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Abstract. In this paper we show how only a few outliers can completely break
down EM-estimation of mixtures of regression models. A simple, yet very effective
way of dealing with this problem, is to use a component where all regression pa-
rameters are fixed to zero to model the background noise. This noise component
can be easily defined for different types of generalized linear models, has a familiar
interpretation as the empty regression model, and is not very sensitive with respect
to its own parameters.
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1 Introduction

Finite mixture models have been used for more than 100 years, but have
seen a real boost in popularity over the last decades due to the tremendous
increase in available computing power. The areas of application of mixture
models range from biology and medicine to physics, economics and marketing.
On the one hand these models can be applied to data where observations
originate from various groups and the group affiliations are not known, and
on the other hand to provide approximations for multi-modal distributions
(Everitt & Hand (1981), Titterington et al (1985); McLachlan & Peel (2000)).

In the 1990s finite mixture models have been extended by mixing standard
linear regression models as well as generalized linear models (Wedel & De-
Sarbo (1995)). An important area of application of mixture models and also
of these extensions are in market segmentation (Wedel & Kamakura (2001)),
where finite mixture models replace more traditional cluster analysis and
cluster-wise regression techniques as state of the art.

For mixtures without a regression part, i.e., model-based clustering, sev-
eral authors have investigated the effect of outliers on parameter estimates,
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and how outliers can be treated to get more robust behaviour. A comprehen-
sive theoretical analysis for breakdown points of ML-estimators of location-
scale mixtures can be found in Hennig (2004). Suggested solutions for robus-
tification against outliers include

1. to add a noise component which is either uniform over the convex hull
of the complete data set (Banfield & Raftery (1993)), or an improper
constant uniform (Hennig & Coretto (2007)),

2. replace Gaussian densities with t-densities (Mclachlan & Peel (2000)),
and

3. trimming observations (Cuesta-Albertos et al (1997)).

In this paper we present a new noise component to model outliers and
show that our approach combines several aspects of the above. In addition,
it can be easily extended to mixtures of regression models and has a natural
interpretation in this context as the null model of no interaction between
predictors and response.

2 Mixtures of GLMs

Consider finite mixture models with K components of form

h(y|x, ψ) =
K∑
k=1

πkf(y|x, θk) (1)

πk ≥ 0,
K∑
k=1

πk = 1

where y is a (possibly multivariate) dependent variable with conditional den-
sity h, x is a vector of independent variables, πk is the prior probability of
component k, θk is the component specific parameter vector for the density
function f , and ψ = (π1, , . . . , πK , θ

′
1, . . . , θ

′
K)′ is the vector of all parameters.

If f is a univariate normal density with component-specific mean µk(x) =
αk + β′

kx and variance σ2
k, we have θk = (αk, β′

k, σ
2
k)′ and Equation (1) de-

scribes a mixture of standard linear regression models, also called latent class
regression. If f is a member of the exponential family, we get a mixture of
generalized linear models. For multivariate normal f and x ≡ 1 we get a
mixture of Gaussians without a regression part (model-based clustering).

The posterior probability that observation (x, y) belongs to class j is given
by

P(j|x, y, ψ) =
πjf(y|x, θj)∑
k πkf(y|x, θk)

(2)

The posterior probabilities can be used to segment data by assigning each
observation to the class with maximum posterior probability. In the following
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we will refer to f(·|·, θk) as mixture components or classes, and the groups in
the data induced by these components as clusters.

The log-likelihood of a sample of N observations {(x1, y1), . . . , (xN , yN )}
is given by

logL =
N∑
n=1

log h(yn|xn, ψ) =
N∑
n=1

log

(
K∑
k=1

πkf(yn|xn, θk)

)
(3)

and can usually not be maximized directly. The most popular method for
maximum likelihood estimation of the parameter vector ψ is the iterative
expectation-maximization algorithm (EM, Dempster et al (1977)):

Estimate the posterior class probabilities for each observation

p̂nk = P(k|xn, yn, ψ̂)

using Equation (2) and derive the prior class probabilities as

π̂k =
1
N

N∑
n=1

p̂nk

Maximize the log-likelihood for each component separately using the pos-
terior probabilities as weights

max
θk

N∑
n=1

p̂nk log f(yn|xn, θk) (4)

The E- and M-steps are repeated until the likelihood improvement falls under
a pre-specified threshold or a maximum number of iterations is reached.

Parameter estimates in standard linear models with Gaussian errors and
most other GLMs are rather sensitive to outliers, because the maximum like-
lihood estimate is basically a mean value, which is not a robust statistic. For
mixtures of regression models the problem is even more pronounced, because
the variance is no longer a nuisance parameter, it needs to be estimated to
compute likelihoods and posterior probabilities in each EM iteration.

One solution would be to use robust regression in the M-step, however
this would violate the EM principle as the resulting estimates are no longer
maximum likelihood estimates. Hence, convergence is no longer guaranteed
even for clean data. In addition we run into the problem that robust estimates
ususally themselves are computationally very demanding, we need estimates
for every component in every EM-iteration, and convergence of EM is usually
rather slow. Hence, we would need to compute expensive estimates very often.
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3 Modelling background noise

Outliers or background noise can be modeled by adding a noise component
f0 to our mixture model from Equation 1:

h(y|x, ψ) = π0f0(y|x, θ0) +
K∑
k=1

πkf(y|x, θk) (5)

πk ≥ 0,
K∑
k=0

πk = 1

In the following we will call f0 the noise component, and the remaining com-
ponents for k = 1, . . . ,K the regular components.

Banfield & Raftery (1993) and Hennig & Coretto (2007) use a uniform
distribution for f0, the main difference is that the former estimate the range
of the uniform from the data, while the latter use either an improper uniform
with pre-specified fixed value for the height of the density, or an ML estimate
for the complete mixture including the noise component. Both consider only
the case of model-based clustering, i.e., no regression.

3.1 Gaussian response

For mixtures of regression models there is a natural other candidate for the
noise component, the null model which assumes no relationship between pre-
dictors x and response y. For notational simplicity, consider for the moment
standard linear regression models with Gaussian noise, such that

f(y|x, θk) = φ

(
y − µk(x)

σk

)
= φ

(
y − αk − β′

kx

σk

)
where φ(·) denotes the density of the standard normal distribution. Using a
noise component of form

f0(y|x, θ0) = f0(y|θ0) = φ(
(
y − µ0

σ0

)
means we add a compontent corresponding to an empty regression model of
form y = µ0 + ε.

There are three possible ways to define the noise parameters µ0 and σ0:

NP1: set to fixed values in advance based on expert opinion,
NP2: estimate from data but hold fixed during EM iterations, e.g., to mean

and standard deviation of y, or
NP3: treat f0 as a regular mixture component and estimate its parameters

by EM together with all other parameters of the model.
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Obvously NP1 is the most robust variant, because it does not depend on the
data at all. However, our simulations show that NP2 is also very robust, so
we consider only the data-driven solutions NP2 and NP3 for the remainder
of this paper.

Using an empty regression model as noise component has several attrac-
tive features: The noise component has the same functional form as the other
components, so it is particularly easy to implement in software given the rest
of the mixture model, see Section 4. There is also a natural interpretation of
parameter π0, which is the probability that an observation originated from
the empty model. This is closely related to popular statistics of standalone
regression models such as R2 or analysis of variance F , which also compare
a regression model with the empty model.

The effects of including the noise component can easily be seen by taking
a look at the posterior probabilities (4). If we fix σ2

0 ≡ var(y), then

σ0 ≥ σk, k = 1, . . . ,K

with (approximate) equality only for components where βk ≈ 0, and usually
all σk are smaller than σ0. Hence, the posterior probability of the noise com-
ponent equals the ratio of a normal density with large density to the sum of
several normal densities, see Equation 2.

Figure 1 shows examples for σ0 = 2σ1, σ0 = 4σ1, and σ0 = 8σ1. The
posterior probabilities of the noise component are larger than 0.99 outside the
interval [−4, 4], and larger than 0.9 outside of [−3, 3]. Observations which are
further than 4 standard deviations away from a regular mixture component
have zero weight in the M step in Equation 4 of the EM-procedure.

Choosing a Gaussian noise component rather than a uniform makes no
large difference in which observations are marked as outliers. If σ0 is large
(as intended), then the Gaussian is very flat and over the main part it is
very similar to the uniform. The big advantage is that the support of the
Gaussian is unbounded, although it will become very small outside of, say,
µ0 ± 4σ0. However, the weights used in (4) are ratios of densities (2), and
due to the larger variance the density of the Gaussian noise component will
always be much larger than the densities of the regular components in regions
far away from the center. Thus, we knock out outliers everywhere except for
the main support regions of the regular components. For uniforms, we need to
solve the ill-conditioned estimation problem of the boundaries of the uniform
distribution, see Hennig & Coretto (2007) for a detailed discussion. For the
Gaussians exact estimation of variance is not really critical (a rather unusual
situation!), Figure 1 shows that the value of σ0 has not much influence on
which observations are marked as outliers. Preliminary simulations studies
(not shown here) confirm this bahaviour.
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3.2 Other GLMs

The same form of noise component can easily be used in other continous
members of the exponential family, as well as in some discrete distributions
like the Poisson. Due to the limited space of this conference paper we cannot
give full formulas or examples. The basic principle is always to have the
null model with no regression part as noise component, and estimate the
parameters of the noise component from the complete data set.

E.g., an exponential distribution with a large and constant mean value
gives a noise component with a rather flat density on R+, which downweights
large outliers, similar for the gamma distribution. For Poisson responses one
can use overdispersed quasi-Poisson noise components. It is not so clear how
the concept can be used for GLMs for categorical data (binomial, multino-
mial), but in this case even the definition of “outliers” or “background noise”
is problematic.
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Fig. 1. Posterior probability of the noise component.

4 Software implementation

All simulation results shown below were computed using R (R Develop-
ment Core Team (2007)) extension package flexmix (Leisch (2004), Gruen
& Leisch (2007)). The standard driver for mixtures of GLMs in flexmix
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Fig. 2. A two component mixture regression example. The lines correspond to the
fitted values of a model estimated with the EM algorithm.

is FLXMRglm. The new extension fixes the first component to be the noise
component, and dispatches to the standard driver for the rest. The current
development version of the software can be obtained from the author upon
request and will be released on CRAN (http://cran.r-project.org) as
part of flexmix later this year.

It allows to estimate the parameters of the noise component either fixed
from the complete data set, in which case only π0 is estimated by maximum
likelihood, or by weighted maximum likelood with weights proportional to the
probability of being a member of the noise component. The latter approach
has the advantage that the null model can be interpreted at par with the
regular components, but is not robust against outliers which are located close
to each other.

5 Artificial example

First we consider a simple example introduced by Leisch (2004) with two
latent classes of size 100 each:
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Fig. 3. The same data set as in Figure 2 with three outliers. The lines correspond
to the best model found by EM, which is completely broken.

Class 1: y = 5x+ ε
Class 2: y = 15 + 10x− x2 + ε

with ε ∼ N(0, 9) and prior class probabilities π1 = π2 = 0.5. The data set can
be loaded into R with the command data("NPreg", package="flexmix").
The result of fitting a mixture model of with two quadratic polynomial com-
ponents to the data can be seen in Figure 2.

If we add three outliers on the top left corner to the data set, EM esti-
mation breaks down and gives completely wrong results, see Figure 3. Note
that this is the result with the best likelihood of 20 replications of the EM
algorithm, and not simply a problem of convergence in a local minimum. Es-
timating the model with an additional noise component correctly identifies
the three outliers with posterior probabilities numerically equal to 1. As a
result, estimation of the two regular components is now correct again, see
Figure 4.

Mean and variance of the noise component were fixed to the corresponding
empirical estimates from the response variable. If we have only a few outliers
in the same spot, we cannot reliably estimate the parameters µ0 and σ0

by EM. Another situation is shown in Figure 5, where 20 uniform noise
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Fig. 4. The same data set as in Figure 3 using a model with a noise component.
The three outliers are correctly identified.

observations have been added on a rectangle that is larger than the original
data range. Again, outliers not located in the main part of the original data
set are correctly identified, and both the linear and the parabolic components
were almost exactly identified. There is now a little bit more curvature in the
fitted model for the linear class, but note that both components have a linear
model with parameter estimates for intercept, x and x2. It is impossible to
distinguish original data points from background noise that is located close
to the original data, so some effect is to be expected.

6 Simulation study

We also conducted several simulation studies to see whether it makes a huge
difference if we estimate the parameters of the noise component by NP2
or NP3 for the case of uniform background noise. We fixed the data set
described above and added 0, 5, 10, . . . , 50 noise observations from a uniform
distribution on [−5, 15]× [−10, 60] in the same way as we did in Figure 5. For
each number of noise points we drew 100 data sets, ran the EM algorithm
5 times on each and kept only the best model to avoid local minima. The
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Fig. 5. The same data set as in Figure 2 with 20 outliers distributed uniformly on
[−5, 15]× [−10, 60].
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estimated regression coefficients of the mixture models where then compared
to the true parameter values.

Figure 6 shows boxplots of the Euclidean distance between estimated and
true parameters. Without noise (“zero points added”) EM converged to the
same solution all the time, these values can be used as reference baseline. As
expected, estimation error increases when more and more noise points are
added, but there is no large difference between schemes NP2 and NP3. NP2
seems to be slightly better for fewer outliers, while NP3 is slightly better for
more outliers. There are 2 components with 3 regression coefficents each, i.e.,
a total of 6 coefficients. Estimation errors range between almost zero to a
median of about 7 for 50 noise points. If we divide this by the number of
coefficients, we get an average error of 7/6 ≈ 1.1 per coefficient. This is not
too bad, considering that 20% of the complete data set are noise and the
sample size is not that large.

If we fit a mixture model without noise component, we get a median error
of about 7 if we add only 5 noise points, and a median error of 15 for 10 noise
points. In both cases variation is very large and EM often gets stuck in bad
solutions like Figure 3. For more than 10 noise points EM estimation breaks
completely down and yields only random results with median errors of 45 and
larger. Thus, by using a noise component, we can add 10 times as many noise
points for comparable increase in estimation error. Simulations with other
data sets of different size, dimension and number of mixture components
showed similar results.

7 Outlook

We have successfully applied the proposed methodology in a consulting
project modelling customer satisfaction. The data are surveys of tourists rat-
ing Austrian alpine skiing resorts. Each respondent rated dozens of detailed
aspects of the resort (quality of slopes, lifts, restaurants, entertainment, . . . ),
the task was to identify which items had a strong impact on the overall satis-
faction. A global model for all tourists makes no sense, as different subgroups
of the tourist population will have different preferences. For most tourists it
can be assumed, that only few items have a strong impact on overall satis-
faction, the remainder being more or less noise.

We are currently working on a systematic benchmark study to confirm
the findings of our preliminary simulations studies like the one presented
above. This also includes GLMs with other response distributions, which were
only discussed shortly in this paper due to space limitations. Another line of
research is to see how other approaches presented in the literature for model
based-clustering can be adapted to the case of mixtures of regression models.
E.g., it should be rather straightforward to replace the normal distribution
with a t-distribution if the degrees of freedom are fixed in advance.
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GRÜN, B. and LEISCH, F. (2007): Fitting finite mixtures of generalized linear
regressions in R. Computational Statistics & Data Analysis, 51(11), 5247–
5252.

HENNIG, C. (2004): Breakdown points for maximum likelihood estimators of
location-scale mixtures. The Annals of Statistics, 32(4), 1313–1340.

HENNIG, C. and CORETTO, P. (2007): The noise component in model-based
cluster analysis. In: Proceedings of GfKl-2007. Springer Verlag, Studies in
Classification, Data Analysis, and Knowledge Organization.

LEISCH, F. (2004): FlexMix: A general framework for finite mixture models and
latent class regression in R. Journal of Statistical Software, 11(8), 1–18.

MCLACHLAN, G. and PEEL, D. (2000): Finite Mixture Models. John Wiley and
Sons Inc.

R Development Core Team (2007): R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0.

TITTERINGTON, D., SMITH, A. and MAKOV, U. (1985): Statistical Analysis of
Finite Mixture Distributions. Chichester: Wiley.

WEDEL, M. and DESARBO, W. S. (1995): A mixture likelihood approach for
generalized linear models. Journal of Classification, 12, 21–55.

WEDEL, M. and KAMAKURA, W. A. (2001): Market Segmentation - Conceptual
and Methodological Foundations. Kluwer Academic Publishers, Boston, MA,
USA, 2nd edition.


