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ON GENERATORS AND COGENERATORS
Bodo Pareigis and Moss E. Sweedler

We consider the existence of generators and cogenerators
in several categories. In many cases the non-existence of
cogenerators results from the construction of arbitrarily
high dimensional simple (restricted) Lie algebras. The
existence of generators in the Hopf algebra categories
results from the existence of generators in a certain
coalgebra category and the construction of a free Hopf
algebra on a coalgebra.

Introduction

The question of the existence of generators and cogener-
ators in a category is of interest in view of the special
adjoint functor theorem. ISBELL has given an example (un-
published) which shows that the existence of a cogenerator
is a necessary part of the hypothesis of the special
adjoint functor theorem. This example alsoc shows that the
category of groups has no cogenerator. (Clearly the free
group on one element is a generator in the category of
groups.) It is well known that there exist generators and
cogenerators in the categories of commutative groups,
commutative Lie algebras (over a field) and commutative
restricted Lie algebras, because all of these categories
are module categories. By ISBELL's result when one drops
the condition of commutativity for the category of commu-
tative groups there is no longer a cogenerator. We have
proved similar results for the categories of commutative
Lie algebras and commutative restricted Lie algebras. The
results are summarized in the list below where we have
included some related categories.
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2 PAREIGIS et al.

Category Generator Cogenerator
Gr Groups Yes No
L Lie algebras Yes No
L, Restricted Lie algebras Yes No
Ef%n Finite dimensional Lie algebras Yes No
Lgln Finite dimensional restricted
: Lie algebras No No

ggfln Finite groups No No
F Formal group schemes Yes No
CCH Cocommutative Hopf algebras Yes No
Aled Reduced affine algebraic group

schemes No No
A Affine algebraic group schemes

in char p >0 No No
H Hopf algebras Yes No
CH Commutative Hopf algebras Yes ?

CCCH Commutative cocommutative Hopf
algebras Yes

-

Most of the negative results in the list were derived from
results about groups and(restricted) Lie algebras, in
particular from a construction of simple (restricted) Lie
algebras of arbitrarily high (infinite) dimension. Most

of the positive results are based on the construction of
the free Hopf algebra on a coalgebra.

Unfortunately all the "no"'s in the list give examples
of categories where the special adjoint functor theorem
cannot be applied.

Cogenerators
Let C be a category with zero object and difference

cokernels. We call an object Ae C simple if for any
difference cokernel diagram
B:A-—f—mz
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PAREIGIS et al. 3

either f 1s a zero morphism or an isomorphism. CeC 1is a
cogenerator if Morc(-,C) is a faithful functor.

LEMMA 1. Let C ©be a category with a zero object,

kernel pairs, difference cokernels, and a cogenerator.

Then every simple object Ae C admits a monomorphism

into the cogenerator C.

Proof: For the simple cbject O (zero object in ()
this is clear by definition [3, 1.7 Lemma 2]. Let A £ ©
be simple. Then MorC(A,C) contains at least one non-zero
morphism f: A — C, for if Mor,(A,C) = {0} then the

two different morphisms 0,1,: A —> A are mapped by

At
Morc(-,C) into the same morphism {0} — {0} but

MorE(-,C) is faithful.
Take a kernel pair
g £
XT—=3A ¢
h

for f, then f can be factored through the difference
cokernel k: A —> B of g and h:

Since A 1is simple either k = O but then so is f or
k 1is an isomorphism. By [3, 2.6 Lemma 2] the pair (1A,1A)
is a kernel pair for k and for f [3, 2.6 Lemma 4].
Again by [3, 2.6 Lemma 2] £ is a monomorphism.

COROLLARY 2. Let C ©be a category as in the preceeding

lemma which is locally small. Then ( possesses only a set

(not a proper class) of non-isomorphic simple objects.

Proof: Two non-isomorphic simple objects define two
different subobjects of the cogenerator C of C. But ¢C
has only a set of different subobjects.

We need another categorical lemma to compare cogenerators
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] PAREIGIS et al.

in different categories.

LEMMA 3. Let F: C — D be a faithful functor with a

a
right adjoint G: D — C . If D possesses a cogenerator
D then GD 1is a cogenerator in C.

Proof: We prove that Morc(-,gD) is a faithful functor.
In fact Mor,(-,GD) ¥ Morp(F-,D) = Mor,(-,D)F is a

composite of two faithful functors.

Now we give examples of(restricted)Lie algebras of
arbitrarily high cardinality. This will enable us to prove
the non-existence of cogenerators in many categories. First
we show that the usual concept of a simple (restricted) Lie
algebra, i.e. without a proper (restricted) Lie ideal,
coincides with the one given above for simple object in the
category of (restricted) Lie algebras. If I 1is a proper
(restricted) ideal of a (restricted) Lie algebra L, then
I is a (restrict?d) Lie algebra and

i
1—3L -5 /1
0
is a difference cokernel diagram with i: I —> L the

inclusion. Since I is a proper ideal, f is neither the
zero homomorphism nor an isomorphism. If

le'i:_: L, 2 Ly
is a difference co%ernel diagram then hf = hg , so
h(f - g)(Ll) = 0, so the (restricted) Lie ideal I
generated by (f - g)(Li) is the kernel of h . If
k: L2
then k(I) = O as above, 80 k can be uniquely factored
through L, — L2/I. Consequently this is the difference
cokernel of the pair f and g. If h: L2 - L3 is
neither a zero homomorphism nor an isomorphism, then I

—_ LB is another Lie homomorphism with kf = kg ,

must be a proper (restricted) ideal.

Let V Dbe an arbitrary k-vector space. Let End°(V) be
the set of all k-endomorphisms of V with finite dimen-
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PAREIGIS et al. 5

sional image. Then Endo(V) is an ideal of End(V), so it
is an associative ring possibly without unit. There is an

isomorphism of vector spaces ¢: V' ¢ V — Endo(V) given
by ¢(Z:wi s vi)(v) =) wi(v)vi , where V' 1is the dual

vector space of V . We identify V' & V and EndO(V) by
% . Since

o (X rl e s )0 (3 wioa vj)(v)

2 wi(v)ri(v,)s,
J 1 J 1
1 1
. o () Wi s ri(vj)si)(v)
we get that the product of End (V) 1is carried over to
1 1 = 1 1
(3 ries)Q Wi e Vj) 2 wiomri(vo)s;
by the isomorphism ¢. We define the trace of a map
. . o . .
Y w! ® v. in End (V) to be 2 w!(v;). Clearly this
coincides with the usual trace for finite dimensional

vector spaces V.

Let L{(V) be the set of endomorphisms in Endc(V) with
trace 0. Since the trace map is a k~homomorphism, L(V)
has codimension 1 in Endo(V), so for vector spaces V of
dim V >1 the dimension of L(V) has larger cardinality
than the dimension of V.

THEOREM 4. L(V) is a simple Lie algebra if dim V =
or if the characteristic of k does not divide dim V.,

Proof: We view Endo(V) as a Lie algebra with the usual
1 1
bracket. If ) r! e s, and }_ w! ® v, represent two
elements in L(V), then
1 1 - 1 1
tr(}_ r! a wj(si)vj Y wle ri(vj)si)
1 1 - 1 1
Y ri(wj(si)vj) Y wj(riévj)si)
so L(V) is a Lie subalgebra of End (V).

i

n
(@)

Let V be finite dimensional. If dim V > 3 and the
characteristic of k does not divide dim V and if I 1is
a non-zero ideal in L(V), then

[eij’[ejk’[eik’ersJ]J = -5is6kreik if 143 %k
So for )_ 8,g8.€ I , also -agse; € I. If ay . {40,

then e, eI . If all a,; =0 for 14k, then )} a.e.
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6 PAREIGIS et al.

is in I. But then

[e5io2 23853] = (a5 = apeyy
Since the characteristic of k does not divide dim V ,
we get again ejke I for some J % k . But [L(V), eij =
L(V), so L(V) 1is simple. For dim V = 2 and char k % 2
it is trivial to show that L(V) will again be simple.

Now let V Dbe infinite dimensional. Let I be a non-
zero ideal in L(V). Let 3 w! ®@ v, €I be a non-zero
element in L(V). Let Y _ rj e 5 be an arbitrary element
in L{(V). Write V = A @ B, where A contains the vi's
and the sj's and where wi(B) = 0 and rj(B) = 0 for
all 1 and Jj. This can be done such that A 1is finite
dimensional with dim A prime to the characteristic of k.
Then we get a monomorphism A' m A —> V' & V , where
A' —> V' comes from the projection V —— A. This is an
algebra homomorphism, i.e. this map preserves the products
defined above. It also preserves the trace. So this map
defines an injection of Lie algebras L(A) —> L(V). Since
A is finite dimensional, L(A) is simple. By construction
we have ) rj @ s and > w! ® v, in L(A). So
INL(A) $# O is an ideal of L(A). Since L{(A) is simple,
ID>L(A)D Y ri ® s;. This proves that every element of
L(V) is in I, so L(V) is simple.

COROLLARY 5. L(V) 1is a simple restricted Lie algebra if
the characteristic of k is p > 0 and if dim V = = or
p # dim V.

Proof: We show that tr(fp) = tr(f)p. Let f be repre-
1
sented by )} w} & v.. Then

tr((3_wi e vi)p) =

“e w! (v, dw! (v, )...w! (v. ) =
%i §: lp 1,771,071, 1p_1 lp .

)Y
pew! (v, )...w! (v, ) + 2 wi(v.)
(1,51 eT o R 1o-1 1p i=7 t ¢
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where T 1is a set of representatives for the orbits of
{(il,...,ip) | ij = 1,...,n; not all i, egquall

under the subgroup of the symmetric group S generated by

the cycle (1,...,p). So tr((}_w! ® vi)p) tr@_w! e vi))p.

In particular if fe L(V), then f*e€ L(V) so L(V) is a

restricted Lie algebra which is simple even as a Lie algebra.

ng o

COROLLARY 6. a) The category of Lie algebras over a

field k does not contain a cogenerator.

b) The category of restricted Lie algebras over a field k

of characteristic p > O does not contain a cogenerator.

Proof: Both categories have a zero-object, kernel pairs,
and difference cokernels [3, 3.2 Satz and 3.4 Korollar 3]
and are locally small [3, 3.2 Korollar 2]. So corollary 2
applies. Since for any cardinal there is a simple (restric-
ted) Lie algebra of larger cardinality than the given
cardinal, there is more than a set of simple (restricted)
Lie algebras. So there cannot be a cogenerator.

COROLLARY 7. The category of finite dimensional

(restricted) Lie algebras over a field k does not contain

a cogenerator.

Proof: A cogenerator would have a certain finite dimen-
sion but we have seen tnat for any n there are (restric-
ted) simple Lie algebras of finite dimension bigger than n.

Remark: A similar argument shows that the category of

finite groups does not contain a cogenerator.

PROPOSITION 8, The category of formal group schemes over

a field k does not contain a cogenerator,

Proof: The category of (restricted) Lie algebras allows
a full faithful covariant functor into the category of form-
al group schemes over a field k which has a right adjoint
functor [1]. By lemma 3 and corollary 6 the category of
formal group schemes over k cannot contain a cogenerator.
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8 PAREIGIS et al.

A Hopf algebra will always be a Hopf algebra with anti-
pode. Then again by [1] the category of formal group schemes
over k 1is equivalent to the category of cocommutative
Hopf algebras over k.

COROLLARY 9. The category of cocommutative Hopf algebras
over a field k does not contain a cogenerator.

For the definition of affine group schemes over a field
k we refer to [5]. An affine algebraic group scheme is then
an affine group scheme, the affine k-algebra of which is
finitely generated as an algebra.

PROPOSITION 10. a) The category of reduced affine
algebraic group schemes over an infinite field k does

not contain a cogenerator.

b) The category of affine algebraic group schemes over a
field k of characteristic p > O does not contain a

cogenerator.

Proof: a) Let Sl(m,k) denote the special linear group
in m x m-matrices over k. If Z 1is the center of S1(m,k)
then Z is finite [4, p.158 Thm.8.18] and if m > 2
S1(m,k)/Z is a simple group [4, p.169 Thm.8.27]. Now
suppose N 1is a closed normal subgroup of Sl(m,k) and
m > 2. Let q: Sl(m,k) — S1(m,k)/Z be the natural pro-
jection. The simplicity of S1l(m,k)/Z implies that either
qQ(N) = {e} or q(N) = S1(m,k)/Z. In the first case N¢ Z
so that N 1is finite and dim N = 0. In the second case
NZ = S1(m,k). Since N is closed and S1l{(m,k) is connected
it follows that N = S1(m,k).

Now suppose C is a cogenerator in the category of
reduced affine algebraic group schemes. Then C has some
"glgebraic" dimension n. Since dim Sl(m,k) = m - 1 we
can choose m so that dim Sl(m,k) > dim C. As in the proof
of lemma 1 there is a non-zero morphism f: Sl(m,k) — C.
Let N = Ker f. Then dim S1(m,k) = dim N + dim Im f. Since
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PAREIGIS et al. 9

f is non-zero N must not be equal to Sl(m,k) so that
N must have dimension O as shown above. Thus

dim S1(m,k) = dim Im f. But dim Sl(m,k) » dim C so that
dim S1(m,k) > dim Im f a contradiction. Thus no such ¢
exists.

b) The functor which assigns to each finite dimensional
restricted Lie algebra the dual of its restricted uni-
versal enveloping algebra viewed as an affine algebra of
an affine algebralc group scheme is faithful and has as a
right adjoint functor the functor which assigns to each
affine algebraic group scheme its restricted Lie algebra
which is finite dimensional [5]. So we can apply lemma 3
and corollary 7 to obtain the claimed result.

PROPOSITION 11. The category of Hopf algebras over a
field k does not contain a cogenerator.

We have the funcfor U from (restricted) Lie algebras
to Hopf algebras where U(L) is the (restricted)
enveloping algebra of L. If H 1is any Hopf algebra then
the primitive elements P(H) = {heéH|{A(h) = h® 1 + 1 @ h}
of H form a(restricted) Lie algebra under the bracket
(and associative pth power map, if char k = p > 0). If
H1 and H2 are Hopf algebras and f: H1 ——e»Ha a Hopf
algebra map then f(g(Hl))c'g(He), because f 1is a co-
algebra map. Also

f|2(H1): P(H,) —> B(H,)

is a (restricted) Lie algebra map. Thus the functor P
from Hopf algebras to (restricted) Lie algebras is a right
adjoint to U. By the(restricted) Birkhoff-Witt Theorem
the natural map L —> U(L) is injective so that U 1is a
faithful functor. Thus by lemma 3 and corollary 6 the
category of Hopf algebras cannot contain a cogenerator.

The same argument shows that there is no cogenerator
in the category of cocommutative Hopf algebras. In fact the
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10 PAREIGIS et al.
same functors have been used for the proof of proposition 8.

Generators

Both the categories of Lie algebras and restricted Lie
algebras contain generators [3, 3.4 Satz 3]. A generator
for the category of Lie algebras is the one dimensional
abelian Lie algebra; this is the free Lie algebra on one
element. This is also a generator in the category of
finite‘dimensional Lie algebras.

We now show there is no generator in the category of
finite dimensional restricted Lie algebras (or even finite
dimensional abelian restricted Lie algebras).

Let Xn denote the abelian restricted Lie algebra with

3e 003X where x!p} = X

basis x .
n i i+l
£p§ = 0.

for i = 1,...,n-1

and x

LEMMA 12. If L # {0} is
of X  then there is 1 <t

span of X ,...,X .

restricted Lie subalgebra

a
< n such that L is the

Proof: Choose an element x = atxt + ...+ anxn in L

with ay $ 0 and t minimal. We show that L contains
XpseoosXpye By the minimality of t in the choice of x

this shows that L 1is spanned by XpseoesX e To show
XpseoosX € L it suffices to prove x_€ L since L is
n th t

closed under p powers.,

Replacing x by x/at shows we may assume aB = 1 and

- : _ (pl
X = X + ... ¢ anxn. Replacing x by x a; 1% shows
that we may %ssume 8r,q 0, then replacing x by

- (p] - -
X 8, 0% shows that we may assume O = 84 T 8o

Continuing in this manner shows that xte L.

PROPOSITION 13. There is no generator in the category of

finite dimensional (abelian) restricted Lie algebras.

Proof: Suppose G is a generator. Choose n > dim G,

58
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Consider the restricted Lie algebra map f: Xn -3 X, with

1
Xy for i = 1
f(xi) =

0 for i 2544040,

Let g be the zero map from Xn to X1 . Since G is a
generator there is a restricted Lie algebra map h: G — Xn
with fh # gh. Thus Im h does not lie in the span of
XoyeoesXpye Since Im h 1is a restricted Lie subalgebra of
Xn it follows from lemma 12 that Im h is all of Xn.
This contradicts the fact that n > dim G.

Remark: A similar type of proof shows that there is no
generator in the category of finite groups. A generator G
has to map non-trivially into the cyclic group of order p
for each prime p. Thus G has at least p elements which
is a contradiction.

PROPOSITION 14. There is no generator in the category of
(reduced) affine algebraic group schemes over an algebraic-
ly closed field.

Proof: If G 1is a (reduced) affine algebraic group
scheme over an algebraicly closed field k, then G is a
finite union of connected components each of which has at
least one rational point [5, 2 Thm.6.4]. So G has a
finite constant quotient group scheme p: G —> F '"of
connected components". Given any finite constant group
scheme H and map of algebraic group schemes f: G —» H
the map f factors uniquely through p: G —> F. So the
constant group scheme functor from the category of finite
groups to the category of (reduced) affine algebraic group
schemes has the left adjoint functor "group of connected
components" and clearly is faithful. Thus we can apply the
dual of lemma 3 and the fact that there is no generator in
the category of finite groups to get the result.

We now show that there is a generator in the category of
Hopf algebras. The same techniques show that there is a
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generator in the category of commutative Hopf algebras, the
category of cocommutative Hopf algebras, and the category
of commutative cocommutative Hopf algebras

Five categories. Let k be the ground field and let H

be the category whose objects are Hopf algebras over k. For
A,B objects in H we let H(A,B) Dbe all Hopf algebra
morphisms from A to B.

Let C Dbe the category whose objects are coalgebras
over k. For A,B in C 1let C(A,B) be all coalgebra
maps from A to B.

€, is a full subcategory of (. An object A of C 1is

in C, 1if the coalgebra A contains at least one subco-
algebra which is isomorphic to the coalgebra k. For A,B

in 91 let gl(A,B) be all coalgebra maps from A to B.

An object of the category D 1is a coalgebra A to-
gether with a coalgebra antimorphism SA: A — A. (SA is
a coalgebra antimorphism means that eSA = € and
(SA ] SA)A ] TASA, where T 1is the twist map which inter-
changes the right and the left tensorands.) We do not
require that SA has order 2 or is surjective or injective.
For A,B in D we let D(A,B) consist of all coalgebra

maps f where fSA = SBf.

D, 1is a full subcategory of D. An object A of D 1is
in D, if the coalgebra A contains at least one subco-
algebra which is isomorphic to the coalgebra k. We do not

require that this subcoalgebra be stable under S or in

A
any other way be related to S,. For A,B in b, let
Qi(A’B) be all coalgebra maps f from A to B where
£S5, = Sgf.

Let U be the functor from D to C where for any
objeet A" in D, U(A) 1is the coalgebra with SA for-
gotten. For fe€ D(A,B) we let U(f) be f viewed solely
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as a coalgebra map. Note that U carries the category 21
to C,. We let gi be the functor from Dy to ¢, which
is the restriction of U.

LEMMA 15. U has a left adjoint A which carries C

=1
to Dy If we let él be the functor from 91 to D

1

to U,.

Proof: For a coalgebra A let A be a vector space
which is isomorphic to A by the isomorphism A — &,
a+—>a. Let A have the opposite coalgebra structure to
A 8o that for aed

A(a) = a
g @ * %

e(a) = e(a).
Then ~: A —3 A is a coalgebra antimorphism.

We define A(A) to be the coalgebra which is the direct
sum AGEADADEDADESD ... . Sa(n) is the coalgebra
antimorphism given by

(ao,Ez,a2,5;,...) — (O,E;,al,ig,a yeea)e
Suppose B is an object in D and fe€ D(A(A),B). Let
f'e C(A,U(B)) be given by ?'(a) = £(a,0,0,...). If
g€ C(A,U(B)) then define g' as follows:

go = g: A —> U(B)
% = SBi.g: A —> U(B) for 1 <1 and i even,

l.= SBi°9(_)_1: A—>U(B) for O<i and i odd.
Each gl is a coalgebra map and the gl's induce
= g° ;) gl ® ...: A(A) —> B
and geD(A(A),B).

0" ®

) =Y

One easily checks that the correspondences
D(A(A),B) e C(A,U(B))
£ — £!
g i g
are inverse to each other and functorial in A and B.
Thus A 1is left adjoint to U.
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The remaining claims are easily verified.

Consider the functor V from H to D. If A 1is a
Hopf algebra then the antipode SA is a coalgebra anti-
morphism of the underlying coalgebra structure [2]. We let
V(A) Dbe the underlying coalgebra of A with the anti-
morphism SA' If A,B are in H and fe H(A,B) then
V(f) 1is f considered as a coalgebra map which preserves
the antimorphism structure. Note that V actually carries
H to 21 since any Hopf algebra A contains a copy of k

in the form of ki,. Let V, be V with its range

restricted to Dy
PROPOSITION 16. V has a left adjoint B. If we let B
be the restriction of B to D, then B

1
adjoint to V,.

1
is a left

1

Proof: Suppose A 1is an object in D. Let FA be the
free algebra on A over k. By the universal property of

FA there are unique algebra maps e,: FA —> k and

F
bp: FA —> FA & FA making commute
A —LoFa A—1 5 FA
4
€ e Al A
\B’F 1 @ 1 WF
k AeA——""13Fr e FA
where 1: A —> FA is the natural inclusion. Thus FA

becomes the free bialgebra on A in that given any
bialgebra L and coalgebra map &: A —> L there is a
unique bialgebra map Z: FA —3> L where E1 = £ [6, p.62
Exercise 1]. By the universal property of FA there is a
unique algebra antimorphism SF: FA —> FA making commute

A —t-s FA

sal ls#

A —to FA .

- 8, 1is not necessarily an antipode for FA and we must

F

factor out the necessary relations to make SF an antipode.

Let L: FA —> FA, L(h) = Z:; S, (h )h - ¢{(h) and
E E = SrP(2) )P (2)
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R: FA — FA, R(h) = h S_(h ) - e(h).
= = Z;; (1)PF 7 (2)

A bit of calculation shows that

Z;; Lin(y)) ® Sphg)dhegy + 18 Ln),

;;; h(l)SF(h(B)) o R(h(z)) + R(h) & 1,
SFL(h) = RSF(h),

AL(h)

"

AR(h)

SgR(h) = LSp(h),

for all heFA. Thus by [6, p.88 Exercise] if we let J be
the ideal generated by Im R + Im L we have that J is a
biideal and FA/J 1is a quotient bialgebra of FA. From
the last two relations we see that SF(J)C J so that FA/J
has a coalgebra and algebra antimorphism SF/J induced by
SF' It is clear from the relations which generate J that
SF/J is an antipode for FA/J. Thus FA/J is a Hopf
algebra with antipode Sp ;. Let m: FA —> FA/J Dbe the
natural projection. The following results are easily veri-
fied:

1. The diagram

A —2— FA —1— FA/J
SAl . lsF . ISF/J
A - FA » FA/J
commutes.

2, mi: A —> FA/J 1is a coalgebra map.

3, If L 1is a Hopf algebra and E£: FA — L 1is a
bialgebra map then there exists a unique Hopf algebra map
=: FA/J —» L where =7 = E,

b, If L 4is a Hopf algebra and A: A —» L 1is a
coalgebra map where AS, = S.XA then there is a unique

A L
Hopf algebra map A: FA/J — L with A(mi) = A,

Of course 4. shows that if we define B(A) to be FA/J
then B 1is a left adjoint to V. The remaining claims are
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easily verified.

THEOREM 17. The category 91 has a generator G.

Proof: The isomorphism classes of finite dimensional
coalgebras over k form a set. This is true because if V
is an n-dimensional vector space over k then a coalgebra
structure on V consists of an element of Homk(v,k) and
an element of Homk(V,V ® V) satisfying certain conditions.
Thus the set of coalgebra structures on V 1is a certain
set Cnc Homk(V,k) x Homk(V,V s V). I, the isomorphism
classes of n-dimensional coalgebras,is a certain set of
equivalence classes of Cn' Thus the set of isomorphism
classes of finite dimensional coalgebras over k is the
disjoint union I = g;ﬁ In'

For each xeI 1let Cx be a coalgebra in the isomor-
phism class of x. Let G be the coalgebra @ Cx‘ Since
the isomorphism class of k is in I we ha6§I that G
has a subcoalgebra which is isomorphic to k. Thus G 1is
in the category 91.

Let A be any coalgebra in the category 91' Let B be
a subcoalgebra of A which is isomorphic to k. Given any
a€A let C be the subcoalgebra of A which is generated
by a [6, p.45 Definition]. By [6, p.46 Thm.2.2.1] C is
finite dimensional and there is a unique element 2z€ I
which is the isomorphism class of C.

Fix a coalgebra isomorphism b, Cz-——+ C. For xel
where x % z let byt Cx ~> A be the composite

cC, ———> k=B — A .

Then ¢ = G& wx: G —> A is a coalgebra map with aeCC
€
Im y. Thig proves that G 1is a generator for 91.

COROLLARY 18. The categories D, and H have gene-

rators.
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Proof: The functor U, from D, to C; 1s faithful.

Thus A,(G) 1is a generator for D,. The functor V, from

H to D, is faithful. Thus B,A,(G) 1is a generator for H.

COROLLARY 19. The categories of commutative Hopf

algebras, of cocommutative Hopf algebras, and of commu-
tative cocommutative Hopf algebras have generators.

Proof: To prove that there is a generator in the
category of cocommutative Hopf algebras, proceed as above
but replace the term "coalgebra'" by the term "cocommutative
coalgebra" throughout.

To prove that there is a generator in the category of
commutative Hopf algebras let H be the category of
commutative Hopf algebras and let C,, C, D,;, and D be as
before. In the proof that ¥V has a left adjoint B
replace FA the free algebra on A by SA the symmetric

algebra on A. The rest is unchanged.

To prove that there is a generator in the category of
commutative cocommutative Hopf algebras, proceed as if
proving that there is a generator in the category of
commutative Hopf algebras but replace the term "coalgebra"
by the term "cocommutative coalgebra" throughout.
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