An Official Publication of The Transplantation Society The Japan Society for Transplantation

VOL. XII, NO. 1

MARCH 1980

CONTENTS

INTRODUCTION

Introduction	Mortimer M. Bortin a	and Robert L. Truitt	1
Antitumor Cytoto	oxic T Cells and Non-T-Cells Generated by Allose F. H. Bach, P. A. Paciucci, S. Macphail, P. M.	ensitization In Vitro Sondel, B. J. Alter, and J. M. Zarling	2
Regulation of Imr	nune Response by MHC-Linked Genes	C. S. David	· 8
The Concept of A Recognition,	daptive Differentiation: Relevance to MHC Polyr and Leukemogenesis	norphism, Self- D. H. Katz	12
Problems With an Histocompati	nd Approaches to Specificity in the Serologic Mea bility and Tumor-Associated Antigens on Tumor	surement of Cell Surfaces <i>P. A. Klein</i>	16
ANTIG Biologic Effects of Leukemia of	f the Altered MHS Profile on the K36 Tumor, a S AKR	D ANTIGENS Spontaneous Instein, W. Schmidt, elli and S. Simpson	25
Serologic and Im AKR Sponta	nunochemical Studies of the Cell Membrane Allo neous Leukemia	pantigens of K36, an stein, and G. Atfield	29
Foreign H-2-Like Alloreactive (Specific CTL	Molecules on a Murine Tumor (MCG4): Target Cytolytic T Lymphocytes (CTL) and Restricting V. Schirrmacher, F. C E. Garcia-Olivares,	Antigens for Elements for Virus- Garrido, D. Hübsch, and U. Koszinowski	32
Alien H-2 Antige (H-2 ^d): Bioch	ns (H-2 [°]) Appearing on a Methylcholanthrene-In nemical Characterization <i>M. J. Ro</i> <i>G. Parmi</i>	duced Tumor gers, M. A. Pierotti, iani, and E. Appella	38

(Continued)

(Continued)

Tumor Rejection Activity of Antigens Isolated From the Membranes of a Methylcholanthrene-Induced Sarcoma, C-1, Bearing Alien H-2 Antigens L. W. Law, G. C. DuBois, M. J. Rogers, E. Appella, M. A. Pierotti, and G. Parmiani	46
Lack of Identity Between TSTA and Alien Antigens of Methylcholanthrene-Induced Murine SarcomasG. Parmiani	50
Characterization of "Foreign" Alloantigen-Like Specificities on a Murine Lymphoma Cell Line	53
Inappropriate Alloantigen-Like Specificities Detected on Reticulum Cell Sarcomas of SJL/J Mice: Characterization and Biologic Role	59
Cell Surface Antigens of Chemically Induced Sarcomas of Inbred Mice A. B. DeLeo, G. Jay, E. Appella, G. C. DuBois, L. W. Law, and L. J. Old	65
The Relationship Between Tumor-Specific Antigens and Normal Alloantigens on Aminoazo Dye-Induced Rat Hepatomas	70

IDENTIFICATION AND CHARACTERIZATION OF NORMAL AND NEOANTIGENS ON TUMOR CELLS

Variation in Expression of H-2 Histocompatibility Antigens on Tumor Cells M. Imamura and W. J. Martin	77
The Relationship of Alloreactivity to Syngeneic Tumor Immunity M. I. Greene and L. L. Perry	80
Alterations in Expression of Glycoproteins by a Murine Fibrosarcoma Detected With Staphylococcus aureusG. N. Callahan, M. A. Pellegrino, and L. E. Walker	87
Microvesicle-Induced Antigen Transfer to Target Cell Membranes	91
Syngeneic Monoclonal Antibodies to a Methylcholanthrene-Induced Mouse Sarcoma E. Lennox, J. Cohn, and T. Lowe	95
A Nucleolar Antigen in Human Malignant Tumors	99
H-Y Antigen as a Model for Tumor Antigens: The Role of H-2-Associative Antigens in Controlling Anti-H-Y Immune Responses	103

(Continued)

Normal HLA Phenotypes and Neo-HLA-Like Antigens on Cultured Human Neuroblastoma	107
Alloantigens of Human T-Cell Subsets Identified by the Two-Colors Fluorescence Test G. B. Ferrara and A. Longo	114
First and Second B-Lymphocyte Antigen Expression in Malignant Melanoma S. D. Nathanson, M. S. Park, S. I. Drew, D. L. Morton, and P. I. Terasaki	118
Immunogenicity of DR Antigens Isolated From Body Fluids	121
Characterization of DR Antigens on Cultured Melanoma Cells by Using Monoclonal Antibodies	125
Transient Appearance of HLA-DRw-Positive Leukocytes in Peripheral Blood After Cessation of Antileukemia TherapyJ. T. Casper, R. J. Duquesnoy, and L. Borella	130
HLA Typing of Cultured Human Tumor Cell Lines: The Detection of Genetically Appropriate HLA-A, B, C, and DR Alloantigens	134
Association of the B-Cell Alloantigen MB1 With HLA-DRw1 and DRw2 R. J. Duquesnoy, M. Marrari, and K. Annen	138
ALIEN HISTOCOMPATIBILITY ANTIGENS AND Their potential for the prevention, Therapy, and detection of malignancy	
Alloinimunization: Induction of Antileukemic Reactivity Without Modification of Anti-Host Reactivity in H-2-Compatible Mice	143
Therapeutic Effect Dependent on Timing of Combination Treatment With Chemotherapy and Allogeneic Lymphoid Cell Transfer in RatsE. Gotohda, T. Kawamura, Y. Yamada, M. Hosokawa, T. Kodama, and H. Kobayashi	147
Allosensitization Protects Against Lethal Challenge With a Syngeneic Mouse Lymphoma	150
On the Nature of the Antigen (HO-SAL) Responsible for Protection of August Rats Against a Syngeneic Leukemia Following Immunization With AgB-Identical Allogeneic Cells	152

(Continued)

Cytotoxicity Induced by Inflammatory Cells Stimulated With Allosensitized Lymphocytes	160
Enhanced Cytotoxicity of Allosensitized T Cells for Autologous Lymphoblastoid Cell Lines and Human Leukemia Cells Following Propagation in T-Cell Growth Factor	164
Autoreactive Cells in Cancer-Active Immunotherapy: Their Cytotoxic Potential and Genetic Restriction	167
Virus-Immune Cytotoxic T-Cell Activity Following Negative Selection of Alloreactive Precursor Lymphocytes	172
Specificity of Antibody Induced in Sarcoma Patients Immunized With Allogeneic Sarcoma Cells	175
Autoreactive and Alloreactive Antibody-Forming Cells (AFC) Following Lipopolysaccharide (LPS) Activation of Normal and Memory Lymphocytes Y. E. McHugh and B. Bonavida	179
Xenogeneic Antitumor Antibodies in Cancer Radioimmunodetection D. M. Goldenberg, F. H. DeLand, E. E. Kim, and F. J. Primus	188
Use of Cell Surface Localizing Antihepatoma Antibody for Tumor Imaging and Therapy With Drug-Linked Antibody T. Ghose, J. Tai, A. Guclu, S. T. Norvell, A. H. Blair, and J. Aquino	192
Carcinoembryonic Antigen-Binding Immunoglobulin Isolated From Normal Human Serum by Affinity Chromatography	195
The Immunodiagnosis of Leukemia A. V. Pisciotta, C. Cronkite, S. Pryor, and B. Wilson	198
Active Secretion of Cytoskeletal and Mechanochemical Proteins in EBV-Genome- Positive Human Lymphocytes	205

OVERVIEW

The Alienation of Tumor Immunity: Alien-Driven Diversity and Alien-Selected	
EscapeP. M. Sondel and F. H. Bach	211
Participants	216

RECENT ADVANCES IN TRANSPLANTATION

Pregnancy in Renal Transplantation W. C. Waltzer, C. B. Coulam, H. Zincke,	
S. Sterioff, and P. P. Frohnert	221
Transplantation Proceedings Abstracts	227
Author Index	232

is pleased to present this joint publication of two important international symposia

> on IMMUNOSUPPRESSION

INTERNATIONAL SYMPOSIUM ON PHARMACOLOGIC IMMUNOSUPPRESSION IN ORGAN TRANSPLANTATION

Cardiff, Wales, U.K. September 25-26, 1979

Dr. J. R. Salaman (Chairman & Secretary) Mrs. J. A. Hegarty (Treasurer) Professor R. Y. Calne Professor P. Bell Professor P. J. Morris Dr. R. Sells

INTERNATIONAL SYMPOSIUM ON NEW APPROACHES TO IMMUNOSUPPRESSION

Pacific Medical Center, San Francisco July 19-20, 1979

Derek Sampson, San Francisco and Barry Levin, San Francisco Co-chairmen

We would like to record our sincere thanks to the following companies who have generously supported the symposia:

ALLEN & HANBURYS LIMITED BECTON DICKINSON UK LIMITED BOEHRINGER INGELHEIM LIMITED BOOTS COMPANY LIMITED **CIBA LABORATORIES** CORDIS-DOW CO. ETHICON LIMITED GAMBRO LIMITED **GEISTLICH SONS LIMITED GLAXO LABORATORIES LIMITED** HOECHST PHARMACEUTICALS LIMITED JANSSEN PHARMACEUTICALS LIMITED PHARMACIA G.B. LIMITED ROCHE PRODUCTS LIMITED SANDOZ PRODUCTS LIMITED UPJOHN LIMITED THE WELLCOME FOUNDATION

Transplantation Proceedings

An Official Publication of The Transplantation Society The Japan Society for Transplantation

VOL. XII, NO. 2

JUNE 1980

CONTENTS

CHEMICAL IMMUNOSUPPRESSION-CYCLOSPORIN A

Immunosuppressive Properties of Cyclosporin A (CY-A)J. F. Borel	233
Cyclosporin A: A Discussion of its Clinical and Biologic Attributes—Summary of a Workshop	234
Immunosuppression for Organ Grafting R. Y. Calne	239
Preliminary Experience With Cyclosporin A in Human Renal Allografts O. N. Fernando, P. Sweny, K. Farrington, H. Rogers, R. A. Baillod, M. K. Chan, Z. Varghese, and J. F. Moorhead	244
Effects of Cyclosporin A on the Generation of Primed Lymphocytes In Vitro S. B. Leapman, R. S. Filo, E. J. Smith, and P. G. Smith	246
The Effect of Cyclosporin A on the Primary and Secondary Immune Responses in the RabbitN. J. Lindsey, K. R. Harris, H. B. Norman, J. L. Smith, H. A. Lee, and M. Slapek	252
Effects of Cyclosporin A in Rat Kidney Grafts M. H. Simms, J. K. Cruickshank, J. D. Blainey, A. H. Cameron, and A. D. Barnes	256
Cyclosporin-A-Induced Long-Term Survival of Fully Incompatible Skin and Heart Grafts in RatsD. J. G. White, K. Rolles, T. Ottawa, and O. Turell	261
The Effect of Cyclosporin A on Experimental Pancreas Allografts in the Rat J. F. W. Garvey, P. McShane, M. D. Poole, P. R. Millard, and P. J. Morris	266
Cyclosporin A Prolongation of Segmental Pancreatic and Islet Allograft Function in RatsJ. J. Rynasiewicz, D. E. R. Sutherland, K. Kawahara, P. Gorecki, and J. S. Najarian	:70
Prolongation of Canine Pancreas Allografts With Cyclosporin AP. McMaster, A. Procyshyn, R. Y. Calne, R. Valdes, K. Rolles, and D. Smith	:75
Effects of Cyclosporin A on Experimental Graft-Versus-Host Disease in Rodents D. W. van Bekkum, S. Knaan, and C. Zurcher	:78

(Continued)

(Continued)

Rejection of Long-Surviving Mouse Skin Allografts After Withdrawal of (Cyclosporin A TherapyS. P. M. Lems, P. J. A. Capel, and R. A. P. Koene	283
The Interaction of Cyclosporin A With Other Immunosuppressive Agents in Dog Recipients of Renal AllograftsW. P. Homan, M. E. French, J. W. Fabre, P. R. Millard, T. G. Denton, and P. J. Morris	287
Comparison of Various Methods of Chemical Immunosuppression in Islet Cell TransplantationP. R. F. Bell, R. F. M. Wood, M. Peters, and J. R. Nash	291
CHEMICAL IMMUNOSUPPRESSION—OTHER AGENTS	
A Controlled Clinical Trial of Niridazole in Cadaver Renal Transplantation J. R. Salaman, P. J. A. Griffin, and R. W. G. Johnson	297
The Imidazoles as Immunosuppressive AgentsJ. J. Miller	300
Cyclic Nucleotides in Immunosuppression—Neuroendocrine Pharmacologic Manipulation and In Vivo Immunoregulation of Immunity Acting Via Second Messenger Systems	304
Platelet Inhibitors in Human Renal Homotransplantation: Randomized Comparison of Aspirin Versus Dipyridamole	311
Pharmacologic Immunosuppressive AgentsG. L. Floersheim	315
CORTICOSTEROID THERAPY	
Prospective Trial of High-Dose Versus Low-Dose Prednisolone in Renal Transplant Patients	323
Long-Term Comparison Between Single-Morning Daily and Alternate-Day Steroid	

Use of Fine-Needle Aspiration Cytology in the Monitoring of the In Situ Inflammatory Response of Kidney Allograft Rejection and the Impact of Glucocorticosteroids on the InflammationB. Häyry, E. von Willebrand, J. Ahonen, B. L. Lindström, and B. Eklund 331

Detrimental Effect of Steroids on Cyclosporin-A-Induced Prolonged Allograft Survival......D. C. Dunn, D. J. G. White, B. M. Herbertson, and K. Rolles 335

DONOR ORGAN PRETREATMENT

Donor Pretreatment as an Adjunct to Cadaveric Renal Transplantation—Update 1979......R. D. Guttmann, D. D. Morehouse, J. L. Meakins, C. A. Milne, and J. Knaack 341

(Continued)

Pretreatment of Cadaver Donors With Cyclophosphamide and Methylprednisolone: Effect on Renal Transplant Outcome	348
Preoperative Immunosuppression With Antithymocyte Serum and Procarbazine: Effect of Kidney Graft Survival in Dogs After Donor or Third-Party Antigen Administration	352
Prolongation of Canine Renal Allografts in the Immunosuppressed Host by Donor Pretreatment With Cytolytic AgentsR. McCabe, A. Swistel, D. Lorieo, and H. F. Fitzpatrick	355
Transplantation Proceedings Abstracts	359
Author Index	364

Metabolic Surgery

Edited by HENRY BUCHWALD M.D., PH.D. and RICHARD L. VARCO, M.D., Ph.D.

Metabolic Surgery provides an authoritative, upto-date overview of an emerging field which the editors believe will be the next significant phase of surgical progress. Metabolic surgery is defined here as the operative manipulation of a normal organ, or organ system, to achieve a biological result for a potential health gain. The noted contributors highlight a number of well-developed areas, discussing laboratory work, clinical findings, and implications. Topics discussed are metabolic procedures in the gastrointestinal tract, metabolic consequences of pancreatic and splenic surgery, portacaval shunt procedures, extirpation of normal endocrine glands, transplantation for metabolic diseases, and neurosurgical operations. Also discussed are the novel and extraordinary applications of electromagnetic fields in orthopedics. For surgeons, physicians, and residents, Metabolic Surgery will-serve as a standby reference and basic source information.

1978, 336 pp., 84 illus. ISBN: 0-8089-1077-9

GS 0040

Grune & Stratton

A Subsidiary of Harcourt Brace Jovanovich, Publishers 111 FIFTH AVENUE, NEW YORK, N.Y. 10003 24-28 OVAL ROAD, LONDON NW1 7DX

An Official Publication of The Transplantation Society The Japan Society for Transplantation

VOL. XII, NO. 3

SEPTEMBER 1980

CONTENTS

Dedication	367
IntroductionD. Pressman	368

HYBRIDOMA ANTIBODIES TO IDENTIFY, ISOLATE, AND CHARACTERIZE MOLECULES ASSOCIATED WITH MEMBRANES OF NORMAL AND NEOPLASTIC CELLS

Clonal Competition and Stability of Hybrid Myelomas of Mouse and Rat Origin G. Galfré, G. W. Butcher, J. C. Howard, C. D. Wilde, and C. Milstein	371
Use of Monoclonal Antibodies to Investigate Immunologic Cross-Reactivity of Histocompatibility Antigens From Various Animal Species	376
Monoclonal Antibodies to Human Melanoma-Associated Antigens	380
Monoclonal Antibodies to Human Tumor Antigens	384
Monoclonal Antibody-Recognizing Tumor-Associated Antigen of DBA/2 Mouse Lymphoma L1210 and its SublinesH. Fuji	388
Attempts to Obtain Monoclonal Antibody Against MMTV Tumors	391
Monoclonal Antibodies to the Envelope Proteins of Moloney Leukemia Virus: Characterization of Recombinant VirusesL. Cicurel, J. C. Lee, L. Enjuanes, and J. N. Ihle	394
Monoclonal Antibodies to Teratomas and Breast P. A. W. Edwards, C. S. Foster, and R. A. J. McIlhinney	398

CONTENTS (Continued)

USE OF HYBRIDOMA TECHNOLOGY TO STUDY NORMAL CELL FUNCTION

Idiotypic Network: Study With Hybridoma TechnologyPA. Cazenave, C. Le Guern, P. Legrain, D. Juy, and G. Buttin	405
Use of Hybridoma Technology to Assess the Antibody Repertoire to a Negatively Charged Hapten	409
Immunochemistry of Monoclonal AntibodiesG. L. Mayers and R. B. Bankert	413
Genetics of Human Immunoglobulins: Assignment of the Genes for μ , α , and γ Immunoglobulin Chains to Human Chromosome 14	417
T-T CELL HYBRIDOMAS: STRUCTURE AND FUNCTION OF EFFECTOR MOLECULES	
Two Distinct Molecules That Compose an Antigen-Specific Suppressor Factor M. Taniguchi	423
T-Cell Hybrids as a Source of Antigen-Specific Factors	427
The Characterization of an IgE-Class-Specific Suppressor Factor Secreted by a Suppressor T-Cell HybridomaT. Watanabe, M. Kimoto, K. Nakanishi, S. Maruyama, T. Kishimoto, and Y. Yamamura	432
RECENT DEVELOPMENTS IN CELL FUSION METHODOLOGY	

Somatic Variants in Mouse Myeloma and Hybridoma Cell Lines......D. E. Yelton, W. D. Cook, and M. D. Scharff 439

Monoclonal Antibodies and How to Make ThemS. Fazekas de St. Groth 447

CONCLUDING SECTIONS FIRST INTERNATIONAL SYMPOSIA ON IMMUNOSUPPRESSION

TRANSPLANTATION TOLERANCE

The Induction of Transplant Tolerance.....J. W. Fabre 457

(Continued)

CONTENTS (Continued)

Induction of Suppressor Cells and Allograft Tolerance L. Brent, T. Horsburgh, and P. J. Wood 464 Induction of Allogeneic Unresponsiveness by Supralethal Irradiation and Bone Marrow Reconstitution F. T. Rapaport, R. J. Bachvaroff, N. Akiyama, and T. Sato 473 Immunosuppression and Tolerance After Total Lymphoid Irradiation (TLI) S. Strober, M. Gottlieb, S. Slavin, D. P. King, R. T. Hoppe, Z. Fuks, C. P. Bieber, and H. S. Kaplan 477 H. K. Johnson, and M. B. Tallent 483 Preliminary Evidence of Dual-Marked Lymphocytes in Thoracic Duct Lymph Fluid J. C. Cicciarelli, Y. Iwaki, P. I. Terasaki, K. Guidera, S. Shirahama, R. Billing, M. Hermes, L. Cardman, T. Kano, S. Iwatsuki, L. Koep, R. Weil, and T. E. Starzl 490

HLA-DR MATCHING

HLA-DR Matching and B-Cell Crossmatching in Renal TransplantationA. Ting,	
K. A. Williams, and P. J. Morris	495
The DR System of Rhesus Monkeys: A Brief Review of Serology, Genetics, and	
Relevance to TransplantationH. Balner	502

TRANSPLANTATIO JAPONICA

Withdrawal of Azathioprine After Renal Transplantation	513
Effect of Bredinin on Cellular and Humoral Immune Responses and on Canine Kidney Allograft Survival M. Okubo, K. Kamata, K. Yokota, H. Uchida, Y. Masaki, E. Ishigamori, M. Kato, K. Aso, and N. Kashiwagi	515
Results of Treatment of Hypertension After Renal Transplantation: Effects of Converting Enzyme Inhibitor, Angiotensin II Analog, β-Blockade, and Dopamin β-Hydroxylase InhibitorT. Ochiai, K. Watanabe, H. Nishijima, R. Hayashi, H. Sato, T. Takagi, K. Mikami, T. Nishikawa, Y. Tamura, and A. Kumagai	520
Clinical Trial of Bredinin in Renal Transplantation	526
Transplantation Proceedings Abstracts	529
Author Index	535

An Official Publication of The Transplantation Society The Japan Society for Transplantation

VOL. XII, NO. 4

DECEMBER 1980

CONTENTS

Introduction R. A. Pfeffermann	537
ForewordF. T. Rapaport	538
Transplantation—A PerspectiveF. D. Moore	539

IMPACT OF TRANSPLANTATION ON IMMUNOLOGY

The Impact of Transplantation on Fundamental and Cellular Immunology	
M. Schlesinger	553
Allotransplantation and AutoimmunityF. Milgrom	557
The Impact of Transplantation on Immunogenetics (Or the Importance of a Single Chance Observation and of Close International Cooperation in Unraveling the Genetics of HLA)	566
The Major Histocompatibility Complex: A Key to a Better Understanding of Evolution	575
The Immunologic Basis of the Fetal-Maternal Relationship S. Segal, B. Tartakovsky, S. Katzav, and P. DeBaetselier	582
Immunosuppression in Organ Transplantation: Past, Present, and FutureJF. Bach	588
IMPACT OF TRANSPLANTATION ON MEDICINE AND SURGERY	
Impact of Transplantation on Microbiology and Infectious Diseases J. W. Alexander	593
The Impact of Transplantation on Nephrology: How the Child Fostered the Mother B. Descamps, L. H. Noël, and J. Hamburger	600
Bionic, Organic, and Hybrid Spare Parts in Clinical Medicine E. A. Friedman	605
Bone Marrow Transplantation in Aplastic Anemia and Leukemia C. Hershko and R. P. Gale	612
(Continued)	

CONTENTS (*Continued*)

The Impact of Plastic Surgery on Transplantation From Skin Graft to Microsurgery N. Ben-Hur and J. M. Converse	616
The Experimental Skin Allograft in Man F. T. Rapaport, J. M. Converse, and J. Dausset	621
The Ripple Effect of Liver Transplantation	626
The Impact of Transplantation on the Understanding and Treatment of Diabetes and the Pancreas	634
The Mutual Impact of Transplantation and Advances in the Understanding and Treatment of Metabolic Diseases D. F. R. Sutherland, A. I. Matas, and I. S. Najarian	643
The Impact of Cardiac Transplantation on Contemporary Medicine and Biology R. B. Griepp and M. A. Ergin	653
IMPACT OF TRANSPLANTATION ON CANCER RESEARCH	
Cancer Immunology: Some Basic Concepts G. Klein	661
The Transplantation Experience, Tumor Immunology, and Tumor Immunotherapy D. W. Weiss	666
Some Contributions of Transplantation to Our Knowledge of Cancer	676
SOCIAL IMPACT OF TRANSPLANTATION AND SUMMATION	1
The Impact of Organ Transplantation on Society	683
The Impact of Transplantation on Contemporary Biology and Medicine: A Summation	688
RECENT ADVANCES IN TRANSPLANTATION	
Prevention and Management of Urologic Complications Following Renal Transplantation	695
Transplantation Proceedings Abstracts	703

Author Index.....

708

Foreign H-2-Like Molecules on a Murine Tumor (MCG4): Target Antigens for Alloreactive Cytolytic T Lymphocytes (CTL) and Restricting Elements for Virus-Specific CTL

V. Schirrmacher, F. Garrido, D. Hübsch, E. Garcia-Olivares, and U. Koszinowski

WE RECENTLY reported about a sarcoma of BALB/c (H- 2^d) mice that had been newly induced by methylcholanthrene and adapted to the ascites form.¹⁻³ This tumor, MCG4, upon transplantation into normal BALB/c mice, showed a high frequency of spontaneous regression. An H-2 typing analysis of the tumor revealed a loss of four antigenic specificities present on normal H-2^d cells (i.e., the private specificity 4 and the public specifities 3, 8, and 13) and a gain of the public specificity H-2.5, which is characteristic of foreign haplotypes (e.g., H-2^k and H-2^b). The tumor also reacted with different monoclonal BALB/c hybridomaderived anti-H-2^k antibodies.³

Furthermore, regressor animals were found to have developed antibodies with high cytotoxic antitumor activity.² These BALB/c anti-MCG4 isoantisera recognized an alloantigen on the tumor that was very similar to H-2 antigens expressed on normal cells from mouse strains of foreign H-2 haplotypes. Lymphoid cells from strains sharing the H-2 haplotype with the tumor-bearing host (H-2^d) did not react with the MCG4 isoantisera.^{2,3}

In this article we will present further evidence for the H-2 nature of the alloantigens expressed by the MCG4 tumor. The evidence derives from a typing analysis with specific cytolytic T lymphocytes (CTL): CTL

© 1980 by Grune & Stratton, Inc. 0041-1345/80/1201-0007\$01.00/0

from BALB/c mice sensitized against foreign H-2 molecules (e.g., $H-2^k$) will be shown to react specifically with the MCG4 tumor. Furthermore, anti-Sendai virus CTL from $H-2^k$ mice will be shown to recognize $H-2^k$ -like determinants as restricting elements on Sendai-virus-infected MCG4 tumor target cells.

MATERIALS AND METHODS

⁵¹Cr Release Cytotoxicity Test

This 4-hr assay was performed as described previously.⁴

Generation of Cytolytic T Lymphocytes

CTL against alloantigens were generated in mixed lymphoctye cultures in vitro using normal spleen cells as responders (R) and mitomycin-C-treated syngeneic or allogeneic spleen cells as stimulator cells (S). The cells were cocultured for 4–5 days in Falcon flasks at a density of 4 × 10⁶ responder cells and 10⁶ stimulator cells per milliliter. The effector cells generated were washed twice before they were tested in the cytotoxicity assay. Either tissue-culture-adapted MCG4 tumor cells or Con-Aactivated lymphoblasts were used as target cells. The latter were generated in spleen cell cultures by incubation for 2 days with concanavalin A at 12 µg/ml. The blast cells were enriched by Ficoll-Isopaque centrifugation and labeled with ⁵¹Cr as described.⁴

CTL against Sendai virus (SV) were generated by coculturing spleen cells from SV-immunized mice in vitro with inactivated SV.⁵ Target cells were sensitized with SV antigens as described.⁵

Further details about Materials and Methods are published elsewhere.¹⁻³

RESULTS

H-2 Allodeterminants on MCG4 Recognized by Specific Cytolytic T Lymphocytes

Figure 1 illustrates the results obtained in a cytotoxicity test using BALB/c anti-H-2^b CTL as effector cells and the BALB/c-derived tumor MCG4 as target. Specific lysis of tumor cells was observed with BALB/c

From the Institut für Immunologie und Genetik, Deutsches Krebsforschungszentrum, Heidelberg, F.R.G. and the Tumorimmunology Unit, Facultad Medicina, Granada, Spain.

Reprint requests should be addressed to V. Schirrmacher, M.D., Institut für Immunologie und Genetik, Deutsches Krebsforschungszentrum, Heidelberg, F.R.G.

Fig. 1. Allodeterminants recognized on MCG4 by BALB/c anti-H-2^b cytolytic T lymphoctyes.

anti-B10 (anti-H-2^b) effector cells, while the negative control BALB/c anti-B10.D2 was noncytotoxic to the tumor. Effector cells with selective specificity for the K-end of H-2^b [BALB/c anti-B10.A(5R)] also lysed the MCG4 target, while those with specificity for the D-end of H-2^b (BALB/c anti-D2.GD) showed little if any antitumor cytotoxic activity. Positive control target cells were Con-A blasts from B10.A(5R) and D2.GD (Fig. 1 C and D). These targets were specifically lysed by the anti-K^b and the anti-D^b CTL, respectively, without any detectable cross-reactivity. Con-A blasts of BALB/c origin were not lysed by any of the BALB/c anti-H-2^b cytolytic T cells, while they were lysed by C57BL/6 anti-BALB/c (anti-H-2^d) CTL (Fig. 1B). MCG4 was also lysed by the anti-H-2^d CTL but to a lower extent than observed with the anti-H-2^b CTL.

Similarly, we tested the expression of H- 2^{k} -like allodeterminants on MCG4 with anti-H- 2^{k} CTLs (Fig. 2). BALB/c anti-H- 2^{k} CTLs were found to have even higher cyto-lytic activity on MCG4 targets than the CTLs specific for H- 2^{b} (50% ⁵¹Cr release at effector:target cell ratio of 10:1 as compared to 50:1). Furthermore, CTL with specificity for either the K-end or the D-end of the H- 2^{k} haplotype was cytolytic towards MCG4, while the selective specificity could be demonstrated on lymphoblast targets expressing the K^k (Fig. 2B) or the D^k (Fig. 2C) molecule.

H-2-Restricting Determinants on MCG4 Recognized by Allogeneic Antivirus Cytolytic T Lymphocytes

Anti-Sendai-Virus (SV) CTL were generated in B10.D2 ($H-2^{d}$), C57BL/6 ($H-2^{b}$), and

Fig. 2. Allodeterminants recognized on MCG4 by BALB/c anti-H-2^k cytolytic T lymphocytes.

B10.A (4R) $(H-2^{h4})$ mice. They were tested for virus-specific cytolytic activity on noninfected and SV-infected MCG4, P815, C57BL/6, and B10.BR lymphoblast target cells. The results are illustrated in Fig. 3.

Anti-SV CTL from $H-2^d$ mice specifically lysed the SV-infected $H-2^d$ tumor target P815 but did not react with any of the other virus-infected targets, including MCG4. Anti-SV CTL from $H-2^b$ mice specifically lysed the SV-infected $H-2^b$ lymphoblast and none of the other targets. However, anti-SV CTL from B10.A (4R) mice (K^kD^d) specifically lysed the SV-infected $H-2^k$ lymphoblast from B10.BR and the SV-infected MCG4 target. They did not react with P815-SV and only marginally with C57BL/6-SV target cells.

These results clearly demonstrate determinants on MCG4 tumor cells that can be detected in associative recognition by CTLs specific for SV and restricted by molecules coded for by the K region of the $H-2^k$ haplotype.

This conclusion was supported by further experimental data that are not presented: Anti-SV CTL from B10.BR (H-2^k) mice specifically lysed MCG4-SV and B10.BR-SV lymphoblasts but not P815-SV, while anti-SV CTL from A.TL (K^sD^d) and D2.GD (K^dD^b) mice lysed specifically P815-SV but not MCG4-SV.

DISCUSSION

Foreign H-2 specificities have previously been detected on various murine tumor cells by serologic or transplantation techniques.^{2,6-9} According to our present concept about the genetic organization of the H-2 complex,¹⁰⁻¹² such determinants could not be coded for by the H-2 alleles of the tumor-bearing host. They have therefore been called "alien," "foreign," "H-2-like," or "inappropriate." Foreign H-2 specificities might indicate (1) the presence of mutated¹² or otherwise altered normal H-2 molecules, or (2) the presence of products of derepressed normally silent H-2 genes.^{13,14} A distinction between these alternative hypotheses depends on a detailed biologic and chemical characterization of these molecules.

Here we present the first preliminary evidence that foreign H-2 specificities can be recognized by specific T lymphocytes sensitized against normal H-2 determinants of foreign haplotypes. This evidence is twofold: (1) H-2^d anti-H-2^k cytotoxic T lymphocytes (CTL) specifically lyse the H-2^d-derived tumor MCG4, and (2) H-2^k anti-Sendai-virus (SV) CTL specifically lyse SV-infected MCG4 tumor cells and SV-infected target cells of H-2^k origin.

With regard to the first part, namely, the typing of MCG4 with alloreactive CTL, the data indicate the presence of alloantigenic determinants normally expressed on K^k, D^k and K^b molecules. BALB/c-derived CTL against D^b molecules only reacted marginally with MCG4. BALB/c spleen cells cocultured with syngeneic H-2^d lymphoid cells did not react at all with the tumor under our assay conditions, indicating absence of "spontaneous" or "natural" antitumor cytolytic activity. Since anti-K^k and anti-D^k CTL showed only a low degree of cross-reactivity when tested on appropriate lymphoblast target cells, but reacted strongly with MCG4, it is likely that the tumor expresses both a K^k-like 35

and a D^k-like molecule. The reactivity of $H-2^d$ anti-K^b CTL with the tumor is most easily explained as a reactivity against a public specificity shared between K^k and K^b molecules. Such a public specificity has been serologically defined as H-2.5. Previous serologic studies have shown that MCG4 indeed expresses an H-2.5 determinant.^{1,3}

The data obtained when typing for associative recognition with H-2-restricted virusspecific CTL again support our previous conclusion that the tumor MCG4 expresses H-2^k-like molecules. It should be mentioned, however, that these represent data from one, our first, experiment. Unequivocal results were obtained in that anti-SV CTL from B10.BR (K^kD^k) and B10.A(4R) (K^kD^b) mice could lyse SV-infected MCG4 tumor cells, while anti-SV CTL from B10.D2 (K^dD^d), A.TL (K^sD^s), D2.GD (K^dD^b), and C57BL/6 (K^bD^b) mice were negative. These results suggest that MCG4 tumor cells express a K^k-like molecule (possibly also a D^k molecule) that is recognized as a restrictive element by virus-specific CTL. Furthermore, since anti-H-2^b CTL reacted with the tumor, but H-2^b-derived virus-specified CTL did not, the H-2 determinants involved in associative recognition appear more restricted to particular haplotypes than the determinants recognized by alloreactive CTL. Third, as reported previously, the MCG4 tumor cells did not react in direct cytotoxicity tests with antisera against the private specificities 4, 23, and 32, which characterize, respectively D^d, K^k, and D^k molecules.¹ Thus, K^k -like molecules were detected on MCG4 in associative recognition, although they did not seem to carry the private specificity 23. This would suggest that restricting H-2 determinants recognized by specific T cells, although being very distinct, are independent of and not identical with the private serologic specificities.

All these conclusions, however, have to be taken as preliminary, since further experiments are needed to verify and substantiate our findings. As it stands at present, the MCG4 tumor seems to express predominantly an H-2^k-like alloantigen that fulfills most criteria of a true foreign H-2 molecule. H-2^d-type molecules from the strain of tumor origin seem to have a comparatively low expression.* Our data are reminiscent of

*NOTE ADDED IN PROOF: A possible mix-up of the tumor was recently excluded by an isoenzyme analy-

1. Garrido F, Perez M, Torres MD: J Immunogenet 6:83, 1979

2. Garrido F, Perez M, Torres MD, et al: Immunobiol 156:110, 1979

3. Schirrmacher V, Garrido F, Garcia-Olivares E, et al: J Immunogenet (in press)

4. Schirrmacher V, Bosslet K, Shantz G, et al: Int J Cancer 23:245, 1979

5. Koszinowski U, Simon MM: Eur J Immunol (in press)

6. Meschini A, Invernizzi G, Parmiani G: Int J Cancer 20:271, 1977

7. Garrido F, Schirrmacher V, Festenstein H: J Immunogenet 4:15, 1977 Parmiani's BALB/c-derived chemically induced fibrosarcoma C-1, which has been characterized as expressing predominantly H- 2^d -type molecules, but in addition, alien molecules very similar to K^k and D^k.¹⁵

sis performed by Dr. H.-H. Krog, Copenhagen. It revealed identity of MCG4 with BALB/c.

REFERENCES

8. Martin WH, Gipson TG, Martin SE, et al: Science 194:532, 1976

9. Schmidt W, Atfield G, Festenstein H: J Immunogenet (in press)

10. Demant P, Neauport-Santes C: Rev Immunogenet 7:295, 1978

11. Klein J: Contemp Top Immunobiol 5:297, 1976

12. Kohn, HI, Klein J, Melwold RW, et al: Immunogenetics 7:279, 1978

13. Bodmer WF: Transplant Proc 5:1471, 1973

14. Martin WJ: Cell Immunol 15:1, 1975

15. Rogers MJ, Pierotti MA, Parmiani G, et al: Transplant Proc 12:38, 1980 (this issue)

Discussion

Ferrone. Do you have any data from immunodepletion experiments using anti-H-2^k or antitumor antisera? Did you try any adsorption-inhibition assays in which you react H-2^k cells with your antitumor antibodies, then determine whether you have blocked adsorption of specific H-2^k antiserum?

Schirrmacher. We have preliminary data from sequential immunoprecipitation analysis using isoantiserum first, and then anti-H-2^d or anti-H-2^d first, and then isoantiserum that indicates that the foreign H-2 determinants on MCG4 are on molecules different from H-2^d. We have not yet done the experiments you suggest.

Parmiani. The tumor that you described looks very similar to the BALB/c tumor that we use. Could the $H-2^k$ -like antigen appearing on these BALB/c tumors be due to a common origin for the BALB/c and C3H strains of mice?

Schirrmacher. That is a very interesting point, but I don't believe anyone has the answer.

Alexander. We have always found it very difficult to adapt sarcomas to grow in the ascites form. Have you tested the original sarcoma for expression of $H-2^{k}$ -like antigen? Could the antigen have developed after adaptation of the tumor to the ascites form?

Schirrmacher. This tumor was induced by Dr. Garrido, and had we known it was going to be such an unusual tumor, we would have kept the original. Unfortunately, we no longer have it. He is setting up an extensive tumor-induction program in which the normal tissues of the animals will be kept for comparison. It was very difficult to get an ascites out of this solid tumor; this was the first of about 50 tumors that would grow as an ascites. We don't have any idea about the frequency with which these inappropriate alloantigens appear or whether they are due to adaptation of the cells into an ascites form. Dr. Parmiani's C-1 tumor is an example of a solid tumor expressing alien specificities.

Bortin. Is the gain or loss of antigenic specificites unique to tumor cells maintained in tissue culture or does it occur in cells from spontaneous tumors as well?

Waksal. I would say that 99% of the 30-40 spontaneous AKR tumors we have looked at do not express the alien H-2.4 specificity.

Alexander. Dr. Bortin's question is very appropriate. How much of this phenomenon is an artifact due to carrying the tumors in vitro? About 5 or 6 years ago Dr. Festenstein asked for some of our chemically induced thymomas. Dr. Garrido examined them and found all sorts of specificities; however, when we gave him some earlier passage materials, he did not find any of these specificites. These alien antigens may not be on spontaneous or recently induced tumors.

Schirrmacher. Dr. Garrido has been looking at recently induced tumors, and the situation is just as striking as on long-term passage tumors.

Waksal. Normal fibroblasts passaged in vitro long

enough will begin to show antigenic changes similar to those seen on tumor cells because of the expression of xenotropic MuLV.

Parmiani. As far as long-term culture of tumors is concerned, in our system, not only is the detection of alien histocompatibility antigens a problem, there is also a loss of original H-2 antigens.

Bonavida. In our reticulum cell sarcomas we were very concerned with whether or not these alien antigens were an artifact of culture. We have looked at about 50 spontaneous tumors, and we still can see the inappropriate specificity by immunofluorescence. In addition, animals that have the tumor produce antibodies that cross-react with the alien specificity.