Immunobiology Zeitschrift für Immunitätsforschung

Editors

E. D. ALBERT, München · H. BRANDIS, BONN · H. DEICHER, Hannover · A. DE WECK, Bern · K. EICHMANN, Heidelberg · M. FELDMANN, London · E. GLEICHMANN, Amsterdam · K. HAVEMANN, Marburg · H. KIRCHNER, Heidelberg · E. KLEIN, Stockholm · W. KOHLER, Jena · J. P. LEVY, Paris · K. RESCH, Heidelberg · G. RIETHMULLER, Tübingen · K. O. ROTHER, Heidelberg · M. SELIGMANN, Paris · V. SCHIRRMACHER, Heidelberg · C. SORG, Münster · G. F. SPRINGER, Evanston · C. STEFFEN, Wien · R. TIMPL, München · H. WAGNER, Mainz · G. WICK, Innsbruck · R. ZINKERNAGEL, Zürich

Assistant to the Editors

D. GEMSA, Heidelberg

Editorial Advisory Board

F. AIUTI, Rom · J. F. BACH, Paris · H. BAENKLER, Erlangen · H. BALNER, Rijswijk · H. V. BOEHMER, Basel · D. G. BRAUN, Basel · V. BRAUN, Tübingen · J. BROSTOFF, London · T. DIAMANTSTEIN, Berlin · W. DROGE, Heidelberg · P. DUKOR, Basel · K. FEDERLIN, Ulm · H. FINGER, Krefeld · E. GUNTHER, Freiburg · U. HADDING, Mainz · G. J. HÄMMERLING, KÖln · K. U. HARTMANN, Marburg · H. ZUR HAUSEN, Freiburg · K. HAVEMANN, Marburg · M. HESS, Bern · W. HIJMANS, Rijswijk · K. HUMMEL, Freiburg · J. KALDEN, Hannover · T. J. KINDT, New York · E. KOWNATZKI, Heidelberg · M. KRUPE, Fulda · E. KUWERT, Essen · K. LENNERT, Kiel · F. LILLY, New York · J. LINDENMANN, Zürich · E. MACHER, Münster · H. METZGER, Bethesda, Md. · V. TER MEULEN, Würzburg · H. J. MULLER-EBERHARD, La Jolla · W. MULLER-RUCHHOLTZ, Kiel · H. PETERS, Köln · L. POLAK, Basel · O. PROKOP, Berlin · H. RAMSEIER, Zürich · W. RAPP, Heidelberg · J. P. REVILLARD, Lyon · M. ROLLINGHOFF, Mainz · E. RUDE, Mainz · F. SCHEIFFARTH, Erlangen · E. SCHOPF, Heidelberg · H. G. SCHWICK, Marburg · C. SORG, Münster · W. STEWARD, London · N. TALAL, San Francisco · G. UHLENBRUCK, Köln · J. DE VRIES, Amsterdam · H. WARNATZ, Erlangen · O. WERDELIN, Kopenhagen · P. WERNET, Tübingen

Volume 156

Gustav Fischer Verlag · Stuttgart · New York · 1979

ISSN Immunobiology · Zeitschrift für Immunitätsforschung · 0171-2985 © Gustav Fischer Verlag · Stuttgart · New York · 1979 Alle Rechte vorbehalten Gesamtherstellung: Druckerei Ungeheuer + Ulmer KG GmbH + Co Printed in Germany

Editorial Comment

Starting with Volume 156, 1979, the name of the «Zeitschrift für Immunitätsforschung» has been changed to

的变影的 ·

«Immunobiology»

The «Zeitschrift», founded in 1909 by Paul Ehrlich, was the first immunological journal to be published in the world. The journal has a long-lived reputation as being an important source of scientific information based on the contributions of famous immunologists. The increased use of English as the common scientific language has now prompted the Editorial Board to change the traditional German title to «Immunobiology». With this title change the journal emphasizes its international character as a forum for the publication of a variety of different articles in the broad field of immunology.

The Editorial Board of Immunobiology

Original Papers

ANDREESEN, R., M. MODOLELL, H. U. WELTZIEN, and P. G. MUNDER: Alkyl-Lyso- phospholipid Induced Supression of Human Lymphocyte Response to Mitogens and Sciencias Killing of Lymphochemeters	498
Selective Killing of Lymphoblasts	498
Arike Structures ARGOV, S., A. POROS, and E. KLEIN: Cation Requirement of Natural, in Vitro Generated and Antibody Dependent Killing Exerted by Human Lymphocytes	25
BENCZUR, M., GY. GYÖRFFY, T. GARAM, M. VARGA, GY. MEDGYESI, M. SÁNDOR, and G. GY. PETRANYI: Correlation between Effector Lymphocytes in Natural and Anti- body-mediated Cytotoxicity	320
Vitro Immune Reactions Against the Intradermally Developing P-815 Mastocytoma in the Syngeneic Mouse	382
BLOCKSMA, N., H. VAN DIJK, P. KORST, and J. M. WILLERS: Cellular and Humoral Adjuvant Activity of a Mistletoe Extract	309
BOLTZ-NITULESCU, G., and O. FORSTER: Differences in the Cytotoxic Effect of Rabbit Anti-Rat Macrophage Sera on Rat Alveolar and Peritoneal Macrophages	331
BRADE, V., and G. KREUZPAINTNER: Interaction of Lipopolysaccharides and of Lipid A from Yersinia Enterocolitica with Purified Guinea Pig C 3	441
CZARNETZKI, B. M., D. HANNICH, and H. NIEDORF: In-vitro Studies on the Develop- ment of Rat Peritoneal Mast Cells	470
DIERICH, M. P., B. LANDEN, and M. SCHMITT: Complement Receptor Analogous Factors in Human Serum: I. Isolation of a Molecule Inhibitory for Complement Dependent Rosette Formation, its Identification as α_1 -Antitrypsin and its Functional Characterization	153 2
FABRICIUS, HÅ., and R. STAHN: Human Primary T-Cell Lines in Lectin-free Media	364
FORBES, I. J., P. D. ZALEWSKI, and B. DOERKEN: A Simple Immunolatex Procedure for Light and Fluorescence Microscopy	138
GARRIDO, F., M. PEREZ, M. D. TORRES, E. GARCIA-OLIVARES, P. IVANYI, and V. SCHIRRMACHER: A Syngeneic Anti Tumor Serum Recognizing a Complex H-2 Alloantigen	110
GOLSTEIN, P., B. RUBIN, F. DENIZOT, and M. F. LUCIANI: Xenoserum-Induced Cyto- lytic «T» Cells: Polyclonal Specificity with an Apparent «Anti-Self» Component, and Cooperative Induction	121
HAAS, I. G., E. SIMON, and W. G. BESSLER: Effect of the Aggregational State on the Mitogenicity of Lipoprotein from the Outer Membrane of <i>Escherichia Coli</i>	418
HAVLICEK, J., O. KUHNEMUND, J. ŠRÁMEK, and J. POKORNÝ: Isolation of Type-Specific Antibody to Streptococcus Pyogenes by Affinity Chromatography	48
KAKIUCHI, T., H. NARIUCHI, and T. MATUHASI: Specificity of an Anti-Murine B Cell Serum	342

KIRCHNER, H., H. H. PETER, H. M. HIRT, R. ZAWATZKY, H. DALUGGE, and P. BRADSTREET: Studies of the Producer Cell of Interferon in Human Lymphocyte	
Cultures	65
Group A Streptococcal M-Protein Preparations	537 83
MATZKU, S., and M. ZOLLER: A Sandwich Isotopic Antiglobulin Assay. Application to the Detection of Antibodies in Non-SPF rats Bearing Spontaneous Tumors MAUCH, H., H. J. HAMMER, and G. KUMEL: A Long-lasting Enhancing Effect of Anti- Tuberculin Antiserum on Delayed-type Hypersensitivity Reaction in BCG-infected Guinea Pigs	483 477
PTAK, W., D. RÓZYCKA, and M. REWICKA: Induction of Suppressor Cells and Cells Producing Antigen-Specific Suppressor Factors by Haptens Bound to Self Carriers	400
RAUTERBERG, E. W., G. HÄNSCH, and U. ROTHER: Isolation of Late Complement Components by Affinity Chromatography. II. Purification of the Human Comple- ment Component C6	142
RESCH, K., and D. GEMSA: The Role of Macrophages in the Activation of T-Lympho- cytes by Concanavalin A. I. Macrophages Support Proliferation after Commitment of Lymphocytes	509
DE RIDDER, G., and L. BERRENS: Precipitating and Non-precipitating Complement	
Consuming IgG Subclass Antibodies in Pigeon Breeders' Disease DE RIDDER, G., A. G. VAN DIJK, and L. BERRENS: Complement Consuming Antibodies	168
against a Modified Human Serum Protein in Pigeon Breeders' Disease ROSZKOWSKI, W., S. SZMIGIELSKI, M. JANIAK, and J. K. WREMBEL: Effect of Moderate (40 °C) and Intensive (43 °C) Hyperthermia on Spleen, Lymph-Node and Thymus-Derived Murine Lymphocytes in vitro	523 429
SIEBER, G., and H. RUHL: Stimulation of Human and Mouse Lymphocytes by Ribo- somal Proteins	464
I. Similar Requirement for Lyt T Cell Subpopulations in the Generation of Alloreac- tive and H-2 Restricted Killer Cells	96
STEINITZ, M., I. SEPPÄLÄ, K. EICHMANN, and G. KLEIN: Establishment of A Human Lymphoblastoid Cell Line with Specific Antibody Production Against Group A Streptococcal Carbohydrate	41
UOTILA, A.: Studies on the Chemical Nature of Dialysable Transfer Factor. Comparison of Human Leukocyte Dialysate and Dialysates Derived from Human Serum and from Mammalian Lymphoid and Non-Lymphoid Organs	353
WAGNER, M.: Interaction of Wheat-germ Agglutinin with Streptococci and Streptococ- cal Cell Wall Polymers	57
WEISS, S., K. HILD, and D. G. BRAUN: Light Heterogeneity of Type λ Anti-Streptococ- cal Group A-variant Polysaccharide Antibodies in Rabbits	35
WICK, G., R. W. GLANVILLE, and R. TIMPL: Characterization of Antibodies to Basement Membrane (Type IV) Collagen in Immunohistological Studies	372
WIESINGER, D., and J. F. BOREL: Studies on the Mechanism of Action of Cyclo- sporin A	454
WOLFF, M. H., F. BUCHEL, and A. ZOLL: Serological Studies on the Antigenic Relation- ship between Herpes Simplex Virus and Varicella-Zoster Virus	76
WOODY, J. N., S. HOWIE, and M. FELDMANN: Induction of Antibody Responses In Vivo by Antigen Specific Helper Factor	13

Abstracts

Symposium 1: Immunoendocrinology

IRVINE, W. J.: Autoimmunity in diabetes mellitus	180
PIERPAOLI, W., and G. MAESTRONI: Pineal function and bone marrow transplantation:	
Two examples of immune-endocrine network	179
SCHLEUSENER, H., P. KOTULLA, and B. WENZEL: Thyroid stimulating autoantibodies in	
Graves' disease	181
VOISIN, G. A.: Types of immune response of the mother to the fetus	179

Symposium 2: Effector Mechanisms

SHEVACH, E. M.: The role of the macrophage in the generation of T effector cells .	183
RIETHMÜLLER, G., M. HADAM, H. FEUCHT, J. G. SAAL, and I. WÖLK-PÜSCHEL: Na	tural
cytotoxicity in man	184
ROLLINGHOFF, M., K. PFIZENMAIER, and H. WAGNER: T-T cell cooperation i	
induction of murine cytotoxic T lymphocytes	182
ZINKERNAGEL, R. M.: Cell-mediated immunity to intracellular parasites and the bio	logi-
cal role of major transplantation antigens	182

Workshop Nr. 1: Ontogeny and Phylogeny of Immunity

185
185
186
186
187
188
188
189
189

Workshop Nr. 2: Clinical Relevance of New Immunological Methods

ALBINI, B., E. OSSI, E. PENNER, and G. A. ANDRES: A micromethod for the detection of	
circulating immune complexes using Raji cells	191
EIFE, R. F., and H. W. KRETH: Impaired lymphocyte function in subacute sclerosing	
panencephalitis (SSPE) by using buffy coat cells instead of purified peripheral blood	
lymphocytes	191

FISCHER, K., and A. POSCHMANN: Quantitation of chord blood-IgM and -IgA samples	
by fluoroimmunometric technique	192
antibodies to rubellavirus and cytomegalovirus by elisa-technique	192
HAMMER, H. J., G. KUMEL, M. HOFFMANN, P. G. SCHEURLEN, and H. MAUCH: An enzyme-immunoassay for quantitation of human Ig	193
INTORP, H. W., and H. LEYSSENS: Laser-nephelometry, a quantitative method to	
determine rheumatoid factors in paraproteinemias	193
LIMAN, W., M. FRICKE, and H. DEICHER: A Microtiter [®] conglutinin-binding RJA for detection of circulating immune complexes	194
RING, J., R. SIMON, and C. ARROYAVE: In vitro histamine release as possible indicator of	
contrast media hypersensitivity	194
STECHEMESSER, E., and P. A. BERG: Differential diagnosis of cholestatic liver disease using a complement fixing PBC- and mixed form (MF)-specific subcellular antigen	196
SAYERS, T. J., K. H. WIEDMANN, and P. A. BERG: Demonstration of a trypsin insensitive	170
subcellular antigen as a marker reacting only with sera from a subgroup of patients	
with cholestatic liver disease	195
SCHAUENSTEIN, K., G. BOCK, and G. WICK: Laser immunofluorescence: Bleaching	
characteristics of FITC conjugates specifically and non-specifically bound to antigen coated insoluble carriers	196
SPATH, P., P. YAM, and L. D. PETZ: The radioactive antiglobulin test	197
STEFFEN, C., L. SANGER, and J. MENZEL: Demonstration of antibodies to denatured type	
I and type II collagen in juvenile rheumatoid arthritis, Still's syndrome and controls by ¹⁴ C-collagen radioimmunoassay	197
TEUBER, J., K. HELMKE, B. SCHIESSEL, B. MICHEL, and K. FEDERLIN: The clinical	177
relevance of Ig-classes and complement fixation of thyroid antibodies and immuno-	
complexes in various thyroid diseases	198
TEUBER, J., K. HELMKE, M. UMBACH, E. MÄSER, and K. FEDERLIN: Comparative studies of various tests for the detection of thyroid antibodies, their sensitivity and specifi-	
city	198
THUNOLD, S., R. MATRE, and O. TØNDER: Localization of cell markers in human	
lymphoid tissue	199
following treatment of patients with glycosaminoglycan-polysulfate	199
YU, MY., K. ULRICHS, and W. MULLER-RUCHHOLTZ: New immunopharmacological	
approaches at modulation of reactivity in variously sensitized individuals	200

Workshop Nr. 3: Cellular Effector Mechanisms of Immunity

ARMERDING, D., H. ROSSITER, and P. MEYER: Effector mechanisms in the induced resistance against lethal herpes simplex type 2 (HSV2) infections in mice	201
BARTELETT, R., R. SCHAWALLER, M. ROLLINGHOFF, and H. WAGNER: Cortical thymo- cytes lack immunocompetent T helper cells but not cytotoxic T lymphocyte precur-	
sors	201
ENGLER, H., R. ZAWATZKY, H. BECKER, V. SCHIRRMACHER, and H. KIRCHNER:	
Interferon production in the mixed lymphocyte culture (MLC) of the mouse	202
ZAWATZKY, R., H. ENGLER, J. HILFENHAUS, and H. KIRCHNER: Interferon production induced in mouse spleen cells by herpes simplex virus (HSV). Correlation with in vivo	
resistance to viral infection	202
HUNIG, TH., HW. VOHR, and A. SCHIMPL: Studies on the generation and expression of	
H-2 controlled T-helper function in chimeric mice	203
KURRLE, R., R. SCHAWALLER, M. ROLLINGHOFF, and H. WAGNER: Herpes virus specific	
H-2D ^k restricted murine CTL are also cytotoxic towards noninfected target cells	
expressing the D ^d alloantigen	203

LANG, H., W. DOMZIG, and M. L. LOHMANN-MATTHES: Cooperative effects between	204
antibody-dependent and lymphokine-induced macrophage mediated cytotoxicity	204
LEIBOLD, W., H. M. HIRT, H. KIRCHNER, H. H. PETER, and R. ZAWATZKI: Relationship	
of spontaneous cell mediated cytotoxicity (SCMC) to interferon-induction in mixed	~~ /
lymphocyte reactions (MLR) with normal and transformed lymphoid cells	204
MOEDDER, E., H. ENGERS, and J. LOUIS: Protozoan parasite-induced proliferative	
response of primed T lymphocytes	205
MOLLER, G., and W. KONIG: Binding characteristics of aggregated IgGa to rat basophilic	
leukemia (RBL) cells and rat mast cells	205
MOSSMANN, H., B. SCHMITZ, M. MEYER-DELIUS, H. U. WELTZIEN, and D. K. HAMMER:	
Mast cell activation by crosslinking IgE receptor and antigenic determinants inserted	
into the lipid phase of the membrane	206
PETER, H. H., S. GENDVILIS, B. LANGE, A. SERBIN, S. EULER, W. STANGEL, H. J.	
AVENARIUS, and H. DEICHER: Natural killing (NK) in hemopoietic disorders and	
immunodeficiency syndromes: evidence for the bone marrow dependency of human	
NK effector cells	206
PFIZENMAIER, K., M. RÖLLINGHOFF, H. RODT, and H. WAGNER: T-cell mediated	
cytotoxic immune reactivity	207
PFIZENMAIER, K., R. SCHAWALLER, and H. WAGNER: Fine specificity and lytic activity of	
monoclonal alloreactive cytotoxic T lymphocytes	207
RUMPOLD, H., D. KRAFT, O. SCHEINER, P. MEINDL, and G. BODO: Enhancement of	
NK, but not K cell activity by different interferons	208
SCHMITZ, B., H. MOSSMANN, P. POSSART, and B. K. MOOKERJEE: Role of oxidant	
generation in the effector mechanism of antibody-dependent neutrophil-mediated	
cytotoxicity	208
THEOBALD, K., H. W. HENN, and W. KONIG: Modulation of histamine release from rat	
mast cells and human basophils by serum factors	209
TONY, H. P., A. SCHIMPL, and E. WECKER: Stimulation of DNA-synthesis in murine B	
lymphocytes by anti-IG antibodies: dominance of a negative signal mediated by the	
Fc receptor	209
WARNATZ, H., W. RÖSCH, W. GERLICH, and W. GUTMANN: Antibody-dependent cell-	
mediated cytotoxicity (ADCC) and cell-mediated cytotoxicity (CMC) to HBsAg-	
coated target cells in patients with hepatitis B and chronic active hepatitis (CAH)	210
WIEDERMANN, G., O. SCHEINER, D. KRAFT, H. RUMPOLD, and H. STEMBERGER: The	
influence of trypsin-treatment of effector cells on NK- and K-cell activity	211
WOLF, M., W. SUESSMUTH, and W. DROGE: Alternative modes of help for the induction	
of cytotoxic T lymphocytes	211

Workshop Nr. 4: Lymphocyte Subpopulations

BERGER, R., H. FRISCHAUF, and W. KNAPP: Cortisol effects on suppressor cell activi-	
ties	213
BESSLER, W., J. CYBULLA, A. FREY, and J. HILLEMANN: Bacterial cell surface compo-	
nents as B-lymphocyte mitogens: minimal structures required for mitogenicity	213
BIRKE, F. W., E. P. RIEBER, M. HADAM, and G. RIETHMULLER: Purified chicken	
antibodies against mouse μ -chain and μ -chain fragments recognize crossreacting	
determinants on mouse T-lymphocytes	214
VAN EIJK, R. V. W., and P. F. MUHLRADT: Glycoproteins as markers of stimulated	
human lymphocyte subsets revealed by metabolic carbohydrate labelling	215
GATTRINGER, C., G. MICHLMAYR, and H. HUBER: Identification of two suppressor	
populations in human peripheral blood cells	215
HAMANN, A., R. ARNDT, and H. G. THIELE: Isolation and characterization of Thymus-	
Brain antigen (thy-analogue), a membrane glycoprotein from human brain	216
HANSEN, E., and K. ZEILLER: Small lymphocyte populations in the bone marrow of rats	
and their thymus dependency	216

JILG, W., and K. ZEILLER: Differences in surface protein patterns of three T cell	
subpopulations and B cell of the rat	217
KABELITZ, D., U. FINK, and A. REICHERT: Human MLC activated suppressor cells-	
enrichment on discontinuous density gradients	218
MOLDENHAUER, G.: Induction of suppressor T lymphocytes with bordetella pertussis:	
effects of in vivo immunization with pertussis on the mixed lymphocyte reaction	
(<i>MLR</i>) in mice	218
PICHLER, W. J., S. SHAW, and S. BRODER: Accessory cell requirement and mitogen	
induced proliferation of human T _G and T _M cell subsets	219
PICHLER, W. J., S. BRODER, S. MARSHALL, L. MUUL, and T. A. WALDMANN: Immuno-	
regulatory function of human T _M and modulated T _G cells	219
REIMANN, J., and T. DIAMANTSTEIN: Syngeneic lymphoblasts induce T-stimulator cells	
in vivo acting in a syngeneic MLR in vitro	220
STAHN, R., and HÅ. FABRICIUS: Modulation of growth factor (TCGF) dependent host	
T-cell proliferation by embryonal and neoplastic tissue in the human: Suppressor cell	
mediated regulation of TCGF production	221
STOTTER, H., and E. RUDE: Genetic control of immune responses: presence of T helper	
cells in low responder mice	221
ULMER, A. J., and HD. FLAD: Growth of T-lymphocyte colony forming units (TL-	
CFU) from murine spleen cells stimulated by PHA in a one-stage agar micro culture .	221

Workshop Nr. 5: Production and Characterization of Monoclonal Antibodies

ADOLF, G. R., E. HARTTER, H. RUIS, and P. SWETLY: Immunoadsorption of yeast	
catalase T using monoclonal antibodies	223
ANHORN, G., C. BRITZELMEIER, A. ZIEGLER, and P. WERNET: The detection of a human	
thymocyte surface antigen (HTA1) on various leukaemic cells	223
BURGER, R., L. CLEMENT, and E. M. SHEVACH: Monoclonal antibodies to guinea pig cell	
surface antigens	224
GOTZE, D., and H. P. VOLLMERS: Reactivity of monoclonal antibodies with specificity	
against H-2 antigens with cells of inbred and wild mice	225
HEINRICHS, H., C. BRITZELMEIER, P. WERNET, and A. ZIEGLER: Specificities of mono-	
clonal antibodies defined on human cell lines and leukaemic cells	225
LEMKE, H., and G. J. HAMMERLING: Fine specificity analysis with monoclonal anti-	
bodies of antigens controlled by the major histocompatibility complex (H-2) of the	
mouse	226
MAJDIC, O., W. KNAPP, M. VETTERLEIN, W. R. MAYR, and P. SPEISER: Hybridomas	
secreting monoclonal antibodies to human group A erythrocytes	226
RUMPOLD, H., P. SWETLY, G. BOLTZ-NITULESCU, and O. FORSTER: Monoclonal anti-	
bodies against macrophage associated antigens	227
WALLICH, R., and G. J. HÄMMERLING: The diversity of anti-phosphorylcholine anti-	
bodies analysed by monoclonal anti-idiotypes	227

Workshop Nr. 6: Histocompatibility Disease

BRACKERTZ, D., W. MULLER, and P. WERNET: The genetic basis of rheumatoid arthritis:	
population and family studies	229
GROSS, W. L., I. VORWERK, E. CHRISTOPHERS, E. WESTPHAL, and M. SCHLAAK: HLA-	
related control of T-cell responses in vitro in psoriasis	229
INTORP, H. W., F. WESSELS, and H. LOSSE: Essential hypertension, a heritable disease	
linked to HLA-B17	230
LAUDIEN, D., D. BRAUN, W. RIESEN, F. SCHUNTER, and P. WERNET: Immunogenetic	
aspects of natural human immunity against infections with group A streptococci	230

LUDWIG, H., G. SCHERNTHANER, H. SCHLEUSENER, B. WENZEL, P. KOTULLA, and W.	
R. MAYR: TSH-receptor and organ-specific autoantibodies in HLA-DR-typed insu-	
lin-dependent diabetics	
MULLER, G., and P. WERNET: HLA-DR serology in transplantation	231
SCHERAK, O., J. S. SMOLEN, and W. R. MAYR: Systemic lupus erythematosus (SLE) and	
HLA-DRw3	232
SMOLEN, J. S., O. SCHERAK, E. J. MENZEL, and W. R. MAYR: B-cell alloantigens in	
rheumatoid arthritis (RA)	232
WESTPHAL, E., U. LASSON, and W. MULLER-RUCHHOLTZ: Microabsorption studies of	
non-crossreactive extra reactions of HLA antisera with childhood leukemic cells	233

Workshop Nr. 7: Complement

BUB, F., and M. LOOS: Killing of the Re- and S-form of Salmonella minnesota via the	
classical pathway of complement activation	234
DAMERAU, B., and W. VOGT: Modification of leukocyte aggregation induced by the	
complement-derived peptides C3a and C5a and by formyl-methionyl-peptides	234
DEBATIN, K. M., and J. MENZEL: Phagocytosis associated release of lysosomal enzymes	
from granulocytes as a secretory process modulated by complement	235
KOFLER, R., P. BERGER, and G. WICK: Plaque-forming-cell assay in the chicken system:	
comparison of various developing techniques for lysis of antigen coated and uncoated	
erythrocytes	236
MEURER, M., and I. GIGLI: Interaction of DNA with the early components of comple-	
ment in the absence of antibody to DNA	236
MULLER, W., and M. LOOS: Antibody independent complement mediated phagocytosis	
of trinitrophenylated sheep erythrocytes (E-TNP)	237
PAUSCH, V., B. HAIDMAYER, M. KIRNBAUER, and W. R. MAYR: Bf polymorphism in	
Vienna, Austria	237
PENNER, E., B. ALBINI, G. ANDRES, and F. MILGROM: Immunoglobulin as antigen in	
immune complex-mediated kidney diseases	238
PODACK, E. R.: Assembly of the membrane attack complex of complement	238
SCHORLEMMER, H. U., H. HANAUSKE-ABEL, and B. F. PONTZ: Cartilage specific	
collagen type II activates mouse peritoneal macrophages and the alternative pathway	
of the complement system	239
SCHORLEMMER, H. U., H. HANAUSKE-ABEL, and B. F. PONTZ: Activation of the	
alternative pathway of the complement system by different collagen types	239
STEMBERGER, H., G. WIEDERMANN, and G. MEINGASSNER: Interaction of E. histolytica	
with human complement	240
VOIGTLÄNDER, V., G. M. HÄNSCH, W. ROMER, and U. ROTHER: Studies on the	
pathogenesis of adverse drug reactions: Effects of acetylsalicylic acid on complement	
in vivo and in vitro	240
VON ZABERN, I., H. PRZYKLENK, and W. VOGT: Comparison of activity and structure of	
Naja naja and Naja haje cobra venom factors: Detection of a correlation between	
binding of the 5 th component of complement and its cleavage	241

Workshop Nr. 8: Self Recognition - Physiology and Pathology

L'AGE-STEHR, J.: Self recognition of Ig-associated structures on activated B-cells induce	
regulatory T-cell circuits	242
BEER, M., B. U. V. SPECHT, and W. BRENDEL: Characterization of basic encephalito-	
geneic protein coated nylon mesh adherent T cells by cytotoxic assay	242
BLASER, K., T. NAKAGAWA, and A. L. DE WECK: Suppression of murine Ig E directed to	
the benzylpenicilloyl (BPO) group with isologous antiidiotypic antibodies in BALB/	
C mice	243

BORN, W., and H. WEKERLE: In vitro induction of self reactive T lymphocyte memory in cultures of syngeneic peanut agglutinin-negative mouse thymocytes and spleen cells	243
BOYD, R., K. SCHAUENSTEIN, and G. WICK: Characterization of effector cells in spontaneous autoimmune thyroiditis	244
FINK, U., P. A. PETERSON, A. REICHERT, A. M. FÖDINGER, and C. HUBER: IA-like antigens associated with normal and neoplastic non-T cells induce autologous T	245
lymphocyte proliferation	245
GLOBERSON, A., and T. UMIEL: Recognition of self and modified self in aging	245
HELMKE, K., R. OTTEN, R. BROCKHAUS, E. MÄSER, and K. FEDERLIN: Correlation and characterisation of islet-cell antibodies, circulating immune complexes and antinuclear	240
antibodies in diabetic patients	246
HOHLFELD, R., and H. WEKERLE: In vitro generation of purified rat T-cell populations	
responsive against syngeneic antigen-specific secondary T-lymphocytes	247
KOLB, H., U. KIESEL, G. FREYTAG, and J. BIENER: Transfer of experimental diabetes by	
lymphocytes	248
KOLB-BACHOFEN, V., and H. KOLB: Lectin-mediated recognition of neuraminidase- treated syngeneic lymphocytes by liver cells in vivo: induction of cellular autoimmune	
reactions	248
PORZSOLT, F., and H. HEIMPEL: Autokilling of human lymphocytes in vitro	249
elicited by polyclonally activated syngeneic or autologous lymphoblasts	249
STOCKINGER, B., EM. LEMMEL, and U. BOTZENHARDT: Further evidence for T cell reactions of NZB mice against MHC identical target cells	250
THOENES, G. H., A. KRIEGER, and K. PIELSTICKER: Organ-specific alloimmune disease is	251
dissimilar to autoimmune disease	251
cell-mediated reactivity against self-constituents and inhibitory mechanisms	251
WENZEL, B., P. KOTULLA, K. W. WENZEL, and H. SCHLEUSENER: Lymphocyte transfor- mation test (LTT) with solubilized TSH-receptor protein in Grave's disease (G.D.).	252
WICK, G., V. MUNRO, W. GEBHART, and R. TIMPL: Studies on the specificity of	252
autoantibodies to basement membrane in patients with bullous pemphigoid	252
WISSLER, J. H.: Activation of the kinin, complement and coagulation blood protein	252
systems by liposomes of selected structure: a model for endogenous pathways to non-	
specific tissue inflammation and auto-immune disease induced by primary messengers	
	253
of tissue injury	233

Workshop Nr. 9: Macrophages

ANDREESEN, R., M. MODOLELL, V. SPETH, and P. G. MUNDER: Human macrophage	
activation by alkyl-lysophospholipids	255
BOLTZ-NITULESCU, G., and O. FORSTER: Proteinase-treatment of rat macrophages	
induces binding of unsensitized sheep- and chicken-erythrocytes	255
HORMANN, H.: Binding of fibronectin and denatured collagen by macrophages	256
KNOP, J.: Effect of vibrio cholerae neuraminidase on the action of macrophage released	
mediators	257
LOMPE, S., H. K. MULLER-HERMELINK, and W. MULLER-RUCHHOLTZ: Antimacrophage antibodies: preliminary evidence for antibodies specific for reticulum cells in lym-	
phoid tissue	257
LOOS, M., W. MULLER, G. BOLTZ-NITULESCU, H. RUMPOLD, and O. FORSTER: C1q, a subcomponent of the first component of complement, as a possible Fc receptor of	
peritoneal macrophages	258

MEERPOHL, HG., and U. TRITSCHLER: Development of macrophage-mediated cyto-	
toxic capacities in fetal and neonatal mice	258
NAGAMURA, Y., and H. KOLB: Presence of a D-galactose/D-glucose specific lectin-like	
receptor on rat peritoneal macrophages	259
NEUMANN, C., and C. SORG: Macrophages as targets for interferon inducers	259
OROPEZA-RENDON, R. L., V. SPETH, P. BAUDHUIN, and H. FISCHER: Inhibition of	
pinocytosis of peroxidase in bone marrow macrophages by prostaglandin E ₁	260
OVERWIEN, B., CH. NEUMANN, and C. SORG: Use of synthetic, chromogenic substrates	
for the detection of plasminogen activator(s) secreted by murine bone marrow derived	
macrophages	261
RICHMAN, L. K., W. STROBER, and J. A. BERZOFSKY: H-2-linked Ir Gene expression in	
determinant selection by murine Kupffer cells	261
SORG, C.: Characterization of murine macrophage migration inhibitory activities	
(MIF)	262
SPAETH, E., and E. RUDE: Complementation of Ir genes in responsiveness of mice to	
insulin and H-2 restriction in macrophage – T cell interaction	262
STERN, A. C., P. ERB, and R. H. GISLER: Helper T cell induction by bone-marrow	
macrophages	263

Workshop Nr. 10: Tumor Immunology

BEGEMANN, M., and G. CLAAS: Suppression of autologous mixed lymphocyte reactivity	244
by serum from patients with Hodgkin's diseaseBERTSCHMANN, M., and E. F. LUESCHER: The advantage of the intradermal over other	264
routes of tumor cell injection to induce spontaneous tumor regression and the stimulation of an efficient immune response	264
BOSSLET, K., and V. SCHIRRMACHER: Variability in the expression of tumor antigens on selected and nonselected murine tumor lines (Eb/ESb) with different metastatic	20.
capacity	265
BRUGGEN, J., W. HELMING, C. SORG, and E. MACHER: Biochemical and serological characterization of cell surface structures and their correlation to the state of malig-	
nancy in human malignant melanoma	265
CIHAK, J., H. W. ZIEGLER, and E. KOLSCH: T cell-mediated and humoral immune	
response of BALB/c mice against the syngeneic ADJ-PC-5 plasmocytoma	266
FABRICIUS, HÅ., R. STAHN, and R. FETTA: Impaired production of T cell growth factor	
(TCGF) in blood cells from tumor patients	266
GEMSA, D., W. KRAMER, G. TILL, and K. RESCH: Potentiation of macrophage mediated tumor cytostasis by ascites of tumor bearing mice	267
GRUBER, F., C. HAMMER, W. L. MANG, W. BRENDEL, and H. NAUMANN: Immunologi-	
cal studies of patients with carcinoma of the floor of the oral cavity and the tonsil	268
HARTHUS, H., R. JOHANNSEN, and W. AX: Lymphocyte sensitization in tumor-bearing	• • •
rats: EMT versus MLTC	268
AL-HASHIMI, M., T. KURATA, and M. MICKSCHE: Immunoprophylaxis and immuno-	2/0
therapy in Lewis lung tumor system	269 270
KAPP, JF., and K. EICHMANN: In vivo anti-tumor effect of a factor in tumor ascites KRAPF, E., W. LEIBOLD, H. H. PETER, and H. KIRCHNER: Blocking effects of tumor-	270
cells and supernates of a human melanoma cell-line	270
MAINUSCH, P., H. V. WALLENBERG, J. MEYER, and C. HAMMER: Enhancement of growth	270
of a virus-induced hamster-melanoma (A-MEL 3) by suppressor cells	271
WALLENBERG, H., P. MAINUSCH, J. MEYER, and C. HAMMER: Influence of spleen on	
tumor growth in mice with different spleen size	271
PEHAMBERGER, H., F. GSCHNAIT, K. HOLUBAR, H. LUDWIG, and W. KNAPP: Monocyte mediated antibody dependent cellular cytotoxicity in malignancies	272

RUHL, H., M. BUR, and G. SIEBER: Pokeweed mitogen (PWM)-induced immunoglobu-	
lin-secreting cells (ISC) in patients with Hodgkin's disease (H.D.) and Non-Hodgkin	
lymphomas (NHL)	273
SCHEDEL, I., D. PEEST, K. STUNKEL, M. FRICKE, G. ECKERT, and H. DEICHER: Idiotype bearing peripheral blood lymphocytes in human multiple myeloma and Walden-	
ström's macroglobulinemia	273
SCHULZ, T. F., M. P. DIERICH, E. YEFENOF, and G. KLEIN: Tumor-membrane- associated proteolytic activity mediating C3-dependent bridge formation between	
lymphocytes and tumor cells	274
SUTER, L., J. BRUGGEN, and E. MACHER: Characterization of melanoma associated	
antigens by use of rabbit heteroantisera	274
WEINFURTNER, F., C. HAMMER, C. CHAUSSY, J. SCHÜLLER, and W. WIELAND: Suppres- sor cell activity in the peripheral blood of patients with carcinoma of the bladder and	
the kidney	275
ZOLLER, M., and S. MATZKU: In vitro characterization of anti-tumor effector mech-	
anisms in rats bearing spontaneous tumors	276

Workshop Nr. 11: Clinical Slide Presentation

AUER, L. O., and E. ZIEMER: Natural killer cell activity (NKCA) and antibody dependent cell mediated cytotoxicity (ADCC) in Crohn's disease (CD)	277
DEICHER, H., A. WRABETZ-WOLKE, and S. MARGHESCU: Therapeutic plasmapheresis in severe pemphigus vulgaris (case report)	277
EIFE, R. F.: Cellular immunocompetence after transplantation of bone marrow incubated with anti-T-cell globuline	278
GANGL, A., J. S. SMOLEN, E. J. MENZEL, C. WOLF, and W. KNAPP: Suppressor cell activity in patients with inflammatory bowel disease	278
HAMMER, C., W. LAND, W. BULLINGER, and W. BRENDEL: In-vitro activation of suppressor-cells in kidney transplant patients	279
LUDWIG, H., G. SCHERNTHANER, and H. PIETSCHMANN: Clinical and immunological investigations in the first case of «benign» IgE-monoclonal gammopathy	280
MAISCH, B., R. TROSTEL, P. A. BERG, and K. KOCHSIEK: Role of antisarcolemmal antibodies in cardiac diseases	280
PETER, H. H., A. WRABETZ-WOLKE, U. MULLER-BARTHEL, D. ROELCKE, and K. F. VYKOUPIL: M. Waldenström with cold agglutinin disease and leucopenia due to anti- «i» autoantibodies	281
PETER, H. H., W. WRABETZ, H. J. AVENARIUS, and K. F. VYKOUPIL: Combined immune deficiency syndrome with Coombs positive anemia, thrombocytopenia and spleno-megalia	281
PICHLER, W. J., S. BRODER, and T. A. WALDMANN: Modulation of immunoregulatory function <i>in vitro</i>	282
SALZNER, H. J., N. SCHMIEDEL, K. F. DRUSCHKY, and J. R. KALDEN: Concanavalin A induced suppressor cells in the peripheral blood of patients with myasthenia gravis and	
normal controls	283
complexes, IgG-insulin antibodies, islet-cell antibodies and diabetic microangiopathy in type-I-diabetes mellitus	283
SMOLEN, J. S., E. J. MENZEL, O. SCHERAK, W. KNAPP, and C. STEFFEN: Clinical relevance of circulating immune complexes in patients with systemic lupus erythema-	
tosus and rheumatoid arthritis	284
atopic dermatitis	284

Workshop Nr. 12: Free Posters

ARRENBRECHT, S.: Differential metabolism of STH in normal and nude mice AVERDUNK, R., and T. GUNTHER: Ca ⁺⁺ -binding, transport and ATPase-activities of	286 286
isolated lymphocyte plasma membranes	286
 EIFE, G., M. DETAVERA, and R. EIFE: Increased lymphokine (lymphotoxin) production in leukocyte cultures upon delayed stimulation GURTLER, L. G., S. LEFRANC, and H. CLEVE: The lectin binding sites of the plasma membranes, of the mitochondrial membranes and the nuclear envelope of lympho- 	287
blastoid cells HALLFELD, K., J. SEIFERT, G. FIGACZ, and W. BRENDEL: Manipulation of the immune	288
response by oral application of the antigen	289 289
HUBNER, L., A. SCHIMPL, and E. WECKER: Biological characterisation of a goat anti- TRF-antiserum and its use in radioimmunoprecipitation	290
membranes	290
B lymphocytes by crosslinking and radiolabelling	291
prolactin	292
human genuine sympathetic ophthalmia	292
chemotactic factor (ECF) by mellitin	293
locomotion by sera of patients with rheumatoid arthritis	293
arthritis	294
amyloidosis	295 295
MULLER, C., G. PAWELEC, and P. WERNET: Serological and cellular heterogeneity of the HLA-D, -DR region in man	296
POSSART, P., B. SCHMITZ, and H. MOSSMANN: Evaluation of two functionally distinct and independent mast cell responses	296
SCHMIDT-ULLRICH, R., D. F. H. WALLACH, and J. LIGHTHOLDER: Two plasmodium knowlesi-specific antigens on the surface of schizont-infected rhesus monkey erythrocytes induce antibody production in immune hosts	297
SCHWARZ, S., R. KOFLER, M. TABARELLI, and G. WICK: Radioimmunological characteri- zation of antisera for immunological dissection of rat pregnancy	297
SECCHI, A. G., I. FREGONA, and F. D'ERMO: «Lens permeability factors» in uveal immune inflammation	298
TEUBER, J., K. HELMKE, B. SCHIESSEL, B. MICHEL, and K. FEDERLIN: The clinical relevance of Ig-classes and complement fixation of thyroid antibodies and immuncomplexes in various thyroid diseases	299

TILL, G., H. BRAUN, and D. GEMSA: Demonstration of chemotactic factor inactivator and cell directed inhibitor activity of neutrophil chemotaxis in rats with Arthus	
reactions	299
VERMA, S. P., R. SCHMIDT-ULLRICH, and D. F. H. WALLACH: State modifications of thymocyte plasma membrane proteins and lipids by mitogenic doses of concanavalin	
	300
WENZEL, K. W., H. SCHLEUSENER, P. KOTULLA, and B. WENZEL: Lymphokines as a	
marker for a cellular immune response in Grave's disease (G.D.): Comparison of the	
direct and indirect LIF-test with solubilized TSH-receptor protein	300
WISSLER, J. H., and M. ARNOLD: Large scale production, isolation and characterization of pig leucocyte-derived activities (lymphokines) affecting random migration (chemo- kinesis) and directional locomotion (chemotaxis) of neutrophil, eosinophil and mono-	
	301
WOTTGE, HU., H. K. MULLER-HERMELINK, and W. MULLER-RUCHHOLTZ: Develop- ment of immune reactivity. Does presensitization influence the lymphatic restitution	
after allogeneic bone marrow transplantation (BMT)?	302
WORST, P., P. BOUKAMP, V. SCHIRRMACHER, and N. E. FUSENIG: Prolonged survival of	
allografted mouse epidermal cells; lack of Ia-antigens on mouse epidermal cells	303
ZIRM, M.: The keratitis disciformis, a reverse Wessely phenomenon. Experiments and	
clinical picture	304

ADOLF, E. 2.4*) Adolf, O. R. 5.1 L'AGE-STEHR, J. 8.1 Amerding, D. 3.1 ANDRES, G. A. 1.1, 2.1, 7.8 ANDREESEN, R. 9.1, 498**) ANHORN, G. 5.2 ALBINI, B. 1.1, 2.1, 7.8 AL-HASHIMI, M. 10.10 AREND, P. 410 ARGOV, S. 25 ARNDT, R. 1.2, 4.6 Arnold, M. 12.27 ARRENBRECHT, S. 12.1 ARROYAVE, C. 2.8 AUER, J. O. 11.1 AVENARIUS, H. J. 11.9 AVERDUNK, R. 12.2 Ax, W. 10.9 BARTELETT, R. 3.2 BANDHAIN, P. 9.10 BEER, M. 8.2 Begemann, M. 10.1 BENCZUR, M. 320 BERG, P. A. 2.9, 11.7 BERGER, P. 7.4 BERGER, R. 4.1 BERRENS, L. 168, 523 Bertschmann, M. 10.2, 382 BERZOTSKY, J. A. 9.12 BESSLER, W. 4.2, 418 BIENER, J. 8.11 BIRKE, F. W. 4.3 BLASER, K. 8.3, 8.7 BLOCKSMA, N. 309 ВОСК, G. 2.10 BOGUSCH, E. 1.8 BOLTZ-NITULESCU, G. 5.8, 9.2, 331 BOREL, J. F. 454 BORN, W. 8.4 BONKAMP, P. 12.29 BOSSLET, K. 10.3 BOTZENHARDT, U. 8.15, 12.15 BOYD, R. 1.3, 8.5 BRACKERTZ, D. 6.1 BRADE, V. 441

BRADSTREET, P. 65 BRAUN, D. 6.4, 35 BRAUN, H. 12.24 BRAUNSTEINER, H. 1.8 BRENDEL, W. 8.2, 10.8, 11.5, 12.6 BRITZELMEIER, C. 5.2, 5.5 BROCKHAUS, R. 8.9 BRODER, S. 4.11, 11.10 BRUGGEN, J. 10.4, 10.18, 12.3 BUB, F. 7.1 BUCHEL, F. 76 BULLINGER, W. 11.5 BUR, U. 10.15 BURGER, R. 5.3 CALAMINUS, J. U. 12.3 CHAUSSY, CH. 10.19 CHRISTOPHERS, E. 6.2 Сінак, Ј. 10.5 CLASS, G. 10.1 CLEMENT, L. 5.3 CLEVE, H. 12.5 CYBULLA, J. 4.2 CZARNECKI, N. 11.14 CZARNETZKI, B. 1.4, 470 DAMERAU, B. 7.2 DALUGGE, H. 65 DEBATIN, K. M. 7.3 DEICHER, H. 10.16, 11.12 Deltz, E. 8.17 DENIZOT, F. 121 DEVEY, U. 12.7 DIAMANTSTEIN, T. 4.12, 8.14 DIERICH, M. P. 10.17, 153 VAN DIJCK, G. 309, 523 DOERKEN, B. 138 DOERR, H. W. 2.4 Domzig, W. 3.6 DROGE, W. 1.6, 2 DRUSCHKY, K. F. 11.11 ECKERT, G. 10.16 EICHMANN, K. 10.11, 41 EIFE, G. 12.4 EIFE, R. 12.4 EIFE, R. F. 2.2, 11.3

VAN EIJK, R. V. W. 4.4 ENDERS, G. 2.4 ENDLER, A. T. 12.14 ENGLER, H. 3.3 ENGERS, H. 3.8 Erb, P. 9.15 D'ERMO, F. 12.22 FABRICIUS, H. A. 4.13, 10.6, 364 FEDERLIN, K. 12.23 FEIGE, U. 1.5 FELDMANN, A. 1.4 FELDMANN, U. 13 FETTA, R. 10.6 FEUCHT, H. Symp. 1.3 FIGACZ, G. 12.6 FINK, U. 4.9, 8.6 FISCHER, H. 9.10 FISCHER, K. 2.3 FLAD, H. D. 4.15 FODINGER, A. U. 8.6 FORSTER, O. 5.8, 9.2, 331 FORBES, J. 138 FREGONA, J. 12.22 FREY, A. 4.2 FREYLER, H. 11.12 FREYTAG, G. 8.11 FRICKE, U. 2.7, 10.16 FRISCHAUF, H. 4.1 FUSENIG, N. E. 12.29 GALLI, P. 1.6 GANGL, A. 11.4 GARAM, T. 320 GARCIA-OLIVARES, E. 110 GARRIDO, F. 110 GATTRINGER, C. 4.5 GAZZE, L. 11.14 GEBHART, W. 8.19 GEISEN, H. P. 2.4 GEISER, U. 8.7 Gemsa, D. 10.7, 12.24, 509 GIGLI, J. 7.5 GISLER, R. H. 9.15 GLANVILLE, R. W. 372

GLOBERSON, A. 8.8

GLURICH, J. 1.1

^{*)} These numbers refer to Abstract numbers of the meeting of the Society for Immunology.

^{**)} Page numbers of Original Articles.

GOTZE, D. 5.4 GOLSTEIN, P. 121 GREBER, D. 83 GROSS, W. L. 6.2 GRUBER, F. 10.8 GSCHNAIT, F. 10.14 GUNTHER, T. 12.2 GURTLER, L. G. 12.5 GYÖRFFY, GY. 320 HAAS, J. 6, 418 HADAM, M. Symp. 2.4, 4.3 HÄMMERLING, G. J. 5.6, 5.9 HÄNSCH, G. M. 7.12, 142 HAIDMAYER, B. 7.7 HALLFELD, K. 12.6 HAMANN, A. 1.2, 4.6 HAMMER, C. 10.8, 10.13, 10.19, 11.5 HAMMER, H. J. 2.5, 477 HANAUSKE-ABEL, H. 7.10 HANNICH, D. 470 HANSEN, E. 4.7 HARTHUS, H. 10.5 HARTTER, E. 5.1 HAVLICEK, J. 48, 537 HAUSTEIN, D. 12.10 HEDIN, H. 12.7 HEIMPEL, H. 8.13 HEINRICHS, H. 5.5 Helming, W. 10.4 HELMKE, K. 8.9 HESCH, R. D. 12.9 HILD, K. 35 HILFENHAUS, J. 3.3 HIRT, H. M. 3.7, 65 HORMANN, H. 9.3 HOFFMANN, U. 2.5 HOHLFELD, R. 8.10 HOLUBAR, K. 10.14 HOWIE, S. 13 HUBER, H. 4.5 HUBNER, L. 12.8 HUNIG, TH. 3.4 INTORP, H. W. 2.6, 6.3 **JANIAK**, M. 429 IRVINE, W. J. Symp. 1.3 JANZARIK, H. 1.7 JILG, W. 4.8 JOHANNSEN, R. 10.9 JUPPNER, H. 12.9 KABELITZ, D. 4.9 KAKIUCHI, T. 342 KALDEN, J. R. 11.11 KAPP, J. F. 10.11

KIESEL, U. 8.11 KIRCHNER, H. 3.3, 3.7, 10.12, LOSSE, H. 6.3 65 KIRNBAUER, U. 7.7 KLEIN, E. 25 KLEIN, G. 10.17, 41 KNAPP, W. 4.1, 5.7, 11.4, 11.13 KNOLL, H. 537 KNOP, K. 9.4 Косн, N. 12.10 KOCHSIEK, K. 11.7 KOLSCH, E. 10.5 KONIG, W. 12.13 KOFLER, R. 7.4, 12.11, 12.21 KOLB, H. 8.11, 8.12, 9.8 KOLB-BACHOFEN, U. 8.12 KONWALINKA, G. 1.8 Korst, P. 309 KOSZINOWSKI, U. 83, 96 KOTULLA, P. Symp. 2.2, 6.5, 8.18, 12.26 KRAFT, D. 12.7 KRAMER, W. 10.7 KRAPF, E. 10.12 KRAUS-MACK, W. E. 12.12 KREIL, G. 12.13 KRETH, H. W. 2.2 KREUZPAINTNER, G. 441 KRIEGER, A. 8.16 KROEGEL, C. 12.13 KUHNEMUND, O. 48, 537 KUMEL, G. 477 KUMEL, O. 2.5 KURATA, T. 10.10 KURRLE, R. 3.5 LANCER, G. 12.14 LAND, W. 11.5 LANDEN, B. 153 LANG, H. 3.6 LASSON, U. 6.9 LAUDIEN, D. 6.4 LEDER, L.-D. 1.5 LEFRANCE, S. 12.5 Leibold, W. 3.7, 10.12 LEMKE, H. 5.6 LEMMEL, E. M. 8.15, 12.15 LEYSSENS, H. 2.6 LIGHTHOLDER, J. 12.20 LIMAN, W. 2.7 LINKE, R. P. 12.16 LOEWIT, K. 12.11 LOHMANN-MATTHES, M. L. 3.6 LOMPES, S. 9.5

Loos, M. 7.1, 7.6, 9.6 LOUIS, J. 3.8 LUCIANI, M. F. 121 LUDWIG, H. 6.5, 10.14, 11.6, 11.12 LUESCHER, E. F. 382 MACHER, E. 10.4, 10.18 MAESTRONI, G. Symp. 1.2 MÄSER, E. 8.9 MAINUSCH, P. 10.13 MAISCH, B. 11.7 MAIDIC, J. 5.7 MANG, W. L. 10.8 MARGHESCU, S. 11.2 MARSHALL, S. 4.11 MATUHASI, T. 342 MATZKU, S. 10.20, 483 MAUCH, H. 2.5, 477 MAYR, W. R. 5.7, 6.5, 6.7, 6.8, 7.7, 11.12 MEDGYESI, GY. 320 MEERPOHL, H. G. 9.7 MEINGASSNER, G. 7.11 MENZEL, E. J. 6.8, 11.4, 11.13, 12.17 MENZEL, J. 7.3 MEURER, U. 7.5 MEYER, J. 10.13 MEYER, P. 3.1 MEYER ZU SCHWABEDISSEN, H. 12.9 MEYNEK, U. 1.5 MICHEL, B. 12.23 MICHELMAYR, G. 4.5 MICKSCHE, U. 10.10 MODOLELL, U. 9.1, 498 MOBIUS, V. 12.15 MOEDDER, E. 3.8 MOHR, H. 12.9 MOLDENHAUER, G. 4.10 MONNER, D. A. 1.9 MOSSMANN, H. 12.19 MUHLRADT, P. F. 1.9, 4.4 MULLER, C. 12.18 MULLER, G. 6.6 MULLER, W. 6.1, 7.6, 9.6 MULLER-BARTHEL, U. 11.8 MULLER-HERMELINK, H. K. 9.5, 12.28 MULLER-RUCHHOLTZ, W. 6.9, 8.17, 9.5, 12.12, 12.28 MUNDER, P. G. 9.1, 498 MUNRO, V. 8.19 MUUL, L. 4.11

NAGAMURA, J. 9.8 NAKAGAWA, T. 8.3 NARIUCHI, H. 342 NAUMANN, H. 10.8 NEUMANN, CH. 9.9, 9.11 NEUSCHAEFFER-RUBE, I. 83 NAUMANN, H. 10.8 NIEDORF, H. 1.4, 470 OROPEZA-RENDON, 9.10 Ossi, E. 2.1 OTTEN, R. 8.9 OVERWIEN, B. 9.11 PAUSCH, U. 7.7 PAWELEC, G. 12.18 PEEST, P. 10.16 PEHAMBERGER, H. 10.14 PENNER, E. 7.8 PEREZ, M. 110 PESCHEL, CH. 1.8 PETER, H. H. 3.7, 10.12, 11.8, 11.9,65 PETERSON, P. A. 8.6 PETRANYI, G. 320 PFITZENMAIER, K. Symp. 2.2 PICHLER, W. J. 4.11, 11.10 PIELSTICKER, K. 8.16 PIERPAOLI, V. Symp. 1.2 PIETSCHMANN, H. 11.16 PODACK, E. R. 7.9 POKORNY, J. 48 PONTZ, B. F. 7.10 POROS, A. 25 PORZSOLT, F. 8.13 POSCHMANN, A. 2.3 POSSART, P. 12.19 PRZYKLENK, H. 7.13 PTAK, W. 400 RAUTERBERG, E. D. 142 REICHERT, A. 4.9, 8.6 REIMANN, J. 4.12, 8.14 RESCH, K. 10.7, 509 REWICKA, U. 400 RICHMAN, L. K. 9.12 RICHTER, W. 12.7 DE RIDDER, G. 168, 523 RIEBER, E. P. 4.3 RIESEN, W. 6.4 RIETHMÜLLER, G. Symp. 2.4, 4.3 RING, J. 2.8 ROELCKE, D. 11.8 ROLLINGHOFF, M. Symp. 2.2, 3.2, 3.5

Romer, W. 7.12 ROSSITER, H. 3.10 ROSZKOWSKI, W. 429 ROTHER, U. 7.12, 142 ROZYCKA, D. 400 RUBIN, B. 110 RUDE, E. 4.14, 9.14 RUHL, 10.15, 464 RUIS, H. 5.1 RUMPOLD, H. 5.8 SAAL, J. G. Symp. 2.4 SALZNER, H. J. 11.11 SANDOR, M. 320 SAYERS, T. J. 2.9 SCHÄRREN, B. 382 SCHAUENSTEIN, K. 1.7, 2.10, 8.5 SCHAWALLER, R. 3.2, 3.5 SCHEDEL, I. 10.16 SCHEINER, O. 12.7 SCHERAK, O. 6.7, 6.8, 11.13 SCHERNTHANER, G. 6.5, 11.6, 11.12 SCHEURLEN, P. G. 2.5 SCHIESSEL, B. 12.23 SCHIMPL, A. 3.4, 12.8 SCHIRRMACHER, V. 3.3, 10.3, 12.29 SCHLAAK, M. 6.2 SCHLEUSENER, H. Symp. 1.4, 6.5, 8.18, 12.26 SCHMALZL, F. 1.8 SCHMIDT-ULLRICH, R. 12.20, 12.25 SCHMIEDEL, N. 11.11 SCHMITT, U. 153 SCHMITZ, B. 12.19 SCHOPF, E. 12.12 SCHORLEMMER, H. U. 7.10 SCHULLER, J. 10.19 SCHULZ, T. F. 10.17 SCHUNTER, F. 6.4 SCHWARZ, S. 12.11, 12.21 SECCHI, A. G. 12.22 SEIFERT, J. 12.6 SEPPÄLA, J. 41 SHAW, S. 4.11 SHEVACH, E. M. Symp. 2.3, 5.3 SIEBER, G. 10.15, 464 SIMON, E. 418 SIMON, M. M. 96 SIMON, R. 2.8 SMOLEN, J. S. 6.7, 6.8, 11.4, 11.13

Sorg, C. 1.5, 9.9, 9.11, 9.13, 10.4, 12.3 Spaeth, E. 9.14 VON SPECHT, B. U. 8.2 SPEISER, P. 5.7 Speth, V. 9.1, 9.10 ŠRÁMEK, J. 48 STAHN, R. 4.13, 10.6, 364 STARK, R. 1.2 STECHEMESSER, E. 2.9 STEFFEN, C. 11.13, 12.14 STEINITZ, M. 41 STEMBERGER, H. 7.11 STERN, A. C. 9.15 STINGL, G. 11.14 STOCKINGER, B. 8.15 STOTTER, H. 4.14 STROBER, W. 9.12 STUNKEL, K. 10.16 SUTER, L. 10.18 SWETLY, P. 5.1, 5.8 SZMIGIELSKI, S. 429 TABARELLI, U. 12.11, 12.21 TAPPEINER, G. 11.12 TAVERA DE, U. 12.4 TEUBER, J. 12.23 THIEDE, A. 8.17 THIELE, H. G. 1.2, 4.6 THOENES, G. H. 8.16 TILL, G. 10.7, 12.24 TIMPL, R. 8.19, 372 TORRES, D. 110 TRITSCHLER, U. 9.7 TROSTEL, R. 11.7 Ulmer, A. J. 4.15 ULRICHS, K. 8.17 UMIEL, T. 8.8 UOTILA, A. 353 VARGA, U. 320 VERMA, S. P. 12.25 VETTERLEIN, U. 5.7 VOGT, W. 7.2, 7.13 VOHR, H. W. 3.4 VOIGTLÄNDER, V. 7.12 VOISIN, G. A. Symp. 1.1 VOLLMERS, H. P. 5.4 VORWERK, J. 6.2 VYKOUPIL, K. F. 11.8, 11.9 WAGNER, H. Symp. 2.2, 3.2, 3.5 WAGNER, U. 57 WALDMANN, T. A. 4.11, 11.10 WALLACH, D. F. H. 12.20, 12.25 VON WALLENBERG,, H. 10.13 WALLICH, R. 5.9 WARD, H. 1.3 DE WECK, A. L. 8.3, 8.7 WECKER, E. 12.8 WEINGURTER, F. 10.19 WEISS, S. 35 WEKERLE, H. 8.4, 8.10 WELTZIEN, H. U. 498 WENZEL, B. Symp. 1.4, 6.5, 8.18, 12.26 WENZEL, K. W. 8.18, 12.26 WERNET, P. 5.2, 5.5, 6.1, 6.4, 6.6, 12.18 WESSELS, F. 6.3 WESTPHAL, E. 6.2, 6.9

WICK, G. 1.7, 2.10, 7.4, 8.5, 8.19, 12.11, 12.21, 372 WIEDERMANN, G. 7.11 WIEDMANN, K. H. 2.9 WIESINGER, D. 454 WILLERS, J. M. 309 WISSLER, J. H. 8.20, 12.27 WOLK-PUSCHEL, I. Symp. 2.4 WOLF, CH. 11.4 WOLF, H. 12.11 WOLFF, K. 11.14 WOLFF, M. H. 76 WOODY, J. N. 13 WORST, P. 12.29 WOTTGE, H. U. 12.28 WRABETZ, W. 11.9 WRABETZ-WOLKE, A. 11.2, 11.8

WREMBEL, J. K. 429 YETENOF, E. 10.17 VON ZABERN, J. 7.13 ZALEWSKI, P. D. 138 ZAWATZKY, R. 3.3, 3.7, 65 ZEILLER, K. 4.7, 4.8 ZIEGLER, A. 5.2, 5.5 ZIEGLER, H. W. 10.5 ZIELINSKI, CH. 12.14 ZIEMER, E. 11.1 ZINKERNAGEL, R. U. Symp. 2.1 ZIRM, U. 12.30 ZOLL, A. 76 Zöller, M. 10.20, 483

Activation of T-lymphocytes, role of	
macrophages	509
Adverse drug reaction, complement	240
Adverse drug reactions, acetylsalicylic	
acid	240
acid Alkyl-lysophospholipids, lymphocyte	
response	498
Alkyl-lysophospholipids, macrophage	
activation	255
Allogeneic bone marrow transplanta-	
tion, immune reactivity	302
Allografted epidermal cells, survival	303
Alloimmune disease, organ-specific	250
Alloreactive and H-2-restricted Killer	
cells, Generation	96
Alloreactive cytotoxic T cells stimulated	
by viral Antigens	83
by viral Antigens	05
cytes	
cytes	
gin	2
Anaphylactoid reactions, antibodies	289
Antibody-dependent cell-mediated cy-	207
totoxicity (ADCC), chronic active	
henotitis (AH)	210
hepatitis (AH)	210
quirement	25
Antibody responses, specific helper fac-	25
	17
tor	13 289
Antigen, oral application	
Antiglobulin test, radioactive Antimacrophage antibodies	197
Antimacrophage antibodies	257
Anti-mucopolysaccharide (MPS), anti-	100
bodies	199
Anti-murine B cells serum, specifici-	
ty α_1 -Antitrypsin, Complement Recep-	342
a ₁ -Antitrypsin, Complement Recep-	
tor	153
Arthus reactions chemotactic factor	200
inactivator	299
Ascites of tumor bearing mice, macro-	
phage mediated tumor cytostalis	267
Atopic dermatitis, suppressor cells	284
Autoimmune reactions, induction	248
Autoimmune thyroiditis, effector	.
cells	244
Autoimmunity, diabetes mellitus Auto-reactive A-like determinant	180
Auto-reactive A-like determinant	410
Basement membrane collagen, anti-	
bodies	372

Basement membrane collagen, immuno-	
histological studies BCG-injected guinea pigs, hypersensi-	372
BCG-injected guinea pigs, hypersensi-	
tivity reaction	477
B-cells, anti-Serum	342
Bf polymorphismBasic encephalitogeneic protein, charac-	237
Basic encephalitogeneic protein, charac-	
terization	242
Basophilic leukemia (RBL), aggregated	
IgGa	205
B lymphocyte differentiation,	10/
chicken	186
B-lymphocyte mitogens, bacterial cell	212
surface components	213 291
B-lymphocytes membrane proteins	291
B-lymphocytes, stimulation of DNA-	200
synthesis by anti-Ig antibodies Bone marrow cultures, colony types .	209 189
Bone marrow transplantation, cellular	107
immunocompetence	278
immunocompetence	2/0
endocrine network	179
Bullous pemphigoid, autoantibodies	252
Bursectomy, chronic serum sickness	185
Bursectomy, enrome serum sickness .	105
C1q collagen-like helices	295
C3, lipopolysaccharides and lipid A	441
Carcinoma, oral cavity and the tonsil	268
Cardiac diseases, antisarcolemmal anti-	
bodies	280
Cation requirement, antibody depen-	
dent killing by human lymphocy-	
tes	25
Cell mediated cytotoxicity (SCMC), re-	
lationship to MLR	204
Chemotactic factor inactivator, Arthus	
reactions	299
Chemotaxis, lymphocytes Cholestatic liver disease, complement	301
Cholestatic liver disease, complement	
fixing PBC	196
Cholestatic liver disease, trypsin insensi-	
tive subcellular antigen	195
Collagen, ¹⁴ C-collagen radioimmuno-	
assay	197
Collagen, juvenile rheumatoid arthri-	
tis	197
Collagen, type I and type II	197
Complement activation of the alternative	
pathway	239
Complement activation, killing of sal-	
monella minnesota	234

Complement cobra venom factors Complement components, purification	241
of human component C6 Complement consuming antibodies, pi-	142
geon breeders' disease	523
geon breeders' disease Complement consuming IgG subclass antibodies, pigeon breeders' dis-	525
ease	168
histolytica	240
Complement, interaction of DNA	236
Complement, membrane attack	238
Complement receptor, analogous factors	
in Human Serum	153
Complement receptor, α_1 -Antitryp-	
sin	153
sin	
drome	281
drome	201
	194
	174
Cortisol effects, suppressor cell activi-	
ties	213
CTL, herpes virus specific	203
Cyclosporin A, mechanism of action .	454
Cytotoxic T cell, virus specific	83
Cytotoxic T lymphocytes, induction . Cytotoxicity, effector lymphocytes	211
Cytotoxicity, effector lymphocytes	320
Delayed-type hypersensitivity, anti-tu-	
berculin antiserum	477
Diabetes mellitus, autoimmunity	180
Diabetes mellitus, autominumty	100
	202
xes	283
Diabetes, transfer by lymphocytes	248
Diabetic patients, islet-cell antibodies .	246
Dialysable transfer factor, chemical	
nature	353
Dialysable transfer factor, leukocyte dia-	353
Dialysable transfer factor, leukocyte dia-	353 353
Dialysable transfer factor, leukocyte dia- lysate	
Dialysable transfer factor, leukocyte dia- lysate	
Dialysable transfer factor, leukocyte dia- lysate	353
Dialysable transfer factor, leukocyte dia- lysate	
Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF)	353 193
Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF)	353 193 293
 Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) 	353 193
 Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 	353 193 293 230
 Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines 	353 193 293
 Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide anti- 	353 193 293 230 300
 Dialysable transfer factor, leukocyte dia- lysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide anti- bodies, light chain heterogeneity 	353 193 293 230
 Dialysable transfer factor, leukocyte dialysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide antibodies, light chain heterogeneity Growth factor (TCGF), suppressor 	 353 193 293 230 300 35
 Dialysable transfer factor, leukocyte dialysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide antibodies, light chain heterogeneity Growth factor (TCGF), suppressor cell 	 353 193 293 230 300 35 220
 Dialysable transfer factor, leukocyte dialysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide antibodies, light chain heterogeneity Growth factor (TCGF), suppressor 	 353 193 293 230 300 35
 Dialysable transfer factor, leukocyte dialysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide antibodies, light chain heterogeneity Growth factor (TCGF), suppressor cell 	 353 193 293 230 300 35 220
 Dialysable transfer factor, leukocyte dialysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide antibodies, light chain heterogeneity Growth factor (TCGF), suppressor cell 	 353 193 293 230 300 35 220
 Dialysable transfer factor, leukocyte dialysate Enzyme-immunoassay, quantitation of human Ig Eosinophil chemotactic factor (ECF) generation Essential hypertension, HLA-B17 Graves disease, lymphokines Group A-variant polysaccharide antibodies, light chain heterogeneity Growth factor (TCGF), suppressor cell GVHR, T-cell-mediated reactivity 	 353 193 293 230 300 35 220

H-2 restricted killer-cells, generation . Helper factor, induction of antibody re-	96
sponses	13
	210
mediated cytotoxicity (ADCC)	210
Herpes simplex virus, antigenic rela-	7/
tionship to varicella-zoster virus	76
Herpes simplex type 2 (HSV2) infec-	201
tions, effector mechanisms	201
Histamine release, contrast media	194
Histamine release, serum factors	209
HLA-D, -DR heterogeneity	296
HLA-DR serology, transplantation	231
HLA-DRw3, systemic lupus erythema-	
tosus	232
Hodgkin's disease, immunoglobulin-se-	
creting cells	273
Hodgkin's disease, lymphocyte reactivi-	
ty	264
Hybridomas, monoclonal antibodies to	
human group A erythrocytes	226
Hyperthermia, effect on lympho-	
cytes	429
· ·	102
Ig, enzyme-immunoassay	193
IgE, antidiotypic antibodies	243
IgE, antiidiotypic antiserum	245
IgE monoclonal gammopathy, «be-	
nign»	280
IgM antibodies to rubella-virus and cy-	
tomegalo-virus, detection by Elisa-	
technique	192
IgM and IgA samples, quantitation by	
fluoroimmunometric technique	192
Immune complexes, detection using Raji	
cells	191
Immune response, mother to the fe-	
tus	179
Immune complexes, RIA	194
Immune complexes, thyroid diseases .	198
Immune reactivity, T-cell mediated	207
Immune responses, genetic control	221
Immunocompetent T helper cells, corti-	
cal thymocytes	201
Immunolatex, procedure for light and	
fluorescence microscopy	138
fluorescence microscopy Immunoregulatory function modula-	
	282
Infections with group A-streptococci,	
irnmunogenetic aspects	230
Inflammatory bowel disease, suppressor	
cell activity	278
cell activity	
ceptor	231
ceptor	
virus	202

Interferon production, MLC Interferon, producer cell in human lym- phocyte cultures	202 65
Interferons, NK and K cell activity	208
Keratitis disciformis	304
Kidney diseases, immune complexes . Kidney transplant patients, suppressor-	238
cells	279
Kupffer cells, H-2 linked Ir gene expres- sion	261
Laser immunofluorescence, bleaching	
characteristics of FITC conjugates .	196
Laser-nephelometry, rheumatoid fac-	102
tors	193
Lens permeability factors	298
Leukemic cells, HLA antisera	233
Leukocyte aggregation, complement-	
derived peptides Lewis lung tumor, immunoprophy-	234
laxis	269
Light chain heterogeneity	35
Lipopolysaccharides, interaction with	441
C3	441
Lipoprotein from Escherichia coli	418 418
Lipoprotein, mitogenicity	253
Liposomes, kinin and complement	255
Lymphocyte response, alkyl-lysophos- pholipid	498
Lymphocytes, stimulation by ribosomal	464
proteins	404
production against group A strepto-	
coccal carbohydrate	41
Lymphoblastoid cells, lectin binding	
sites	288
Lymphoblasts, proliferative response	249
Lymphocyte cultures, producer cell of interferon	65
Lymphocyte plasma membranes, Ca ⁺⁺ -	05
binding	286
Lymphocyte transformation test, Graves	
disease	252
Lymphocytes, autokilling	249
Lymphocytes subsets, glycoproteins .	215
Lymphoid cells, morphology and anti-	
genic surface determinants	188
Lymphoid tissue, localization of cell	
markers	199
Lymphocyte populations bone mar-	_
row	216
Lymphokines, chemokinesis	301
Lymphokines, Graves disease	300
Lymphotoxin production	287

Lyt T cells subpopulations, generation	
of alloreactive and H-2 restricted kil- ler cells	96
ler cells	70
Macrophage activation, alkyl-lysophos-	
pholipids	255
Macrophage associated antigens, mono-	
clonal antibodies	227
Macrophage, generation of T effector	
cells	183
Macrophage-mediated cytotoxic capaci-	
ties, fetal and neonatal mice	258
Macrophage mediated tumor cytostasis,	2/7
ascites	267
Macrophage mediated cytotoxicity, anti-	
body-dependent and lymphokine-in-	204
duced	204
ties, characterization	262
Macrophage, neuraminidase	256
Macrophage T cell interaction, Ir	250
genes	262
Macrophages, anti-rat macrophages	202
sera	331
Macrophages, activation of T-lympho-	
cytes	509
Macrophages, alveolar and peritoneal .	331
Macrophages, interferon inducers	259
Macrophages, collagen type II	239
Macrophages, complement system	239
Macrophages, Fc receptor	258
Macrophages, fibronectin	256
Macrophages, helper T cell induction .	263
Macrophages, lectin-like receptor	259
Macrophages, plasminogen activator .	260
Macrophages, prostaglandin E ₁	260
Macrophages, Proteinase-treatment	255
Malignancies, monocyte mediated cyto-	
toxicity	272
Mast cell activation, IgE receptor	206
Mast cell responses, evaluation	296 470
Mast cells, development	186
Mast cells, in vitro development Mastocytoma, intradermally develop-	100
ing	382
Mastocytoma, in vivo and in vitro im-	562
	382
mune reactions	274
Melanoma cell-line blocking effects	270
Melanoma cell, surface structures	265
Melanoma, suppressor cells	271
Mistletoe extract, adjuvant activity	309
Mitogenicity of lipoprotein	418
Monoclonal antibodies, cell lines	225
Monoclonal antibodies, cell surface anti-	
gens	224
v	

Monoclonal antibodies, controlled by the major histocompatibility com-	
plex	226
tion of yeast catalase	223
sociated antigens	227
H ₂ antigens	225 227
Mononuclear phagocytes, cytochemical studies on the differentiation M. Waldenström, anti-i autoantibod-	187
ies	281
Myasthenia gravis, suppressor cells Myeloid precursor cells, bone mar-	283
row	189
cytes	273
Natural cytotoxicity in man	184
ease	277
parvum	212
rophages	212
syndromes	206
dant generation	208
ment	211
Parasites, cell-mediated immunity Parasite-induced proliferative response,	182
T lymphocytes	205
gens	182
ies	290
Pemphigus vulgaris, plasmapheresis Phagocytosis, release of lysosomal en-	277
zymes	235
Phagocytosis, complement mediated Pigeon breeders' disease, complement	237
consuming antibodies Pigeon breeders' disease, complement consuming IgG subclass antibod-	523
ies	168
Pineal function, endocrine network Plaque-forming cell assay, chicken	179
system	236
Plasmapheresis, pemphigus vulgaris Plasmocytoma, immune response	277 266

Plasmodium knowlesi, specific anti-	
gens	297
Pregnancy, immunological dissection	297
Pregnancy, prolactin	292
Pregnancy, prolactin Proteolytic activity, tumor-membrane-	-/-
associated	274
associated	229
rsonasis, 1-cen responses	227
Rheumatoid arthritis, B-cell alloanti-	
gens	232
Rheumatoid arthritis, genetic basis	229
Rheumatoid arthritis immune comple-	
xes Rheumatoid arthritis, immune	284
Rheumatoid arthritis, immune	
system	295
Rheumatoid arthritis, leukocyte loco-	
motion	293
Rheumatoid factors, laser-nephelome-	
try	193
try	
phocytes	464
Sandwich isotopic antiglobulin assay .	483
Sclerosing panencephalitis (SSPE), lym-	
phocyte function	191
Self recognition, B-cells and regulatory	171
T collo	242
T-cells	246
Senitized individuals immunopharma	240
Sensitized individuals, immunopharma-	200
cological approaches	200
Serum amyloid A protein (SAA)	275
Specific Antibody Production against	
Group A Streptococcal Carbohy-	
drate, Human Lympho-blastoid Cell	
Line	41
Spontaneous tumors, antitumor affector	
mechanisms	276
Spontaneous tumors, sandwich isotopic	
antiglobulin assay	483
Streptococcal M-protein, mitogenic	
properties	537
STH, metabolism in normal and nude	
mice	286
Suppressor factor, antigen specific	400
Suppressor cell activities, cortisol ef-	
fects	213
Suppressor cell activity, carcinoma of	
bladder and kidney	275
Suppressor cells, enrichment	218
Suppressor cells, myasthenia gravis	283
Suppressor cells, induction	400
Suppressor populations, identification in	
human peripheral blood	215
Suppressor T-lymphocytes, bordetella	
pertussis	218
-	

Sympathetic ophthalmia, immune reac-		Thyr
tions	292	Thy
Systemic Lupus erythematosus, HLA-		Thy
DRw3	232	T-lyı
		ag
T-axis differentiation antigens, charac-		T-lyi
terization	185	tic
T_G and T_M cell subsets	219	T-ly
T cell growth factor (TCGF), tumor pa-		tig
tients	266	Т
T-cell lines	364	to
T-cell populations, antigen-specific sec-		T-ly
ondary T-lymphocytes	247	TÌ
T cell reactions, NZB mice	250	m
T-cell replacing factor (TRF)	290	Тма
T cells, cooperative induction	121	re
T cells, generation of virus specific cyto-		Tran
toxicity	83	Trop
T-cells, polyclonal specificity with an		T-T
apparent anti-self component	121	ph
T cells, Xenoserum-Induced	121	T sti
T cell subpopulations, surface protein		Tum
patterns	217	Tum
T cell subsets, generation of effector		Tum
cells	96	za
TCGT, suppressor cell mediated regula-		Tum
tion	220	Tum
T effector cells, macrophages	183	in
T-helper function, chimeric mice	203	Туре
Thymectomy, serum sickness	185	P
Thymocyte plasma membrane pro-		17
teins	300	Vario
Thymocyte surface antigen (HTA1),		tic
leukaemic cells	223	the second
Thymus-brain antigen	216	Whe
Thyroid antibodies, Ig-classes	198	str
······································	170	30

Thyroid antibodies, various tests	198
Thyroid diseases, thyroid antibodies	299
Thyroid stimulating, autoantibodies	181
T-lymphocyte colony forming units,	
agar micro culture	221
T-lymphocyte memory in vitro, induc-	
tion	243
T-lymphocyte proliferation, IA-like an-	
	245
tigens T lymphocytes, alloreactive cyto-	
toxic	207
T-lymphocytes, chicken antibodies	214
T lymphocytes precursors, develop-	
	188
ment \dots	100
regulatory function	219
Transplantation, HLA-DR serology	231
Trophoblastic cells, isolation	287
T-T cell cooperation, cytotoxic T lym-	207
phocytes	182
T stimulator cells, syngeneic MLR	220
Tumor antigens, expression	265
Tumor ascites, anti tumor affect	270
Tumor-bearing rats, lymphocyte sensiti-	270
zation	268
Tumor growth, spleen size	271
Tumor regression, routes of tumor cell	2/1
	264
injection	204
pyogenes, isolation	48
pyogenes, isolation	40
Variable Zostar virus antigonia rola	
Varicella-Zoster virus, antigenic rela-	76
tionship to Herpes Simplex Virus	/0
Wheat-germ agglutinin, interaction with	
streptococci	57
	- /

Immunobiol., vol. 156, pp. 96-109 (1979)

Institut für Immunologie und Genetik, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 6900 Heidelberg, Federal Republic of Germany

Generation of Effector Cells from T Cell Subsets. I. Similar Requirements for Lyt T Cell Subpopulations in the Generation of Alloreactive and H-2 Restricted Killer Cells

M. M. SIMON and U. H. KOSZINOWSKI

Received May 31, 1979 · Accepted June 11, 1979

Abstract

Lyt T cell subsets involved in the generation of H-2 restricted and alloreactive cytotoxic effector cells were analysed using anti Lyt antisera. Our data show that Lyt 1, 2, 3^+ T cells are required for the induction of primary and secondary H-2 restricted and TNP-specific killer cells. In contrast, primary and secondary H-2 restricted and virus-specific T effector cells were obtained from selected Lyt 2, 3^+ T cell populations and were not dependent on the presence of Lyt 1, 2, 3^+ T cells. Allogeneic responses to selected K, I, or D region differences were obtained only in the presence of Lyt 1, 2, 3^+ T cells; yet alloreactive killer cells were effectively generated from selected Lyt 2, 3^+ T cell populations deprived of Lyt 1, 2, 3^+ T cells, when responder and stimulator cells differed at either K + D, K + I, I and D regions or in the entire H-2 region.

Taken together, the results suggest that there is no qualitative difference between alloreactive and H-2 restricted cytotoxic responses in their requirements for particular Lyt T cell subsets. The findings indicate that the number of different antigenic determinants rather than their association with MHC self determinants is critical for the requirement of Lyt 1, 2, 3⁺ T cells during the sensitization phase.

Introduction

It is now well established that the effector functions of thymus derived lymphocytes involved in the regulation of the immune response are mediated by T cell subpopulations. The classification of the T cell lineage into subsets was made possible by the discovery of cell surface markers.

Using the Lyt alloantigen system, described by BOYSE and co-workers (1, 2), it has been demonstrated that T lymphocyte subsets with known functional capacities also show characteristic distribution patterns of these surface structures (3, 4, 5, 6). Current information suggests that in the mouse T cells expressing the Lyt 1⁺, Lyt 2, 3⁻ surface phenotype play an obligatory helper or accessory role in most immune responses (4, 5). In contrast, T cells which express the Lyt 1⁻, Lyt 2, 3⁺ phenotype develop both the capacity to suppress immune responses as well as the ability to elicit alloreactive cytotoxic activity (5, 6, 7, 8).

However, it has recently been shown by CANTOR and BOYSE that the generation of H-2 restricted cytotoxic lymphocytes specific for TNPmodified syngeneic cells requires the presence of Lyt 1, 2, 3⁺ cells in the induction phase (9). The authors suggested that the Lyt 1, 2, 3⁺ cells probably represent the killer cell precursor population but it is still possible that these cells represent the helper cell population involved in the generation of cytotoxic effector cells from Lyt 2, 3^+ killer cell precursors. The finding by BURAKOFF et al. (10) that the H-2 restricted and TNP-specific cytotoxic activity generated from a cell mixture containing the Lyt 2, 3⁺ T cell subset from one strain and the unselected T cell population from the Lyt congenic partner was only abolished by anti-Lyt 2 antisera specific for the unselected T cell population, was interpreted in favour of Lyt 1, 2, 3 T cells consisting of H-2 restricted killer cell precursors. Similar requirements for Lyt 1, 2, 3 T cells were reported for the generation of H-2 restricted and virus specific cytotoxic lymphocytes (10), which implies that alloreactive and H-2 restricted killer cells are generated by different pathways.

The data reported in this paper show that Lyt 1, 2, 3^+ cells are required for the induction of some, but not all, H-2 restricted cytotoxic responses in vitro.

Furthermore, we demonstrate that there is also a requirement for Lyt 1, 2, 3^+ T cells in the generation of alloreactive cytotoxic activity against MHC sub regions.

Altogether, the presented data suggest that the differences seen for the induction requirements of H-2 restricted and alloreactive cytotoxic effector cells in their requirements for T cell subsets are quantitative rather than qualitative.

Materials and Methods

Mice

6 to 12 week old male or female mice were used for the experiments. All strains used were bred in our own colony: C57Bl/6, C57Bl/10, B10.D2, B10.Br, B10.A, B10.A(2R), B10.A(4R), B10.AKM, Balb/c, C.B-17, ATL, and A.AL. All mice used for the generation of anti-Lyt antisera, B6-Lyt 1.1 congenic mice (Lyt phenotype 1.1, 2.2, 3.2), B6-Lyt 2.1 congenic mice (Lyt phenotype 1.2, 2.1, 3.2), B6-Lyt 2.1, 3.1 congenic mice (Lyt phenotype 1.2, 2.1, 3.1), as well as the CE F2 Lyt 1.2 homozygous, Lyt 2.1 homozygous and Lyt 3.2 homozygous animals, originally obtained by Dr. Shen and Dr. Boyse, were also maintained in our colony.

Viruses

Sendai virus (kindly provided by Dr. M.-G. Gething, ICRF, London) and influenza A virus (A/Victoria H_3N_2 , kindly provided by Dr. Rott, Gießen) were grown in 10 day old embryonated chicken eggs. Harvesting and purification of virus was done as described previously (11).

Immunizations and sensitizations

Mice were injected i.p. with 100 haemagglutinating units (HAU) of infective virus. Lymphocytes from spleen and lymph nodes were removed 3-10 weeks afterwards and analyzed in

vitro. Mice were sensitized to TNP by skin painting with 30% picrylchloride in acetone and the spleen cells were removed 7 days later.

Media

MLC's were performed in RPMI 1640 supplemented with L-glutamine (2 mM final concentration), streptomycine and penicillin (50 U/ml), Hepes buffer (25 mM final concentration), 2-mercaptoethanol (2×10^{-5} M) and 10% selected fetal calf serum.

Tumor cells P-815 (H-2^d) and RBL-5 (H-2^b) tumor cells were grown in medium at a concentration of 2×10^5 cells/ml with medium change after every 48 hours.

Antisera

Anti-Thy 1.2 antiserum (AKR anti C3H) was kindly provided by Dr. B. RUBIN, Statens Seruminstitut, Copenhagen, Denmark. Anti-Lyt antisera were prepared as described by SHEN et al. (12). Briefly, anti-Lyt 1.2 antisera were prepared by injecting C3H/An mice with thymocytes from (C3H/An \times CE)F2 mice homozygous for the Lyt 1.2 allele. Anti-Lyt 2.2 antisera were prepared by injecting (C3H/An × B6/Lyt 2.1, 3.2)F1 hybrids with thymocytes from C57Bl/6 mice. Anti-Lyt 3.2 antisera were prepared by injecting C58 mice with thymocytes from (C58 \times CE)F2 mice homozygous for the Lyt 3.2 allele. After 1 subcutaneous injection of 50-100 \times 10⁶ donor thymocytes and three additional intraperitoneal injections of 50-100 \times 10⁶ donor thymocytes at 14 day intervals, each mouse was tested individually and those selected for further immunization were mice that produced good specific titers after removal of autoantibodies by absorption on thymocytes from the recipient strains. Selected mice were bled on days 7 and 10 after each inoculation and the sera from several bleedings were pooled and stored at -70 °C. Prior to use the Lyt antisera were absorbed once on 100×10^8 thymus and lymph node cells from the recipients and the B6 congenic strain (carrying the irrelevant Lyt allele) per ml undiluted antisera to remove autoantibodies. In a microcytotoxicity test the titer of anti-Lyt 1.2 was 1:250, the titer of anti-Lyt 2.2 was 1:250 and the titer of anti-Lyt 3.2 was 1:500 on thymocytes of strain C57Bl/6 after the removal of autoantibodies. Anti Lyt 1.2 antisera were negative on lymphocytes of B6/Lyt 1.1 congenic mice, anti-Lyt 2.2 and anti-Lyt 3.2 antisera were negative on lymphocytes of B6 Lyt 2.1, 3.1 congenic mice. The anti-Lyt 1.2 antisera as well as the anti-Lyt 2.2 antisera were used at a final dilution of 1:20. The anti-Lyt 3.2 antisera were used at a final dilution of 1:40.

For treatment of lymphocytes with antisera and complement prior to in vitro stimulation 30×10^6 /ml normal lymph node or spleen cells, or nylon wool purified splenic T cells were incubated with anti-Thy 1.2 antiserum (1:20 final dilution) or the appropriate anti-Lyt antisera in RPMI 5% fetal calf serum and incubated for 30 min at room temperature. Cells were centrifuged and resuspended in freshly thawed selected rabbit serum (dilution 1:10 to 1:12) as a source of complement in 5% FCS/RPMI and incubated for an additional period of 30 min at 37 °C. The treatment of cells with anti-Lyt antisera and complement was repeated once to obtain highly purified Lyt subsets. Cytotoxic effector lymphocytes generated from lymph node or spleen cells or nylon wool purified T cells in 4–5 days MLR's were treated with Lyt antisera and complement as described above.

In vitro generation of effector cells

 5×10^6 responder cells were incubated at 37 °C with 1×10^6 to 2.5×10^6 stimulator cells in 2 ml in Linbro macrotiter plates (FB 16–24 TC) and incubated for 4–6 days in humidified air plus 5% CO₂. Purified splenic T cells were obtained as described by JULIUS et al. (13). As stimulator cells, allogeneic B cells, obtained by treatment of spleen cells with anti-Thy 1.2 plus complement, TNP modified syngeneic spleen cells or syngeneic cells preincubated with viral antigens (10 µg Sendai virus, β-propiolactone inactivated/10⁶ cells) for 1 hour at 37 °C were used.

Cell mediated lymphocytotoxicity assay and analysis of data

Following the 5 day incubation period cytotoxic activity of effector cells was tested on either chromium labelled concanavalin A (Con A) spleen cell blasts or tumor cells. Con A blasts were

obtained by stimulating 12.5 \times 10⁶ spleen cells with 5 µg/ml Con A (Miles-Yeda, Ltd., Illinois 60901, Code 79-002) in 6 ml media (2, 4) and incubated for 48 hours. Con A blasts and tumor cells were labelled with ⁵¹chromium. 2 \times 10⁴ blast cells or 1 \times 10⁴ tumor cells were incubated for 4 hours at 37 °C with various numbers of cytotoxic T cells in 200 µl RPMI medium (containing 10% fetal calf serum and 0.1 mM Hepes buffer, final concentration) in round bottom microtiter plates (Linbro IS-MRC-96). Afterwards, the plates were spun for 5 minutes at 1500 rpm, 100 µl of the supernatant were removed, and the isotope released from the ⁵¹Cr labelled target cells was counted. An aliquot of the target cells were frozen and thawed four times so that maximum ⁵¹Cr release could be determined. The percentage of ⁵¹Cr release from target cells was determined using triplicate samples and calculated by the following formula:

% specific lysis = $\frac{{}^{51}\text{Cr}}{\text{max}}$ release by immune cells – ${}^{51}\text{Cr}$ release by normal cells × 100

All measurements were performed in triplicate and the standard error of the mean was always less than 5%.

Mixed lymphocyte culture

Proliferative response of mixed lymphocyte cultures was tested by removing 100 μ l from the bulk cultures and labelling with ³H (thymidine) (The Radiochemical Center, Amersham Buchler, England, 2 Ci/nm) at 2 μ Ci/well for 12 hours. Specific incorporation was determined by substracting background responses of responder cells incubated with syngeneic irradiated cells.

Results

Generation of primary alloreactive and H-2 restricted cytotoxic lymphocytes from unselected and selected T cell populations

In order to determine the Lyt phenotype of killer cell precursors in a primary response to alloantigen or NAD (new antigenic determinants) formed by TNP or Sendai virus on syngeneic cells, lymphocytes were pretreated with either anti-Lyt 1 or anti-Lyt 2, 3 antisera and complement. Thereafter, the treated cell populations were cultured either separately or as a 1:1 mixture of the two populations selected for Lyt 1^+ or Lyt 2.3^+ T cells, respectively with the sensitizing antigen.

Figure 1 shows typical response patterns of unprimed splenic lymphocyte populations, either unselected or selected for Lyt T cell subsets and activated by allogeneic stimulators or syngeneic cells modified with TNP or Sendai virus respectively. B6 Lyt 2,3⁺ splenic T cells were able to mount a primary cytotoxic response to irradiated H-2 incompatible B10.D2 cells. The same population was unable to respond in a primary reaction to TNP haptenated syngeneic cells, even in the presence of Lyt 1⁺ helper cells, which augment the cytotoxic response of Lyt 2,3⁺ T cells to the alloantigen. Balb/c Lyt 2,3⁺ T cells as well as the mixture consisting of Lyt 1⁺ and Lyt 2,3⁺ T cells were very efficient in eliciting a primary cytotoxic response to virus infected stimulators. The conditions for induction of a primary antiviral cytotoxic response and the distinction from a secondary response by functional criteria have been described in a preceding paper (11). The data depicted in Figure 1 clearly demonstrate that the presence of Lyt 1.2.3⁺ cells are only required for the formation of primary H-2 restricted and TNP

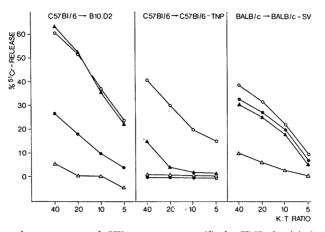


Fig. 1. Effect of pretreatment of CTL precursors specific for TNP, Sendai virus and alloantigens with anti Lyt antisera and complement prior to culture on the generation of primary cytolytic activity. 5×10^6 splenic responder cells (B6) were cultured for 5 days with 1×10^6 irradiated syngeneic TNP conjugated spleen cells or 2.5×10^6 irradiated DBA spleen cells. 5×10^6 nylon purified Balb/c T responder cells were cultivated in the presence of 1 µg inactivated Sendai virus/ml. Cultures were tested on day 5 for cytolytic activity on the relevant targets (see Materials and Methods) O—O, unselected population; $\Delta - \Delta$, selected for Lyt 1⁺ cells; $\bullet - \bullet$, selected for Lyt 2,3⁺ cells; $\bullet - \bullet$, selected for Lyt 1⁺ and Lyt 2,3⁺ cells (1:1). Numbers on the abscissa indicate effector to target ratio.

specific cytotoxic lymphocytes but not for the generation of primary H-2 restricted and virus specific or alloreactive cytotoxic lymphocytes.

H-2 restricted as well as alloreactive cytotoxic effector cells generated to either TNP + self or viral + self or alloantigens respectively, were sensitive to treatment with anti-Thy 1.2 or anti-Lyt 2,3 but not to anti-Lyt 1 antisera and complement and are, therefore, Thy 1^+ , Lyt 1^- , Lyt $2,3^+$ (data not shown).

Generation of secondary H-2 restricted cytotoxic lymphocytes specific for TNP or viral antigen from unselected and selected T cell populations

Since different T cell populations may participate in a secondary cytotoxic response in vitro we investigated the requirements for Lyt subpopulations in the formation of a secondary H-2 restricted cytotoxic response after priming in vivo. Secondary H-2 restricted TNP specific cytotoxic lymphocytes were generated by restimulation of splenic T cells from mice previously sensitized to TNP (skin painting) with irradiated and TNP modified syngeneic cells in vitro. Primed anti-TNP specific killer cell precursors are distinguishable from virgin precursor CTL's by functional criteria. We found that only primed T cells but not unprimed T cells enriched on nylon columns were able to mount an effective TNP specific cytolytic activity in vitro (M. SIMON, unpublished observation). Secondary H-2 restricted cytotoxic lymphocytes specific for influenza A (strain A Victoria H3N2), were obtained by restimulating nylon wool enriched splenic T cells in vitro from mice previously sensitized in vivo using virus infected cells as stimulators. Figure 2 summarizes the results of an experiment in which nylon wool purified splenic T cells either unselected or selected for Lyt subsets from C.B-17 were restimulated with TNP modified

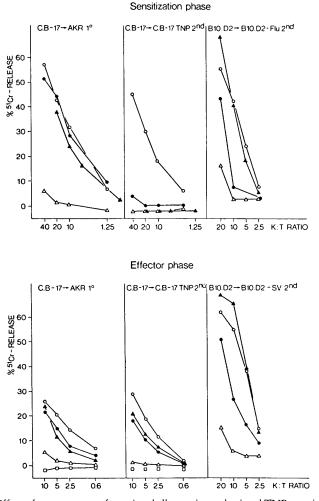


Fig. 2. Effect of pretreatment of unprimed alloreactive and primed TNP or primed influenza A virus specific lymphocytes with anti Lyt antisera and complement prior to the sensitization phase or prior to the effector phase on the generation and cytolytic activity of CTL's in vitro. 5×10^6 TNP primed C.B-17 nylon purified T cells were incubated with 1×10^6 irradiated syngeneic TNP modified stimulator cells or with 2.5×10^6 irradiated AKR spleen cells. 5×10^6 SV primed and nylon purified B10.D2 T cells were cultured in the presence of 1 µg inactivated Sendai virus/ml. Cultures were tested on day 5 in the ⁵¹Cr release assay as described in Materials and Methods. \bigcirc unselected populations; \blacktriangle selected for Lyt 1⁺ cells; selected for Lyt 2,3⁺ cells (1:1); \square — \square cells treated with \overline{a} Thy 1 and complement.

syngeneic cells or co-cultured with allogeneic stimulator cells from strain AKR. In addition, the secondary responses of unselected T lymphocytes as well as Lyt 1⁺ and/or Lyt 2,3⁺ T cells from strain B10.D2 to influenza A modified syngeneic cells are depicted in the same Figure 2. Secondary TNPspecific killer cells were only generated from unselected populations and were not obtained from Lyt 2,3⁺ T cells alone. In most experiments the mixed population comprised of Lyt 1⁺ and Lyt 2,3⁺ T cells was also ineffective in generating TNP specific cytolytic effector cells. In contrast, the mixed population was very efficient in eliciting effective responses to viral- or alloantigens. As seen before, primary alloreactivity was also obtained from Lyt 2,3⁺ T cells in the absence of Lyt 1⁺ T cells. Thus, as for the primary cytotoxic response Lyt 1,2,3⁺ T cells are also involved in the generation of secondary cytotoxic lymphocytes to TNP-coupled syngeneic stimulator cells. The same population is not required during the induction of secondary responses to influenza A viral antigens (also found in secondary responses to Sendai virus; data not shown). Figure 2 also compiles data showing that alloreactive as well as secondary H-2 restricted cytotoxic effector cells specific for TNP or viral antigen are Lyt 1⁻ Lyt 2,3⁺.

Requirements for Lyt T cell subsets in the generation of cytotoxic responses to antigens encoded by different regions within the H-2 complex

The finding that there is a different requirement for Lyt 1,2,3⁺ cells in the generation of H-2 restricted cytotoxic T cells to different modifying antigens prompted us to study the participation of Lyt T cell subsets in the induction of alloreactive T cells specific for selected MHC determinants. Lymph node cells from different mouse strains were pretreated with anti-Lyt 1 or anti-Lyt 2,3 antisera and complement. Responder populations selected for T cell subsets were co-cultured with anti-Thy 1 plus complement treated and x-irradiated spleen cells (B cells) as stimulators. The latter treatment was done to avoid a possible stimulating effect of the irradiated allogeneic T cell population (14). Responder and stimulator cells differed at either the K, I or D regions alone or were incompatible at either the K and I, K and D, I and D or the whole MHC region, respectively. The data presented in Figure 3 reveal that Lyt 1,2,3⁺ T cells are essential for the formation of cytotoxic responses to either K (ATL anti A.AL), D (B10.A anti B10.A [2R] or I (ATL anti ATH) region differences alone. This is abvious from the fact that neither the Lyt $2,3^+$ T cell subset alone nor the mixture containing Lyt 1^+ and Lyt $2,3^+$ T cells are able to mount an effective response to the appropriate antigen. In contrast, Lyt 1,2,3⁺ T cells were not required for the generation of cytotoxic activities when responder and stimulator cells differed at either the K and I (B10 anti B10.A [4R]), the K and the D (ATL anti B10.AKM), the I and D regions (B10.Br anti B10.A [4R]) or in the whole MHC complex (B10.Br anti B6), respectively. In the latter three combinations cytotoxic lymphocytes were obtained from either Lyt 2,3⁺ T cells alone or in mixed populations consisting, in addition, Lyt

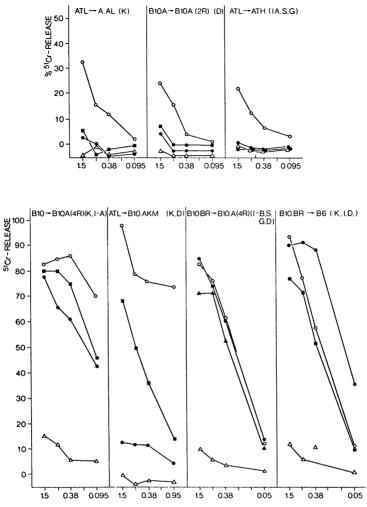


Fig. 3. Effect of pretreatment of alloreactive CTL precursors with anti Lyt antisera and complement prior to culture on the in vitro generation of cytolytic activity. 5×10^6 lymph node responder cells were cultured with 2.5 $\times 10^6$ irradiated stimulator cells (B cells). Effector cells were tested on day 5 in a ⁵¹Cr release assay. O—O unselected population; Δ — Δ selected for Lyt 1⁺ cells; •—• selected for Lyt 1,2,3⁺ cells; ——] selected for Lyt 1⁺ and Lyt 2,3⁺ cells. Numbers on the abscissa indicate the number of responder cells ($\times 10^6$) cultured on day 0, the descendents of which are tested on 2 $\times 10^4$ target cells.

 1^+ T cells. In the experiment depicted in Figure 3, aliquots of the same ATL responder Lyt T cell subsets were used to react to either K, I or K plus D region differences. Thus, the lack of generation of cytolytic activity to K or I region differences alone from the mixed population containing Lyt 1^+ and Lyt 2, 3^+ T cells could not be due to unspecific removal of all Lyt 2,3 killer cell precursors.

Responding cell	К		D		I-A, S, G		K, I-A		K, D		I-B, S, G, D	
population	d 3	d 4	d 3	d 4	d 3	d 4	d 3	d 4	d 3	d 4	d 3	d 4
untreated (C')	24,686	n.d.	14,308	18,970	49,133	37,117	54,090	n.d.	49,964	43,012	n.d.	26,565
Lyt 2,3 ⁺	2,913	n.d.	5,208	4,627	14,303	9,819	8,576	20,623	6,669	38,997	n.d.	13,780
Lyt 1 ⁺	1,266	n.d.	8,903	16,168	18,443	12,487	29,162	84,321	11,230	38,485	n.d.	18,288
Lyt 1^+ + Lyt 2, 3^+	4,460	n.d.	10,420	19,850	17,406	11,747	23,014	64,401	28,202	65,207	n.d.	24,120

Table 1. MHC difference between responder and stimulator cells \triangle cpm^a)

^a) \triangle = Mean [³H] thymidine uptake for allogeneic combination – mean [³H] thymidine uptake for syngeneic combination.

Responder cells from the same cultures, which were tested for generation of killer cells, were also studied for their proliferative responses. The data are summarized in Table 1. As already shown by several authors (4, 5, 15) it was found that in MLC's differing at either the entire or parts of the H-2 complex pretreatment of lymph node T cells with anti-Lyt 1 antiserum plus complement removed the majority of the proliferating cells in all strain combinations tested. In the combined mixture of Lyt 1⁺ and Lyt 2,3⁺ T cells the proliferative responses were restored more or less in most strain combinations. In the strain combination ATL anti A.AL, where responder and stimulator differ only in the K region, the proliferative response remained low and no cytotoxic lymphocytes were generated from the T cell population consisting of Lyt 1⁺ and Lyt 2,3⁺ T cells. Similar results were obtained in studies of T cell responses to mutant H-2 K and H-2 D alloantigens in which the proliferation was shown to be dependent on Lyt $1,2^+$ cells (16). One would assume that H-2 K end antigens, when presented as the only determinants on stimulator cells, are only able to induce responses in Lyt 1,2,3⁺ but not in Lyt 1⁺ or Lyt 2,3⁺ T cells. However, in two strain combinations where responder and stimulator cells differ at either only the I region or only the D region of the major histocompatibility complex Lyt 1⁺ T cells could be activated. Nevertheless, there was no generation of cytotoxic lymphocytes against either I region or D region determinants from cell mixtures containing Lyt 1⁺ and Lyt 2,3⁺ T cells. Since the proliferating Lyt 1⁺ T cells are not able to evoke cytotoxic lymphocytes from the Lyt 2,3⁺ cell pool this finding suggests that the majority of killer cell precursors specific for I or D determinants reside in the Lyt $1,2,3^+$ T cell population.

Discussion

The aim of this study was to define the T cell subsets required for the generation of cytotoxic T effector cells specific for alloantigen or new antigenic determinants (NAD) formed by TNP or viral antigens on syngeneic cells. It is evident from the data presented that a strict distinction between alloreactive and H-2 restricted cytotoxic responses on the basis of their requirements for distinct Lyt T cell subsets during the sensitization phase is not justified. We have shown that Lyt $1,2,3^+$ T cells are necessary to generate H-2 restricted cytotoxic responses to K, I or D differences alone (i.e. when responder and stimulator cells differ at either only the K, I or D region, respectively); yet Lyt $1,2,3^+$ T cells are not required during the induction phase of H-2 restricted and virus-specific cytotoxic lymphocytes or for the generation of alloreactive killer cells when responder and stimulator cells differ at either both the K and D, K and I, I and D or the whole MHC region.

Our data on primary TNP specific cytotoxic responses are in agreement with the experiments reported by CANTOR and BOYSE (9) and BURAKOFF et al. (10). We extended these studies and found in most experiments that Lyt 1,2,3⁺ T cells are also required in a secondary response to TNPmodified target cells. Similar requirements for Lyt 1,2,3⁺ T cells in the generation of H-2 restricted CTL's have also been found in in vitro secondary responses to the male specific antigen H-Y (M. M. Simon, unpublished and [17]). This is consistent with the view that different Lyt T cell subsets discriminate between foreign non MHC antigens and alloantigens. The possibility of a separation of precursor killer cells into two subsets based on allo versus non-MHC reactivity has originally been described by CANTOR and BOYSE (9). Their assumption that killer cell precursors responsible for H-2 restricted cytotoxic responses reside within the Lyt $1,2,3^+$ cell pool while the alloreactive killer cell precursors are comprised in the Lyt 2,3⁺ T cell population was substantiated by studies of BURAKOFF et al. (10) on the generation of TNP-specific killer cells. It was found that in mixed lymphocyte populations consisting of Lyt 1,2,3⁺ and Lyt 2,3⁺ subsets derived from Lyt 2,3 congenic strains H-2 restricted effector cells expressed the Lyt 2,3 phenotype of Lyt 1,2,3⁺ cells present in the unselected T cell pool. The data were interpreted to mean that T cell clones with specificity for self plus X determinants are predominantly found in the Lyt $1,2,3^+$ but not in the Lyt $2,3^+$ subset.

We have now demonstrated that Lyt $1,2,3^+$ T cells are not required for the induction of both primary and secondary virus specific cytotoxic responses. The conditions which allow separation of primary versus secondary SV specific cytotoxic responses have been described in a preceding paper (11). BURAKOFF et al. (10) reported results suggesting that Lyt $1,2,3^+$ T cells are mainly involved in the formation of Sendai virus specific cytotoxic lymphocytes. Unfortunately, it was not indicated by the authors whether the cytotoxic activity measured was a primary or secondary antiviral response. We cannot at the moment explain the discrepancy between our and their findings, but it is unlikely that this is due to different mouse strains tested since we found similar requirements for Lyt subsets in several strains investigated.

The differences seen in the induction requirements for primary and secondary H-2 restricted TNP specific versus H-2 restricted virus specific cytotoxic responses may be explained in quantitative terms: H-2 restricted TNP-specific killer and virus-specific killer cell precursors reside in both the Lyt $1,2,3^+$ and the Lyt $2,3^+$ T cell pool but the number of virus specific cell clones is higher within the Lyt $2,3^+$ subset because of more frequent exposition of lymphocytes with possibly crossreactive viral antigens as compared to TNP determinants during ontogeny. Thus, the inability to generate primary and secondary TNP specific CTL's from the Lyt $2,3^+$ pool would be due to the small number of antigen specific clones, present in this population, which cannot be detected in the assay system. It is even possible that similar numbers of TNP or virus specific T cell clones reside within the Lyt 2,3 cell pool yet only virus specific killer cells exceed a minimum threshold level by mitogenic activity elicited by the virus (11), which helps to expand the antigen specific T cell clones. On the other hand one could visualize a qualitative difference of the two types of antigens resulting in different pathways of activation.

Our data on the generation of cytotoxic responses to distinct alloantigens also revealed two patterns of participating Lyt subsets similar to that described for H-2 restricted responses. We found that Lyt 1,2,3 T cells are essential for the induction of alloreactive cytotoxic responses to K, I or D differences alone, thus extending results previously described by BACH and ALTER (15) for mixed lymphocyte reactions in which the responses of Lyt subsets to H-2 D alloantigens were determined. In contrast, when responder and stimulator differed in more than one region of the MHC complex, i.e. the K + I, K + D, I + D, or K, I and D regions respectively, we observed a generation of alloreactive killer cells from Lyt 2,3⁺ T cells in the absence of Lyt 1,2,3⁺ T cells.

There are several possibilities to explain the constraints for Lyt $1,2,3^+$ T cells during the induction of alloreactive responses to selected MHC region determinants:

a) From unpublished data we know that unprimed Lyt $2,3^+$ T cells contain killer cell precursors with specificities for either K or D region determinants since cytotoxic lymphocytes specific for both determinants are easily generated from the same T cell pool when responder and stimulator cells differ in more than one MHC region (M. M. Simon, unpublished). Thus, the inability of the selected Lyt $2,3^+$ T cells to respond to selected regions of the MHC cannot be due to the lack of the relevant T cell clones within this population. Therefore, other factors must control the response of Lyt $2,3^+$ T cells to selected MHC antigens.

b) Determinants encoded by only one subregion of the H-2 complex may fail, perhaps due to suppressive mechanisms to induce a cytotoxic response from the Lyt $2,3^+$ T cells which are specific for these determinants.

c) Help provided by Lyt 1⁺ T cells may be not sufficient and a fraction of the Lyt 1,2,3 cell pool provide additional help.

d) Help provided by additional antigenic determinants could be operative during the generation of alloreactive killer cells from the Lyt 2,3 subset and is absent when only antigens encoded by one single MHC subregion is presented during the induction phase. This would be similar to the mechanisms described as intermolecular help by Lake and Mitchison (18, 19). They found that antigens encoded by only one MHC region are unable to initiate a humoral immune response unless additional MHC differences are present in the system.

e) Qualitative differences of the antigenic determinants may govern the requirement for Lyt $1,2,3^+$ T cells. Bach and Alter proposed that the I region is an important control element which helps to determine which

pathway of T lymphocyte differentiation will proceed in any particular situation (15). This is not easily reconciled with our data. In MLC's with responder and stimulator cells differing at the K + D, K + I or only at the I region we found no correlation between I region identity of responder and stimulator and requirement for Lyt 1,2,3⁺ T cells for killer cell induction.

f) Self restricted recognition of selected alloantigenic K, I or D products may result in the participation of Lyt $1,2,3^+$ T cells. This is not very likely since it was found by Epstein and Cohn (20), Klein et al. (21), and Billings et al. (22), that K, I, or D determinants are not recognized in a H-2 restricted manner, at least during the effector phase.

Altogether, our findings cast doubt on the simplistic model that different T cell subsets give rise to allo- or foreign non H-2 antigen specific effector cells. The data are compatible with the view that H-2 restricted as well as alloreactive precursor killer cells reside within the Lyt 1,2,3 and the Lyt 2,3 cell pool and can be generated from both T cell pools under appropriate conditions. This is also substantiated by our findings that in unselected T cell populations consisting of Lvt 1,2,3 and Lvt 2,3 lymphocytes H-2 restricted as well as alloreactive cytotoxic activity is generated from the Lyt 1,2,3 T cell pool (M. M. Simon, manuscript in preparation). This does not, however, exclude the possibility that different T cell sets within each Lyt subpopulation show preferential association with one (allo-) or the other type of antigen (X + MHC self). Since Lyt subsets do not distinguish between allo- versus foreign non MHC antigens in the generation of cytotoxic responses other factors like the number and regulatory influence of different antigenic determinants (MHC and non MHC) and/or their mitogenicity must be involved in the selection of Lyt T cell subsets required to elicit the appropriate cytolytic activity.

Acknowledgment

We would like to thank Drs. K. EICHMANN and H. ETLINGER for their critical comments. We are grateful to BIRGIT ABENHARDT and IRIS NEUSCHAEFER-RUBE for their excellent technical assistance. This work was supported in part by the Deutsche Forschungsgemeinschaft, grant Ko 571/7.

References

- 1. BOYSE, E. A., T. MIYAZAWA, T. AOKI, and L. J. OLD. 1968. Ly-A and Ly-B: Two systems of lymphocyte isoantigens in the mouse. Proc. Roy. Soc. Lond. B. Biol. Sci. 170: 175.
- 2. BOYSE, E. A., K. ITAKURA, E. STOCKERT, A. IRATANI, and M. MIURA. 1971. Ly-C: a third locus specifying alloantigens expressed only on thymocytes and lymphocytes. Transplantation (Baltimore) 11: 351.
- 3. KISIELOW, P., J. HIRST, H. SHIKU, P. C. L. BEVERLEY, M. K. HOFFMAN, E. A. BOYSE, and H. F. OETTGEN. 1975. Ly antigens: markers for functionally distinct subsets of thymusderived lymphocytes of the mouse. Nature (Lond.) 253: 219.
- SHIKU, H., P. KISIELOW, M. A. BEAN, T. TAKAHASHI, E. A. BOYSE, H. F. OETTGEN, and L. J. OLD. 1975. Expression of T cell differentiation antigens on effector cells in cellmediated cytotoxicity in vitro: evidence for functional heterogeneity related to surface phenotype of T cells. J. Exp. Med. 141: 227.

- 5. CANTOR, H., and E. A. BOYSE. 1975. Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T cell subclasses is a differentiation process independent of antigen. J. Exp. Med. 141: 1376.
- 6. CANTOR, H., and E. A. BOYSE. 1975. Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly⁺ cells in the generation of killer activity. J. Exp. Med. 141: 1390.
- JANDINSKI, J., H. CANTOR, T. TADAKUMA, D. L. PEAVY, and C. W. PIERCE. 1976. Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T cell subclasses. J. Exp. Med. 143: 1382.
- 8. FELDMAN, M., P. C. L. BEVERLEY, M. DUNKLEY, and S. KONTAINEN, S. 1975. Different Ly antigen phenotypes of in vitro induced helper and suppressor cells. Nature (Lond.) **258**: 614.
- 9. CANTOR, H., and E. A. BOYSE. 1976. Regulation of cellular and humoral responses by T cell subclasses. Cold Spring Harb. Symp. Quant. Biol. XLI: 23.
- 10. BURAKOFF, S. J., R. FINBERG, L. GLIMCHER, F. LEMONNIER, B. BENACERRAF, and H. CANTOR. 1978. The biological significance of alloreactivity. The ontogeny of T cell sets specific for alloantigens or modified self antigens. J. Exp. Med. 148: 1414.
- 11. KOSZINOWSKI, U., and M. M. SIMON. 1979. Generation of virusspecific cytotoxic T cells in vitro. I. Induction conditions of primary and secondary Sendai virus specific cytotoxic T cells. Eur. J. Immunol., in press.
- 12. SHEN, F.-W., E. A. BOYSE, and H. CANTOR. 1976. Preparation and use of Ly antisera. Immunogenetics 2: 591.
- 13. JULIUS, M. H., E. SIMPSON, and L. A. HERZENBERG. 1973. A rapid method for the isolation of functional thymus derived murine lymphocytes. Eur. J. Immunol. 3: 645.
- 14. VON BOFHMER, H. 1974. Separation of T and B lymphocytes and their role in the mixed lymphocyte reaction. J. Immunol. 112: 70.
- BACH, F. H., and B. J. ALTER. 1978. Alternative pathways of T lymphocyte activation. J. Exp. Med. 148: 829.
- WETTSTEIN, P. J., D. W. BAILEY, L. E. MOBRAATEN, J. KLEIN, and J. FRELINGER. 1978. T lymphocyte response to H-2 mutants. I. Proliferation is dependent on Ly 1⁺2⁺ cells. J. Exp. Med. 147: 1395.
- SIMPSON, E., and P. C. L. BEVERLEY. 1977. T cell subpopulations. (Mandel, T. E., Cheers, C., Hosking, C. S., McKenzie, I. F. C., Nossal, G. J. V.) Eds.) Progress in Immunology III, North Holland, Amsterdam-New York. p. 206.
- 18. LAKE, P., and N. A. MITCHISON. 1976. Regulatory mechanisms in the immune response to cell-surface antigens. Cold Spring Harbor Symp. Quant. Biol. XLI: 589.
- 19. MITCHISON, N. A., and P. LAKE. 1977. Associative control of the immune response to cell surface antigens. Immunol. Commun. 5: 795.
- EPSTEIN, R., and M. COHN. 1978. T cell inhibition of humoral responsiveness. I. Experimental evidence for restriction by the K- and/or D-end of the H-2 gene complex. Cell. Immunol. 39: 110.
- KLEIN, J., C. L. CHIANG, and V. HAUPTFIELD. 1977. Histocompatibility antigens controlled by the 1 region of the murine H-2 complex. II. K/D region compatibility is not required for I-region cell-mediated lymphocytotoxicity. J. Exp. Med. 145: 450.
- 22. BILLINGS, P., S. BURAKOFF, M. E. DORF, and B. BENACERRAF. 1977. Cytotoxic T lymphocytes specific for I region determinants do not require interactions with H-2K or D gene products. J. Exp. Med. 145: 1387.

Dr. M. M. SIMON, Institut für Immunologie und Genetik, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 6900 Heidelberg.