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Anisotropic temperature factors in the calculation of low-energy electron 
diffraction intensities 

W. Moritz and H. Over* 

Institut fur Kristallographie und Mineralogie, Universität München, Theresienstr. 41, 
80333 München, Federal Republic of Germany 
•Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, 
Federal Republic of Germany 

Abstract 

A theory is presented to introduce anisotropic and anharmonic vibrations into the multiple 
scattering formalism based on a spherical wave expansion of the probabilty density of the 
atoms. This results in atomic t - matrices with off-diagonal elements instead of the usual 
diagonal matrices valid for spherical symmetric vibrations. The atomic t - matrices can be 
inserted in the conventional multiple scattering formalism. The importance of anisotropic 
vibrations in a LEED I/V analysis is demonstrated with a simplified calculation where 
anisotropic vibrations are approximated by split positions. This concept has been applied 
to CO/Ru(001)-(V3xV3) where a considerable improvement of the structure refinement 
could be obtained with an anisotropic vibration amplitude attributed to a bending mode of 
the CO molecule. 

Introduction 

Thermal vibrations are of fundamental interest in understanding the physical and chemical 
properties of surfaces. Vibration amplitudes are expected to be considerably larger on 
surfaces than in the bulk and it can be safely assumed that anharmonic terms in the thermal 
vibrations are also larger than in the bulk. It would be highly desirable to have a reliable 
method which allows the quantitative determination of the anisotropy of thermal vibration 
amplitudes. Surface difiiision plays an important role in surface reactions and the 
measurement of the anharmonicity would be largely of interest as well. Unfortunately 
there exist only few methods to determine quantitatively the vibration amplitudes and their 
spatial anisotropy. LEED, like X-ray diffraction, would be well capable to study thermal 
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vibrations but with very few exceptions only isotropic vibrations have been considered in 
the multiple scattering theory until now. 

In the multiple scattering theory thermal vibrations are usually treated in the Debye 
approximation. This approximation has been introduced into the commonly used 
formulation of the multiple scattering theory in a spherical wave representation. It requires 
spherical symmetric thermal vibrations and the Einstein model of independent vibrations. 
This treatment of thermal vibrations usually works well in the case that only the static 
structure is of interest, as it has often been found that there is little influence of the 
thermal parameters on the structural result. Therefore the optimisation of thermal 
vibrations is often not performed and the vibration amplitudes derived from the Debye 
model are, in turn, usually not very reliable. It is also well recognised that the Debye 
model and the muffin tin approximation for the crystal potential is limiting the accuracy of 
the LEED I/V analysis. 

It arises the question whether the quantitative determination of vibration amplitudes with 
LEED is at all possible or not. The shortcomings of the multiple scattering theory may 
outweigh the influence of the approximations made with the thermal vibrations. The other 
main approximations made in the conventional multiple scattering calculations are the 
muffin tin approximation for the crystal potential and the isotropic damping model for the 
inelastic scattering. Only a few attempts have been tried to include non muffin tin 
corrections in the multiple scattering theory [1,2]. It can be expected that details of the 
potential are important at low energies. The low energy range, on the other hand, is 
certainly not appropriate to study thermal effects because of the low sensitivity at small 
momentum transfer. In the higher energy range, lets say above 100- 150 eV, the errors in 
the crystal potential can be considered of minor influence and thermal vibrations will be 
dominant. We can therefore expect that the effects of anisotropic potentials and 
anisotropic vibrations, which are certainly strongly correlated, could be separated in a 
LEED I/V analysis at least when temperature dependent measurements are included. 

To gain insight into the importance of thermal vibrations in the LEED analysis it is useful 
to compare LEED with X-ray diffraction where the kinematical approximation can be 
applied successfully. Here the use of isotropic vibrations usually leads to a fairly good 
structural result but a poor R-factor. The position parameters change in most cases only 
slightly after including anisotropic vibrations but the R-factor, or the GOF (goodness of 
fit), drops frequently considerably. It is also not uncommon that different structural 
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models can only be distinguished after considering anisotropic vibrations. Though the 
quaintitative determination of vibration amplitudes by X-ray diffraction is often of severely 
hindered by absorption effects it is usually not possible to neglect anisotropic vibrations. 
We certainly cannot expect that anisotropic vibrations play a minor role in the case of 
LEED than in the case of X-ray diffraction. 

To investigate how much anisotropic vibrations would influence the LEED I/V curves we 
have applied the concept of split positions to the system CO/Ru(001) [3]. This system has 
been subject of a previous LEED structure analysis [4]. We chose this system because of 
the quality of the data and because large anisotropic effects can be expected here. 
Furthermore, the bending mode of the CO molecule has been studied by ESDIAD 
measurements [5-7] and we can compare the LEED results with independent 
measurements. The results are promising and show that the inclusion of anisotropic 
vibrations should lead to a significant improvement of the LEED I/V analysis. 

Theory 

The diffracted intensity can be written using the T-matrix formalism as 

/ ( * , * ' ) = Σ ( - 1 > " ΐ ' < . . ( ^ , Λ ) · Σ ^ ( ί ) Β ~ Ί ( - " - , ) Ί , ' · 1 ' « · - · ( ^ " Λ · ) 0) 
lmj'ni ν 

where the T-matrices are given by the solution of a self-consistent equation 

Tm = tXE) + tXE)-YtGv(iP + dll-d^Tll(k) (2) 
μ 

The definition of the matrices Τ for the multiple scattering process, t for the single 
scattering process and the electron propagator functions G(k,P) can be found in the book 
by Pendry [8]. k_ and k_' are the wave vectors of the incoming and outgoing wave and 
Y\m are the spherical harmonics. Introducing thermal vibrations the diffracted intensity is 
given by 

/ ( * , * • ) = Σ ( - ^ . . . ( ^ Λ ) · < Σ ^ ( * . ^ + ^ > " ' ( - " - , ) ( ^ + ^ ' ) > Γ · 1 Γ ' · - ' ( ^ . Λ · ) 
Ιτη,Γηί ν 

(3) 
where the average indicated by <>T is taken over the thermal distribution of displacements 
Ad v . The individual T-matrices at each moment with displacements Ar v are given by 
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Τ XL Ad) = tJLE) + tv(E) • Σ GJik^-d- Adv+ AdJ • TJ& AdJ) (4) 

To solve this equation the thermal average has to be introduced. We define a temperature 
dependent Τ matrix which is a function of the distribution of the displacements 

Τ XL T) = (Tv(k,dv+Adv)e " " ^ A ä % (5) 

and likewise for the single scattering amplitude 

tXE,T) = (t(E).ei(A£'A4))T (6) 

Correlations between atomic displacements as well as correlations in the multiple 
scattering series are neglected here. It has been shown first by Duke and Laramore [9], 
Holland [10] and by Pendry [8] that in the harmonic approximation and assuming 
isotropic vibrations equ. 4 can be simplified to 

Tv(k, T) = tXE^ + tXE^-^GJik^-dyT^T) (7) 
μ 

where tv(E, T) can be put in a diagonal form defining complex, temperature dependent 
phase shifts. To include anharmonic and anisotropic vibrations one has to go back to eqs. 
4 and 5 and to introduce the appropriate averages. This is best done introducing a 
probabilty density for the atomic displacements. It means that the electron is scattered by 
a spherical symmetric potential which is displaced. It is not necessary nor convenient to 
describe anisotropic vibrations by non-muffin-tin corrections to the atomic potential which 
have been introduced into the multiple scattering theory by Nagano and Tong [1]. The 
average over atomic displacements is not restricted to harmonic vibrations and allows to 
include anharmonic terms as well. We define a probability p(r) of finding an atom at 
position r by 

n,m.l 

where C j ^ are appropriate anisotropy factors which can be determined from the 
experimental data in a fit procedure. For R n(r) usually a Gaussian distribution can be 
taken and only one value of η is required. However, in the general case a combination of 
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several distribution functions becomes necessary. The number of free parameters is 
limited as in most cases only quadrupole or octupole terms need to be considered which 
limits / to 2 or 3. Further reduction of the number of free parameters is obtained by 
symmetry relations. This approach differs from an earlier attempt to include anisotropic 
vibrations in the multiple scattering formalism by Ulehla and Davis [11] where the 
anisoitropy between parallel and normal components was treated in rectangular 
coordinates and led to large computational effort. The temperature dependent atomic 
scattering factor for single scattering is now given by 

*(Γ ,* ,* , ) = / ( 0 , * , * 0 · / / Κ Δ ο · β ί ^ " - ) Δ ^ (9) 

The atomic scattering factor at T=0 can be written as a diagonal matrix 

/ ( ο , * , * ' ) = ^ Σ ^ · ^ ( 9 , ) Λ · * - . · ^ ( * . Λ ) · ΐ ' , · - - . ( ^ . ^ ) · ( - ΐ ) " ' (ίο) 
* Im.l'fn 

and for the phase factors a spherical wave expansion can be used. 

^ • Ö = 2 4 ^ / , . y X * r ) T J i r ^ r ) . r l . . ( ^ f t ) . ( - l ) " (11) 
Im 

Utilising the properties of the spherical harmonics we obtain 

LML'M' 

with 

n,Un ( 1 3 ) 

• JR„(Ar)(i)L + V JL(k · Δτ) · j L , ( f Ar) · (Ar)2. dAr 

Defining temperature dependent expansion coefficients of the scattering factors and 
following the derivation given by Pendry [8] 

^ ϋ > ^ Σ Σ ' ω , ί · , ( ? ) · ) ' α ( ί ^ 1 ) · 1 ' ι - , ( ί ^ ' ) · Η ) ' ' ' <14> 
IM L'M' 
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we obtain 

where 

K Im I'm'I'm' 

are temperature independent factors and 

For spherical symmetric vibrations all coefficients c^fa vanish unless 1=0 leading to a 
diagonal form of the matrices t^.^ as it should be. In the case of anisotropic vibrations 
the matrices contain off-diagonal elements. Their calculation is not time consuming. The 
integral in equ. 13 can be solved numerically where the parameters c^m and the 
parameters of the radial distribution function are subject of an optimisation procedure. 

'Split'-positions 

A complete description of the theory outlined above and further applications will be given 
in a forthcoming publication. Here we describe only an approximation where the average 
in equ. 5 is replaced by a sum over discrete displacements Ar. This serves as a check of 
the importance of anisotropic thermal vibrations in the LEED I/V analysis. Partially 
occupied positions are usually applied in X-ray structure analysis in cases where certain 
atoms occupy discrete positions in a statistical distribution and are conventionally called 
split positions. In the kinematic theory split positions cannot be distinguished from 
anisotropic vibrations as long as the displacements are much smaller than an atomic 
diameter and the momentum transfer is small. At high momentum transfer the damping of 
the reflection intensities by the temperature factor are not correctly described by split 
positions. It means that the average 

< e / A A . A r w - I ( ( A A . A r ) 2

) r (18) 
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is replaced by a discrete sum with a small number of positions r a 

JAkAra (19) 
a 

which is justified as long as the exponential is small. Split positions can be easily 
introduced into the conventional multiple scattering calculation. Care has to be taken to 
exclude multiple scattering paths between split positions which cannot be occupied 
simuiltaneously. Each position corresponds to an independent atom in a composite layer 
and the whole calculation becomes fairly lengthy such that is it not possible to introduce a 
realistic probability density for the displacements. The advantage is that full use can be 
made of the symmetry of the average structure. 

An alternative approach is to neglect the average in the propagator matrices in equ. 4 and 
to solve equ. 2 instead for a displaced atom and to average the diffracted amplitudes. It 
has the advantage that a distribution density can be introduced and the amplitudes A(k,k) 
can be calculated by TLEED as proposed by Pendry and Heinz [12]. The disadvantage 
here is that the symmetry is broken and that the intra-layer multiple scattering is calculated 
for a rigid lattice. The diffracted intensity is then given by 

The integral can be replaced by a sum over a sufficient number of discrete positions. The 
method will work well in cases where intra-layer multiple scattering is small. In the 
present case of CO/Ru(001)-(V3xV3) it leads to nearly identical results with the split 
positions which is expected because of the wide spacing between the CO molecules and 
the normal incidence. In the kinematic limit both methods are identical. 

Application to CO/Ru(001)-(V3xV3) 

We apply the concept of split positions to study the thermal vibrations of the CO molecule 
on Ru(OOl). Before applying split positions to the Ο and C atoms the structure analysis 
has been redone to ensure that all static parameters were at optimum values because in the 
previous analysis [4] the relaxation in the Ru-layer could not be considered. The analysis 

(20) 
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included lateral and vertical relaxation in the 
a small buckling in the top Ru layer. 

2 uppermost substrate layers and resulted in 

CO/Ru(0001)\3)rv3R30e 

1.10±0.05A 
1.93±0.04Ä 
0.07±0.03Ä 
2.08±0.04Ä 

Fig. 1 Structure model of the CO(Ru(001)-(^x^) phase 

The Ru atoms co-ordinated to the C atom are displaced outward by about 0.07 Ä. No 
lateral displacements could be detected within the error limits. The R-factors decreased 
significantly, Rp dropped from 0.51 to 0.34 and Rde> which corresponds to R\ dropped 
from 0.44 to 0.32. Fig. 1 shows the structure model and the resulting parameters. 

Fig. 2. Illustration of the split positions of the Ο atom. 6 partially occupied positions and 
a rotation of the Ο positions by 30 ° have been tried as well leading to the same 
result. 
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We then introduced split positions for both the Ο and the C atom. The split positions for 
Ο are shown in fig. 2. We tried three split positions as well as 6. Both giving nearly 
identical results. 

Osplit position A R 0 ,, (Ä) 

Fig. 3. Average R-factor Rp and Rj)E 0 5 a function of the Ο displacement. The dashed 
line corresponds to the calculation according to equ. 20. 

Fig. 3 shows the R-factors as a function of the Ο split position. There is a clear minimum 
visible for about 0.3 to 0.4 Ä shift of the oxygen atom. A lateral shift of the C atom has 
been tried as well and resulted in a flat rninimum at about 0.04 A. In these calculations a 
Debye temperature of 400 Κ has been applied to both Ο and C which takes account of an 
isotropic contribution and corresponds to a mean square displacement of 0.04 A. 

The average tilt amounts to about 15° i f we identify the displacement of 0.3 A with a 
mean square displacement. We can compare this result with previous ESDIAD studies 
on this system by Riedl and Menzel [5,6]. They found a mean square deviation of about 
0.1 A corresponding to about 5° for the average tilt angle. A considerable larger value 
found earlier by Madey [7] also with ESDIAD measurements can probably be explained 
by inappropriate corrections to the ion trajectories due to the static electric field [6]. 
There remains therefore a factor of 3 between the ESDIAD measurements and the present 
LEED analysis. This fact should not be overestimated. The average displacement of 0.3 -
0.4 A for Ο is certainly above the limit of the applicability of split positions because the 
exponential in equ. 19 is not small for higher energies and high index beams. The tendency 
of the split positions is then to overestimate the displacement. The error limits of the 
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analysis are therefore large. On the other hand, the interpretation of the ESDIAD 
measurements is not quite straight forward either and there is an influence of static 
displacements and defects which has been not been considered in the LEED analysis. 
Further investigations with temperature dependent measurements and an analysis of the 
probability density function are in progress. 

In summary, we have shown that there is a clear sensitivity of the LEED I/V curves to 
anisotropic vibrations and the magnitude of amplitude obtained with the simple 
aproximation with split positions seems to be reasonable though still not quantitatively 
comparable with other measurements. We can expect that a more realistic calculation of 
anisotropic thermal vibrations as outlined above offers a convenient and experimentally 
relative simple way to determine thermal vibrations at surfaces. 
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