a possibly non-commutative ring. 

f) The category of real or complex Banach Spaces together with the completed 
tensor product and R resp. C. The morphisms in this category shall be the 
linear maps of norm less than or equal to 1. 

Observe that the examples a), b), c) and f) are S y m m e t r i e monoidal categories, whereas 
d) and e) are in general nonsymmetric. 
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2. Monoids and objects over monoids 

A monoidin is an object A^fß together with two morphisms A®A-+A 
and rj: I - + A , such that the diagrams 

A®(A®A) —- {A®A)®A A®A 

A®A >A 
and 

I 9 A *1®
A
» A®A « A

* * > A * I 

A 

commute. 
If we write n(a®b) = ab for ( a 9 b)£A(X)XA(Y), then the commutativity of 

the first diagram is equivalent to a(bc) = A((x)((ab)c)eA(X®(Y®Z)) for all X , Y, Z£<% 
and all (a, b9 c)£A(X)XA(Y)XA(Z). As long as it is clear from the context we'll 
omit A ( a ) and simply write ((ab)c)£A(X®(Y®Z))9 hence (ab)c = a ( b c ) . 

In the sequel we shall often omit composites of a, /., Q and y on the side of 
the domain of a composition of morphisms. This can be done without any harm by 
the coherence results of [5]. So we'll identify certain morphisms with different domains, 
or rather pick a fixed domain out of the set of possible uniquely isomorphic domains, 
using the axiom of choice. Hence when we talk about A(X® Y®Z)9 then X® Y®Z 
is such a fixed domain. 

Since 

X ——* A 

I®X-^I®A 
commutes, we get A(?r1)o£(idI®a) = a . Hence the commutativity of the left 
triangle of (*) is equivalent to A(/r1)(rj(idI)a) = a for all X^€ and all a£A(X)m 

Again we will omit A O r
1
) and obtain r j ( \ d I ) a = a . If we write l=jf(idj), we get 

1 *a = a for all a£A(X). The right triangle of (*) is commutative iff a* l = a for 
all a Z A ( X ) (again omitting A ( Q ~ 1 ) ) . 

Observe that for an arbitrary monoidal category ® 9 /) there is no sense 
in askingifa monoid {A9JJL9Y]) is commutative, since there is no symmetry y:A®A^ 
^A®A. If, however, ^ is a S y m m e t r i e monoidal category then a monoid ( A 9 fi9 rj) 
is called commutative if 

A®A 

7 

AG 

13 D 
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commutes. This is equivalent to ab—ba for all a£A(X), b£A(Y) (again omitting 
A ( y ) : A(X®Y)-+A(Y®X)). 

Now let A be a monoid. A n A-left-object in ^ is an object together 
with a morphism v: A & M - + M such that 

, 4 ® 0 4 ® M ) — 0 4 ® 4 ) ® M A®M 
A®\ | v 

- M 
and 

commute. Writing v{a®m) = a m 9 this is equivalent to ( a b ) m = a ( b m ) and l -m=ra 
for all m ( M ( Z ) , a£A(X), b£A(Y). Here again we omit M(a) and A f ^ " 1 ) 
or Af(A). 

A monoid-morphism f : A - + B is a morphism such that 

and 

4 ' ^ £ 

commute, equivalently 

f ( a b ) = f ( a ) f ( b ) and / ( l ) = 1 

for all a£A(X)9 b£A(Y) and all X 9 Y^. 
A n A-morphism f : M - + N is a morphism such that 

A®f 
A®M > A®N 

M • N 

commutes, equivalently f { a m ) = af(m) for all a£A(X)9 m£M(Y) and all X 9 Y ^ . 
Thus we get a category A%> of y4-objects and >4-morphisms for each monoid A 
and a category M o n (#) of monoids and monoid-morphisms. 



Non-additive ring and module theory 195 

If the tensor product of % is the coproduct and / the initial object of 
then the unique morphism I - + X will be denoted by e. The diagrams 

/ £ *~ A v •\ \ x 
A 2? I I A

 &Jl A » A1A 

hence 

commute. So the diagram 

I I A 

A1A 

A M I I J I A 

III A ^ A Hl 

d e t e r m i n e s a u n i q u e JA: A]LA-+A w h i c h is a m u l t i p l i c a t i o n w i t h 2-s ided u n i t . 
It is easy t o see t h a t t h e c o d i a g o n a l , is a s s o c i a t i v e . So each o b j e c t i n (ß c a r r i e s 
a u n i q u e s t r u c t u r e o f a m o n o i d . Since t h e c o d i a g o n a l is a n a t u r a l t r a n s f o r m a t i o n 
e a c h m o r p h i s m is a m o n o i d m o r p h i s m . Thus M o n ( ^ ) ^ ^ . 

• On the o t h e r h a n d l e t ® , / ) a S y m m e t r i e m o n o i d a l c a t e g o r y t h e n M o n (<#) 
is a S y m m e t r i e m o n o i d a l c a t e g o r y w i t h the t e n s o r p r o d u c t of A, B£ Mon (#) t h e 
t e n s o r p r o d u c t i n In f a c t i f .4, 2 ? £ M o n ( # ) , t h e n nA®B: (A®B)®(A®B)^ 
^(A®A)®(B®B)*tA®ßD-*A®B w h e r e the i s o m o r p h i s m is the u n i q u e i s o m o r p h i s m 
d e f i n e d b y the c o h e r e n c e t h e o r e m o f S y m m e t r i e m o n o i d a l c a t e g o r i e s : cp: (A®B)® 
®(A'®B')^(A®A')®(B®B'). So iiA®B(a®b®a'®b') = aa'®bb'. Now i t ' s e a sy 
t o c h e c k t h a t A®B is a m o n o i d . Furthermore y: A®B^B®A is a m o n o i d m o r ­
p h i s m h e n c e M o n (#) is a S y m m e t r i e m o n o i d a l c a t e g o r y . 

If w e f o r m M o n (Mon (^)) t h e n th i s i s a g a i n a S y m m e t r i e m o n o i d a l c a t e g o r y . 
Let ( A , f i A : A®A-+A) b e i n Mon (Mon ( # ) ) a n d le t ßA: A®A-*A be t h e m u l t i ­
p l i c a t i o n o f A in M o n t h e n jxA i n p a r t i c u l a r i s a m o n o i d m o r p h i s m , i .e . 

(A®A)®(A®A) (A®A)®{A®A) ßA®HA 

t*A®»A 
A®A 

A®A 

PA 

13* 
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commutes or if nA(a(g)b)—: aob and ßA(a<g)b)=\ ab, then ( a a / ) o ( b b / ) = ( a o b ) ( a / o b / ) . 
Observe now that rj: I - + A as morphism in M o n (#) is a monoid morphism. 
Let rj: I - ^ A be the unit of A in M o n (#). Hence 

/ - / 

f \ /? 
A 

commutes or // = /]. So the units for A in Mon (#) and for y4 in Mon (Mon (^)) 
are the same. Let l£A(I) be the unit and a ' = \ = b , then 

tfo6' = (tfl)o(lZ/) = (col)(lofe /) = ab', hence JU X = 

Furthermore a b = { \ a ' ) ( b \ ) = ( \ b ) { a ' \ ) = ba', hence the multiplication fiA was com­
mutative to Star t with. Conversely if flA is commutative then ßA is a monoid 
morphism, i.e. the commutative monoids are precisely the monoids in M o n (#). 
Hence M o n (Mon ( ^ ) ) ^ C M o n (#), where C M o n (#) is the füll subcategory of 
M o n (#) of commutative monoids. 

N o w it's easy to see that the tensor product in C M o n (#) is a coproduct for 
C M o n ( ^ ) . The injections are 

A A<g)I A®B. 

Let / : ^ - C and g: B ^ C be morphisms in C M o n ( ^ ) . Then /?: A®B^C 
defined by h ( a < g > b ) = f ( a ) g ( b ) is a morphism in C M o n ( ^ ) since h ( a a ' %bb') — 
= f ( a a ' ) g ( b b ' ) = f ( a ) f ( a ' ) g(b) g(b') = f ( a ) g(b) f { a ' ) g ( b ' ) = h ( a ® b) h (a' ® 6') and 
A( l® 1 ) = / ( 1 ) £ ( 1 ) = 1 . If h ' \ A®B^C reduces to / on A and g on 5 then 
h'(a®l)=f(a), h'(\®b)=g{b) and h'(a®b)=h'(a® 1)(1 ®b)=f(a)g(b)=h(a®b) 
hence /?=//. We have proved 

2.1: Theorem. 1) Le/ # # Symmetrie monoidal category then M o n (Mon (#)) = 
= C M o n (<<f) /7ÖT5 //7^ tensor product of as product. 

2) If is a monoidal category which has the coproduct as tensor product then 
C M o n ( ^ ) ^ M o n ((ß)^<ß, i.e. each object of ^ carries a unique monoid structure, 
which is commutative. 

A special case of this is the fact the usual tensor product is a coproduct in the 
category of commutative AT-algebras, also the usual tensor product is a product in 
the category of cocommutative A^-coalgebras. 

This uses the fact that the (commutative) monoids in K - M o d resp. K-Mod°p 

(examples a) and b)) are the (commutative) A'-algebras resp. the (cocommutative) 
ÄT-coalgebras. A % is then the category of ^(-modules for the Ä-algebra A resp. 
the category of /f-comodules for the ^T-coalgebra A . For the last assertion observe 
that for M , N£AK-Modop = ^ we have / £ ^ ( A f , TV) iff 

N M 
\ \ 

A®N-A®M 
commutes in A^-Mod. 
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For the example c) in the special case (Sets, X , {0}) the monoids are precisely 
the (abstract) monoids and A

cß is the category of sets on which the monoid A acts, 
together with the equivariant maps. For (#, X , E ) with E a final object one obtains 
the categorical monoids. 

In example d) the monoids are precisely the monads Jf. A n example for a 
left-Jf-object, if comes from a pair of adjoint functors J * : and (§\ cß 
[12], is the functor 2?. The functor J5* is a right -object, and J f 7 ^ ® as 
two-sided -objects. 

The monoids for example e) are the Ä-rings in the sense of P. M . C O H N [see 
also SWEEDLER 15]. 

For example f) the monoids are precisely the Banach algebras. 

2.2. Theorem. The for gelful functor A<6^<ß is monadic. 

PROOF. Since A is a monoid, the functor A®— : <ß-+(ß is a monad with 
\i\ (A<g)(A(&)-»A<g) and 7®-*,4® induced by /<: A®A-+A and rj: I - * A . 
Furthermore 7® is identified by /. with Id#. 

The "algebras" for the monad A® are [12] pairs ( M , v) where M£<ß and 
v: A & M - + M is a morphism in <g such that 

A&CAQM) 

A&M — 

commute. This clearly is equivalent to the definition of an v4-object. A n "algebra 
morphism" for A® is a morphism / : M — N , such that 

A % M A®N 
1 / * 

M > N 

commutes. Again this is equivalent to / : M - * N being an ,4-morphism. Hence 
/ß-*cß is monadic with left-adjoint (ß5M-»A®Me/ß. 

2.3. Corollary: / is a monoid in (ß and the category {ß is equivalent to <ß. 

PROOF. Let 7 ® / — / be /. or Q and //: 7—/ be the identity. Then by the 
coherence theorem [5] / is a monoid. Since 7® ^ I d ^ by both have equivalent 
categories of algebras, ß for the functor 7® and (ß for the functor Id.*?. 

A special instance of this is the fact that the category of abelian groups " i s" the 
category of Z-modules, since (Ab, ®, Z) is a monoidal category. 

2.4. Corollary: The forgetful functor $U\ /ßcreates limits and isomorphisms. 
If cß is complete so is A<ß and the limits a r e formed in °U creates those colimits 
which a r e preserved by A®. If <ß has a generator then /ß also has a generator. 

Although we will not use the following facts they should be stated. The straight 
forward proofs are left to the reader. 



198 B. Pareigis 

2.5. Proposition: The forgetful functor %\ M o n ( ^ ) - * # creates limits and 
isomorphisms. I t even creates difference cokernels of Ql-contractible pairs. 

The functor <?/: M o n however, has in general no left adjoint, e.g. the 
category of finite sets with the product as (g>. 

3. Inner hom-functors and tensor products 

Let A , B be monoids in the monoidal category cß. A n A—B-biobject is an 
object M $ f 6 together with morphisms A & M - + M and M<g>B-»M suchthat M 
becomes an v4-left-object, a i?-right-object and the diagram 

- M<g>B 

A®M M 

commutes, i.e. a(jmb) — ( a n i ) b . A morphism of A — 5-biobjects is a morphism in 
which is an ,4-left and i?-right morphism, i.e. f ( a m ) = a f { m ) and f ( m b ) = 

= f ( m ) b . The category of A — 5-biobjects is denoted by A

( € B . Clearly there are 
forgetful functors °U\ A € B - ^ A ^ r e s P - ^ : A ^ B ^ B - These functors are monadic in 
the same way as the functor in Theorem 2.2. Observe that °ll does not in general 
preserve colimits. 

Assume that (ß and jß have difference cokernels. Let M ^ B
C
C A and N£/6, 

then we consider the two morphisms in B

c 6 

f : M®(A<8>N) M@ViV. M<g>N 
and 

g : M®(A®N)-^ (M®A)®N-^^~ M®N. 

The difference cokernel of / and g in ß will be denoted by 
f „CO 

M®(A®N) M®N—- M®AN. 
If we consider / and g as morphisms in wegeta difference cokernel co:M<g>N-+ 
- + M < g > A N through which Ba> factors uniquely: 

Observe that we use the same notation for the objects of the difference cokernels in 
# and in ß though <%(M<g>AN)&M®AN in general for <?U\ ß ^ the forget­
ful functor. If, however, B® : preserves difference cokernels then <%(M<g>AN)^ 
9±M<g>AN. This is the case if tensor products in ^ preserve difference cokernels, 
so for example in Symmetrie closed monoidal categories which are discussed later 
on in this paragraph. If in addition N£/ßc then Bcoc: M < g > N ^ M < g i A N denotes 
the difference cokernel of / and g in ßc. 



Non-additive ring and module theory 199 

Let M£B<gÄ9 N€A<g and P£jß. A bimorphism / : M x N - P is called a 
B-left A-bimorphism if f ( m a , n) = f ( m 9 a n ) and f ( b m 9 n ) = b f ( m 9 n) for all m£M(X)9 

n£N(Y), a£A(Z)9 b£B(U). 

3.1. Proposition: Let M£B<8A9 N£A<S and P£B<£. F o r each B-left A-bimor­
phism f : M X N - + P there is a unique morphism g: M®AN-»P in ß such that 
the diagrams 

M(X) xN(Y) - ®-+M®N(X<i>Y) -JLLm*AN(X*Y) v 
P(X®Y) 

commute. 
PROOF. By Lemma 1.1 / may be factored uniquely through <g> by a morphism 

/*: M®N-+P. f * i s in B%> becauseof b f ( m , n ) = f ( b m 9 n ) . Now f ( m a 9 n ) = f ( m 9 a n ) 
implies f*(ma®n)=f*(m®an) hence f*o(vM®N)oa=f*o(M®vN). So / * can 
be uniquely factored through Bco. 

Let ® , /) be a monoidal category. If the functor X®: (6^Y-+X®Y<i<6 
has a right adjoint it will be denoted by [X, —], so that 

V(X®Y9Z)~V(Y9[X9Z]) 

natural in Y and Z . If X® has a left adjoint it will be denoted by (X, so that 

V ( Y 9 X®Z) - V ( ( X 9 Y ) 9 Z ) 

natural in Y and Z . If ß9 ®9 I ) has right adjoint functors to X® for all Xttf, 
then # is called a (left-) closed monoidal category. If ®91) has left adjoint 
functors to X® for all X£f€9 then # is dual to a closed monoidal category, which 
we shall call a ffe/f-J coclosed monoidal category. 

The most interesting example for this is the dual of the category of modules 
over a commutative ring, which is used for studying coalgebras. 

If ®X has a right adjoint for all X$fß9 then ^ is called a ( r i g h t - ) closed 
monoidal category. If cß is Symmetrie, then # is left-closed iff cß is right-closed. 
We will only consider monoidal categories which are left-closed and call them closed 
monoidal categories. 

Let M9N^jß9 X $ f e . Then M®X is again in A<ß. So M ® i s a 
functor. We want to find a right adjoint to it, which will be denoted by A [ M 9 TV] 
hence 

A

C€(M®X9 TV) s* <€{X9 A [ M 9 TV]) = „[M, TV] ( X ) . 

We observe that there are two morphisms w, <£(M9 N)^(£(A®M9 TV), namely 
f - * f o v M and f-+vNo(A®f). By definition / i s i n /ß(M9 TV) iff these two maps 
coincide on / iff 

^(g)M /l(g)TV 

I V M " I V N 
f 

M »N 
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commutes. Hence we get jßiM, TV) as a difference kernel: 

A V ( M 9 TV) (ß(M9 TV) =r <g(A®M, N ) . 

Let ^ be a closed monoidal category with difference kernels. Let u\ v'\ [ M 9 N ] ( X ) ^ 
^ß(M®X9N)=^((A®M)®X9N)^[A®M\N](X). Let K(M, N) be the d i f ­
ference kernel of u'9 v'': [ M 9 N]^[A®M, TV]. Then we get a commutative diagram 
of difference kernels 

< e ( M ® X } N ) £ ( M ® X N ) U t . KCCAQMfaX^) 
A ' V 

Wl Wl Wl 

<e(X, K(MtN)) - WXJMM) f €(X,[A*MtNJ). 

Hence M®\ <g-+A<8 has a right adjoint, so K ( M , N ) ^ A [ M 9 TV], i.e. 

Ä [ M 9 TV] — [M, TV] =*[A®M9 TV] 

is a difference kernel. 
Here we use the fact that (ß is left closed. In fact if the O p e r a t i o n of A on 

M is right sided, then we cannot form %A(M®X9 TV). For this we need commuta­
tivity of 

M®A®X - N®A® X or of M®X®A - N®X®A 
I I 1 1 

M® X TV® X M®X N®X 

but in the first diagram the upper horizontal morphism and in the second diagram the 
two vertical morphisms cannot be defined in general. 

Dual to the above construction we get a difference cokernel 

(A®M9 TV> =* <Af, TV> — A ( N 9 M ) 9 

although we cannot immediately dualize the above construction, since A then 
becomes a comonoid. But the only thing we have used is that there is a morphism 
A®M^M9 not that A is a monoid. 

If M®\ cß^/ß has a right adjoint, then we get the adjunction morphisms 
X - * A [ M 9 M®X] and M®A[M9 TV] —TV the last morphism in A<g. It induces a bi­
morphism M X A [ M 9 TV]-*TV which we write as ( m , f ) - + { m ) f . Since the morphism 
M® A [ M 9 TV]— TV isan ,4-morphism we get ( a m ) f = a ( ( m ) f ) for a£A(X)9 m£M(Y) 
and f£A[M9N](Z). Conversely if f£[M, TV](Z) and ( a m ) f = a ( { m ) f ) for all 
m$M(Y)9 a£A(X) then f€A[M9 TV](Z) by the difference kernel property. 

Since the diagram 

M C x ) x [ M a l i e r ) t » N(x®Y) 

Wl Ii 

' A 

with ( p ( m 9 f ) = (X®Y M®Y TV) commutes, we get that ( m ) f = 
—fo(m®Y) identifying along the natural adjointness isomorphism. 
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3.2. Theorem: Let £: M(X)-+N(X®Y) be a n a t u r a l transformation in X com-
patible with the action of A on M resp. N . Then there is a unique f ^ . A [ M 9 N ] ( Y ) 
suchthat £(m) = ( m ) f for a l l X^(€ and m£M(X). 

PROOF. Without taking into account the y4-action, the Yoneda Lemma gives 
us a unique ; ( i d ) M = / € # ( A f <g> Y) such that C(m)=/o(/w® Y) = ( m ) f for all X$fß 
and all m£M(X). Now £ ( a m ) = a£(m)imp\iesa((m)f) = ( a m ) f so thatf£A[M, N ] ( Y ) . 

3.3. Corollary: There is an associative multiplication 

A [ M , N ] ® A [ N , P ] - ~ A[M9 P ] 

with unit I - A [ M . M ] for a l l M 9 suchthat (I®A[M9 N ] - + A [ M 9 M]® A [ M 9 N ] - + 
- * A [ M , N]) = A and ( A [ M 9 N] ® I - + A [ M 9 N] ® A [ N 9 N] - + A [ M 9 N]) = g. 

PROOF. Define the multiplication by (m)n(f®g) = ( ( m ) f ) g and write fi(f®g) = 
—fg. This defines a morphism by Proposition 3.2. Then ( m ) f g = ( ( m ) f ) g hence 
( m ) ( f g ) h = ( ( m ) f g ) h = ( ( ( m ) f ) g ) h = ( m ) f ( g h ) and by Proposition 3.2 we have 
( / g ) / 7 = / ( g / ? ) , the associativity. 

Define 1 — + A [ M , M ] as morphism corresponding to g^A<ß(M®I9 M ) . Then for 
m£M(X) we have (m)rj = g(m®I) = m (again identifying X and X®I via g ) 9 

hence rjf=f and grj=g-

3.4. Corollary: F o r each M^jß we get a monoid A [ M 9 M ] . 

3.5. Corollary: For M^A

(ß9N^A

(ßB we have A [ M 9 N ] e < g B . 

PROOF. The map 

M ( X ) X A [ M 9 N ] ( Y ) X B ( Z ) 1 ( m 9 f 9 b) ~ ({m)f)b£N(X®Y®Z) 

induces a bimorphism 

A [ M 9 N ] ( Y ) X B ( Z ) $ ( f 9 b) ~ f b e A [ M 9 N)(Y®Z) 

by Proposition 3.2 such that ( ( m ) f ) b = ( m ) ( f b ) . Hence A [ M , N] becomes a right 
5-object. 

3.6. Corollary: A / £ / 6 induces afunctor A \ M 9 —\.A

cßB-+(ßB. 

3.7. Corollary: Let M^A

(ßB and N£/ß. Then A [ M 9 N ] ^ B ^ . 

PROOF. M ( X ) X B ( Y ) X A [ M 9 7V](Z)3(w, b9fy+{mb)f£N(X® Y®Z) induces a 
bimorphism 

B ( Y ) X A [ M 9 N ) ( Z ) $ ( b 9 f ) - b f e A [ M 9 N](Y®Z) 

by Proposition 3.2 such that ( m ) ( b f ) = ( m b ) f Hence A [ M 9 N ] becomes a left 
B-object. 

3.8. Corollary: M G Ä induces a functor A [ M 9 — Y A ^ - ^ B ^ -

3.9. Corollary: If MZA<gB9N£A<gB then A[M9N]£B%C. 
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3.10. Proposition: F o r Q^B

(ßA9 M ^ f l and N^^fß there is a n a t u r a l iso­
morphism A V ( M , B [ Q 9 N ] ) ^ B < 8 ( Q ® A M , N ) if B [ Q , N] and Q ® A M exist. 

PROOF. The difference cokernel in B

(6 Q®A®M=zQ®M-»Q®AM induces 
a commutative diagram of difference kernels 

The only problem is the commutativity of the right lower Square (with respect 
to the multiplication vQ:Q®A^Q). Now for f£B<#(Q®M, N)9q£Q (X),a£A(Y) 
and m ^ M ( Z ) have 

( q c i ) l F ( f ) ( m ) = f{qa®m) = fo(vQ®M)(q®a®m) = (q) V(fo(yQ ®M))(a ®m) 

hence the claimed commutativity. 
A n object Q£BßA is called A-coflat i f for all monoids C and objects M ^ / 6 C 

the difference cokernel Q®AM^B

(ßA exists and if the natural morphism Q® A 

(M®N)-+(0®AM)®N in induced by the associativity of the tensor pro­
duct, is an isomorphism for M£A9?C and N£<ßD. 

3.11. Proposition: Let Q^ßj^ be A-coflat. Then there is a n a t u r a l isomorphism 

for M£A<ß9N£B<ß and QdB<ßA. 

PROOF. The isomorphism is given by the following commutative diagram 

II? Ulf MV 

flOI, B[Q,N1) —£(M> JQ.N]) ^ X t C t t o M , JQ.NJ) 

where the left isomorphism results from the universal property of difference kernels. 

V : B I Q ® A M 9 N ] ~ A [ M 9 B [ Q 9 N ] \ 

* ( C B [ Q ® A M 9 N]) — <6{C9 A[M, B[Q9 N]\) 

B ß{{Q®AM)®C9 N ) C* B<ß(Q®A(M®C)9 N ) - A<ß{M®C9 B [ Q 9 N } ) . 

3.12. Proposition: The following diagram is commutative 

[C, A M , B [ Q , N ] ] ] X - A [ M ® C , B [ Q , N ) ] I Q ® A ( M ® C ) , N ] 

[ C , B [ Q ® A M , N ] ] fil [{Q®AM)®C, N ] 

for C€<g,M£A<g,NeB<& and for Q€B^A A-coflat. 
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PROOF. Invest the definitions of *F to get a commutative diagram 

t ( D , fC, A C M , 5 [ Q , N W ) • Ä ö , ALH»C, a l Q - N i l ) t ( D , 8 [ Q O / M 0 C ) , Kl] ) 

t(C9ö J M , R L Q , N]]) AtCCM*C)öb, J G N J ) 

x t ( M < 9 ( C * D ) , ß [Ö. NJ) 

A 

<2> 
t ( b , I C , ulQ<2> M, NJJ) t { D , A Q < * M ) 9 C , NJ] 

The outer frame of this diagram implies the assertion of the proposition. 

The examples of § 1 have the following properties. The example a) is closed, com-
plete, cocomplete, and abelian. Example b) is coclosed, complete, cocomplete 
and abelian. Example c) may be closed (e.g. category of sets with the product), 
complete, cocomplete and abelian (e.g. K - M o d with the product) or not. Example 
d) is in general not closed. Example e) is closed, complete, cocomplete and abelian, 
but not S y m m e t r i e . Example f) is closed b y [X, Y] the set of continuous linear maps 
[14]. Furthermore there are difference kernels and difference cokernels, but the cate­
gory is not additive. 
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