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Abstract

An extension of the stochastic susceptible-infectious-recovered (SIR) model is proposed in
order to accommodate a regression context for modelling infectious disease surveillance data.
The proposal is based on a multivariate counting process specified by conditional intensities,
which contain an additive epidemic component and a multiplicative endemic component. This
allows the analysis of endemic infectious diseases by quantifying risk factors for infection by
external sources in addition to infective contacts. Simulation from the model is straightfor-
ward by Ogata’s modified thinning algorithm. Inference can be performed by considering the
full likelihood of the stochastic process with additional parameter restrictions to ensure non-
negative conditional intensities.
As an illustration we analyse data provided by the Federal Research Centre for Virus Diseases
of Animals, Wusterhausen, Germany, on the incidence of the classical swine fever virus in
Germany during 1993-2004.

1 Introduction

Today, infectious diseases remain a threat to human and animal health. Emerging and re-emerging
pathogens – like SARS, influenza, hemorrhagic fever among humans or foot and mouth disease
and classical swine fever among animals – keep public authorities on go. As a consequence there
has been an interest in human, veterinary and plant epidemiology to gain insight into disease
dynamics by the use of stochastic modelling. Typical epidemic models are variations of the so
called susceptible-infectious-recovered (SIR) model described in e.g. Becker (1989) and Andersson
and Britton (2000). These models are well investigated for homogeneous populations and software
exists to apply them in practice (Höhle and Feldmann, 2007).

In this paper we are especially interested in heterogeneous populations. For such populations there
has been a development in the literature of explaining heterogeneity by covariates (Lawson and
Leimich, 2000; Neal and Roberts, 2004; Diggle, 2006). We generalize such trends by attempting a
regression view of infectious diseases where the dynamics of the disease are quantified by covariates.
Our work thus contains a contribution to the cooperation of health researchers, epidemiologists
and statisticians on determining ecological drivers of such infectious disease dynamics. Inspired by
the work of Diggle (2006) a spatial SIR model is formulated based on conditional intensities. By
considering the possible location of events as known beforehand, e.g. farms where outbreaks can
occur, the dynamics of the disease can be described by a marked temporal point process.

A shortcoming of the model in Diggle (2006) is that only a single outbreak of the disease is
modelled. Scheel et al. (2007) compensate for this by adding a single source representing infection
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from unknown sources and which is infective through the entire observation period. We generalize
their formulation and decompose the conditional intensity function in an endemic and an epidemic
component. Such modelling is similar to models used for count data time series in public health
surveillance (Held et al., 2005). The proposed model has conditional intensities similar to the
hazard rates in the additive-multiplicative model known from survival analysis (Lin and Ying,
1995; Sasieni, 1996; Martinussen and Scheike, 2002). However, contrary to survival modelling the
stochastic processes of individuals in the context of epidemic modelling interact with each other:
Once an infection occurs other individuals have a higher risk of becoming infected. We thus have
a mutually exciting multivariate point process model, where direct disease transmission between
individuals is quantified by the spatial distance and where infections from external sources are
modelled in dependence of covariates. To our knowledge this explicit formulation of epidemic
modelling as a two component point process is new and provides an useful modelling tool for
practical applications.

To illustrate application we show how to use the model on classical swine fever virus (CSFV)
data from two federal states in Germany. CSFV is a highly contagious virus disease infecting
domestic pigs and wild boars. It has a great economic impact when occurring in countries with
large industrialized pig populations. A major problem in the eradication of the disease in Germany
is that the virus in certain areas has become endemic in the wild boar population. Using genetic
typing investigations have shown, that 59% of the primary outbreaks in domestic pigs were due
to indirect contact to infected wild boars (Fritzemeier et al., 2000). It is not clear how the exact
transmission occurs – possible CSFV transmission routes could be the direct contact between free-
ranging or inappropriately restricted domestic swine, introduction of infected carcasses and feed, or
indirect transmission through contaminated equipment and persons. We use the proposed model
to quantify the disease transmission between domestic pigs and wild boars.

This paper is organized as follows. Section 2 introduces the classical swine fever virus data as
motivating example. Section 3 presents the extension of the SIR model, whereas Sections 4 and 5
discuss simulation and inference in the proposed model. Section 6 gives results for the CSFV data
and a discussion finalizes treatment.

2 The CSFV data

The local veterinary authorities of the federal states Mecklenburg-western Pomerania (MP) and
Brandenburg (BB) provided information on all outbreaks of classical swine fever among domestic
pig farms to the Federal Research Centre for Virus Diseases of Animals, Wusterhausen, Germany.
The study period was 1993-2004 for the two federal states. For each infected farm the detection
date, the size and its spatial location at municipality level was provided. The actual spatial
coordinates are known to the authorities, but can not be used directly by us due to restrictions on
privacy protection.

Data on the number of farms for each municipality and their mean size is taken from a 2005
production survey in the two federal states. This information is assumed to be representative for
the study period of 1993-2004. As part of the CSFV surveillance routines sera from a random
sample of about 5% of the wild boars shot were investigated for CSFV (Staubach et al., 2002).

In Mecklenburg-w.P. the number of infected pig farms during the study period was 67 (correspond-
ing to 9% of the total farms in the federal state), while a total of 826 infected wild boars were
found in the sample of the hunting bag. For Brandenburg 14 farms were infected (1% of the total
farms in the state) and 287 CSFV infected wild boars were found. Molecular typing revealed that
the MP and BB outbreaks among domestic pigs originate from the same strains (Fritzemeier et al.,
2000). This information and the geographic proximity made us treat MP and BB as one common
area in the further analysis. A municipality was declared to have infected wild boars at time t,
if shot animals were diagnosed with CSFV within 60 days before t and 30 days after t. Figure 1
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Figure 1: Spatial distribution of CSFV incidence among (a) pig farms and (b) wild boars in the
municipalities of Mecklenburg-western Pomerania and Brandenburg. Panel (c) shows for each
municipality the relative duration of vaccination areas compared to the length of the study period
(13 years).

shows the spatial distribution of CSFV incidence among (a) pig farms and (b) wild boars for the
MPBB data.

As part of the eradication strategy, attempts were made to vaccinate the wild boar population
through oral immunisation (Kaden et al., 2005). Vaccination was performed by a suspension in
a bait of corn, which was manually distributed in the selected areas using a density of 30-40
baits/km2. A municipality was declared to be part of a vaccination area at time t if a vaccination
area covers the municipality within 60 days before and 60 days after t. Figure 1(c) shows the relative
duration of the vaccination period compared to the study period 1993-2004 for each municipality.

Figure 2 shows the corresponding temporal incidence of the reported CSFV cases among domestic
pig farms and wild boars. The pig farm time series has two peaks as a result of two epidemics
during 1993-1995 and 1997-1998. Note also the strong seasonality of the hunting bag data and the
gaps in the domestic pig series, which indicate that several outbreaks have taken place.

Important questions one would like to answer is whether there is time-wise interaction between
CSFV infection among wild and domestic pigs and if there is a difference in the infectious behaviour
in regions being part of vaccination areas. Ways of answering such questions would be a classical
two-by-two table analysis possibly stratified by time (Lachin, 2000) or an analysis using autore-
gressive logistic models (Diggle et al., 2002). Instead we propose a more mechanistic continuous
time model using a multivariate counting process, which allows for explicit modelling of the disease
components and takes censoring into account. Thus the dependence of data due to the infective
nature of the disease is taken into consideration and no choice of appropriate discretization of the
time scale is required.

3 Spatial SIR Model

Our modelling framework is the stochastic susceptible-infectious-recovered (SIR) compartmental
model described in e.g. Andersson and Britton (2000). With little effort this modelling is extendable
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Figure 2: Number of CSFV infections among pig farms and wild boars per quarter in Mecklenburg-
western Pomerania and Brandenburg.

to e.g. S-Exposed-IR (SEIR) models containing an incubation time before an individual becomes
infectious. Also, we will assume a closed population of size n, but generalizations to dynamic
populations are possible.

Introducing notation we let S(t) represent the set of all susceptible individuals just before time
t and let I(t) denote the set of infectious individuals just before time t. Two transitions are
of interest: susceptibles becoming infectious and infectious individuals recovering. The durations
between these two events for each individual, i.e. the length of the infectious period, can be assumed
to be a fixed constant (as often done in practical applications) or realizations of independent and
identically gamma distributed random variates, i.e. T I ∼ Ga(γI , δI).

Given the event history Ht up to but not including time t, the conditional intensity function at t
for a state change from susceptible to infectious of individual 1 ≤ i ≤ n is assumed to be

λi(t|Ht) = Yi(t) · [ei(t|Ht) + hi(t)] , (1)

where Yi(t) is an at risk indicator for individual i. For example Yi(t) = 1(i∈S(t)), where 1(·) is the
indicator function. If right-censoring occurs because the epidemic is only observed until time T ,
then Yi(t) = 1(i∈S(t)∧t≤T ). With the risk indicator it is thus easily possible to model re-infection
as in a SIR-Susceptible (SIRS) model. To ease notation we omit the event history in the terms
S(t|Ht) and I(t|Ht), but keep it in ei(t|Ht) to stress dependence on the history of the process for
this term.

Model (1) constitutes the regression framework by splitting the conditional intensity into endemic
and epidemic components. The epidemic component ei(t|Ht) ≥ 0 is included additively to under-
line the superposition of two stochastic processes. Similarly, hi(t) ≥ 0 represents the endemic risk
for becoming infected, specifically it does not depend on the internal history of the process. This
risk of infection from external sources can be time varying due to seasonality of the disease, but
also spatial and individual heterogeneity exists due to e.g. population density, vegetation, control
measures or the existence of disease vectors. For hi(t) we use a framework similar to the Cox model
by expressing the endemic risk using a time-dependent baseline risk exp(h0(t)) with possible time
dependent q × 1 external covariate vector zi(t) acting in a multiplicative fashion on the base risk:

hi(t) = exp
(
h0(t) + zi(t)T β

)
.

Note that all spatial heterogeneity has to be expressed through covariates, the baseline depends
on time only. To ensure identifiability, zi(t) can not contain an intercept term.
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An advantage with respect to interpretability of (1) is that if conceptually hi(t) = 0 the resulting
λi(t|Ht) corresponds to the conditional intensity function of an ordinary SIR model. Thus, if
external sources of infection can be ruled out then the conditional intensity should be able to
become zero, e.g. when there are no infectious individuals. On the other hand, if there is a
baserisk then the conditional intensity should also stay positive even when there are no infectives.
Had the combination of hi and ei instead been multiplicatively, an ei(t|Ht) of zero would have
resulted in λi(t|Ht) being zero making no further infections possible.

As mentioned, ei(t|Ht) represents the epidemic individual-to-individual transmission of the disease.
It is assumed that an adequate model is a distance weighted sum over the infective individuals:

ei(t|Ht) =
∑

j∈I(t)

f(||si − sj ||).

Thus f(u) is a parametric function of the e.g. Euclidean distance between the position si of
individual i and the position sj of individual j. Concerning f(u) we will assume that the distance
function can be represented by a linear basis expansion:

f(u) =
p∑

m=1

αmBm(u), (2)

with the Bm’s being known functions. Thus hi(t) = 0 and f(u) = α1 corresponds to the standard
homogeneous SIR model with transmission parameter α1 > 0. Similarly, the grid based model
in Höhle et al. (2005) can be described as f(u) = α11(u=0) + α21(0<u≤N4), where α1, α2 > 0 and
N4 is the distance between immediate neighbours. Less straightforward are distance functions such
as f(u) = α exp(−ρu) used in e.g. Diggle (2006) – here one has to resort to a linearization through
a Taylor expansion. Another possibility is to use B-splines to represent f(u) (Dierckx, 1995).
Because f(u) in all cases represents a distance kernel, an important restriction is that f(u) ≥ 0 for
all u within a predefined range [a, b] covering all data points.

By interchanging the summation over infectious individuals and B-spline terms, an ordinary addi-
tive structure with time-varying covariates is obtained for the epidemic component:

ei(t|Ht) =
p∑

m=1

αm

∑
j∈I(t)

Bm(||si − sj ||) =
p∑

m=1

αm xim(t) = xi(t)T α,

where xim(t) =
∑

j∈I(t)Bm(||si − sj ||) and with xi(t) = (xi1(t), . . . , xip(t)) being Ht-predictable,
because I(t) is left-continuous. Thus if (2) applies the resulting model in (1) has resemblance to
additive-multiplicative hazard models known from survival analysis (Lin and Ying, 1995; Marti-
nussen and Scheike, 2006):

λi(t|Ht) = Yi(t) ·
[
xi(t)T α + exp(h0(t)) exp

(
zi(t)T β

)]
. (3)

By conditioning on the past as covariates we can model time to infection for an individual i
using an additive-multiplicative model with time-varying covariates. This conditioning approach
has similarities to modelling time series using autoregressive regression models or the piecewise
Cox-model of Scheel et al. (2007).

Note however that in contrast to the survival context of the additive-multiplicative model in our
application the multivariate counting process described by all individuals now has dependent paths.
Another difference in our approach compared with the available inference and implementation for
the additive-multiplicative hazard model described in Martinussen and Scheike (2006) is that α is
time constant and of direct interest. Depending on our choice of distance function f(u) there are
also non-negative constraints on α to ensure a positive intensity function. Thus we proceed along
the lines of (Lin and Ying, 1995) with additional care for parameter constraints.

GivenHt the overall conditional intensity function for the next transition of a susceptible individual
is λ∗(t|Ht) =

∑n
i=1 λi(t|Ht). This quantity will be the key component for model simulation and

inference in Section 4 and 5.
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The endemic component hi(t) consists of a location-independent base risk for infection from un-
known sources and a component allowing the modelling of covariate effects. In the multiplicative
approach of Diggle (2006) h0(t) is left unspecified and inference is performed for β based on the
partial likelihood similar to Cox-regression. However, in our additive parametrisation a partial
likelihood approach is only possible if h0(t) is also a multiplicative part of ei(t|Ht) as e.g. in Scheel
et al. (2007). Stressing the superposition of independent epidemic and endemic processes we prefer
to have h0(t) only in the endemic component and use a parametric model for it, or as proposed in
this paper, a piecewise constant function with and without smoothing.

4 Simulation

Obtaining process realisations by simulation is an important tool for model checking and pre-
diction, because analytical results for the proposed type of complex stochastic process are not
available. Furthermore, displaying results of simulated epidemics helps understand the dynamics
of the disease and shows, whether the proposed model has the desired behaviour.

To simulate from the above continuous time stochastic process in the time interval [0, τ ] several
algorithms are possible. One option is to base simulation for the above marked point process on
an adaptation of the inversion method described in Nicolai and Koning (2006). However, if time
depending covariates only change value at a discrete set of time points and piecewise upper bounds
can be found for the overall conditional intensity λ∗(t|Ht) at appropriate intervals of [0, τ ] a faster
alternative is Ogata’s modified thinning algorithm (Daley and Vere-Jones, 2003) for marked point
processes.

Denote by Lc = {c1, . . . , cd} the time points where the covariate vector z(t) changes for at least
one individual i. Furthermore, denote by Lr(t) = {r1, . . . , rn} the Ht-predictable set of recovery
times with ri = ∞ if i is not infected before t. Here, predictability is ensured, because the length of
the infectious period T I is either deterministic or can be simulated for each individual beforehand.
Finally, let

L(t) = min
{
{cj ∈ Lc : cj > t} ∪ {ri ∈ Lr(t) : ri > t}

}
(4)

be the time after t of the next external change in the overall conditional intensity. Thus in the
interval (t, L(t)] the terms in the overall conditional intensity are constant except for exp(h0(t)).
Hence, if an upper bound for h0(t) can be found for this interval it is easy to compute an upper
bound M(t) for λ∗(t|Ht). This leads to the following simulation algorithm, where iK and rK are
the time of infection and recovery of individual K, respectively.

Algorithm 1: Ogata’s modified thinning algorithm for marked point processes

Given current time t, update L(t) and calculate local upper bound M(t) for the overall conditional1

intensity λ∗(t|Ht) ;
Generate proposed waiting time T ∼ Exp(M(t));2

if t + T > L(t) then3

let t = L(t);4

else5

let t = t + T ;6

Accept t with probability λ∗(t|Ht)/M(t); otherwise goto step 1;7

Draw index K of the next infective from the set {1, . . . , n} with respective probabilities8

λi(t|Ht)/λ∗(t|Ht), 1 ≤ i ≤ n ;
Update the event history and set iK = t and rK = t + T I

K ;9

goto step 110

6



With Algorithm 1 it is thus possible to quantify parameter uncertainty using a parametric boot-
strap. Furthermore, prediction of quantities such as time to next event or risk for a specific
individual to become infected within a given time can now be performed.

5 Inference

Inference for the proposed spatial SIR model will be based on a counting process formulation (An-
dersen et al., 1993). Interest will focus on the estimation of parameters relevant to individuals
becoming infected.

Denote by Ni(t), i = 1, . . . , n, the counting process, which for individual i counts the number of
changes from state susceptible to state infectious. The corresponding intensity of Ni(t) is λi(t)
as given in (1) with dropped Ht to slim notation. By N(t) = (N1(t), . . . , Nn(t)) we denote the
multivariate counting process.

With h0(t) known and θ = (αT ,βT )T the loglikelihood function of N when observed up to time
τ is (Andersen et al., 1993; Martinussen and Scheike, 2006)

l(θ, τ) =
n∑

i=1

{∫ τ

0

log(λi(t))dNi(t)−
∫ τ

0

λi(t)dt
}
,

where dNi(t) = Ni((t+ dt)−)−Ni(t−) is the increment over the small time interval [t, t+ dt). A
big advantage of the above counting process notation is that re-infections of an individual i are
easily handled by appropriate specification of the at risk process Yi(t).

As a consequence, the p+ q dimensional score process has the form

S(θ, τ) =


∂l(θ, τ)
∂α

∂l(θ, τ)
∂β

 =


n∑

i=1

∫ τ

0

xi(t)
λi(t)

dMi(θ, t)

n∑
i=1

∫ τ

0

exp(zi(t)T β)zi(t) exp(h0(t))
λi(t)

dMi(θ, t)


where dMi(θ, t) = dNi(t)− λi(t)dt. The expected information matrix can be estimated by

I(θ, τ) =
n∑

i=1

∫ τ

0

(
∂

∂θ
log(λi(t))

)⊗2

dNi(t),

with a⊗2 = aaT for the column vector a.

In case data are collected over a long observational period, dealing with censoring of the individuals
is straightforward in the counting process framework. If Ci(t) is the censoring process of individual
i, e.g. if censoring occurs at time t0 one has Ci(t) = 1(t≤t0), one would instead of Yi(t) operate
with Y C

i (t) = Ci(t) · Yi(t).

The maximum likelihood estimator θ̂ = arg supθ l(θ, τ) for α ≥ 0 and β ∈ Rq can be found
by bound constrained optimization of l(θ, τ) using e.g. a limited memory BFGS algorithm with
gradient S(θ, τ) (Byrd et al., 1995). If operating with a B-spline based distance function f , it
is straightforward to force the distance function to be monotone decreasing, because monotonic-
ity constraints can easily be transformed into sufficient constraints on the αm’s as described in
e.g. Dierckx (1995). Likelihood inference can still be performed by constrained optimization algo-
rithms handling the inequality constraints between the αm’s, e.g. as in Lange (1994).
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5.1 Penalized likelihood

If h0(t) is completely unspecified one modifies the above score process such that h0(t) disappears
from the estimating functions as in Lin and Ying (1995). If a parametric representation is used
then these coefficients enter β and the exp(h0(t)) in the nominator of the β-part of the score
process disappears.

As an alternative we shall use a non-parametric model for h0(t) based on the penalized likelihood
framework with a set of r degree zero B-splines for h0(t) as in Fahrmeir and Klinger (1998). This
adaptation provides an alternative to the non-parametric estimate of exp(h0(t)) in the additive-
multiplicative intensity model. With fixed knot positions κ = (κ1, . . . , κr+1) the following non-
parametric model for h0(t) is assumed:

h0(t) =
r∑

j=1

β0jB0j(t), whereB0j(t) = 1(κj ≤t <κj+1).

Furthermore, letting β0 = (β01, . . . , β0r)T and redefining β = (βT
0 , β1, . . . , βq)T the penalized

loglikelihood and score function are

pl(θ, τ) = l(θ, τ)− λ

2

r∑
j=k+1

(∆kβ0j)2 = l(θ, τ)− 1
2
λβT

0 S0β0,

pS(θ, τ) = S(θ, τ)− λ
r∑

j=k+1

∆kβ0j = S(θ, τ)−

 0(
λS0β0

0

)
where λ is the smoothing parameter. Typically, one would use a first or second order difference
penalty on β0 (Eilers and Marx, 1996). Hence, βT

0 S0β0 is the matrix equivalent of the penalty
term, where the k’th order difference of β0 – recursively defined as ∆kβ0j = ∆k−1(β0j − β0(j−1))
and ∆0 = 1 – is penalized. An important question is how to choose λ in order to obtain an
appropriate amount of smoothing for the data. General criterion for this selection known from
e.g. generalized additive models (GAMs) do not immediately apply: there is no way to quantify
effective number of parameters using a modified AIC criterion and cross validated criterion does
not make sense as observations are not independent. Sect. 5.3 gives a proposal on how to deal with
the selection of the smoothing parameter λ in our context.

5.2 Parameter uncertainty and model selection

Operating within a likelihood framework means that for the unconstrained parameters usual
asymptotic results can be used to compute Wald, score or likelihood ratio tests (LRTs) (Andersen
et al., 1993). Inversion of these tests provides confidence intervals. However, the constrained pa-
rameters of the epidemic component need special care. A reparametrization using e.g. ψm = logαm

would remove the non-negative constraints on the αm’s, but to investigate the need for an epidemic
component one would test H0 : α = 0 against H1 : α ≥ 0, which – reparametrization or not – is
at the border of parameter space. Here we have adopted the notation that a test of H0 against
H1 is to be read as testing H0 against H0\H1. A large sample approximation of the LRT statistic
under the nullhypothesis in this constrained setting with nuisance parameters is the chi-bar-square
distribution (Silvapulle and Sen, 2005, Sect. 4.3):

LRT = 2

[
sup

α≥0,β∈Rq

l(θ, τ)− sup
α=0,β∈Rq

l(θ, τ)

]
a∼ χ̄2(Iαα(β)),

where Iαα(β) is the (α,α) block of I−1(θ, τ) evaluated at θ = (0T ,βT )T and χ̄2(V ) for the
positive definite matrix V is defined by the following transformation of Z ∼ N(0,V ):

χ̄2(V ) = ZT V −1Z −min
α≥0

(Z −α)T V −1(Z −α).
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Note that for a specific realization of Z the minimization problem in the 2nd term can be solved
by quadratic programming, which makes it possible to compute e.g. P (χ̄2(V ) ≤ t) for t > 0
by simulation. Because the true value of β is not known a point estimate of the p-value in the
constrained LRT is obtained by replacing β in the above with the estimate of β̂ under H0.

Operating within a likelihood framework also means that model selection is possible by e.g. AIC.
However, parameter constraints reduce the average increase in the maximized loglikelihood - thus
the penalty for constrained parameters should be smaller than the factor two used in the ordinary
definition of AIC. One-sided AIC (OSAIC) suggested by Hughes and King (2003) is such a proposal
when p out of k = p+ q parameters have non-negative constraints:

OSAIC = −2l(θ, τ) + 2
p∑

g=0

w(p, g)(k − p+ g),

where w(p, g) are p-specific weights. In case of p = 1 the weights are w(1, 0) = w(1, 1) = 1
2 and the

total penalty is thus 2(k−1)+1. For p = 2 constrained parameters with joint covariance matrix V
the weights are w(2, 0) = 1

2π
−1 arccos(ρ12), w(2, 1) = 1

2 and w(2, 2) = 1
2 −

1
2π

−1 arccos(ρ12) where
ρ12 is the correlation coefficient v12(v11v22)−

1
2 between the two parameters. This or higher order

weights can also be computed by the simulation approach suggested in Silvapulle and Sen (2005,
Sect. 3.5).

5.3 Residual analysis

The OSAIC provides a criterion for selecting the best model from a set of competing models.
However, additional graphical checks should be used in order to investigate whether the model is
able to reproduce important features of the data. In our case we will use a residual analysis for
point processes as described in Ogata (1988). Here, the estimated cumulative intensity

Λ̂∗(t) =
∫ t

0

λ̂∗(s|Hs)ds

is used to transform the observed S→I event-times {ti} of the spatial SIR process to the time scale
{τi = Λ∗(ti)}. If the estimated overall conditional intensity λ̂∗(t|Ht) describes the true underlying
conditional intensity well, the sequence {τi} should behave like a stationary Poisson process with
intensity 1. As a consequence, the variables

Yk = τk − τk−1 = Λ∗(tk)− Λ∗(tk−1), k = 2, . . . ,

should be realisations of independent and identical Exp(1) distributed variables and hence Uk =
F (Yk) = 1 − exp(−Yk) iid∼ U(0, 1). A graphical check of this property is to plot the observed uk

against the empirical CDF F̂U (u) and compare with the straight line. A Kolmogorov-Smirnov
(K-S) test against the uniform distribution provides a test for this property by using the test
statistic

D = sup
0≤u≤1

∣∣∣F̂U (u)− u
∣∣∣ .

This test statistic also provides a first criterion for selecting the smoothing parameter λ from
Sect. 5.1: select λ such that the K-S test statistic D is minimized.

6 Results

For the CSFV data in MPBB we use a SEIR model with assumed removal at detection, and –
based on the findings of the 1997-1998 CSFV epidemic in the Netherlands – a fixed incubation
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time of 7 days and a fixed infectious period of 4.6 days (Stegeman et al., 1999). Given the long
observational period and the few cases the between-farm transmission of the disease is expected
to play a minor role. Hence, only basic models for the between farm transmission are investigated
in order to quantify whether any between farm transmission occurs at all.

As a first attempt we use the parametric model h0(t) = βintercept + βt · t for the baseline hazard
function. In practice this means that h0(t) is a piecewise constant function with change-points
at all event times. A homogeneous transmission is used for the epidemic component and interest
is in investigating the endemic and epidemic components for the CSFV data. The time-varying
covariates boars and vacc are used as explanatory covariables in the endemic component and the
resulting model selection based on OSAIC is shown in Tab. 1. The results in the table underline the
necessity of the epidemic component, because these models obtain a better OSAIC. Alternatively,
this can be investigated by a test of H0 : α1 = 0 vs. H1 : α1 ≥ 0 in e.g. model 1 from Tab. 1 using
the described LRT test procedure (p = 0.079). Hence, at a α = 0.05 level of significance there is
insufficient evidence for a homogeneous farm-to-farm transmission. Furthermore, presence of wild
boars and vaccination areas appear to provide additional explanatory power.

model B1(u) = 1(0≤u) intercept t boars vacc OSAIC
1 + + + + + 1966.53
2 + + + + - 1981.14
3 + + + - - 2023.43
4 + + - - - 2107.52
5 - + + + + 1967.53
6 - + + + - 1987.67
7 - + + - - 2033.45
8 - + - - - 2119.26

Table 1: Model selection based on OSAIC, which brings out model 1 as the one having smallest
OSAIC. Symbol + indicates presence of the term in the model.

If the distance kernel in model 1 is replaced by a kernel B1(u) = 1(0≤u<50km) and B2(u) =
1(50km≤u) (denoted model 9) this results in an OSAIC of 1956.90. Dropping B2 in model 9
and only admitting short-distance spread by B1 (denoted model 10) improves OSAIC to 1955.82.
Alternatively, tests for H0 : α = 0 in model 9 and 10 yield p-values of 6.71e-04 and 1.82e-04,
respectively.

Based on the above OSAIC computations we thus settle for model 10 as basis for a more de-
tailed analysis. The parameter estimates are: α1 = 3.69 · 10−5, βintercept = −10.66, βt = −0.61,
βboars = 2.36 and βvacc = 1.34. This means that in a situation with no infectives, i.e. the epidemic
component being zero, the intensity in areas with infected boars is exp(βboars) = 10.54 times larger
as in areas with no infected wild boars. Similarly, the intensity in vaccination areas is increased
by a factor of exp(βvacc) = 3.83. At first this effect of vaccination might be surprising. However,
the vaccination areas were carefully selected by authorities as those areas with high risk of infec-
tion. Thus without any additional available covariates explaining this selection, vaccination is an
indicator for an increased risk. 95% confidence intervals for βintercept, βt, βboars and βvacc in model
10 based on profile loglikelihoods are shown in Figure 3. Both βboars and βvacc are thus seen to be
significant at the α = 0.05 level.

A residual analysis as shown in Fig 6(a) however reveals that model 10 fails to capture some
behaviour of the data around the first third of time. The Kolmogorov-Smirnov test against unifor-
mity of the residuals is rejected at the α = 0.05 significance level, because p = 0.023. To improve
on this and to gain additional insight into the endemic component we replace βintercept in model
10 with a piecewise constant function with a total of r = 8 degree zero B-splines as described in
Sect. 5.1 while keeping the term βt · t in the baseline hazard. Knots are based on the respective
octiles of the observed event times and the smoothing parameter λ is determined by a grid search
shown in Fig. 4. The K-S test statistic D(λ) is minimized by a value of λ ≈ 0.25.
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Figure 4: K-S test statistic D(λ) as a function of the smoothing factor λ.

Figure 5 shows the estimated penalized βintercept(t) term of the baseline hazard together with a
pointwise 95% Wald confidence interval. Also shown are the total intensity and a plot of the
proportion

∑n
i=1 ei(t|Ht)/λ∗(t|Ht), which illustrates how large a proportion the epidemic intensity

makes up of the overall intensity. Notice the peaks in the baseline hazard around days 600 and 1500,
which could not be handled by the single constant β0 baseline hazard in model 10. Figure 6(b)
shows the improved residuals with the K-S test now having a p-value of 0.372.

11



0 1000 2000 3000 4000
0.

00
0.

10
0.

20

days

to
ta

l i
nt

en
si

ty

0 1000 2000 3000 4000

−
14

−
10

−
6

days

ββ i
nt

er
ce

pt
((t))

0 1000 2000 3000 4000

0.
0

0.
4

0.
8

days

ep
i. 

pr
op

or
tio

n

Figure 5: Plot of the total intensity λ∗(t|Ht), the piecewise constant intercept part of h0(t) (together
with a 95% CI) and the epidemic proportion for the piecewise exponential model. A rug in the
top figure shows the 81 observed S→E event times in days since January 1st, 1993.

7 Discussion

The presented spatial SIR model is a step towards a regression approach in stochastic epidemic
modelling of spatio-temporal infectious disease surveillance data. Combining a Cox model and a
spatial heterogeneous SIR model covers endemic and epidemic components. Prediction of e.g. time
to next event or probability of infection within 1 year is possible by simulation.

In our work we have assumed full observability of process events. However, in many realistic
settings only partial observability might be the case. Besides imputation of the missing observations
a solution could be to treat model inference in a Bayesian setting as e.g. in Höhle et al. (2005). A
Bayesian setting would also allow for a natural formulation of the non-negative constraints on the α
using prior distributions and would yield credibility regions for the baseline hazard by formulating
the penalization as a prior. However, design and implementation of an efficiently mixing Markov
chain Monte Carlo (MCMC) sampler would require a careful analysis while still depending on
evaluating l(θ, τ), which can become quite time consuming for large data sets. For our application
and to provide a routinely usable general regression framework for infectious disease surveillance
data we thus prefer for now an efficient implementation of constrained maximum likelihood over a
Bayesian setting.

One possible modelling extension could be to expand the epidemic component with additional
terms in order to make infectivity depend on covariates as e.g. in Lawson and Leimich (2000),
where the strength of infectivity of an individual is a time depending function. However, for the
illustrating CSFV application this was not of immediate interest.

Had we used a multiplicative composition between hi and ei, the framework of Kneib and Fahrmeir
(2007) could have immediately been used, which also would have made allowance for spatial effects
in hi(t) through e.g. Gaussian Markov random fields. However, the additive structure of the
intensity gives a more realistic behaviour for infectious diseases. Future research has to show
how their mixed model based approach to hazard estimation could be adopted to the proposed
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(a) model 10 (b) penalized model

Figure 6: Empirical distribution of Uk compared to the CDF of a uniform distribution for (a)
model 10 and (b) the penalized baseline hazard model. Also shown are the 95% and 99% error
bounds derived from the Kolmogorov-Smirnov test statistic.

additive-multiplicative model.

The presented methods will be available in the new version of the R-package for epidemic modelling
RLadyBug available from the comprehensive R Archive Network (CRAN). A preliminary version of
the software and its documentation can be found in (Meyer and Höhle, 2008).
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